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Abstract 
 
This paper deals with an extensive finite element parametric study on exposed column base plates 

subjected to the combination of biaxial bending moment and axial force. The objective is to explore 

the effect of the connection geometry as well as loading conditions on the resistance and rotational 

stiffness of the base-plate connection. The influence of the base plate thickness, anchor bolt diameter, 

column cross section (I or H section), bending moment orientation and axial force magnitude is inves-

tigated in details using a numerical model that has been previously validated based on experimental 

tests performed by the authors.  A particular attention is dedicated to the contact pressure distribution 

and the M-N interaction curves. Analytical models are proposed to evaluate the in-plane, out-of-plane 

and biaxial bending resistances considering the contribution of an axial force. Both the contribution of 

the column web and the size of the compression area depend on the base-plate thickness and are ac-

counted for in the evaluation of the in-plane bending resistance. For out-of-plane bending resistance, a 

parabolic M-N interaction curve is derived. The biaxial bending resistance is evaluated considering 

the plastic redistribution of out-of-plane bending moments between the right and the left sides of the 

column base plate (with respect to the strong axis). A simplified method is also proposed to determine 

the resistance whatever the orientation of the bending moment and the axial force.  
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https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0141029621010439
Manuscript_98a712e50c7c99cbfd93ab48055ea57b

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0141029621010439
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0141029621010439


2 

 

 

1. INTRODUCTION 

Column base plates are key components of steel structures as they transfer vertical and horizontal 

loadings from the building to the foundation. Pinned column base-plates are often used in buildings 

due to simplicity of execution and the economy. Semi-rigid or rigid column base plates are useful to 

limit lateral displacements caused by wind or horizontal seismic actions, particularly when the dis-

placement limit is constrained by the presence of overhead crane, for example. A large number of de-

sign methods found in the literature address the case of combined axial force and in-plane bending 

moment. The first generation of design codes were based on an elastic analysis of column base plates 

([1], [2]) assuming a linear distribution of contact pressure between the base-plate and the concrete 

block. This assumption is retained in the brand new standard dedicated to mechanical fasteners, Euro-

code 2 part 4 [3]. However, this elastic linear distribution of contact pressure over the entire area of 

the base plate is realistic for relatively large base-plate thickness only, a situation that is not common 

in practice. Furthermore, the actual contact pressure distribution between concrete and base-plate is 

far more complex than what has been assumed. 

A large amount of research focused on the development of methods that consider plastic distribution 

of contact pressure between the base plate and concrete ([4], [5], [6], [7]). These concepts have been 

introduced in the last generation of design codes for column base-plates ([8], [9]). The above men-

tioned researchs and design codes deal with the case of column base-plates under strong axis in-plane 

bending moment combined with an axial force. However, many column base plates are subjected to 

the combination of a biaxial bending moment and an axial force mainly due to the bidirectional nature 

of wind and seismic loads. Recently, experimental and numerical studies have been performed to bet-

ter understand the behavior of column base plates under biaxial bending moment and axial force. Lee 

et al [10] performed  the first experimental tests on column base plates subjected to weak axis bending 

moment. The failure of the connections was due to column flange yielding/buckling and weld tearing 

and didn’t involve connections components such as anchor bolts or base plate in bending. These re-

sults cannot be used to calibrate an analytical model that provide the resistance of the column base 
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plate for out-of-plane bending moment.  The numerical studies performed by Lee et al. [11] on col-

umn base plates under out-of-plane bending moment highlighted that the application of the Drake and 

Elkin approach [5] is not adequate for this case. The first experimental program performed on column 

base plates subjected to an axial force combined with a biaxial bending moment was carried out by 

Bajer et al. [12]. This study allowed to evaluate the influence of the orientation of the bending mo-

ment axis on the bending resistance and initial rotational stiffness. Under biaxial bending moment, the 

moment resistance and rotational stiffness were below than the corresponding values under strong 

axis bending moment alone. The failure mode that corresponds to anchor bolt rupture in tension was 

not affected by the orientation of the bending moment axis. However, the mechanical characteristics 

of steel material were not provided, preventing any calibration. Amaral [13] modelled the abovemen-

tioned column base plate tests with the finite element code Abaqus and the results were in good 

agreement. An analytical model based on the component method was proposed to estimate the re-

sistance and initial stiffness in presence of axial force and out-of-plane bending moment. For domi-

nant out-of-plane bending moment, the extent of the compression area depends on the axial force and 

the resistance of the tensile area. The connection resistance under biaxial bending moment was mod-

elled by a simple elliptical interaction curve and the results were found to be quite conservative com-

pared to experimental and numerical ones. The same approach was adopted by Fasaee et al. [14] 

whom proposed an analytical model to characterize the resistance of base-plates under axial force and 

biaxial bending moment, based on an elliptical interaction curve. Results were confirmed by the ex-

tensive numerical study. Nevertheless, these elliptical interaction curves does not rely on firm me-

chanical background. The present authors [18] performed six experimental tests on column base 

plates subjected to uniaxial (in-plane and out-of-plane) and biaxial bending moments considering two 

base-plate thicknesses (thin and thick). The failure mode corresponding to anchor bolt rupture in ten-

sion with and without base-plate yielding was not affected by the orientation of the bending moment 

axis. Under biaxial bending moment, the developed finite element model highlighted the dependency 

of the contact pressure distribution on the base plate thickness and the plastic redistribution between 

anchor bolts. An analytical model considering this latter observation was proposed to evaluate the 

uniaxial and biaxial bending resistances. However, this study neglected the presence of axial force 
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that is crucial for this type of connection. The objective of this paper is thus to develop an analytical 

model, based on mechanical principles, to determine the resistance of column base plates subjected to 

the combination of biaxial bending moment and axial force.  

This paper presents in section 2 results of an extensive finite element parametric study performed on 

column base plates subjected to axial force and biaxial bending moment. The numerical model, de-

veloped in the finite element code Abaqus and previously validated by comparing its predictions 

against experimental test results [18] will be used to broaden the results data base. This parametric 

study shade the light on the influence of the base plate thickness, the column steel profile (I or H sec-

tion), the diameter of anchor bolts, the orientation of the bending moment axis and the magnitude of 

the axial force.  A particular attention is dedicated to the contact pressure distribution, bending re-

sistance and rotational stiffness. The interaction curves are presented for different orientations of the 

bending moment axis. Analytical models are proposed to evaluate the uniaxial and biaxial bending 

resistances.  A particular attention is dedicated to the evaluation of the size of the compressive area as 

a function of the base plate thickness, in the same way Eurocode 3 does. For in-plane bending mo-

ment, the contribution of the column web in the compressive area is considered. The component “col-

umn in compression” is directly integrated in the evaluation of the resistance of the compressive area. 

For out-of-plane bending moment, a parabolic interaction curve is derived from equilibrium. Finally, 

the plastic redistribution observed numerically is integrated in the model for the connection resistance 

under biaxial bending moment. The results of the proposed analytical models are compared to exper-

imental and numerical data’s. A simple equation is finally proposed to estimate the bending resistance 

whatever the orientation of the bending moment and the value of the axial force.  
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2. PARAMETRIC STUDY  

2.1. Introduction 

A finite element model for column base plates subjected to biaxial bending moment and axial force 

has been developed in Abaqus by the authors ([17], [18]). The results of this model were in very good 

agreement with those of six experimental tests [18] performed on column base plate subjected to in-

plane, out-of-plane and bi-axial bending moments but without axial force. A parametric study on col-

umn base plates has been accomplished to enlarge the set of results covering cases that have not been 

considered yet and to investigate the effects of the base-plate thickness tp, the shape of the column 

steel profile (HEA or IPE), the diameter of anchor bolts and the arrangement of the anchoring system. 

The response of the connection is evaluated for a combination of tensile/compressive axial force and 

bending moment (in-plane, out-of-plane and biaxial). In particular, the influence of the loading condi-

tions on the failure mode is carefully analyzed. The specimen geometries considered for the paramet-

ric study are based on connections tested by the authors [18].  

2.2. Finite element model 

All components (base-plate, column, weld, concrete, anchor bolts …) except the reinforcing bars are 

modelled as three-dimensional deformable solids using eight-node linear brick elements (see Fig. 1-a 

and b). Two-node linear truss elements are used for the concrete reinforcing bars (see Fig. 1-c).  

 

 
 

 

 

 

a) Connection, concrete block and column b) Anchor bolts c) Concrete bloc reinforcement 

Fig. 1. Type of finite elements 

Element 

C3D8R Element 

T3D2 
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The anchor bolts are modelled with nuts and washers and have a cross section area equal to A = πd2/4 

(d is the anchor bolt diameter). To produce reasonable and physically sound stress distributions at the 

interface between the anchor bolts and the concrete, a smaller mesh size was selected for the layer of 

concrete material in contact with the anchor bolts. In regions were buckling and/or severe bending 

were expected such as column flanges and base-plates, it was decided to assign three elements across 

the wall thickness of these thin elements and four for the 20 mm thickness base-plates. A sensitivity 

analysis confirmed that this meshing was adequate [17].  

The material non-linearity was considered. The elasto-plastic behavior of steel components is de-

scribed by the von-Mises yield criterion with strain hardening. The stress-strain curve introduced in 

the numerical models is multi-linear (see Fig. 2). The behavior is elastic up to the yield strength fy. 

Next, the behavior is elastic-plastic up to εu. Material failure is simply characterized by an abrupt drop 

of the stress to 10 N/mm2.  This approach is appropriate to model the rupture of bolts in tension. The 

nominal characteristics of the materials are selected, and the steel grades of the column and the base 

plate are S355 and S275, respectively. The class of anchor bolts is 5.6. For concrete, the nominal 

properties of a C25/30 were considered. The material properties are summarized in Table 1. 

Table 1 : Material characteristics of the parametric study 

Column  Base Plate Anchor bolts Concrete 
fy,c 
(MPa) 

fu,c 
(MPa) 

εu,c 
(%) 

fyp 
(MPa) 

fup 
(MPa) 

εu,p 
(%) 

fyb 
(MPa) 

fub 
(MPa) 

εu,b 
(%) 

fck 
(MPa) 

εcu,1 
(‰) 

355 568 15 275 499 15 300 575 10 25 3,5 

ε (%) εy εh εu 

σ (N/mm2) 

fy 

fu 

Failure: σ =10 

    ε = εu+1 

 
Fig. 2. Stress-strain relationship for steel 



7 

 

The compressive equivalent stress-strain curve proposed in EN 1992-1-1 was used to simulate the 

compressive behaviour of concrete. Concrete behaviour in tension and in compression are depicted in 

Fig. 3. Nominal values suggested in EN 1992-1-1 are used to define these curves. Concrete Damaged 

Plasticity model available in ABAQUS material library is used to simulate concrete behavior in com-

pression and tension. Bond properties of the embedded anchor bolts were defined by a local bond-slip 

relationship taken from FIP Model Code 2010 [21] and presented in Fig. 4. The concrete material pa-

rameters used are presented in Table 2, further details can be found in [18].  

Table 2 : Concrete properties introduced in the FE model  

Concrete fcm (MPa) 
εc1 

(%o) 

fctm 

(MPa) 
δt1 (mm) 

C25/30 25 2,1 2,6 0 

Dilation 

angle (º) 
Eccentricity fb0/fc0 K 

Viscosity 

parameter 

36 0,1 1,16 0,667 0 

 

εc (%) 

   fcm 

σc (N/mm2) 

 εc1   εcu1  

 Εcm 

 δt (mm) 

fctm 

σt (N/mm2) 

 δt1   
Fig. 3. Stress-strain curve for concrete 

s (mm) 

τmax 

τ (N/mm2) 

s1  
Fig. 4. Bond stress-slip law from FIP Model Code 2010   
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Kinematic constraints and contact interaction models adopted are listed below: 

• “rigid body” constraint to create a rigid cross-section at the top of the column where the load 

is applied, and guarantee the uniformity of imposed displacement throughout the section. The 

reference point is located at the geometric centre of the column cross-section.  

•  “tie” constraint to connect the welds to the column and the base-plate. 

• steel-steel and steel-concrete contacts considering friction coefficients equal to 0,3 and 0,5 for 

the former and latter, respectively. A surface-to-surface discretization method with finite slid-

ing formulation is adopted. For normal behavior, the hard contact is selected allowing separa-

tion and preventing penetration of surfaces in contact, 

• steel-concrete bonding interaction to model the contact between the lateral surface of the an-

chor bolts and the concrete block, a surface-to-surface contact type is selected with finite slid-

ing formulation.  

• “embedded region” constraint to create the contact interaction between the concrete and the 

steel reinforcement. 

 

The loading was applied in two subsequent steps. The first step was defined to initiate contact interac-

tions between the connection components. In the second step, the loading conditions were applied. 

Firstly, a constant value of the axial force was applied to the connection. Secondly, a displacement 

perpendicular to the centre line of the column steel profile was incrementally applied. As a conse-

quence, the base-plate was subjected to an increasing bending moment with an arbitrary orientation 

until failure was reached. The failure was considered to be attained once: 

• The von Mises strain reached the ultimate strain of the material εu in one steel component, the 

anchor bolts in the present study.  

• The applied bending moment decreases due to column buckling.  

During the loading, the axial force orientation coincide with the axis of the column. In addition 

great displacements and strain were considered in order to capture instability and necking.  
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2.3. Geometry and loading conditions 

In this parametric study, six column base plate configurations have been investigated (P1 to P6) com-

prising base-plate welded either to HEA 200 (P1, P2, P5 and P6) or IPE 200 (P3 and P4) allowing to 

evaluate the effect of the column-shape on the connection’s behaviour. The details of column base 

plate are given in Table 3 and Fig. 5. Fillet welds of 7 mm throat thickness connect the column profile 

to the base-plate. The base-plate is attached to a concrete block 460×360×725 mm of class C25/30 by 

means of four outer anchor bolts M16 or M20 class 5.6. The length of the column is equal to 500 mm 

to ensure proper stress flow but also to limit computational time and avoid column global buckling. 

Specimens were subjected to three different loading cases: pure bending moment about the strong ax-

is, pure bending moment about the weak axis and biaxial bending moment with an orientation of the 

bending moment axis equal to 45°. The loading is identified by the letter M followed by a number 

specifying the inclination of the applied bending moment axis, M0 for in-plane bending moment, M90 

for out-of-plane bending moment and M45 for biaxial bending moment with an angle of 45°. 

 
Fig. 5. Geometry of specimens  

Specimens P1 and P2 are similar to connections tested by the authors [18] under in-plane, out-of-

plane and biaxial bending moments. These connections are designed to investigate the influence of the 

base-plate thickness on the connection behaviour. The column, an HEA 200 typically used in practice, 

is connected to a base-plate of either 10 or 20 mm thickness, corresponding to specimen P1 and P2, 

respectively. Specimens P3 and P4 are composed of an IPE200 and the base plate thickness is vary-

ing. Specimens P5 and P6 are similar to specimens P1 and P2 with the exception of the anchor bolts 
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that are M20 instead of M16 for the latter. The objective was to analyse the effect of anchor bolt di-

ameter. 

Table 3 : Geometries of the parametric study 

Configuration 
Column steel 
profile 

Base plate thick-
ness tp (mm) 

Anchor bolt di-
ameter (mm) 

P1 HEA 200 10 16 
P2 HEA 200 20 16 
P3 IPE 200 10 16 
P4 IPE 200 20 16 
P5 HEA 200 10 20 
P6 HEA 200 20 20 

 

To evaluate the influence of a compressive/tensile axial force on the bending moment resistance and 

the failure modes of the connections, specimens are subjected to a combination of an axial force and 

uniaxial (in-plane/out-of-plane) or biaxial bending moments. To obtain the M-N ultimate interaction 

curves, specimens are firstly loaded by an axial force equal to a percentage of Nj,c,u or Nj,t,u which cor-

responds to the resistances obtained numerically in pure compression and tension, respectively. Next, 

they are loaded by a bending moment in one or two directions until failure. Table 4 summarizes the 

studied loading cases for specimens P1, P2, P3, P4, P5 and P6.  

Table 4 : Loading cases of the parametric study 

Axial force Bending moment*  Axial force Bending moment* 

Nj,c,u 0  Nj,t,u 0 
0 M0/M90/M45  - - 
0,1×Nj,c,u 

M0/M90/M45 

 0,1×Nj,t,u 

M0/M90/M45 

0,2×Nj,c,u  0,2×Nj,t,u 
0,3×Nj,c,u  0,3×Nj,t,u 
0,4×Nj,c,u  0,4×Nj,t,u 
0,5×Nj,c,u  0,5×Nj,t,u 
0,6×Nj,c,u  0,6×Nj,t,u 
0,7×Nj,c,u  0,7×Nj,t,u 
0,8×Nj,c,u  0,8×Nj,t,u 
0,9×Nj,c,u  0,9×Nj,t,u 

*M0: in-plane bending moment; M90: out-of-plane bending moment; M45: biaxial bending moment. 

2.4. Failure modes/influence of the loading conditions 

Initial rotational stiffness, ultimate bending moments and failure modes of specimens P1 to P6 ob-

tained for in-plane, out-of-plane and biaxial bending moments are summarized in the Appendix.  

Two main failure modes are observed:  
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• Local buckling of the column flanges (see Fig. 6-a and Fig. 8-a for in-plane and out-of-plane 

bending moments, respectively) after substantial yielding, 

• Failure of the anchor bolts in tension with or without base plate yielding (see Fig. 6-b/c and 

Fig. 8-b/c for in-plane and out-of-plane bending moments, respectively). For thicker base-

plates, where yielding of the base plate does not develop in the tensile area, the compression 

area is located at the outer edge of the base plate (see Fig. 6-c and Fig. 8-c). For thinner base-

plates, the compressive area develops between the outer edge of the plate and the column (see 

Fig. 6-b and Fig. 8-b) and the base-plate yields in the tensile area.  

The M-N interaction curve obtained for in-plane bending moment is quite classical and has a multi-

linear shape (see Fig. 6-d). For out-of-plane bending moment, the M-N interaction curve is clearly 

parabolic (see Fig. 8-d).  

  
 

a) column local buckling 

 

b) Anchor bolt failure with base-

plate yielding 

c) Anchor bolt failure without 

base-plate yielding 
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d) Interaction M-N curves for in-plane bending moment of specimen P1 

Fig. 6. Failure modes under in-plane bending moment 

 

The failure modes are strongly influenced by the loading. Under tensile force, all specimens consid-

ered in the present study failed by anchor bolt rupture in tension, regardless of the orientation of the 

bending moment axis. For values of the axial force up to 0,5Nj,t,u, the anchor bolts in the tensile zone 

fail as a result of the combined action of local bending moment and tensile force. Above this value, 

the tensile force is dominant and nearly equally distributed among the anchor bolts. For this range of 

values of the applied tensile force, the elastic stage is very short and the post-limit strength is quickly 

reached. This can be verified from the comparison of the moment-rotation curves drawn for each 

specimens for different levels of tensile/compressive axial force (see Fig. 7). The in-plane rotation 

corresponds to the difference between the vertical displacements of the column flanges divided by the 

column depth. The displacements are measured at the intersection between the web and the flange 

centrelines. Under compressive force, the connection behavior is stiffer than that of a connection sub-

jected to a tensile force, the compressed area being stiffer than the tensile zone. By increasing this ar-

ea, the stiffness of the connection is increased.  
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a) Specimen P1 

 
b) Specimen P2 

 
c) Specimen P3 

 
d) Specimen P4 

 
e) Specimen P5 

 
f) Specimen P6 

Fig. 7. In-plane moment-rotation curves  

 

 



14 

 

 

 

 

a) column flange buckling 
b) Anchor bolt failure with base 

plate yielding 

c) Anchor bolt failure without base 

plate yielding 

 

d) Interaction M-N curves for out-of-plane bending moment of specimen P1 

Fig. 8. Failure modes under out-of-plane bending moment 

The axial force also influence the ultimate bending moment Mj,u and the initial rotational stiffness Sj,ini. 

From the Appendix, it can be observed that the ultimate bending moment and initial rotational stiff-

ness decreases with increasing value of the tensile force regardless of the orientation of the bending 

moment axis. An increase of the tensile force produces a gradual decrease of the compressive area up 

to the point where the entire effective area of the base plate is working under tension. The compres-

sive area being more rigid than the tensile area, the decrease of its area results in a decrease of the 

stiffness. Moreover, failure being caused by anchor bolt rupture in tension in presence of a pure bend-

ing moment, the application of a tensile force accelerate this phenomena.  

In presence of a compressive force, the bending resistances and the initial rotational stiffness are in-

creased for values of axial force up to 0,5Nj,c,u. For M0 and M45 series, the tensile area which is at the 
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origin of the connection failure, is more flexible than the compressive area Therefore, the application 

of a compressive force to the connection unload this area. For M90 series, even if the failure is due to 

the local buckling of the column, the anchor bolts are subjected to high tensile forces. Then, the com-

ments made above are also valid for this case. However, for values of the axial compressive force 

above 0,5Nj,c,u,, the resistance decreases as the failure is exclusively due to local buckling of the col-

umn. 

Interaction curves of in-plane and out-of-plane bending moments, Mip-Mop, are depicted in Fig. 9 and 

Fig. 10 for different compressive/tensile forces. The dots correspond to numerical results obtained for 

M0, M45 and M90. In addition, elliptical curves are drawn based on M0 and M90 results.” In pres-

ence of a tensile force, the points of the numerical analysis fit quite well with an elliptical curve. 

However, for specimens P1 and P5 and values of the tensile force close to the tensile resistance, this 

elliptical curve is unsafe. It seems that a linear approximation is more suitable. For specimens P3 and 

P4, the elliptical curve is far from what is obtained numerically regardless of the value of the tensile 

force. In presence of a compressive force, the elliptical curve is generally conservative except for 

specimen P2 under high compressive force.  
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a) Specimen P1 

 
b) Specimen P2 

 
c) Specimen P3 

 
d) Specimen P4 

 
e) Specimen P5 

 
f) Specimen P6 

Fig. 9. Interaction curves Mip-Mop under compressive force 
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a) Specimen P1 

 
b) Specimen P2 

 
c) Specimen P3 

 
d) Specimen P4 

 
e) Specimen P5 

 
f) Specimen P6 

Fig. 10. Interaction curves Mip-Mop under tensile force 
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2.5. Influence of geometric parameters 

2.5.1. Base plate thickness 

The influence of the base plate thickness is analyzed below in terms of failure mode, resistance 

and initial rotational stiffness. From the Appendix, it can be concluded that the base-plate thick-

ness has no particular influence on the type of failure mode. Under combined bending moment 

and tensile force, anchor bolts govern failure of the connection regardless of the base-plate thick-

ness. On the other hand, for connections subjected to combined compressive axial force and bend-

ing moment, two different failure modes can be observed: rupture of the anchor bolts in tension or 

local buckling of the column steel profile. The bending resistance increases with increasing values 

of the base-plate thickness. Increasing the base plate thickness leads to an increase of the lever 

arm z which corresponds to the distance between the center of compression and the center of ten-

sion. This increase limits also prying effects.  
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a) P1 and P2 under in-plane bending, M0 

 
b) P3 and P4 under in-plane bending, M0 

  

c) P1 and P2 under out-of-plane bending, M90 d) P3 and P4 under out-of-plane bending, M90 

  

e) P1 and P2 under bi-axial bending, M45 f) P3 and P4 under bi-axial bending, M45 

Fig. 11. M-N interaction curves: Influence of the base-plate thickness 
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The increase of the base-plate thickness also affects the initial rotational stiffness of the connection. 

The initial rotational stiffness is larger for thicker base plates as a result of greater lever arm z and 

lower deformation of the base-plate in the tensile area. To get a better insight into the gain of re-

sistance for the 20 mm base plate configuration, the M-N interaction curves are depicted in Fig. 11 for 

connections P1 to P4. 

As observed, the gain in resistance is more or less evident, depending on the configuration of the con-

nection and the applied loading conditions. For all cases, although less pronounced for out-of-plane 

bending, the gain in resistance is substantially higher when the failure mode is governed by anchor 

bolts rupture in tension. However, for values of the applied compressive force above 0,5Nj,c,u, the 

curves overlap each other as a consequence of the local buckling of the column flanges. In these cas-

es, the gain in resistance is insignificant. Under out-of-plane bending moment, the shape of the M-N 

curve is parabolic. For in-plane bending moment, it seems locally parabolic but in general, most of the 

segment of the curve is linear. The curve for biaxial bending moment are in between these two cases.  

Contour plot of the contact pressure acting on the base-plate bottom surface (in contact with the con-

crete block) of connections P1 and P2 at failure are presented in Fig. 12 for in-plane bending moment. 

For an axial force equal to zero, the compression area is located close to the lower anchor bolt row for 

specimen P1 (see Fig. 12-a) and at the outer edge of the base plate for connection P2 (see Fig. 12-b). 

The lever arm are thus greater for thicker base-plate resulting in larger resistances and rotational stiff-

ness. Under the maximal bending moment and the corresponding axial force, the compression area 

spread over the column flange for the two thickness’s (see Fig. 12-c and d). The flange T-stub in com-

pression is thus fully mobilized. Under pure compression, the contact area is greater for thicker base-

plate (see Fig. 12-e and f).  Stress concentration are also observed behind the welds that transfer the 

compression forces directly to the base-plate. The same conclusions can be drawn when comparing P3 

and P4, as well as P5 and P6.  
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a) P1 (N = 0) 

 
b) P2 (N = 0) 

 
c) P1 (N = 788 kN) 

 
d) P2 (N = 786 kN) 

 
e) P1 (N = 1971 kN) 

 
f) P2 (N = 1966 kN) 

Fig. 12. Contact pressures of P1 and P2 at failure for in-plane bending moment (in N/mm2) 

Contour plot of the contact pressure acting on the base-plate bottom surface (in contact with the con-

crete block) of connections P1 and P2 at failure are presented in Fig. 13 for out-of-plane bending mo-

ment. In presence of pure out-of-plane bending moment, the contact pressure develop at the outer 

edge for thicker flange (see Fig. 13-b for connection P2) and at the corner of the column flange for the 

thinner ones (see Fig. 13-a for connection P1). This distinction induces a different lever arm that ex-

plains partially the modification of bending resistance and rotational stiffness. The contact area ex-
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tends over nearly half the column flange when the maximum bending moment is applied to the con-

nection (see Fig. 13-c and d).  

 
a) P1 (N = 0 kN) 

 
b) P2 (N = 0 kN) 

 
c) P1 (N = 788 kN) 

 
d) P2 (N = 786kN) 

Fig. 13. Contact pressures of P1 and P2 at failure for out-of-plane bending moment (in N/mm2) 

2.5.2. Column steel profile 

Although HEA steel profiles are considered as the most suitable cross-sections for columns, IPE steel 

profiles are still widely used in practice. The influence of the steel column cross-section geometry 

(HEA 200 or IPE 200) on the connection response is discussed below. Interaction curves M-N depict-

ed in Fig. 14, compare specimen P1 to specimen P3, and specimen P2 to specimen P4 under strong-

axis, weak-axis and biaxial bending moments. 

For a compression force larger than 0,5Nj,c,u and regardless of the orientation of the bending moment 

axis, the failure mode corresponds to column buckling. The bending resistance is thus strongly in-

creased when an HEA 200 steel profile is used instead of an IPE 200.  

Under combined in-plane bending moment and tensile force or low value of the compressive force, 

the bending resistance obtained with the two profiles are similar.  
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a) P1 and P3 under in-plane bending, M0 

 
b) P2 and P4 under in-plane bending, M0 

  

c) P1 and P3 under out-of-plane bending, M90 d) P2 and P4 under out-of-plane bending, M90 

  

e) P1 and P3 under bi-axial bending, M45 f) P2 and P4 under bi-axial bending, M45 

Fig. 14. M-N interaction curves: Influence of the column profile 
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The lever arms with an HEA 200 or IPE 200 are quite close and only the base-plate width is different. 

The latter influence the local bending resistance of the base-plate in the tensile area. Furthermore, the 

decrease of the base-plate width reduces its flexibility and hence favour the development of prying 

effect (see Fig. 15-a and b). For out-of-plane bending moment, gain in resistance has been observed in 

presence of tensile or low value of the compressive force due to: 

• the increase of the anchor bolt pitch that is beneficial in presence of dominant tensile force, 

• the increase of the width of the column flange results in an increased lever arm in presence of 

dominant bending moment. The latter corresponds to the distance between the resultant forces 

in tension Ft,Rd at the level of the tensioned anchor bolts, and the resultant forces in compres-

sion Fc,Rd around the column flange corners that increases for the HEA 200 steel profile.  

Similar results are obtained with biaxial bending moment. The contact pressure distributions are quite 

close for the two column shapes (see Fig. 15).  

 
a) P1 under M0 with N = 0 

 
b) P3 under M0 with N = 0 

 

c) P1 under M90 with N = 986 kN 

 

d) P3 under M90 with N = 316 kN 

Fig. 15. Contact pressures for P1 and P3 at failure (in N/mm2) 
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2.5.3. Anchor bolt diameter 

Anchor bolts strongly influence the behavior of column base plates. The impact of the anchor bolt 

diameter is investigated by comparing the response of connections P5 and P6 that use anchor bolts 

M20 against the response of connections P1 and P2 made with anchor bolts M16. The M-N interac-

tion curves obtained for these four specimens are depicted in Fig. 17 for in-plane, out-of-plane and 

biaxial bending moments.  

 
a) P1 under M0 with N = 0 

 
b) P5 under M0 with N = 0 

 
c) P1 under M90 with N = 0 

 
d) P5 under M90 with N = 0 

Fig. 16. Contact pressures of P1 and P5 at failure (in N/mm2) 

If failure is triggered by anchor bolt rupture in tension, the bending resistance of the connections is 

tremendously increased by an increase of the anchor bolt diameter regardless of the base-plate thick-

ness.  

Comparing the response of specimens P1 and P5 for in-plane bending moment, it can be seen that an 

increase of 50 % of the anchor bolts cross-section results in a 60% increase of  the bending resistance. 

For the same loading case, an increase of about 70% is observed when comparing specimen P2 and 

specimen P6.  
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a) P1 and P5 under in plane bending, M0 

 
b) P2 and P6 under in plane bending, M0 

  

c) P1 and P5 under out-of-plane bending, M90 d) P2 and P6 under out-of-plane bending, M90 

  

e) P1 and P5 under bi-axial bending, M45 f) P2 and P6 under bi-axial bending, M45 

Fig. 17. M-N interaction curves: Influence of the anchor bolt diameter 
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For out-of-plane and biaxial bending moments, the gains are also significant, up to 50% when com-

paring specimens P1 and P5 and 60% when comparing specimens P2 and P6. On the contrary, curves 

overlap when failure is due to column buckling particularly for compressive forces greater than 

0,5Nj,c,u. From the values presented in Appendix, a noticeable impact on the initial stiffness Sj,ini is also 

observed. The anchor bolts being more rigid, the stiffness of the connection increases as well as pry-

ing effect, which becomes more evident for specimen P5 (see Fig. 16). 

2.6. Conclusions on the parametric study 

 

The parametric study highlighted the impact of base-plate thickness, anchor bolt diameter, bending 

moment orientation and axial load magnitude and character on the behaviour of column base plate. A 

particular attention was dedicated to initial rotational stiffness, ultimate bending resistance and failure 

mode. The main conclusions drawn from this study are given below: 

• The failure mode strongly depends on the intensity of the axial force and on the orientation of 

the bending moment axis. In presence of tensile force, failure is caused by rupture of anchor 

bolts in tension regardless of the orientation of the bending moment axis. Increasing the ap-

plied tensile force decreases the bending moment resistance and the initial rotational stiffness 

regardless of the orientation of the bending moment axis. Increasing the compressive force up 

to half of the compressive resistance of the connection is advantageous in terms of resistance 

and initial stiffness for in-plane and biaxial bending moments (with an orientation of 45° of 

the bending moment axis). High compressive force generate local buckling/yielding in the 

column flanges, decreasing the resistance and initial stiffness of the connections.  

• Increasing the base-plate thickness tends to improve the initial stiffness of the connections and 

its resistance if failure does not occur in the column. 

• The use of an HEA steel profile instead of an IPE increases the lever arm in presence of dom-

inant out-of-plane bending moment and consequently, increase the resistance. 
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• Increasing the anchor bolts diameter increases the bending resistance and the initial rotational 

stiffness of the connections particularly when failure corresponds to anchor bolt rupture in 

tension.   

• The shape of the M-N curves is also affected by the orientation of the bending moment axis. 

For out-of-plane bending moment, a parabolic curve is clearly observed regardless of the 

studied configuration. For in-plane bending moment, the curve is more multi-linear. The in-

teraction curve for biaxial bending moment with an angle of 45° is in between these two 

shapes.   
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3. ANALYTICAL MODEL 

3.1. Introduction 

In the present section, analytical models are proposed to evaluate the resistance of column base-plate 

under in-plane, out-of-plane and biaxial bending moments combined with axial force considering 

the principles of the component methods of Eurocode 3 and the following assumptions based on ex-

perimental and numerical observations: 

• the resistance of the compressive area is estimated by adding the resistance provided by the 

flange to the resistance of the effective area around the web, 

• the contact areas and lever arms of the compressive area are not fixed as in Eurocode 3 but 

depend on the base-plate thickness, 

• for high compressive force, yielding can occur in the column. The resistance of the compres-

sive area cannot exceed both the resistance of the concrete component and the strength of the 

column in compression, bounding the bearing strength fjd.  

• A plastic redistribution is considered regardless of the orientation of the bending moment ax-

is.  

3.2. General assumptions 

The connections explored in this work consist in a rigid/semi-rigid extended base-plate welded to an I 

or H steel column. The extended base-plate is fastened to the concrete foundation by means of four 

outer anchor bolts. The design of the connection ensure that failure does not occur in the welds or the 

concrete block and that rupture of the connection is triggered by yielding of the base-plate and/or fail-

ure of the anchor bolts. Good contact conditions are assumed at the interface between the concrete 

block and the embedded length of the anchor bolts. The proposed models consider a plastic redistribu-

tion of the internal forces at failure. As abovementioned, the models are based on the basic assump-

tions of the Component Method from Eurocode 3. The components considered in the analytical model 

are the following:  
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• The components ensuring transfer of tensile force due to the bending moment are the base-

plate in bending and the anchor bolts in tension; 

• The components ensuring transfer of the compressive force due to bending moment are the 

concrete in compression, the base-plate in bending under bearing pressure exerted by the 

foundation and the column in compression. 

 

The angle between the in-plane bending moment (see Fig. 18), Mip and the resulting applied bending 

moment, Mu, is labelled α and thus it comes: 

 ip u .cosM M α=  (1) 

 op u .sinM M α=  (2) 

 

Mu 

Mip 

 Mop 

α 

 

Fig. 18. Bending moments orientation 

3.2.1 Components in tension 

The ultimate resistance of the abovementioned components in tension FT,u is calculated according to 

Eurocode 3 part 1-8 [8] and corresponds to the lowest value of the resistance given by Modes 1, 2 and 

3 (with prying effect) or Modes 1-2 and 3 (without prying effect). For Mode 1 and 1-2, the ultimate 

tensile strength fu is used instead of the yield strength fy. Additionally, for Mode 2, the base-plate yield 

strength fy is replaced with (fy+2fu)/3 [16] to include strain hardening of this component before anchor 

bolt failure in tension. 
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3.2.2 Components in compression 

According to the method suggested in Eurocode, the T-stub in compression is modelled considering 

the contribution of the base plate and the concrete foundation. From the parametric study, it can be 

observed that for high compressive force, the collapse of the connections tends to occur by yield-

ing/buckling of the column. Thus, for the calculation of the resistance of the T-stub in compression, 

the minimum between the concrete foundation resistance and the column resistance is considered. The 

design resistance FC,u,f  is obtained as follows: 

 ( ) *
C,u,f eff,c eff,c jd,max c,u eff,c eff,c jdmin ;  F b l f F b l f= =  (3) 

 
c,u*

jd jd,max

eff,c eff,c

F
f f

b l
= ≤  (4) 

with 

beff,c, leff,c : column flange effective length and width in compression, 

fjd,max : design bearing strength of concrete calculated according to Eurocode 2 and 3, 

Fc,u : maximum resistance of the column in compression. 

 

The effective width and the effective length of the T-stub, beff,c and leff,c are obtained from Eurocode 3: 

 

fc

eff,c p c

fc

2

min

2

t c

b h h
t c

+
= −

+ +


 (5) 

 
fc

eff,c
p

2
min

b c
l

b

+= 


 

(6) 

with 

tfc : column flange thickness, 

c : additional effective width, 

hp : height of the base-plate, 

hc : height of the column cross-section, 

bp : width of the base-plate, 

bfc : width of the column cross-section. 
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In the Component Method, the deformations of the base-plate should not exceed the elastic ones, as-

suming a uniform stress distribution under the base-plate and ensuring that the yield strength of the 

base plate is not exceeded. The effective bearing area is based on the effective width c that consider 

the elastic bending moment resistance per unit length of the base-plate. In the numerical analysis, 

yielding of the base plate in the compressive area was clearly observed and the plastic bending mo-

ment of the base plate was reached. In the proposed analytical models, the effective width c is ob-

tained by equating the plastic bending moment resistance per unit length of the base plate to the bend-

ing moment per unit length acting on the base plate modelled by a cantilever beam of span c obtain-

ing: 

 
y,p

p

jd,max2

f
c t

f
=   

with 

tp : thickness of the base-plate, 

fy,p : yield strength of the base-plate. 

 

In this way, the value of the effective width c is increased and consequently the effective bearing area 

under the base plate, allowing to obtain values of the effective width that are less conservative and 

closer to those obtained by the numerical simulations. Numerical simulations also show that fillet 

welds allow to transfer compressive forces to the foundation. Thus, the width of the fillet welds is also 

added and the plastic bending moment is supposed to develop at the weld toe. Then, the additional 

effective width c is replaced by a modified effective width c*: 

 
y,p*

p

jd,max

2
2

f
c t a

f
= +  (7) 

with 

a : weld throat thickness. 
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3.3. Bending resistance 

3.3.1. In-plane bending resistance 

Under in-plane bending moment, the model herein assumes different internal forces distributions ac-

cording to the level of the applied loading and considering the additional resistance provided by the 

column web in compression. The model assumes that the anchor bolt tensile force is less than the ten-

sile resistance when more than half of the web is under compression. In addition, the column failure is 

integrated directly in the model through the expression of the bearing strength. The four types of con-

nection behaviour are identified in Fig. 19: 

• dominant tensile force – a), 

• dominant bending moment with critical tensile force – b) and c), 

• dominant bending moment with critical compressive force – d), 

• dominant compressive force – e). 
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 Mip 

 zT 

  FT,u  

 zT 

 FT  

N < 0 

 

 Mip 

 zC 

  FT,u  

 zT 

 xc 

 FC  

  c* 

 hc 

N 

 f*
jd,f  

 
a) Dominant tensile force – behaviour type 1 

 
b) Dominant bending moment with critical tensile 

force and flange in compresion – behaviour type 2 

  Mip 

 zC0 

  FT,u  

 zT 

 xc 

FC,u,f  

  c* 

 N 

 f*
jd,f  

  c* 

  fjd,w 

xw 

 FC,w  

2zw 

  c* 

  
c) Dominant bending moment with critical tensile force 

and flange/web in compression– behaviour type 3 

 Mip 

 zC0 

   FT  

 zT 

 xc 

FC,u,f  

  c* 

N 

 f*
jd,f  

  c* 

  fjd,w 

xw 

 FC,w  

2zw 

  c* 

  
d) Dominant bending moment with critical compressive 

force –behaviour type 4 

 

 Mip 

 zC0 

   FT  

 zT 

 xc 

FC,u,f  

  c* 

N 

 f*
jd,f  

  c* 

  fjd,w 

xw 

 FC,u,w  

2zw   c* 

 f*
jd,f  

beff,c 

 
e) Dominant compressive force – behaviour type 5 

Fig. 19. Mechanisms considered for in-plane bending moment 
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The validity domains of the aforementioned mechanisms are summarized below: 

Table 5 : Validity range of the mechanisms for in-plane bending moment 
Behaviour type Loading Range of validity 

1 Dominant tensile force 
T,u 1N N N≤ ≤  

1 T,u T,u T,u,  2N F N F= − = −  

2 Dominant bending moment with critical tensile force and flange in 

compression 
1 2N N N≤ ≤  

2 C,u,f T,uN F F= −  

3 Dominant bending moment with critical tensile force and 

flange/web in compression 
2 3N N N≤ ≤  

3 C,u,f C,u,w T,u/ 2N F F F= + −  

4 Dominant bending moment with critical compressive force 
3 4N N N≤ ≤  

4 C,u,f C,u,wN F F= +  

5 Dominant compressive force 
4 C,uN N N≤ ≤  

C,u C,u,f C,u,w2N F F= +  

 

In presence of dominant tensile force (see Fig. 19-a), Eurocode 3 Part 1-8 is applied for the determina-

tion of the ultimate bending moment resistance Mip,u. The internal forces system comprises two result-

ant forces FT,u and FT acting on both sides at the anchor bolts axes. Then, the in plane bending re-

sistance is given by: 

 ip,u T T,u T2M z F z N= +  (8) 

with 

FT,u : resistance of the T-stub in tension (see section 3.2.1), 

 N : axial force, 

zT : lever arm of the tensile area (distance between the line of action of the anchor bolts and 

the center of the column). 

Under dominant bending moment and critical tensile force (see Fig. 19-b), the position of the neutral 

axis depends on the axial force and the resistance of the tensile area. The equilibrium of axial forces 

gives: 

 
*
jd,f eff,c c T,u= −N f l x F  (9) 

The bearing resistance is limited to the resistance in compression of the flange and column web eval-

uated according to Eurocode 3 part 1-8, Fc,fc,u, thus: 

 
c,fc,u*

jd,f jd,max

eff,c eff,c

F
f f

b l
= ≤  (10) 
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pl,c y,c

c,fc,u

c fc

W f
F

h t
=

−
 (11) 

with 

 Wpl,c : column cross-section plastic modulus, 

 fy,c : column yield strength. 

One obtain the position of the neutral axis xc: 

                      
T,u *

c fc*

eff,c jd,f

2
N F

x t c
l f

+
= ≤ +  (12) 

 

 

The in-plane bending resistance is thus: 

                      ( )ip,u T,u T C CM F z z z N= + +  (13) 

with 

zC : compressive lever arm (distance between the line of action of the resultant compressive 

force FC and the centre of the column): 

 
*

C c c/ 2 / 2z h c x= + −              (14) 

Behaviour type 3 (see Fig. 19-c) corresponds to the case in which the effective width of the column 

flange beff,c is fully under compression (xc ≥ tfc + 2c*). As a result, FC,u,f and FT,u can develop. Also, part 

of the column web is contributing to the resistance of the connection. The force transmitted by the 

column web is denoted FC,w. This system of internal forces is valid provided that the following criteria 

are respected: 

                      c eff,c wx b x= +  (15) 

                      w wx z≤  (16) 

with 

zw : half of the total effective length of the web in compression, leff,w, 

xw : portion of the effective web in compression. 

The equilibrium of axial forces gives: 
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 C,u,f jd,w eff,w w T,uN F f b x F= + −  (17) 

with 

FC,u,f : resistance of the column flange T-stub in compression considering fjd = fjd,f
*, 

beff,w : column web effective width : 

*
eff,w wc 2= +b t c  

fjd,w : design bearing strength of the web: 

C,u C,u,f

jd,w jd,max

eff,w w

2

2

N F
f f

b z

−
= ≤  

 

Thus the length of the web in compression is: 

                      
T,u C,u,f

w

eff,w jd,w

N F F
x

b f

+ −
=  (18) 

The in-plane bending moment resistance is given by: 

                      ( )ip,u T,u T C,u,f C0 w eff,w jd,w w w / 2M F z F z x b f z x= + + −  (19) 

Behaviour type 4 (see Fig. 19-d) corresponds to the case in which the effective width of the column 

flange and more than half of the web effective length are fully under compression. This system of in-

ternal forces is valid provided that the following criteria are respected: 

                      eff,c w c eff,c w2b z x b z+ ≤ ≤ +  (20) 

                      w w w2z x z≤ ≤  (21) 

With more than half of the effective area of the base plate under compression, it has been observed 

numerically (see section 2.4) that failure does not occur in the tensile area and, as a result, it is pro-

posed to reduce the tensile force FT as follows: 

                      
w w

T T,u T,u

w

2z x
F F F

z

−= ≤  (22) 

The tensile force transmitted by the anchor bolts is thus equal to zero when the left flange T-stub in 

compression is mobilized.  
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The equilibrium of the axial forces gives: 

 C,u,f jd,w eff,w w TN F f b x F= + −  (23) 

 

The length of the web in compression is calculated from: 

                      
T,u C,u,f

w

eff,w jd,w T,u w

2

/

N F F
x

b f F z

+ −
=

+
 (24) 

The in-plane bending moment resistance is given by: 

                      ( )ip,u T T C,u,f C0 w eff,w jd,w w w / 2M F z F z x b f z x= + + −  (25) 

Behaviour type 5 (see Fig. 19-e)) corresponds to a dominant compressive force. The ultimate in-plane 

bending moment resistance is obtained as follows: 

                      
eff,c w w* *c

ip,u eff,c w w eff,c jd,f

( ( 2 ))
( 2 )

2 2

b x zh
M b x z l f c

− − 
 = − − + −  

 
 (26) 

with 

*

C,u,f C,u,w w eff,c jd,f

w *

eff,c jd,f

2− − +
=

N F F z l f
x

l f
 

3.3.2. Out-of-plane bending resistance 

A simplified model is proposed for the calculation of the resistance of column base plates subjected to 

combined axial force and out-of-plane bending moment. The final proposal is based on a parabolic 

interaction that was suggested by the parametric study (see section 2). A simple parabolic expression 

of the M-N interaction curve is firstly proposed for the force distribution shown in Fig. 20. It is as-

sumed that the out-of-plate bending moment is balanced by an uniformly distributed force in the ten-

sile and compressive areas along the effective length of the column flange leff,c (see Fig. 20). Concern-

ing the compressive area, this hypothesis seems rational. For the tensile area, the lever arm can be un-

derestimated or overestimated (depending on the position of the anchor bolts) and so the maximum 

bending moment. To evaluate the contribution of both compressive and tensile sides fc,u and ft,u, the 

position of the neutral axis xc must be determined.  
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Mop,u 

N > 0 

 leff,c 

  c*   c* 

 xc,op 

 fc,u     ft,u 

 

Fig. 20. Simplified mechanism of internal forces for out-of-plane bending moment 

The uniformly distributed resistances along the column flange effective width ft,u and fc,u are calculated 

as follows: 

 
T,u

t,u

eff,c

N
f

l
=  (27) 

 
C,u

c,u

eff,c

N
f

l
=  (28) 

with 

NT,u : tensile resistance of the connection, 

NC,u : compressive resistance of the connection. 

The equilibrium of axial forces gives: 

 c,u c,op t,u eff,c c,op( )= − −N f x f l x  (29) 

Inserting (27) and (28) in (29), one obtain the position of the neutral axis xc,op : 

 
T,u

c,op eff,c

C,u T,u

N N
x l

N N

+
=

+
 (30) 

The ultimate bending moment resistance Mop,u is obtained from: 

 
eff,c

op,u C,u T,u c,op
2

l
M M M N x

 
= + + − 

 
 (31) 
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with 

MC,u : bending moment about the neutral axis produced by the force acting in the compressive 

area: 

( )2

c,op

C,u c,u
2

x
M f=  

MT,u : bending moment about the neutral axis produced by the force acting in tensile area:  

( )2

eff,c c,op

T,u t,u
2

−
=

l x
M f  

 

The previous equation is parabolic (see Fig. 21) and can be conveniently rewritten as: 

 

2

Mmax
op,u op,u,max

m,u

1
N N

M M
N

  − = −      

 (32) 

with  

 Mop,u,max : Maximum bending resistance (see Fig. 21): 

eff,c

op,u,max m,u
4

l
M N=  

 NMmax : Axial force corresponding to the maximum bending resistance : 

C,u T,u

Mmax
2

N N
N

−
=  

Nm,u : Average axial resistances :  

C,u T,u

m,u
2

N N
N

+
=  
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Fig. 21. Parabolic interaction M-N curve 

The choice of leff,c is consistent for the compressive area, but the proposal regarding the tensile area is 

rather questionable. The lever arm can be underestimated or overestimated (depending on the position 

of the anchor bolts) and so the maximum bending moment. To avoid these inconsistencies, the contri-

bution of the tensile area to the maximum bending moment is evaluated considering that the tensile 

resistance develops at the anchor bolts location (see Fig. 22).  

 

 

The maximum bending moment becomes: 

 op,u,max T,op T,u C,op c,f,uM z F z F= +  (33) 

with 

c,f,u eff,c eff,c jd,max fc fc y,c

T,op

eff,c

C,op

/ 2

4

F b l f b t f

z w

l
z

= ≤

=

=
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Mop,u,max 

N > 0 

 w 

FT,u 
Fc,f,u 

 zT,op  zC,op 

 leff,c/2 

 

Fig. 22. Mechanism of internal forces considered for the calculation of Mop,u,max 

3.3.3. Biaxial bending resistance 

The proposed analytical model for the column base plate resistance subjected to an axial force and 

bending moment in both directions consists in replacing the axial force and bending moments with 

statically equivalent force distributions acting on both the left and the right sides of the column base-

plate. The connection should be sufficiently ductile so the plastic out-of-plane bending resistance can 

develop at both sides of the connections. The analytical model considers three cases depending on the 

character of the equivalent axial force (compression or tension) produced by the in-plane bending 

moment and the axial force. These equivalent forces are applied to both sides of the connection with 

the out-of-plane bending moments Mop,l and Mop,r (see Fig. 23). These two bending moments equili-

brate the total out-of-plane bending moment applied to the connection: 

 op op,r op,lM M M= +  (34) 

At failure, the resistance is reached in each side of the connection. Considering the proposed parabolic 

interaction curve in section 3.3.2, the out-of-plane bending moment on each side can be calculated. 

However for a value of α equal to zero, and thus in presence of pure in-plane bending moment, the 

out-of-plane bending moment of one side is different from zero.  For example in presence of dominant 

tensile force, the out-of-plane bending moment of the left side, Mop,l, is equal to zero, but the out-of-

plane bending moment of the right side, Mop,r, is not null.  The proposed approach can overestimate 
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the bending resistance for low values of α. To circumvent this result, the out-of-plane bending mo-

ment of the each side will be multiplied by reduction factors χr and χl on the right and left sides, re-

spectively: 

 
Mmax

l

α Mmax

1,        
 

,      
χ

χ
<

=  ≥

N N

N N
 (35) 

 
α Mmax

r

Mmax

,     

1,          

χ
χ

<
=  ≥

N N

N N
 (36) 

with 

 α

0

sin
1

sin

αχ
α

= ≤  (37) 

The reduction factor is equal to 1 when failure occurs in the corresponding side under pure in-plane 

bending moment but to χα for the side where failure does not occur for the same loading. The present 

parametric study didn’t investigate low values of α, but experimental tests performed by Bajer et al 

[12] and numerical study (Seco et al [18], Fasea et al [14]) focused on angles of 26,56 and 30°, re-

spectively. Based on these results, it is proposed to take α0 equal to π/4.  

The validity domains of the aforementioned loading type are summarized in Table 6. Then, depending 

on the level of the axial force N and the in-plane bending moment Mip, the model is divided into: 

• dominant tensile force (see Fig. 23-a), 

• dominant bending moment (see Fig. 23-b), 

• dominant compressive force (see Fig. 23-c). 

 

 Mip 

 zT 
 Ft,l  zT 

 Mop 

 Mop,l  Mop,r 

N < 0 

 Ft,r 

 
a) Dominant tensile force  

 Mip 

 zC0 
 Ft,l  zT 

 Mop 

 Mop,l  Mop,r 

N 

 Fc,r 

 
b) Dominant bending moment  

 Mip 

 zC0  Fc,l  zC0 

 Mop 

 Mop,l  Mop,r 

N > 0 

 Fc,r 

 
c) Dominant compressive force  

Fig. 23. Mechanisms considered in the analytical model for biaxial bending moment 

Table 6 : Validity range of the mechanisms of the analytical model 
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Loading Range of validity 

Dominant tensile force T,u TM T,u T,u,   2N N N N F≤ ≤ = −  

ip

T N 0− ≤ = ≤
M

z e
N

 

Dominant bending moment TM CM≤ ≤N N N  

ip ip

N C0 N T or  = ≥ = ≤ −
M M

e z e z
N N

 

Dominant compressive force CM C,u C,u C,u,  2N N N N F≤ ≤ =  

ip

N C00 ≤ = ≤
M

e z
N

 

NTM : Boundary between dominant tensile force and dominant bending moment (see section 3.3.3.1) 

NCM : Boundary between dominant compressive force and dominant bending moment (see section 3.3.3.3) 

 

3.3.3.1. Dominant tensile force 

For the case of a dominant tensile force (see Fig. 23-a), Ft,l and Ft,r produced by the axial force N and 

the in-plane bending moment Mip are acting on both left and right sides and are obtained as follows: 

 
ip

t,l

T

0
2 2

MN
F

z
= − <  (38) 

 
ip

t,r

T

0
2 2

= + ≤
MN

F
z

 (39) 

On the left side, the limit bending moment is: 

 

2

op,u,max t,l Mmax

op,l l

m,u

/ 2
1

2 / 2

M F N
M

N
χ

  −
 = −      

 (40) 

 

Replacing Ft,l in expression of Mop,l, one obtains 

 

2

op,u,max Mmax ip T

op,l l

m,u

/
1

2

M N N M z
M

N
χ

  − −
 = −      

 (41) 

On the right side, the limit bending moment is: 

 

2

op,u,max t,r Mmax

op,r r

m,u

/ 2
1

2 / 2

M F N
M

N
χ

  −
 = −      

 (42) 
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Inserting Ft,r in expression of Mop,r, one obtains 

 

2

op,u,max Mmax ip T

op,r r

m,u

/
1

2

M N N M z
M

N
χ

  − +
 = −      

 (43) 

Finally, inserting Mop,l and Mop,r in Mop an expression for the out-of-plane bending resistance is ob-

tained: 

 

2 2

op,u,max Mmax ip T op,u,max Mmax ip T

op l r

m,u m,u

/ /
1 1

2 2

M N N M z M N N M z
M

N N
χ χ

      − − − +
   = − + −               

 (44) 

One can observe that the previous equation can be simplified for 0α α≥ : 

 

2 2

ipMmax
op op,u,max

m,u T m,u

1
MN N

M M
N z N

    − = − −             

(45) 

Thus inserting (1) and (2) in (44), the total bending resistance Mu is obtained by solving the following 

quadratic equation: 

 

2

T T

T m,u T m,u

0
M M

a b c
z N z N

 
+ − =  

 
 (46) 

with 

( )

2
α

T m,u M max
T r l

op,u,max m,u

2

Mmax
T α

m,u

α

α

cos ,  

sin cos ,  

1 ,

1
.

2

α δ

α α χ χ

δ

χδ

=

−= + −

  − = −      

+
=

a

z N N N
b

M N

N N
c

N

 

The total bending resistance for dominant tensile force becomes: 

 u T m,u Tχ=M z N  (47) 

with 

 

2
T T T

T

4

2
χ

+ −
=

b ac b

a
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The limit between the dominant tensile force and dominant bending moment is obtained when the ec-

centricity is equal to –zT and thus: 

 ip TM Nz= −  (48) 

Inserting Equations (1), (2) and (48) in (44), we get the axial force that boarder the two domains: 

 
2
TM l TM TM

TM m,u

l

8

4

b c b
N N

χ
χ

+ +
=  (49) 

with 

T m,u M max
TM l

op,u,max m,u

2

Mmax
TM α

m,u

tan 2 ,  

1 .

α χ

δ

= +

  
 = −      

z N N
b

M N

N
c

N

 

3.3.3.2. Dominant bending moment 

In presence of dominant bending moment (see Fig. 23-b), the tensile force applied on the left side Ft,l 

and the compressive force on the right side Fc,r, can be obtained with: 

 
ipl

t,l 0
2 2

α= − ≤
MN

F
z

 (50) 

 
ipr

c,r 0
2 2

α= + ≥
MN

F
z

 (51) 

with 
C0 T C0 T

l r,  ,  .
2

α α+= = =z z z z
z

z z
 

These forces applied on each side of the connection concomitantly with the out-of-plane bending 

moments Mop,l and Mop,r, and the ultimate limit state is reached on both sides.   

 

Again, considering the parabolic interaction curve, the limit for the out-of-plane bending moments 

are: 

On the left side: 

 

2

op,u,max t,l Mmax

op,l l

m,u

/ 2
1

2 / 2

M F N
M

N
χ

  −
 = −      

 (52) 
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On the right side:  

 

2

op,u,max c,r Mmax

op,r r

m,u

/ 2
1

2 / 2

M F N
M

N
χ

  −
 = −      

 (53) 

Inserting Ft,l and Fc,r in Mop,l and Mop,r respectively, one obtains: 

On the left side: 

 

2

op,u,max l Mmax ip

op,l l

m,u

/
1

2

α
χ

  − −  = −
  
  

M N N M z
M

N
 (54) 

On the right side:  

 

2

op,u,max r Mmax ip

op,r r

m,u

/
1

2

α
χ

  − +  = −
  
  

M N N M z
M

N
 (55) 

 

Finally, inserting Mop,l and Mop,r in Mop an expression for the out-of-plane bending resistance is ob-

tained: 

   

2 2

op,u,max l Mmax ip op,u,max r Mmax ip

op l r

m,u m,u

/ /
1 1

2 2

α α
χ χ

      − − − +      = − + −
      
      

M N N M z M N N M z
M

N N
 (56) 

One can observe that the previous equation can be simplified for 0α α≥ : 

 

2 2

l Mmax ip r Mmax ip

op op,u,max

m,u m,u

/ /1 1
1

2 2

α α    − − − +    = − −
    
    

N N M z N N M z
M M

N N
 (57) 

 

The total bending resistance Mu is obtained by solving the following quadratic equation: 

 

2

u u
M M

m,u m,u

0
M M

a b c
zN zN

 
+ − = 

 
 

 (58) 

with 
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 ( ) ( )

2
α

m,u Mmax
M r r l l l r

op,u,max m,u m,u

2 2

r Mmax l Mmaxr l
M α

m,u m,u

cos  

sin cos  

.
2 2

α δ

α α α χ α χ χ χ

α αχ χδ

=

 
= + − + − 

  

   − −= − −      
   

a

zN NN
b

M N N

N N N N
c

N N

 

The positive solution of this equation comes: 

 u m,u Mχ=M zN  (59) 

with 

 

2
M M M

M

4

2
χ

+ −
=

b ac b

a
 

3.3.3.3. Dominant compressive force 

In presence of dominant compressive force (see Fig. 23-c), the equivalent forces Fc,l and Fc,r, resulting 

from the applied axial load N and the in-plane bending moment Mip are calculated from: 

 
ip

c,l

C0

0
2 2

= − ≥
MN

F
z

 (60) 

 
ip

c,r

C0

 > 0
2 2

= +
MN

F
z

 (61) 

These forces are applied on each side of the connection concomitantly with the out-of-plane bending 

moments Mop,l and Mop,r and failure is reached on each side. Again, considering the parabolic interac-

tion curve and reduction factors χl and χr, the limit out-of-plane bending moments are: 

on the left side: 

 

2

op,u,max c,l Mmax

op,l l

m,u

/ 2
1

2 / 2

M F N
M

N
χ

  −
 = −      

 (62) 

 

on the right side:  

 

2

op,u,max c,r Mmax

op,r r

m,u

/ 2
1

2 / 2

M F N
M

N
χ

  −
 = −      

 (63) 

Inserting equation of Fc,l and Fc,r in Mop,l and Mop,r respectively it is obtained: 
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on the left side: 

 

2

op,u,max Mmax ip C0

op,l l

m,u

/
1

2
χ

  − −
 = −      

M N N M z
M

N
 (64) 

on the right side:  

 

2

op,u,max Mmax ip C0

op,r r

m,u

/
1

2
χ

  − +
 = −      

M N N M z
M
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 (65) 

 

Finally, inserting Mop,l and Mop,r in Mop an expression for the out-of-plane bending resistance is ob-

tained: 

2 2

op,u,max Mmax ip C0 op,u,max Mmax ip C0

op l r

m,u m,u

/ /
1 1

2 2
χ χ

      − − − +
   = − + −               

M N N M z M N N M z
M

N N
 

(66

) 

One can observe that the previous equation can be simplified for 0α α≥ : 

 

2 2

ipMmax
op op,u,max

m,u C0 m,u

1

    − = − −           

MN N
M M

N z N
 (67) 

 

The total bending resistance Mu is obtained by solving a quadratic equation as follows: 

 

2

u u
C C

C0 m,u C0 m,u

0
 

+ − =  
 
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with 
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The positive solution of this equation is: 
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 u C0 m,u Cχ=M z N  (69) 

with 

 

2
C C C

C

4

2
χ

+ −
=

b ac b

a
 

 

The limit between the dominant compressive force and dominant bending moment is obtained when 

the eccentricity is equal to zC and thus: 

 ip C0=M Nz  (70) 

 

Inserting Equations (1), (2) and (70) in (66), we get the axial force between these two domains: 

 
2
CM r CM CM

CM m,u

r
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4

b c b
N N

χ
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+ −
=  (71) 

with 
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3.3.3.4. General formulation and simplified method 

From the previous development, a general equation of the bending resistance can be expressed as a 

function of the lever arm of the right and left sides (respectively zr and zl), the average lever arm, z , 

and the ratio αr and αl : 

 
r

lα = z

z
 (72) 

 
l

r .α = z

z
 (73) 
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The lever arms depend of the loading conditions involved by the in-plane bending moment and are 

given in Table 7.  

Table 7 : Lever arms 

Loading Condition Lever arm 

Dominant tensile force T,u TM≤ <N N N  
l r T= =z z z  

Dominant bending moment 
TM CM≤ ≤N N N  l T r C0,  = =z z z z  

Dominant compressive force 
CM C,u< ≤N N N  l r C0= =z z z  

 

Finally, the bending resistance is: 

 
uu m,u M op,uχ= ≥M zN M  (74) 

with 
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The M-N interaction curves calculated for connections P1 and P3 respectively composed of HEA 200 

and IPE 200 are depicted in Fig. 24. For values of α lower or equal to 45°, the curves are almost para-

bolic. The curve is multi-linear when α is null and thus for in-plane bending moment. This shape is 

clearly in line with the Eurocode 3 method for column base plates [8]. For values of α comprise be-

tween 0 and 30°, the curves are in between these two shapes: parabolic and multilinear. The proposed 

expression of the bending moment is able to capture the interaction in presence of uniaxial bending 

moment (in-plane and out-of-plane) but also for biaxial bending moment.   
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a) Connection P1 

 

b) Connection P3 

Fig. 24. M-N interaction curves  

However simplifications are necessary to ease the application of the proposed formulation. From nu-

merical simulations and the application of the proposed analytical model, we can observe that the 

bending moment is maximal when the axial force is equal to the NMmax whatever the value of the angle 

α. In addition, the curves are almost parabolic for α greater that 35°.  
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Based on these observations, it is proposed to estimate the M-N curves by the following expression: 

 
Mmax

u u,max

m,u

1

n

N N
M M

N

  −
 = −      

 (75) 

where 

 1 2
35

α= + ≤n  (76) 

 

Mu,max is the maximal bending moment for a given value of α : 

 
u,maxu,max M ip,u,maxχ=M M  (77) 

with 
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 Mip,u,max : Maximal in-plane bending resistance calculated for N = NMmax : 

 
T T,u C0 C,u

ip,u,max
2

z N z N
M

+
=  (78) 

 

The M-N interaction curves calculated with the analytical model and the simplified method are de-

picted in Fig. 25 for connections P1 and P3. The curves of the simplified method and analytical model 

are identical for α equal to 90°. The resistance obtained by the simplified method are lower than those 

calculated by the analytical model in presence of pure in-place bending moment and for N < NMmax 

contrary to what is observed for N > NMmax. For greater value of α, the simplified method overestimate 

slightly the maximum bending moment (for N = NMmax). However, the comparison with numerical 

simulations presented in section 3.5 demonstrate that the proposed method is conservative.  
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a) Connection P1 

 

b) Connection P3 

Fig. 25. M-N interaction curves : comparison between analytical model and simplified method 

3.4. Comparison to experimental tests 

The bending moment resistances calculated with the analytical model and the simplified method (with 

Equations (74) and (75), respectively) are compared against results of experimental tests carried out 

by Seco et al [18] and by Bajer et al [12]. The ultimate bending moment resistances as well as the ra-



55 

 

tio between the experimental and analytical results are given in Table 8. In absence of mechanical 

characterisation performed by Bajer et al [12], the yield strength and ultimate tensile strength of steel 

of the base-plate are assumed equal to 340 and 500 N/mm2 respectively. The ultimate tensile strength 

of anchor bolts taken equal to 898 N/mm2 is determined based on the tensile force measured at failure 

during tests [12].  

Table 8 : Comparison of analytical results against tests and numerical simulations 

Reference Specimen α (°) N (kN) 
Experimental Analytical Simplified method 

Mj,u,exp (kNm) Mj,u,ana (kNm) Ana/Exp Mj,u,meth (kNm) Meth/Exp 

Seco et al 

[18] 

SPE1-M0 0 0 43,2 43,6 1,01 34,5 0,80 

SPE2-M0 0 0 48,5 50,1 1,03 38,1 0,79 

SPE1-M90 90 0 33,3 32,7 0,98 32,7 0,98 

SPE2-M90 90 0 40,2 37,0 0,92 37,0 0,92 

SPE1-M45 45 0 39,4 41,5 1,05 36,9 0,94 

SPE2-M45 45 0 47,3 46,2 0,98 41,2 0,87 

Bajer et al 

[12] 

Joints 1/2 0 400 189 175 0,93 144,4 0,76 

Joints 3/4 26,56 400 169 135 0,80 129,3 0,76 

 

The results presented above show a good agreement between the experimental tests and the predic-

tions of the proposed analytical model for the estimation of the bending resistance of column base 

plates for in-plane, out-of-plane and biaxial bending moments. For SPE2-M0 and SPE1-M45, the re-

sistances are overestimated with an error of approximatively 5%, which is considered as an acceptable 

value for the unsafe side (<10%). For SPE1-M90 and SPE2-M90, the proposed model predict the re-

sistance on the safe side with an error of 2% and 8%, respectively. The mean value of the ratio 

Mj,u,ana/Mj,u,exp is equal to 0,96. The simplified method is more conservative than the analytical model 

particularly in presence of in-plane bending moment. It can be explained by the fact that the centre of 

compression is positioned at the centre of the column flange. The results are improved when α in-

creases. The results obtained by the analytical model and the simplified method are logically identical 

in presence of pure out-of-plane bending moment (α = π/2). 
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3.5. Comparison to numerical results 

The M-N interaction curves for in-plane bending moment predicted by the analytical model of section 

3.3.1, the design method (see section 3.3.3.4) and Eurocode 3 are compared in Fig. 26 against the re-

sults of the parametric study. In addition, the resistance obtained analytically are compared to numeri-

cal results of Seco et al [18] for angles of 30 and 60° in Table 9.  

Table 9 : Comparison of analytical results against numerical simulations 

Reference Specimen α (°) N (kN) 

Numerical Analytical Simplified method 

Mj,u,num 

(kNm) 

Mj,u,ana 

(kNm) 
Ana/Num 

Mj,u,meth 

(kNm) 
Meth/Num 

Seco et al [18] 

SPE1-M30 30 0 39,2 40,6 1,04 36,1 0,92 

SPE2-M30 30 0 49,4 44,9 0,91 42,1 0,85 

SPE1-M60 60 0 37,0 36,3 0,98 34,5 0,93 

SPE2-M60 60 0 43,3 40,8 0,94 38,7 0,89 

 

In most cases, the resistance obtained by the analytical models is lower than the numerical resistances 

and so the models can be used with confidence as predictions are mostly on the safe side. The analyti-

cal and numerical model are in better agreement when failure occurs by anchor bolt rupture in tension 

than by column yielding/buckling. This fact is related to the complexity of the characterization of the 

connection behavior under high compressive force and also to the development of strain hardening on 

the column neglected in the proposed analytical model. However the shape of analytical curve is simi-

lar to the numerical one’s even for high compressive force.  The Eurocode 3 approach is conservative 

whatever the magnitude of the axial force.  

The comparison of the numerically predicted interaction curves for out-of-plane bending moment 

against the analytical interaction curves (see Fig. 27) allow to conclude the suitability of the parabolic 

interaction approach used. Except for specimens P1 and P4, in which the resistance is slightly overes-

timated, the analytical curves are circumscribed by the numerical interaction curves. The bending 

moment resistances estimated with the design model procedure for biaxial bending moment are also 

compared against the results obtained with the numerical model in Fig. 28. The values obtained by the 

analytical models generally underestimate the resistances obtained by the FE analysis.  
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a) Specimen P1 b) Specimen P2 

  

c) Specimen P3 d) Specimen P4 

  

e) Specimen P5 f) Specimen P6 

Fig. 26. M-N interaction curves for in-plane bending moment 
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a) Specimen P1 b) Specimen P2 

  

c) Specimen P3 d) Specimen P4 

  

e) Specimen P5 f) Specimen P6 

Fig. 27. M-N interaction curves for out-of-plane bending moment  
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a) Specimen P1 b) Specimen P2 

 
 

c) Specimen P3 d) Specimen P4 

 
 

e) Specimen P5 f) Specimen P6 

Fig. 28. M-N interaction curves for biaxial bending moment (α = 45°) 
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Looking carefully at the interaction curves at collapse depicted in Fig. 26 to Fig. 28, it can be ob-

served that the analytical curves are generally circumscribed by the numerical curves, revealing a 

good accuracy of the obtained results with an acceptable safety margin, except for specimens P3 and 

P4. 

In addition, the Mop-Mip interaction curves obtained with the analytical model are compared to numer-

ical results of Fasae et al [14] in Fig. 29 for different values of the axial force. The lever arm zC0 is re-

placed by zC calculated with Eq (14). For low values of the axial force, the analytical model is in very 

good agreement with numerical results. For greater values of the axial force and low values of α, the 

analytical model is quite conservative as a result of the reduction coefficient given by Equation (37) 

that should probably be relaxed in presence of high compressive force.  

  

a) N = 0 b) N = 222 kN 

  

c) N = 411 kN d) N = 690 kN 

Fig. 29. Interaction curves Mip-Mop compared to results of Fasae et al [14] 
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4. CONCLUSIONS 

In the present paper, a finite element model of exposed column base plate subjected to the combina-

tion of an axial force and uniaxial (in-plane and out-of-plane) or biaxial bending moments (with an 

angle of 45°), previously validated against experimental tests [18], has been developed in Abaqus and 

used to perform an extensive parametric study. This parametric study permit to highlight the impact of 

base-plate thickness, anchor bolt diameter, column section geometry on the behaviour of this type of 

connection. The main conclusions of this parametric study are the following: 

• In presence of tensile force, the failure mode is not impacted by the orientation of the bending 

moment axis and corresponds to anchor bolt rupture in tension. Increasing the tensile force re-

sults in a decrease of both the bending resistance and the initial rotational stiffness regardless 

of the orientation of the bending moment, 

• For high compressive force (greater than half the compressive resistance of the connection), 

the failure was due to the column buckling occurring after major yielding. The resistance de-

crease with increasing value of the axial force. For compressive force lower than half of the 

compressive resistance, the failure mode corresponds to anchor bolt rupture in tension for in-

plane and biaxial bending moments (for an angle of 45°). On the contrary, failure develop in 

the column in presence of out-of-plane bending moment mainly due to high stress concentra-

tion in the compressed flange.  

• The shape of the M-N curve is parabolic for out-of-plane bending moment and multi-linear 

for in-plane bending moment. For biaxial bending moment with an angle of 45°, the curve is 

in between.  

• The resistance and initial rotational stiffness increase with the increase of the base-plate 

thickness and the anchor bolt diameter.  

• In presence of pure bending moment, contact pressure distribution develop at the outer edge 

of the base plate for thicker one and closer to the column flange for thinner one. For the max-

imum bending moment, contact pressure develop entirely around the column flange. The ex-
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tent of the contact area is greater for thick base plate and the fillet welds contribute to diffuse 

the compression force directly to the concrete block.  

Based on these observations, analytical models have been proposed to evaluate the bending re-

sistances of exposed column base plates regardless of the orientation of the bending moment axis. 

The extent of the contact area depends on the base-plate thickness and is based on the additional 

bearing width of Eurocode 3 improved to consider the development of a plastic bending moment 

in the base plate and the contribution of fillet welds. The column components in compression are 

directly integrated to the bearing strength. For in-plane bending moment, the contribution of the 

web in compression is added to that of the flange. Moreover, the tensile force reduces when more 

than half of the beam web is under compression as observed in numerical simulations. For out-of-

plane bending moment, a parabolic interaction curve is considered based on a simple statically 

equivalent force distribution in the tensile and compressive areas. For biaxial bending moment, 

we assume a plastic redistribution of the out-of-plane bending moment between the left and right 

side of the connection. The M-N curve proposed for out-of-plane bending moment is then applied 

to each side.  The proposed M-N curves fit quite well with numerical results. The comparison to 

existing experimental tests is also encouraging. In addition a simplified method have been pro-

posed to determine the bending resistance directly related to the axial force and the angle of incli-

nation. The results are quite conservative compared to experimental and numerical one’s.  

The proposed model assume plastic redistributions of forces between the different components of 

the connection and thus failure of steel elements excluding failure of concrete components loaded 

in tension (concrete cone failure...).   
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Appendix: Results of the parametric study 

 
The initial rotational stiffness, Sj,ini, ultimate bending moment, Mj,u, and failure modes are presented 

from Table A.1 to  Table A.6 for the six specimens. Compressive forces are positives (+) and tensile 

forces negatives (-). The caption code for the failure modes is as follows: 

• AB - anchor bolts failure due to tension and bending 

• C – column yielding/local buckling due to bending, 

• W – weld failure. 

 

 

Table A.1: Resistances and failure modes of P1 for M0, M90 and M45  

N (kN) 

M0 M90 M45 

Sj,ini 

(kNm/rad) 

Mj,u 

(kNm) 

Failure  

mode 

Sj,ini 

(kNm/rad) 

Mj,u 

(kNm) 

Failure  

mode 

Sj,ini 

(kNm/rad) 

Mj,u 

(kNm) 

Failure  

mode 

1971 - - C - - C - - C 

1774 14257 23 C 6068 25 C 23307 27 C 

1577 12534 54 C 7419 43 C 17489 43 C 

1380 14527 73 C 9061 54 C 15915 65 C 

1183 14428 85 C 9383 65 C 13315 79 C 

986 13788 97 C 10054 68 C 15414 83 C 

788 16316 106 AB 10407 65 C 15250 83 C 

591 16541 92 AB 8276 63 C 15644 81 C 

394 15120 76 AB 7360 57 C 13653 71 C 

197 7212 58 AB 5497 49 C 10303 57 C/W 

0 5305 38 AB 3855 34 AB 4945 38 AB 

-29 3507 35 AB 2139 31 AB 3068 35 AB 

-59 3191 32 AB 1578 28 AB 2638 32 AB 

-88 2524 29 AB 1325 26 AB 2101 28 AB 

-117 2103 26 AB 1065 23 AB 1938 25 AB 

-147 2289 23 AB 916 20 AB 1878 22 AB 

-176 1832 20 AB 783 17 AB 1287 17 AB 

-205 979 14 AB 539 14 AB 939 13 AB 

-235 215 9 AB 73 8 AB - 7 AB 

-264 149 4 AB 64 4 AB - 3 AB 

-293 - - AB - - AB - - AB 
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Table A.2: Resistances and failure modes of P2 for M0, M90 and M45 

N (kN) 

M0 M90 M45 

Sj,ini 

(kNm/rad) 

Mj,u 

(kNm) 

Failure  

mode 

Sj,ini 

(kNm/rad) 

Mj,u 

(kNm) 

Failure  

mode 

Sj,ini 

(kNm/rad) 

Mj,u 

(kNm) 

Failure  

mode 

1966 - - C - - C - - C 

1769 14558 44 C 21427 34 C 29844 20 C 

1573 19387 62 C 16373 46 C 29847 39 C 

1376 15263 74 C 15969 57 C 28512 63 C 

1180 17657 89 C 13817 66 C 25110 85 C 

983 17171 109 C 12179 78 C 20670 91 C 

786 13205 113 AB 10815 81 C 18253 93 C 

590 15927 107 AB 8346 76 C 13809 89 C 

393 10415 92 AB 8268 68 C 12431 79 C 

197 9554 73 AB 6603 60 C 11516 65 C 

0 11234 53 AB 5791 46 AB/W 8985 49 AB 

-37 5234 48 AB 3303 42 AB 4765 45 AB 

-73 4144 43 AB 3023 36 AB 3733 40 AB 

-109 3981 37 AB 2290 31 AB 2908 36 AB 

-147 3921 32 AB 1760 27 AB 2798 31 AB 

-183 2930 26 AB 1560 22 AB 1927 26 AB 

-220 551 21 AB - 18 AB - 21 AB 

-257 411 14 AB - 12 AB - 13 AB 

-293 - 9 AB - 7 AB - 8 AB 

-330 - 5 AB - 3 AB - 4 AB 

-367 - - AB - - AB - - AB 

 

 

Table A.3: Resistances and failure modes of P3 for M0, M90 and M45 

N (kN) 

M0 M90 M45 

Sj,ini 

(kNm/rad) 

Mj,u 

(kNm) 

Failure  

mode 

Sj,ini 

(kNm/rad) 

Mj,u 

(kNm) 

Failure  

mode 

Sj,ini 

(kNm/rad) 

Mj,u 

(kNm) 

Failure  

mode 

1052 - - C - - C - - C 

947 7643 22 C 1007 5 C 4666 10 C 

842 9000 32 C 1057 10 C 5578 21 C 

737 11415 41 C 1109 13 C 6184 29 C 

631 10291 55 C 1192 17 C 6256 32 C 

526 10979 64 C 1285 18 C 6092 35 C 

421 12200 70 AB 1115 19 C 5263 36 AB 

316 11737 65 AB 1141 20 C 5990 37 AB 

210 10334 56 AB 1380 19 C 5453 36 AB 

105 7293 48 AB 1122 18 AB 4571 32 AB 

0 4826 41 AB 1141 18 AB 8985 28 AB 

-37 4679 37 AB 1049 17 AB 2908 27 AB 

-74 3191 34 AB 944 16 AB 2068 24 AB 

-110 3174 29 AB 654 13 AB 2209 21 AB 

-147 3603 25 AB 450 12 AB 1450 18 AB 

-184 3160 21 AB 330 9 AB 978 12 AB 

-221 2638 18 AB 228 7 AB 865 8 AB 

-257 1680 13 AB 219 5 AB 572 4 AB 

-294 1370 8 AB 259 2 AB 532 2 AB 

-331 980 3 AB 203 1 AB 274 1 AB 

-368 - - AB - - AB - - AB 
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Table A.4: Resistances and failure modes of P4 for M0, M90 and M45 

N (kN) 

M0 M90 M45 

Sj,ini 

(kNm/rad) 

Mj,u 

(kNm) 

Failure  

mode 

Sj,ini 

(kNm/rad) 

Mj,u 

(kNm) 

Failure  

mode 

Sj,ini 

(kNm/rad) 

Mj,u 

(kNm) 

Failure  

mode 

1062 - - C - - C - - C 

956 7285 20 C 1182 9 C 4422 10 C 

849 11012 31 C 1270 11 C 5605 16 C 

743 11242 41 C 1414 15 C 6099 20 C 

637 12006 51 C 1153 18 C 6293 29 C 

531 12501 65 C 1224 19 C 6632 38 C 

425 12233 72 C 1248 19 C 6721 44 C 

319 10903 76 AB 1251 20 C 6605 51 AB 

212 10691 70 AB 1013 20 C 6226 51 AB 

106 10151 62 AB 932 19 C 5566 44 AB 

0 7522 51 AB 818 18 C 4894 39 AB 

-39 6558 48 AB 667 16 AB 4087 35 AB 

-78 5823 44 AB 565 15 AB 3276 32 AB 

-116 6028 39 AB 393 15 AB 3411 27 AB 

-155 3908 34 AB 304 14 AB 3231 23 AB 

-194 2374 29 AB 273 12 AB 2358 19 AB 

-233 1931 22 AB 212 10 AB 946 14 AB 

-272 1627 15 AB 286 7 AB 786 9 AB 

-311 1515 10 AB 372 4 AB 587 4 AB 

-349 1314 5 AB 383 2 AB 430 1 AB 

-388 - - AB - - AB - - AB 

 

 

Table A.5: Resistances and failure modes of P5 for M0, M90 and M45 

N (kN) 

M0 M90 M45 

Sj,ini 

(kNm/rad) 

Mj,u 

(kNm) 

Failure  

mode 

Sj,ini 

(kNm/rad) 

Mj,u 

(kNm) 

Failure  

mode 

Sj,ini 

(kNm/rad) 

Mj,u 

(kNm) 

Failure  

mode 

2091 - - C - - C - - C 

1883 8215 26 C 6431 20 C 11473 22 C 

1674 11943 48 C 7533 32 C 12571 37 C 

1464 13440 74 C 8139 57 C 14506 62 C 

1255 15199 87 C 8852 67 C 16325 75 C 

1046 16213 104 C 9745 70 C 15226 80 C 

837 17436 111 AB 9981 68 C 15211 80 AB 

628 16126 105 AB 11424 67 C 12485 75 AB 

418 16728 96 AB 8955 66 C 11446 68 AB 

209 10621 80 AB 8793 60 AB 9460 62 AB 

0 6442 61 AB 4006 49 AB 6430 52 AB 

-55 6001 54 AB 3694 46 AB 5212 48 AB 

-109 4971 49 AB 2787 38 AB 4119 40 AB 

-164 4158 43 AB 2025 36 AB 3208 35 AB 

-218 4183 37 AB 1788 31 AB 2762 27 AB 

-273 3271 29 AB 1377 25 AB 1917 23 AB 

-327 3095 26 AB 1191 22 AB - 16 AB 

-382 2512 19 AB - 12 AB - 13 AB 

-436 2694 10 AB - 9 AB - 5 AB 

-491 - 4 AB - 2 AB - 2 AB 

-545 - - AB - - AB - - AB 
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Table A.6: Resistances and failure modes of P6 for M0, M90 and M45 

N (kN) 

M0 M90 M45 

Sj,ini 

(kNm/rad) 

Mj,u 

(kNm) 

Failure  

mode 

Sj,ini 

(kNm/rad) 

Mj,u 

(kNm) 

Failure  

mode 

Sj,ini 

(kNm/rad) 

Mj,u 

(kNm) 

Failure  

mode 

2096 - - C - - C - - C 

1887 8202 18 C 9941 17 C 11863 19 C 

1678 11899 49 C 8848 40 C 10563 49 C 

1467 13483 73 C 9194 59 C 12620 68 C 

1258 15440 83 C 9075 68 C 14803 84 C 

1048 17125 104 C 9886 80 C 13011 96 C 

838 18911 117 C 10411 82 C 15854 102 AB 

629 17258 122 AB 10402 81 C 15947 101 AB 

419 15651 117 AB 9908 78 C 14846 94 AB 

209 13507 101 AB 8692 74 AB 11389 83 AB 

0 11322 81 AB 6599 64 AB/W 9269 72 AB 

-63 9741 75 AB 5046 59 AB 7448 66 AB 

-127 8603 68 AB 4737 54 AB 6149 61 AB 

-191 8310 62 AB 3784 48 AB 5895 54 AB 

-254 6779 53 AB 3464 43 AB 4993 46 AB 

-318 5734 45 AB 2424 36 AB 2960 42 AB 

-382 2781 34 AB - 28 AB 1920 31 AB 

-445 - 23 AB - 16 AB - 22 AB 

-509 - 15 AB - 9 AB - 15 AB 

-572 - 6 AB - 4 AB - 6 AB 

-635 - - AB - - AB - - AB 

 

 




