N
N

N

HAL

open science

Generalized range of slow random walks on trees

Pierre Andreoletti, Alexis Kagan

» To cite this version:

Pierre Andreoletti, Alexis Kagan. Generalized range of slow random walks on trees. 2022.

03420519v3

HAL Id: hal-03420519
https://hal.science/hal-03420519v3

Preprint submitted on 6 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

hal-


https://hal.science/hal-03420519v3
https://hal.archives-ouvertes.fr

Generalized range of slow random walks on trees

Pierre Andreoletti
Institut Denis Poisson, UMR CNRS 7013, Université d’Orléans, Orléans, France. e-mail:
Pierre.Andreoletti@univ-orleans.fr
and

Alexis Kagan

Institut Denis Poisson, UMR CNRS 7013, Université d’Orléans, Orléans, France. e-mail:
Alexis.KaganQuniv-orleans.fr

Abstract: In this work, we are interested in the set of visited vertices of a tree T by a randomly
biased random walk X := (X,,n € N). The aim is to study a generalized range, that is to
say the volume of the trace of X with both constraints on the trajectories of X and on the
trajectories of the underlying branching random potential V := (V(z),z € T). Focusing
on slow regime’s random walks (see [HS16b], [AC18]), we prove a general result and detail
examples. These examples exhibit many different behaviors for a wide variety of ranges,
showing the interactions between the trajectories of X and the ones of V.

MSC2020 : 60K37, 60J80.
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1. Introduction

The construction of the process we are interested in starts with a supercritical Galton-Watson tree
T with offspring distributed as a random variable v such that E[v] > 1. We adopt the following
usual notations for tree-related quantities: the root of T is denoted by e, for any = € T, v, denotes
the number of descendants of x, the parent of a vertex x is denoted by z* and its children by
{xi, 1<i<vy, } For technical reasons, we add to the root e, a parent e* which is not considered
as a vertex of the tree. We denote by |z| the generation of z, that is the length of the path from
e to x and we write x < y when y is a descendant of z, also x < y signifying that = can also
be equal to y. Finally, we write T,, for the tree truncated at generation n. We then introduce
a real-valued branching random walk indexed by T: (V(z),z € T). We suppose that V(e) = 0
and for any generation n, conditionally to &, = {T,,(V(z),z € T,)}, the vectors of increments
(V(2%) = V(2),i < 1), || = n) are assumed to be i.i.d. Finally, we denote by P the distribution
of & ={T,(V(z),z € T)} and P*, the probability conditioned on the survival set of the tree T.

We can now introduce the main process of this work which is a random walk (X,),y on
TuU{e*} : for a given realization of the environment &, (Xy), oy is a Markov chain with transition
probabilities given by

P (Xpp1=e|Xp=¢*)=1,

-V (x)
* & R _ — €
VeeT~{e}, P (Xpp1=2"Xp=2)= VD ST VG
s ) e—V(:cj)
Vi<v,, P°(X,41=2X,= = _ _
I Z ( +1 =T \ ac) e~ V(o) + Ziil e—V(z?)
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The measure P is usually referred to as the quenched distribution of the walk (X,,) nen 1D contrast
to the annealed distribution P which is the measure P¢ integrated with respect to the law of &:

P(-):/Pg(-)P(dg).

Similarly, P* is the annealed probability conditioned on the survival set of the tree T (defined by
replacing P by P* in the above probability). For z € T U {e*}, we use the notation P¢ for the
conditional probability P¢(:| Xy = x); when there is no subscript, the walk is supposed to start at
the root e. Recurrent criteria for these walks is determined from the fluctuations of log-Laplace
transform

P(s) = logE[ Z e‘sv(z)] ;5> 0. (1)

|z|=1

If info<s<1 ¥(s) > 0 then (X,,,n) is P almost surely transient and recurrent otherwise. It turns
out that recurrent cases can be themselves classified, this can be found in the works of G. Faraud
[Far11] and equivalently for transient cases in E. Aidekon [Aid0§].

Here we consider recurrent cases and more particularly the regime where the random walk is
particularly slow (see [HS16b]), that is to say we put ourselves in the boundary case for which

$(1) =4'(1) =0. (2)

In this paper, we are interested in the trace of X which is the set of vertices visited by this random
walk until a given instant. The literature on the subject initially started with the study of the
range, that is to say the volume of the trace of the simple random walk on Z%, where d > 2 is
the dimension. In particular P. Erdés and S. Taylor [ET60] prove that the asymptotic in time
of the trace depends on the dimension d. If we put ourselves in the present context of random
walk in random environment on trees then the trace naturally depends on the hypothesis on the
environment &, see for example [AC18], [AdR17] and [dR22]. A first step in the extension of the
notion of the range is to count, for example, the number of vertices visited a large number of time
(instead of at least one time). This aspect has been studied for the simple random walk in [Ros05]
and in our context by [AD20] and [Che22], about which we will give some details later in the
paper. A second step in the study of the trace, especially in the case of random walk in random
environment, is to select certain vertices not only with criteria on the trajectory of the walk but
also on the underlying potential V. With this in mind we introduce a generalization of the range
: for any n, let f* = {f™* : R*¥ — R*; k € N*} be a collection of bounded functions. Also, let
gn : RT — R be a positive function. Then, the generalized range %, (gn,f") is given by

n(9n, £7) =D gu( LIV [NV (21), V (w2), -, V(@)), with (3)

z€eT
Z;L = Z ]l{Xk:w}a
k=1

(24,1 < |z|) being the sequence of vertices of the unique path from the root (excluded) to vertex x
and £ is the usual local time of the walk at = before the instant n. As we may see, %, (gn, ") is
quite general and can not be treated in this form, at once for every of these functions g, and f",
so additional assumptions (involving f", g, and distribution P) will be introduced in Section 1.3.
The aim of studying this extended range is twofold, first it allows to understand the interactions
between the trajectories of the main process X and of the underlying branching potential V, second
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we develop a general tool allowing to treat many examples (for chosen f” and g,). Note that if we
take, for example, f** =1 and g, = 1(1,00) for any integer n and k, then we get the regular range
(treated in [AC18]), and if gn, = L[ o) With 0 < b < 1, then we get the heavy range (see [AD20]
and [Che22]).

The presentation of the results is divided into three subsections. In the first one below, we detail
and comment particular examples showing a large variety of behaviors for the range for different
f™ and g,. In a second subsection, we present an informal statement of the general result, the aim
of which is to give the main ideas without introducing too much technical material. Finally, in the
last section, we introduce assumptions which leads to the full statement of the main theorem.

1.1. First results : examples

The first two theorems (Theorems 1.1 and 1.2) we present in this section derive from three
other works : in the first one [HS16a], it is proved that, during its first n steps, the walk can
reach height of potential of order (logn)?. More precisely, it is proved that the random variable
(maxi<e<n VI(Xk)/(logn)?),>2 converges almost surely to one half. Note that this behavior can be
quite disappointing if we have in mind the intuitive behavior of Sinai’s one dimensional random
walk in random environment [Sin82] for which the highest height of potential reached by the walk
is of order logn. Of course the fact that the walk evolves on a tree instead of a one dimensional
lattice changes the deal but at the same time it is also proved in [HS16b] that this walk has a
similar behavior than Sinai’s one (they are both at a distance of order (logn)? from the origin at a
given instant n). In both cases, the potential plays a crucial role. In the two other papers (J[AC18|
and [AD20]), the range is studied : in [AC18], it is proved that regular range (the number of visited
vertices up to the instant n) is of order "/logn, whereas in [AD20], it is proved that the number of
edges visited more than n® (with 0 < b < 1) times is typically of order n'~? (this particular range
is called «heavy range»in that paper, see also [Che22] for a refinement of this work).

Our first theorem below mixes the two approaches, showing the influence of a strong constraint on
the trajectories of V' on both regular or heavy range. What we mean by strong constraint here is a
condition of the form V > (logn)® with 1 < a < 2, that is to say when the potential is larger than
what we can call regular height of potential for this walk (in the slow regime, a regular height is of
order logn since it can be proved that (V(X«»)/logn),>o converges weakly, see [HS16b]) but smaller
than the extreme value (logn)? of [HS16a].

Before stating this result, let us introduce the following hypothesis on the distribution of the
branching random walk : there exists § > 0 and ; € (0,1/2) such that

E[ Z e—(1+9)V(z)} +E[ Z eGV(z)} <00, (4)

|z|=1 |z|=1

E[( ST+ |V(z)\)e*V<Z>)2} +E[( S e*<1*51>v<z>)2} <00, (5)

|z|=1 |z|=1

these are common hypothesis used for example in [AC18].

Theorem 1.1. Assume (2), (4) and (5) hold. If for anyn and k, f™F(t1,to, - ,tx) = Lt >10g )=y
with o € (1,2) and if gn(t) = Lyy>pey with b € [0,1), then

+ n
(log Zn(gn£7)—(1-b) logn converges in P*-probability to —1,

(logm)a T Jnsa

where log’ x = log(max(1,z)).
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This result shows that the number of vertices with high potential visited at least once (resp.
strongly visited, with b > 0) is of the same order, though smaller, than the regular range (resp.
heavy-range). So visiting high potential is not just an accident appearing a couple of times on
very specific paths of the tree. Far from that in fact, as the constraint of high potential creates a
decrease of order e~ (8™ +o(1) and therefore appears as a second order correction comparing to
ranges without constraint on the environment.

In the second theorem below, we add a slight different constraint which force the random walk to
reach a high level of potential far from the ultimate visited vertices of given paths:

Theorem 1.2. Assume (2), (4) and (5) hold. If for any n and k, f™*(ty,ta,--- ,t1) =
Lit), 5, >(0gm)ey with B> 1, a € (1,2) (lx| stands for the integer part of x) and for any b € [0,1),
gn(t) = 1{t2nb} then

ogt ")—(1=b)logn ok I 7 T
(1 g %"(53’;”))(1_(11 b)log Jn>2 converges in P*-probability to —1 — 5/ — 1+ p((ﬁ — 1)72),

where for any ¢ > 0,

+oo

+
plc) == 7 o {L]P’(ﬁl > 1/Vuo?) — L LIE"(ﬁl > 1/\/ya2)dy} du
V2 Jo ul/? 2/, 2 ’

and wm is a Brownian meander, Wy := sup,<; m, and o? := ER - V2(z)e” V@),

As we may see, a slight change in function £ (comparing to previous theorem) makes appear
something new, as the constant in the limit is very different than in Theorem 1.1. Note that p can
be explicitly calculated : for any ¢ > 0

1—e Ve
sinh(+/c)

so we clearly obtain continuity when 8 converges to 1, getting back to the previous theorem. At
this point, we also would like to discuss the appearance of the Brownian meander distribution in
p. First, note that a Brownian meander appears in the asymptotic distribution of the (correctly
normalized) generation of X, (see [HS16b]) which is the consequence of the positivity of V (see Fact
4 below, page 11) together with an induced constraint on the largest downfall of V' (we call maximal
downfall, for a given x € T, the quantity max,<,(V (y)—V (y)), where V (y) := max,<, V (2)) visited
by the walk before the instant n. Also in [AC18], the distribution of two independent Brownian
meanders (m! and m?) appears in the result for the regular range %, (that is when f™* =1 and
gn = 1[1,o)) : in P*-probability

ple) = 2ve( ) —2(Ve—log((e* +1)/2)), (6)

lim 2 28"~ O(Dor, Do), (7)

n—-+oo n

one of these Brownian meanders also coming from the positivity of V' and the other one coming
from the fact that for a given visited vertex z, the maximum of V' (on the unique path from the
root to x) is attained pretty near the generation of x.

Here, the Brownian meander appears as we ask a visited vertex = to have reached a high level of
potential in an early generation before the one of x and it turns out that the constraint of low
downfall of V appearing in [HS16b] (max,<,(V (y)—V (y) < logn) along this kind of path produces
this appearance of the Brownian meander. However, contrarily to (7), the Brownian meander is

involved in the correction of the main fluctuation (e=¢(Zm)(log ”)afl) and not just in the constant
of the limit (C(Zm1, Dn2)).
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In the third example below, we choose f™* in such a way that an interaction appears between
the trajectory of X and the downfalls of V| which have an important role in the behavior of these
walks. More particularly, let us introduce, for a given t = (¢1,t2,- - ,t;) with k a positive integer,
the following quantity

k
Hy(t) =) el
j=1

then we call sum of exponential downfalls of V' at x € T with |z| = k the quantity

||

Hpy(Va) = Hyy (V(z1), -+, V(ag)) = Zev(“)*v(“), ®)

In order to simplify the notation and when there is no possible confusion, we will simply write H,
instead of H|,|(V;) in the sequel.

Theorem 1.3. Assume (2), (4) and (5) hold.

For any n and k let foF(ty,te, -+ 1) = ]l{tha(logn)a}(Zf:l H;(t))~ with a € [1,2), a € R,
d € {0,1} and gn(t) = Lgy>pey with b > 0.

Ifbe[0,1/(1 +d)) and o =1 (with a > 1/61 when d = 1) then

(log;Jr R, (gn £7)

Togn )n>2 converges in P*-probability to 1 — (1 4 d)b,

otherwise ifa=1,b=0,d=1and 1 < a <2

(log+ ‘@;?égzsiil_log")n>2 converges in P*-probability to —2,
finally ifa=1,0<b<1/2,d=1and 1 < a <2

(1og+ Ry (g ,£™) —(1—2b) logn)
(logn)>—1 n>2

converges in P*-probability to —1/b.

For the first limit (when « = 1, implying that we have set a common height of potential - see Fact
1), by taking d = 0, we obtain the limit (1 —b) of the usual heavy range of [AD20]. Otherwise, if we
add the penalization with the cumulative exponential downfalls (3, . Hy), that is when d = 1,
then an extra cost d x b = b appears.

The second case (with b = 0 but 1 < @ < 2) has two constraints on the environment so the normal-
ization (log n)o‘/ 2 appears as a compromise between the fact that high level of potential is asked
(144, >(10gn)=}), Which alone yields by Theorem 1.1 a normalization (log n)*~ 1 and the fact that
cumulative exponential downfall fluctuations (3, ., Him(t)) can not be two large as it appears in

the denominator of the range. This yields the (logn)®/? (note that as o < 2, /2 > a — 1).

For the last case (0 < b < 1/2 and 1 < « < 2), the range is of order nl=2be=(ogm)* /b comparing
—2(log n)*/?

y<z

to ne when b = 0 of the previous case. In particular, the parameter b of the heavy range
appears in both the main normalization n'=2® and in the correction e~(1°s™* "/t This can be
intuitively understood as follows : first n' =2 = n+n=t «n=" one n~? is classical from the heavy
range when asking for a local time to be larger than n® (which already appears in the first part
of the Theorem), the second n~" comes from the fact that a local time at a given vertex x can be
larger than n® only if Z‘Jﬂl eV (@)=V(#) > pb and as this quantity appears in the normalization
of the range (via f™*(ty,ts, - 1)) this produced this second n=. So this part (n'=2?) appears
as a first interaction between the constraints on the trajectory of X and the one of V. Let us now
discuss about e~ (5" /0 = g=UeEm/wlosm For this term, we see intuitively the constrains for
the walk to reach height of potential of order (logn)® but a the same time, in order to keep the

denominator Zj<k H;(t) as low as possible, the maximal downfall has to remain smaller than
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blogn, thus producing the ratio (logn)®/(blogn).
In the ultimate example below, we ask similar constraints for the environment than above but

only in the early visited generations :

Theorem 1.4. Assume (2), (4) and (5) hold. Let 3 > 1. For any n and k, let f™*(ty,ta, -+ ,t) =
1 ) (4)) 1,2) and if g, (t) = 1 ith b € (0,1), th
{th//gJZ(logn)“}(ijl J( )) , € ( ) ) an ngn( ) {t>nb} W € ( ) )7 en

(logﬁ Pn (gn £")—(1-b) 10gn)
(log n)«/2 n>2

converges in P*-probability to —2.

This last theorem just prove that if the factor (ZJLZB J H;(t))~! only concerns the beginning
of the trajectory, that is the sites at a distance ||z|/5] of the root (if x is a visited vertex), then
things go back to normal: there is no more multiple interactions between X and V.

We can imagine more examples like the ones we present above (by acting more on the function g,
as we did for example) but for now, let us introduce a more general result with general hypothesis
on g, and f".

1.2. A general result (informal statement)

In this section, we present an informal statement for the asymptotic in n of %, (g, ™) for general
gn and f" (including, in particular, the results of the preceding section). The aim, in a first step,
is to introduce the result and the main ideas but to minimize the technical materials. First recall
the expression of the generalized range (3)

B (9 £) = Y gn( LIV NV (@), V(o). -, V (@),

xzeT

with £ the local time of X at = before the instant n.

We assume that g,, can be written as the product of an indicator function and a function ¢ which
is positive non-decreasing: for any b > 0 and t > 1, gn(t) := L{;>nsy9(t). The indicator function
is here to include all types of range (regular or heavy). Also, we ask the function ¢ — ¢(t)/t to be
non-increasing, so that ¢(.£") remains reasonable (at most of the order of the local time itself).
Let us introduce the branching object ¥ as follows : let 0V A’ < X be two real numbers and k > 1
an integer, also let ¢ : R* — R be a bounded function. \Illf\y)\, (¢) is then defined as a mean of ¢
along the trajectory of V' (with constraints) until generation k, that is

V(@) =B[ Y e VDoV (@), V() 10, ,, ()] 9)

|z|=k

where Oy is the set of (A, X)-regular lines

J
Oy ={zeT; max H,, <\, H, > X}, with H,, = § :eV@i)*V(w, (10)
I=1® i=1

also we denote

O :={z €T, Jmax H,, <A}, and (o) = E[ Z e V@ (V(xy),...,V(z) g, (I)i|

<|z|
|z|=k
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Note that since H, > 1 (H, > 1 when |z| > 1), we have, for all ' < 1, 05 » = Oy and
Y\ (9) = U5(9).

The appearance of this set of regular lines €,  is partly inspired from the works of [HS16b]
(X representing extreme exponential downfalls of V related to a reflecting barrier for the walk
(Xk, k <n)), and also (for \') from the constraint on the local time appearing in the function g,.
It turns out indeed that constraints on the value of the local time at a site x imply constraints
on H,. In other words, there are constraints on the branching potential V induced by constraints
on the random walk X and sometimes, these constraints have a major impact on the range. We
call this type of contribution «contribution of type one», that is of order n’ where 6 € (0,1]
(this actually appears for example in Theorem 1.3). To be more specific, let us introduce the
following notations: first Cop := Coo ({f™;n > 1}) stands for the supremum of {f";n > 1} that is
Coo :=sup,, ¢ || f/™||sc. Then, define the set

Uy :={ke[0,1]; forall k> 1,t € R¥,n > 1: 1yp, ysno) [ (t) < Coon™"}, (11)
note that %, # 0 because 0 € %, and as the supremum is attained, let
Kp =: max %. (12)

When k > 0, we say that a mixing between the constraints on trajectories of the random walk X
and on those of the branching potential V produce a contribution of type one.

To introduce a second type of contribution, which can be seen as the second order comparing to
the contribution of type one, we present an important quantity which is the sum over all the gen-
erations of \Ilnnb(f”) DY ks \Ilfz,nb (f™F). First, let us give an heuristic about the way it appears
in the asymptotic of the range.

For any k > 1, introduce the k' return time T* := inf{k > T*~1 X} = e} to e and take T° = 0.
Recall the definition of V' before (7) and let Zrn (g, £7) := >, cr gn(an)f” =1 (v )L (T (2)> Alog n}
with A >0 . Z1n(gn,f") is a version of the generalized range where we have replaced the instant
n by T" and we have made appear the additional constraint V' (x) > Alogn. Note that it is known
(following Lemma 2.1 in [AC18] and its proof at the beginning of Section 4.2) that this additional
condition ]I{V(x)zAlogn} has no effect on the normalization of the range, that is

Fact 1: There exists 0 < ¢; = ¢1(A) < 1 such that lim,, 1o ]P’*(Z;”" = cl) =1.

n

So here, we typically consider collections of functions £ such that Zrn (g, ")/ %1 (gn, f") —
Cte > 0. One of the main gain of this consideration is the fact that relatively high potential yields
interesting quasi-independence in the trajectory of (X,,n).

With this fact, we have (see Section 3.1) something like Z7n (g, ") = nEE [Z11(gn, £")] in prob-
ability and thanks to the fact that ¢ is non-decreasing and to the expression of the quenched mean
of Zp1(gn, "), in probability, for large n

Rrn (gn, £) = nEE [Brs (g, £7)] z‘p nZ\P S(fY,

k>1

which makes appear >, \I/’fL nb (f™*). It turns out that this lower bound is exactly the good
quantity which leads to our main result.

The following assumption ensures that > k>1 \Ilfl ,nb( f™*) is not too small, which would correspond
to an exaggerate penalization on the potential V:

Assumption 1.
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For all b € [0,1), € > 0 and n large enough

1
SowE () > —— (A1)

= nlkp+e)
E>1 n

The second type of contribution that we call «contribution of type two» strongly involves the
term n* 37, WF nb(f" k). Tt is negligible with respect to n° for all £ > 0 and comes also from a
mixing between the constraints on X and the constraints on V. So finally introduce (h,,n) which
is certainly the most important sequence of the paper : for any n > 2

1 K pk n,k T 0,1): (logn)™ 0
[tog (" Xz T (/)| 38 37 € (0,1) tog (7" Sz ¥E_LG7R) L (13)

logn otherwise

Let us start by a discussion about (h,,n) with the following remark in which we note that either
h, = o(logn) or h, =logn.

Remark 1. By definition of Ky,

n SR () < Co S WE(L) = O E[Ze >1{weﬁn}} < Co(logn)?,
k>1

k>1 zeT

where the last inequality is a quite elementary fact that will be proved later (see Remark 2). This im-
plies, in particular, that if there exists 0 < v < 0 such that (logn)? /log (n" Zk>1 ﬁnb(f" k) —

0, then necessarily log(n™ 2, ~, ¥y F (™)) <0 and limy,—, 1o log(n*® 21 Yy, ko (f™F) = —o0.
Moreover, in this case, there exists 0 < vy < 1 such that hy, > (logn)?. Also assumption (A1) above
ensures that
K n, nK/b
log(n"® Z\I/n o (fF)) > log (W) > —((kp +€) Al — kp)logn > —clogn,
k>1

overall, definition of h,, implies, under (A1), that
(logn)” < h,, < logn.

The sequence (hy,n) is the quantity which gives the contribution of type two and produces the
second order in our result. It is important to note that we carefully assign an expression to h,
depending on whether constraints are penalizing or not. According to the asymptotic behavior of
the term n"* 3", | \I/’fwb (f” k), we assign h,, two possible expressions : if (logn)? is negligible with
respect to [log(n"™ >Z, -, ¥ K o(f™"))] for some v € (0,1) (which then remains smaller than elogn
by Remark 1), constraints are considered penalizing and we set h,, := [log(n" 3, ., ¥* nb (fF)),
see Theorem 1.1 for example. Otherwise, constraints are not penalizing enough and we set h,, :=
logn, see Theorem 1.3 with @ = 1 for instance. In this latter case, the choice is significant since
log n is the right order for the logarithm of the regular range, that is to say the range without any
constraint on the trajectories of the branching random potential V.

We are now almost ready to state a result. But first introduce two last values : L (with L = £o0
possibly) and £ € {—1,0} defined as follows

L:= hm inf h,, 'log (n' """ p(n’)), and (14)

¢:= lim hy, o Hlog (nfe Y T WwE L (FR)), (15)

k>1
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and note that, following Remark 1, £ necessarily exists.

The full statement of our main result below need additional quite complex assumptions, involving
f™ in particular, they are described precisely in the next section (see (A2), (A3) and (A4)). The
interesting point is the fact that all of these assumptions concern >, U*. And more than that,
we can resume the actions of (A2), (A3) and (A4) by saying that ¥ has to be stable for small
perturbations of its parameters. In the informal statement below, we will say that ¥ should have
controlled fluctuations.

Theorem 1.5 (Informal statement). Assume (2), (4) and (5) hold, b € [0,1), assume also that (A1)
is satisfied and U has controlled fluctuations. If L € (=, 400], then in P*-probability
h:Ll ( 10g+ '%n(gna fn) - log(nlibimgo(nb))) — &,

n—oo
if L= =€, with A, := hy log(n' =0 o(n)) —inf s, by log(£1 =1%o p(£)), then in P*-probability

hﬁl 10g+ e%n(gnvfn) -4, > 0,
n—oo
otherwise L € [—oo, —&[ and in P*-probability

Ry (G, £") — 0,
L— 00

for some increasing sequence (ng)¢ of positive integers. Note that when lim bt log(n'~0="p(n?)) =

L, ng:@

We now present particular examples which lead to different values of L and &. First, note that all
theorems presented in the previous section satisfy L = 400 and £ = —1, corresponding, from our
point of view, to the most interesting case. Let us take, for example, g,,(t) = 1¢>,»} and FroF(ty, to
o te) = L >agognye (< Hi(t)) ! as in Theorem 1.3, with a > 0, o € [1,2), but b € [1/2,1).
When o > 1 and b > 1/2, we can prove that h,, ~ a(logn)®~!/b (with the usual notation t, ~ s,
if and only if ¢,/s, — 1) and n'=*="vp(n®) = n'=2® so we obtain lim A, ! log(n'=*=*vp(n?))
= L = —oco0. However, when o« = 1 and a > 1/, we can prove that for all b € [1/2,1), k = b and
h, = logn thus giving L = 1 — 2b and £ = 0. In other words, L € (—oo, —¢] (with L = —¢ if and
only if b=1/2).

Let us finally take the simple example g, (t) = t1 4>y} and f™F = 1. We can prove that for all
be (0,1), hy, =logn, £ =0 and n'~*="p(n’) = n so limh; ! log(n!~0"*p(n’)) = L = 1 and we
are in the case L € (—¢,400).

To finish, we present an example for which f™F¥ is quite general but with a simple form. Assume

o % =1 40 with A™* C R* and AZ"“ = AMP N {t € RY maxicj<p Hy(t) < n, Hi(t) >
n®};

o (AZJ“ x RF k) n AZ”“/ =g for all k < K';

ok, =0.

We obtain the following simple expression for n'® Zk21 \Il’;; nb(f”’k) = P(Up>1{(S1,...,5%) €
Ag’k}), where (S;,1) is a sum of i.i.d random variables with mean 0 and variance ¢”(1) (this comes

from the so-called many-to-one Lemma, see Lemma 2.1). So

[log(n™ > Wk . (f"*))] = —log P(Up=1{(S1, ..., Sk) € A}*}).
E>1

Consequently, if the probability P(Uk>1{(S1,...,Sk) € Ag’k}) is small enough, that is to say such
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that (logn)” is negligible comparing to —log P(Ug>1{(S1,...,Sk) € Ag’k}) for a certain v € (0, 1),
then the constraint is penalizing enough and h,, = —log P(Ug>1{(S1,...,Sk) € Ag’k}). Otherwise,
hy, = logn. For example, take A™* = {t € R*; inf{j < k; t; > (logn)®} = k} which leads to an
example similar to Theorem 1.1.

1.3. A general result (full statement)

In this section, we explain precisely what «V¥ has controlled fluctuations» means. For that, we
present the assumptions (A2), (A3) and (A4) mentioned in the previous section. We start with
(A2), and then state a preliminary result (Proposition 1) of the main theorem (Theorem 1.5). This
proposition is quite technical especially in its statement. However, it stresses on the fact that all the
expressions involved depend deeply on ), \I/k (f™*) and therefore justify the last two Assumptions
(A3) and (A4) which leads to the formal statement of Theorem 1.5.

Assumption 2.

Assumption (A2) below is an upper bound for a conditional version of ;- ¥} ko (f™") actually
requiring in order to be introduced two facts and additional notations.

Fact 2 : By Lemma 2.3 in [AD20], there exists two real numbers ¢y, & > 0 such that for any h > 0

P ( [V(w)| > h) < he™®". (16)

This fact, that will be useful when cutting on early generations of the tree, justifies the introduction
of the following notation : for any n and k, f;' ** is the function defined by

max
lw|<[h/cz2]

PRt te) =i R (s syt A Syt Sm) (17)
s€[—h,h]™
with m = [h/cy] and s = (s1,...,8m) € R™.
The second fact is about the largest generation visited by the walk before the instant n or before

n excursions to the vertex e.
Fact 3 : Let (¢, = (logn)3,n > 2), by Lemma 3.2 in [AD20], there exists A > 0 such that :

lim ]P’(max | Xk| < AL,) =
n——+oo k<

This fact is here essentially to justify the introduction of the sequence (¢,,,n) which appears in our

second assumption and all along the paper. Note that a very precise result on the largest generation

visited by the walk before the instant n can be found in [FHS11] .

A last notation we need to introduce is a conditional and translated version of \I/’; w(F) for a given

bounded function F. For all k € N*, | € N*, F': R"** — R bounded and t = (t1,...,%) € R!

Uk (Flt) = E[ S e V@R, Vi) . Vi) + 0, (1) (18)
|z|=k

where Zm:k is the sum over all the individuals = of generation k. Otherwise, if [ = 0, then
“Iﬂf\,)« (Flt) := ‘I’i,\/(F)

We are now ready to introduce the second assumption : for all d,¢, A, B > 0 and b € [0, 1), there
exists ng € N* such that for any n > ng, [ < |Al,| and any t = (t1,...,t;) € R! with t; > —B and
Hl(t) S n

I+k n,
Z \I/n nb— Hl(t) ’Vl " |t < Ot ihn Z ‘1/ f k (Az)
k>1 k>1
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Let us comment this inequality which plays two roles. A first one ensures that the fluctuations of
V' in the early generations of the tree have minor influence, this yields the presence of eahn,

The second point is technical and aims to show that E¢ [Z71 (g, )] 2 n~be(n®) D k1 \Ilfwb (fmF)
in probability. For that, the second moment of

n,k
Ly = Z V@ gy, o)L (2)> Alog n.V (2)>— BV (2)=V ()}
z€0

n,n

has to be controlled, with V, := (V(z1),...,V(z)) and V() := min,<, V(v). We first observe
that

~ —V(u |“\
Za=d > I Yueo, e S0 (Vi s atognv (s — B 0=y w)-
2€T x,y>z ue{x,y}

Then taking the expectation of Z2, 1 Yo koo H (t)( o H'k\t) in (A2) actually appears as the

conditional expectation of a well chosen function of the translated potential (V. (u) := V(u) —
V(2))u>-- Indeed, note that u € &, ,» together with V(u) = V(u) implies that v € 07 , , =
{u>z:max,cpcuy Hyp <, H,, >n®— H,} with H, , := Y cw< eV=()=Vz(v) Hence, for all
§ € (0,1/2), by independence of the increments of the branching random walk (T, V (u);u € T)

E[ZEL] 5 e(lizé)BE[ Z 67V(Z) Z H ]l{ueﬁflmbin}67VZ(U)F(/L';W|(VZ (u\zH-l)v ) ij(u)):|

2€0, z,y>zue{x,y}
Ne(l 26)BE|: Z e~ ( 8V (z Z\Ijnnb - (fn l+k|V)> ]
z2€0, k>1

where, for |z| = and any t = (¢1,...,t) € R!
FPM(Vo(uiga), - Va(w) o= 0 @y, Vaug) + o Va(u) + 1),

Assumption (A2) finally allows to say that E[Z2] < en (X k1 \112771,,(J‘7"’€))2 for all e > 0 and n
large enough.

We are now almost ready to state an intermediate result which is a proposition giving a lower
and an upper bound for the generalized range stopped at T™. This proposition is followed by the
theorem, much easier to read, but requiring extra assumptions. First, let us introduce for any 3 > 0

k. k. koo k. ;
AT = {(tr, .. tr) €RY; by, >3, A = {(tr, ..., tx) €RY; 1y, 237121&@ > B}, (19)

respectively the set of vectors such that its last coordinate is larger than 3 and additionally with
all coordinates larger than —B. The introduction of these last two objects is justified by
Fact 4 : for any € > 0, there exists a > 0 such that (see [A1d13])

i > —a)>1-—
P(Znel%er(u) > —a)>1—c¢,

and Fact 1 we have already talked about saying that, in P*-probability, E}/ *isa height of potential
usually reached by the walk.

Proposition 1. Recall (12), let €, := min(b+ Lyp—0},1 = b)/13 and W :=3_, _, e V). Assume

(2), (4) and (5) hold as well as (A1) and (A2).
Lower bound: there exists cs > 0 such that for allb € [0,1), € € (0,&p), B > 0 and n large enough

B (g, £ e 5 .
]P’( (g ) < €—5shn) L o nhk 4 By emsiahn 4 e
nl=bp(nb)uy u1 n) = no (/e

— min(e logn,3hy)

(nnbul n)2 ’ (20)
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with

k
Ui = () =Y WK o L (f ),

E>1
Tk .= {t € R*; Hp(t) < nbethn}n jka%l/g/é and A, = ne~ min(10elogn,5hn)
Upper bound: for any € > 0 and n large enough
R (gn: £7) F —%h
e e S RO L 21
b (nb)us € = +o(1) (21)
with
. k n,k n,k k n,k
U2,n = Z (\I’n (f HR’“\L%;’;/S ) + \I’n ;nb/(logn)?2 (f ) + E[W\Pn,nb/(W(log 7z)2)(f )])

E>1
Note that (20) and (21) remain true replacing Zrn (gn,£™) by Bpin (gn, £™) with k, = |n/(logn)?],
p > 0.

This proposition is technical and difficult to read, we present it here however because it shows that
all the estimations depend deeply on W: (f) and g, recall indeed that the key sequence (hy,n)
defined in (13) depends both on - (f) and r; (with b coming from the function g,). This also
means that without any more information on ¥: (f), it is difficult to state a more explicit result.
Finally, note that the exact role of (A1) and (A2) will appear clearly in the proof of the lower
bound (Section 3.2).

We now present two new assumptions (A3) and (A4) which lead to the formal statement of
the result. These assumptions tell essentially that quantities u;, and us,, which appear in the
previous proposition, are actually very similar. Now introduce (A3) and (A4) :

Assumption 3 : for all b € [0,1), € € (0,ep), €1 € (0,¢) and n large enough
U > e N TR (R, (A3)
k>1
Assumption 4 : for all 1 > 0, b € [0,1) and n large enough
n e Y WL (), (A4)
E>1
The full statement of Theorem 1.5 then writes as follows:

Theorem 1.5 (Full statement). Assume (2), (4) and (5) hold, b € [0,1) and (A1), (A2), (A3) and
(A4) are satisfied. If L € (=&, 00|, then in P*-probability

h;l(log+ P (Gn, £") — log(nl_b_“”go(nb))) — &,

n— oo
if L= —¢&, with A, := hy; log(n'~t=%0p(nb)) —infrs, hy ' log(£1=0="0p(£%)), then in P*-probability
hYlogt R (gn, f") — A, — 0,

n—oo
otherwise L € [—oo, —&[ and in P*-probability
%n[(gn[’fnz) 07
£— 00

for some increasing sequence (ng)¢ of positive integers. Note that when lim bt log(n!=0="tp(n?)) =
L, Ny = L.



Andreoletti, Kagan/Generalized range for slow random walks on trees 13

The rest of the paper is decomposed as follows: in Section 2, after short preliminaries (Section
2.1), we prove the theorems of Section 1.1. For these proofs (Section 2.2), we check that the four
assumptions (A1-A4) of Theorem 1.5 are realized, obtaining simultaneously the asymptotic of h,,.
In section 2.3, we prove Theorem 1.5 : essentially, Proposition 1 is assumed to be true and we only
check that if Assumptions (A3) and (A4) are true then the theorem comes.

We prove Proposition 1 in section 3, this is the most technical part of the paper which can be read
independently of the other parts : in Section 3.1, we summarize usual facts, in a second sub-section
we prove a lower bound for stopped generalized range %Zrn(g,,f™) and finally in a last one an
upper bound.

In section 4 we present some estimates on sums of i.i.d. random variables useful for the proof of
the examples of Section 1.1. Finally, we resume in a last section (page 56) the notations which are
transversal along the paper.

2. Proof of the theorems

This section is decomposed in three parts: in the first section below, one can find preliminaries that
are useful all along the rest of the paper. In the second sub-section, we prove the four theorems
presented as examples. Finally, the last section is devoted to the proof of Theorem 1.5.

2.1. Preliminary material

We recall the many-to-one formula (see [Shil5] Chapter 1, and [FHS11] equation 2.1) which will
be used several times in the paper to compute expectations related to the environment. Note that
the identity below comes from a change of probability measure (see references above), however we
still keep P and E for simplicity.

Lemma 2.1 (Many-to-one Lemma). Recall the definition of ¢ in (1). For anyt > 0,

E[ 3 (V@) 1<i< m)} = E(e!S P Om (8,1 < i < m)),

|z|=m

where (Sy),cn 15 the random walk starting at 0, such that the increments (Sni1 — Sp),cy are
i.i.d. and for any measurable function h : R™ — [0, 00),

E[h(51)] = e "WE(Y_ e VRV (@)
|z]=1

A second very useful fact is contained in the following remark, it tells essentially that, in prob-
ability, the e~V (*)-weighted number of vertices = such that = € &, (recall (10)) can be found in
a quite small quantity when |z| < A¢,, and can not be found when |z| > A¢,. This remark is not
precise at all but will be enough for our purpose.

Remark 2. There exists c3 € (0,1) such that for any A > 0 and n large enough

E{ Z 67V(I)]l{xeﬁn}] < nAe ‘de[ Z eiv(m)l{weﬁn,}} <tn/2,
|z|>[Aly ] |z|<[Aln]

which implies E[erT e_V(m)ﬂ{meﬁn}} <{,.
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Proof. We give a proof here which essentially use technical Lemma 4.6 (for the second inequality
below), indeed by Lemma 2.1 above

E[ Z €_V(z)]l{meﬁn}} < Z P(sup(S; — S;) < logn)

|| > ALy ] k>(Al,|  SF
kr?02(1 —¢) A
< ST Yy <A,
- Z exp( 8logn Jsn
k> A, |
A similar computation gives the second fact and both of them the last one. O

2.2. Proofs of Theorems 1.1 to 1.4

The pattern of the proofs of each theorem is the following : we first prove two facts (an upper and
a lower bound) about the sum >, -, Uk (F) with specific F', depending on the considered function

f™* and on a slightly different version of the latter whether we are looking for an upper or a lower
bound. Then we use this two facts to prove that (A1), (A2), (A3) and (A4) are satisfied.

In these proofs, we use several times the notation e, = min(b + 1g5—y,1 — b)/13 which was
introduced in Proposition 1.

Proof of Theorem 1.1. Recall that f™*(ty,ty,--- 1) = 1, >0gn)ey, @ € (1,2) and see (10) for
the definition of € »/. All along the proof, we assume that B,d > 0, ¢ € (0,&;), n is large enough
and t > —B. Let us start with the proof of the following two facts:

a—1
E[ > e*V(z)]l{V(x)alogn)a—t}} < et llogm)™ T lme), (22)
€0,

and for any 0 < m < logn

—V(x —(logn)*~ (1
Bl 3 o Oy togmetm, i <atectiemit vimys—py| 2 e 50T ()

xeﬁkn,nb

with A, = ne=60°s™" ™" and recall V(z) = min, <, V(u). We first deal with the upper bound (22).
Recall ¢, = (logn)?,

E[ Y e VO Lpmzomen] € X B[ Y e D lyasuomenleeo,)
v€ 0, k<|Aln]  |o|=k

+E|: Z 67‘/(:6)]1{5”66%} ’
‘1|>|_AZHJ

where A > 0 is chosen such that E[3" | 4/, | e V@1 ,e0.1] < 1/n (see Remark 2). This yields,

as @ € (1,2), B[X 15 a0, e V@ ep,y] < SUHBL < Ledt=(logm)* " (1-2) for p large enough
and any ¢t > —B. Thanks to many-to-one Lemma 2.1, the first sum in the above inequality is
smaller than

Z P(Sy > (logn)* —t, max S; — S; <logn) < |[Al,|]P( max S§;—5; <logn),
k< | AL, | isk F<T(og myo —t
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with 7. = inf{¢ > 1;5; > r}. Then, thanks to Lemma A.3 in [HS16a], and as t > —B

|A6,)P( max 5, —5; <logn) < \_Afnjeﬁf(log”)ail(k%

J<T(log n)e —t

AL, Jelogn (logm)*~*(1-3)

I /\

§t+6B—(logn)* " 1(1-5)

IN
®

5t—(logn)®~(1—¢)
€ b

IN
N =

so we get exactly (22).
We now turn to the lower bound (23). Let ¢/, = (logn)* and «,, = (logn)® + logn. By the many-
to-one Lemma, for any m < logn, the expectation in (23) is larger than

ZP Sk>an, maxH < An,n’ <Hk < pheslogn)™™ ,ﬁkaB),
E>1

with HJS = j _, €579 _For any b € (0,1), by Lemma 4.3 (77) (with ¢ = (logn)?, t, = an,
q=1,a,=0a=6,d=(a—1)/2 and c = ¢), above sum is larger than e—(ogm)* " (1+42)  Other-
wise, if b = 0, observe that for all & < ¢/ Sk = Sk implies H;f < k < ¢ so the sum is larger
than ZkS%P(Sk > Oy, Max <y H]S < Ap, Sk = Sk, S, > —B). Lemma 4.5 (with £ = (logn)?,
ty=an, d=1/2,a=06 and d = (o — 1)/2) leads to (23) also for b = 0.

We are now ready to prove that f™ satisfies assumptions (A1), (A2), (A3) and (A4). Recall
that W (%) = E[X = ke_v(“')f”k( (@1), .+, V(@) l(zeo, nb}] where z € 0, ,» if and
only if max; <‘x|H < n and H, > n’, also %b ={k € [0,1]; forall k > 1,t € RE,.n > 1 :
L (6)>n0y [0 (6) < Coon ™} with Coo = sup,, 4 [ f™|sc-

e Check of (A1) and asymptotic of h,. We obtain from (23) with m = 0 that for any ¢ € (0,¢)
and n large enough, E[}° _, | e V@1 1y ()5 (lognyoy) 18 larger than (as A, < n)

E[ Z 67‘/(1:)]I{V(w)z(logn)”}]l{ngnbeamogn)afl,K(m)sz}} > ¢ (logm)" (1te),

xeﬁ)\n,nb
Note that above inequality implies that for all b € [0,1), kK, = max %4 = 0. Indeed, if we had
Kp > 0, then this should imply that for any z € T

Giv(m)]l{weﬁn,nb}fn’k(v(xl)v CER V(JC)) < Cooninhei‘/(m)]l{xeﬁ"v"b},

which gives that E[Zzeﬁn‘nb e_v((l;)]l{v(z)z(logn)a}]l{HanbeE(logn)afl7K(I)2_B}] is smaller than

Coon_’“E[Exeﬁn eV @) Sy Cooly,n™" by Remark 2, but this contradicts the above lower bound
(23) as a € (1, 2).
Then, by definition of \Ilfl b

_ _ a—1
ST =Bl Y Oz ogney ] 2 e (0TI04,
k>1 z€0 b

and additionally with (22) (taking ¢t = 0), asymptotic of h,, is given by

n"™ log Z\I/ f”k ’:‘logE{ Z V(x)]l{v(x) >(log n)= ”N (logn)*~1.
E>1 €6,

n,n
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We also deduce from the previous lower bound that (Al) is satisfied, indeed, as a € (1,2),
D1 Y nb(f" k) > n~(ete)A for any €1 > 0 and n large enough.
e For (A2) recalling m,, = [ehy/c2] (see (16)), then by definition

f?ﬁi(tlw"atj): inf fn’m”Jrj(Sl,...,Smn,tl+Smn,...,tj+8mn)

s€[—¢chn,ehp]mn

= inf T s0esm)) = Lin s logm)ebehn)-
o ey Mbsm 2008wy = Lt 208 m)4eha)

Observe that for A > 0, n large enough, any [ € N and t = (¢1,...,%), by definition of W% (F|t)
(see (18)) and (22) with 5/3A instead of €

k n,l+k
S o U0 = E[ D e VO v s, 2 008w by Lsomo o)
k>1 €0y,
<E[ Y e O s togmeny| < e 0Em T 05,
€0,

Moreover, e~(108™)* " (1=5%) = ¢35(ogn)* " g=(logn)*(145%7) < &hn Dks1 E L (fF), the last

inequality coming from the fact that h, ~ (logn)*~! and (23) with m = 0 and as above 5

instead of . So (A2) is satisfied.

We are left to prove that technical assumptions (A3) and (A4) are realized.
e For (A3), recall first, from Proposition 1, that for all b € [0,1), T is the set

{t = (tr,....te) € RF; Hy(t) < nbe t > 25,11/3/51,1_112?753‘ > —B},
i<

with \, = nemin(10slogn,=5hn) — pe=5hn for large n. Let 0 < &; < &, note that \,/2 > X, =

a—1
ne—6(logn) so for n large enough

i = 3OS, o (f50 ) = E[ Y V@) (ormy et o <ntestn ,zmz—B}}

k>1 meﬁxn/z,nb

> —V(x) . . }
= E[ Z € H{V(m)zaogn>a+hn,Hm§nbeT1““g") ' V(2)>—B}
we@xn,nb

(1 a—=1l14 €1
> e~(logn)™ 1 (1+5).

where we use that (logn)® > 20/* /91 for the second equality and the last inequality comes from
(23), with m = h,, and £1/3 instead of ¢.

Moreover, e—(log7a)“71(1+%) _ e—z,ETl(logn)"‘fle—(logn)"‘fl(l—%) > e—€1hn Zk>1 b(fn k) which
comes from the fact that hy, ~ (logn)*~! and (22) with ¢ = 0, & instead of e.
o Finally for (A4), recall the definition of ug,, just below (21). First observe that as o € (1,2), for

n large enough, (logn)* > E}/:S/él so for any k
k(en,k _ —V(x —
v (f ]I]R\(}fl/3 N = E{Z e ( )n{v(z)z(logn)",V(ac)<€1/3/51}11{16@1}:| = 0.
z|=k

Recall that E[W] = ¥ =1 so
Z (\ijrcl,nb/(log n)? (f'n,k:) + E[W\ijt,nb/(W(log n)?) (fmk):l) < Z (@/:L(fn,k) +E [W\Ij']fz (fn’k)])

E>1 k>1

=2  Un(f™h),

k>1
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2Zk>1 UE(fF) = 2E[erﬁ e Vi )]l{v(.l,)>(10g’n)“}] < 2¢~(logn)* 1 (1-F) < e~ (logm)* 71 (1-3)
thanks to (22) with ¢ = 0, 51/6 instead of €.

Moreover, e~ (o8™)* ™ (1=3) = ¢ (logn)* ™ g —(logn)* ' (1+F) < cerhn > ks O L (f™F). The last
inequality comes from the fact that h, ~ (logn)®~! and (23) with m = 0 and 51 instead of e. [
Proof of Theorem 1.2. Here f™k(ty,to, -+ ,t) = Lyt 5 >(ognyoy with 8> 1 and o € (1,2), let
us start with the proof of the two following facts, for all B,§ > 0, € € (0,¢;), n large enough, any
t>—BandieN

—Vi(x 6 —cg(logn)* 1 (1—
E[ Z ¢ ()]l{V(fmnH»/m )2 (lognye—tyLizeo, }} tmesllogm)T e, (24)
o, [(|2]+4)/B)>i

and for any m < logn

-V _ 1 a-1(y
E{ Z e (z)]l{v(zmmwym71)2(1%n)a+m}ﬂ{z€TnﬁﬁM,nb}} >e cg(logn) ( +E)’ (25)
@, (|z]+1)/B8]>i

with A, = ne=6¢0em)* ™" for any ¢ > %
YT, ="n,(e)={zxeT;H, < nbescﬂ(log")wl,‘/(x) > alogn,V(x) > —B},

and cg = —1 — /B —1/2+ p((B8 — 1)w?/4) (for p see (6)). Recall ¢, = (logn)? and introduce
L, := |(logn)?Te= | with e, € (0,0 — 1).
Proof of (24) : first note that if t > (logn)®/2, (24) is obviously satisfied, indeed

—V(z —V(x
E[ Z e )]l{V(ﬂf(L(lei)/mﬂ))Z(logn)“—t}]l{wéﬁn}} < E[ Z eV )}’
x| (|z|+4)/B]>i TEOn

and by Remark 2, E[Zweﬁn efv(x)] —_ E[Zweﬁn efv(z)]eétf&t <Y, etstff(logn)o‘ < edt—cp(logn)®™ 1
for n large enough. Now assume ¢ < (logn)®/2. The expectation in (24) is smaller than

3 Zn{sz%J_i}E[Z e—vwﬂ{v(mp)z(logn)a,t}n{xeﬁn}}+E[ 3 e—vunl{zeﬁn}}
K< Aln | P31 2=k jo|> (AL,

with A > 0 such that the last term is smaller than 1/n (Remark 2). Note that p = L%J — 1
implies k > [Bp] and as ZkSLAEnJ ]l{pzl%ki} < S for any p > 1, the above sum is smaller, by

the many-to-one Lemma, than

LAl ]
1
153 g PSzlonftmaxH<n+f§ﬂEPSZlonftmaxH<n
p<|Aln] (1’ os) i<[phl ) n p=Ly, (P osr) i<lee] )

(26)
+BZ S > (logn)® — )—f—%

p<Ly,

For the second sum in (26), by the exponential Markov inequality, for n large enough, all p < L,
and t > —B

o (log n)? (log n)2™
P(Sp > (logn)a—t) < Ont=8n(logn) +p(1-8,) < Sn(t+B)— 73 +Lntp(1-85) <e —(-e) 55—
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with &, := (logn)®/c?L,, and we have used that ¥(1 — §,,) € RT for the second inequality and
that 8, — 0 (o € (1,2)) together with ¥(1) = ¢’(1) = 0 and ¢" (1) = o2 for the last one.
For the first sum in (26), which gives the main contribution, by the Markov property at time
P, P(Sp > (logn)® — t, max;<[gp] HJS < n) is smaller than P(Sp > (logn)® — t, max;<, HJS <
n)P(max;<r—1)p) HY < n). Then thanks to Lemma 4.6 (79) (with £ = (logn)?, [(8 — 1)p] and
€/2 in place of, respectively, k and ¢), for n large enough and any p € {L,, ..., [A¢,]|}

=252(8-1) 202 (5—1)

—_p— 7 _£ —_y) = = )
P( max HY <n)<e P stmm? 173 = ¢ PRamer i
J<1(B=D)p]

Hence, as logn < (1 —¢/2)"Y2logn, 3.
than

IEQEL"J P (S, > (logn)* — t, max;<[pg HJS < n) is smaller
LAL, |

Z E |:]1{T(log mye—y<p, max;j<j, S;—S;<(1—¢/2)~1/2 log ”}e

» 7202 (-1)
8((1—e/2)~1/210gn)2 }

=Ln

“T(logn)™—t

202 (B-1)
8((1—6/2)71/210;{77/)2]

< AGE |:]1{maxjg7-(logn)o‘—t S;—8;<(1—e/2)~1/2log n}e

e © a— € cp(t+B) a— € a—
< Al VTR —ealon ™ N (18) < gg, ¢ Hhosn enlo ) H18) < 2t

where Lemma 4.1 (with £ = ((1 —¢/2)"Y2logn)?, r(¢) = (logn)* —t, ¢ = 7%(8 — 1)/4 and
1 — /1 —¢/2 instead of €) provides the second inequality. Finally collecting all the upper bounds
of the three sums in (26), for n large enough

—Vi(z
E[ Z € ( )1{‘/(1(L(\z\+i)/m7i))2(10g”)"*t}1l{iﬁ€ﬁn}
w12l +0) /8]
og n)2% _ 6(t+B
< leétfcg(logn)“_l(lfa) +665t*(1*5) (1202271’ + l < 265t703(10gn)0‘ H1-¢) + ( )
-3 n - 3 n

e

)

which is smaller than e—¢s(108m)* ™ (1=¢) (we have used that (logn)2®/L, > (logn)2@=D=¢a and
(logn)®~! = o((logn)?(@=N=2«)), This yields the upper bound in (24).

Proof of (25). Let ay, := (logn)® + logn. For all m < logn, by the many-to-one Lemma, the
expectation in (25) is larger than

1

o 203

Z ]l{p:L(kJri)/m,i}P(Sp > an,nb < H;f < nbescﬁ'(bg") 1,m<a]z( HJS < Ap, Sk > 5
J=

p,k>1

S, > -B).

1 9
The above probability is larger than (as a;,, > alogn for all a > i)

— a—1 .
P(Sp > an,ﬁp >—-B,S, = Spmb < H,f < nbesesllogn) ,ma]zc HJ‘S < )‘"’pr<nj12k S > Sp)‘

Jj<
Recall that HY = J_, €575 50 we have, for any p < j < k, H} = 5% HY 4+ HY; where
H[?,j = g=p+1 e =% Note that Sp = Sp and miny<j<i S; > S, implies HJS <p+ H}f:j so the

previous probability is larger than

— . a—1
P(Sp > an,ﬁp >-B,S, = Sp,rjnéi;(HjS < An,n’ < Hik <pbescsllogn) —p
S .
max H?. <A, —p, min S; >S5
Cpyak e = TP T = )
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which, thanks to the Markov property at time p, is nothing but the product of P(Sp > an, S, >
—B,S, = Sp, max;j<, HJS <) and P(nb < H,f_p < pbesesllosn)™ ™" _p, max;<k—p HJS <Ap—p=
ne~6ogm)* ™t _ Sy, > 0). From now, let p € {Ly,..., £, = (logn)*}. We first deal with the
second probability. Observe that for all ¢ > 0, p = |(k+)/8] — ¢ implies k —p > [(8 — 1)L,].
It follows that for all e € (0,e), n large enough, for all L,, < p < ¢/, k > 1, i > 0 such that
p=(k+i)/B] —i, P(n® < HY , < nbescaloe™™™" —p max;p_, HY < A, —p,S)_, >0) is
larger than (as A, —p > A, — £/, > ne~7es(logn)" ™"y

x202 _(k—p)

>0)>e ° 5307,

£ a—1 a—1
P(nb < H,f_ < nbesesllogn) , max HY < ne~Tesllogn) Sk
p <k, T p

with X/, := n(1+/27"%  The last inequality comes from Lemma 4.6 (80) (with £ = (logn)2, a = 7,
c=52,d= 2 k—pand £/2 instead respectively of k and ). The equality p = [(k +1)/8] — i
also implies, for any 0 < i < logn that k —p < (p+1logn)(8 — 1) + B so it follows that the above

7;?f%ﬁ;;;p) for some positive constant C' € (0,1). Collecting the
previous inequalities together with Lemma 4.4 gives, as ) ;1 1{p—| (k+i)/8)—i} = 1, that for n large

enough, the mean in (25) is larger than

probability is larger than C exp(

&, 2,2(5-1)
_;(f;gx 2P 1
O 2 Ble 0 8,2 5.5,=5ymasy <y H gm0y | D L=l 1-0)
p=Ln - E>1
252(8-1)

2 T BOog A )2 Ton _
> CP(Sy, 20) E[e o) ]l{LnsTans%wgmn:Srsjglogxn}]

x252(B—1)

> CP(ﬁ% > O)QP(F%V > an)E[e 8(log A],)? TQ"ﬂ{ngmnzgjisjglog)‘;}} — P(EL,,, > ap).

Note that thanks to (69) and the fact that a € (1,2), we can find a constant c(;.9) > 0 such
that CP (S . > O)QP(gg/n > ) > ca)(l,) "t > 2¢~500em)* ™" Then applying Lemma 4.1 (with
0=1log X, r=qap, c=7%(3—1)/4 and \/1 +¢/2 — 1 instead of ¢), for n large enough

_x2e?(s-1) e (logm)*—1(1+£)
E|:€ s ]l{VjSTaV,LIEj—SjSlOgXn}} 2 e o
Finally, by Markov inequality, P(Sy, > a,) < Lne_czl-%ai/]“" for some constant C/(1.2) > 0. Since
o?/L, > (logn)?@=Y=2a and (logn)®*~! = o((logn)?(@==%a) we get that P(Sy, > a,) <
e—cs(logm)* " (142)  Collecting the different estimates yields (25).

We are ready to prove that f™ satisfies assumptions (A1), (A2), (A3) and (A4). Recall that
\IIZ nb(f”’k) = E[Zm:k e~ V@) frk(V(gy), .. .,V(x))]l{xegn ”bﬂ where z € 0, ,,» if and only if
max;<|,| Hy; <nand H, > n, U, ={ke€|0,1]; forallk > 1,t e RF.n >1: ]I{Hk(t)>nb}f"’k(t) <
Coon "} with Cop = sup,, ¢ £ |l oo

e Check of (A1) and asymptotic of h,,. We obtain from (25) with ¢ = m = 0 and n large enough

—V(x —V(x
E[ >, v )ﬂ{kuzumalogn)a}} > E{Ze ( )ﬂ{vwzm>z<1ogn>a}]1{xerm@mnb}}
z€0 z€T

n,nb

S o—es(logn)* ! (14e)
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This implies that for all b € [0,1), k, = max %, = 0 (we use a similar argument than in the proof
of Theorem 1.1) and additionally with (24), gives, taking i =t =10

™ log Z\IJ” n® fn’k))‘ - ’ng{ Z eivm]l{v(wuzum)Z(log")a}}‘ ~ cp(logn)* .
k>1 zel

n,nb

hn = |n

We also deduce from the previous lower bound that (A1) is satisfied.
o For (A2), recalling m,, = [ehy,/ca] (c2 is defined in (16)), by definition, for any j > 0

fah (t1,...,tj) = inf I (81000 Syt Sy e sty Smy)
n s€[—¢ehy,chy,]mn

= inf

1y ) > (1 a_
Sy €[—2hmsehn] {t L (mn+i)/B)—mn >(logn)* —Sm,, }

= Liomatpysprsma by, o S (ogmyeten, )

Then for any | € N* and all t = (t1,...,1) € R, f5 (41, .. 4, V(21) + ..., V() + ), with
|x| = k, is equal to
Lmn<tk+)/8) <0y Lt oty ) = 2 Oogm)atehn} + L i) /81> LV @ oty 5y — i)+t 2 (log m) +ehn}

with ¢ = m,, + [. Recall the definition of ¥: (F[t) in (18), we have

SOWE o (PRI <E[Ze*W :h”’“(tl,...,tl,V(xl)+tl,...,V(x)+tl)]
k>1 €O,

k
<Y W< 40)/B) < Lt ) 2 (log )} T (1)
k>1

—V(x
+ E{ Z eVt )]l{V(m(L(\mH»i)/ﬂJ—i))Z(lOgn)a_tl}]]'{meﬁn}}'
;[ (| +4) /B8] >4
Dkt Lma<40)/8) <Y L (e 1y ) - > (l0g )} i (1) 18 equal to

l

Zﬂ{t >(togmad ) UL in) gy SO L, > 10gm)e)s
k>1 p=1
where we have used that 3, -, Wﬁ(l)l{pz[%j—mn} < @) Dk ]l{p:L%men} < B. Also by
(24) with i = m,, + 1, t = t; and ;5 instead of ¢,

i| § e(;tL*C,H(IOg ”)G_l(lfﬁ)v

—V(x
E[ Z eVt )]]'{V(x(L(\zH»i)/Bj—i))Z(lOgn)a_tl}]l{xEﬁn}
x; [ (|z|4+4)/B]>i

SO

1 a—1 =
k TLH-k 5 —cg(logn — =
Z‘I’n,nb—m(t) e |t <ﬁz]1{tp>(1ogn) }+ ti—cg(logn)® ™" (1—3%)
k>1 p=1

Note that 52;:1 1t >(10g n)~y is very small for n large enough, any I < |Af,] and H;(t) < n.
Indeed, le:1 eStr=t) < IH(t)° < Al,n? so
1

l
BY L, >t0emey =18 Y_ T s 10gnyay < €2 BALn 018",
p=1 p=1
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which, as o € (1,2), is smaller than 1e%t—¢s(lo8 n)*"(1=5%) . Finally observe that

e*Cﬁ(lOgn)o‘*l(lfﬁ) — 605(logn)°¢*127A —cg(logn)®*~ (1+55) < €Ah § \I/n nb fn,k)’
k>1

where we have used that h,, ~ cg(logn)®~! and (25) with i = m = 0.

We are left to prove that the technical assumptions (A3) and (A4) are realized. The ideas are very
similar to those of the proof of these two assumptions in the previous theorem, we give details here
however to keep the proofs independent from one another.

e For (A3), recall that Y is the set

{t = (t1,...,tr) € R¥; Hy(t) < nlehn ) > 26,1/3/51,r_n<1£tj > —B}.
J=

Let 0 < &1 < £ and recall that \,, = ne 5", Note that An/2 > Ay = ne=600gm*" 5o the sum
D kst \Ij];n/Q,nb(fglf;i]lTﬁ) is larger than ), -, \Iﬂ;",nb(f:i;i]l‘fﬁ) which is nothing but

E[ 2. @O ety 1 ; 2} ]
vl 2 V(@ (ol 4mn) /8] —mn ) 2 (log ) +ehn  Hy <nbeshn V() > £ £ V() >— B}
An,n

—Vi(x
= E[ Z eV )ﬂ{V(Im L) —mn) 2 (log )+ i} Lizer, (N6,
xv\_(|$|+mn)/ﬂj>mn

> —enllogn)® " (145

where this last inequality comes from (25) with ¢ = m = m,, and &,/3 instead of . Moreover,

e—cpllogn)® T (14F) — o= Fres(logn)* ! o—es(logn)® T (1-F) > p—erhn > ks ko (f™*), the last in-
'n n

equality comes from the fact that h, ~ cg(logn)*~! and (24) with i =t = 0.

e For (A4), first observe that for all K € N* and «a € (1,2), (logn)® — E}/?’/(Sl > logn for n large
enough so

k(gnk _ —V(=)
W (/" g \*1/3/ ol E[IZ € ]l{V(a:UI‘/BJ)Z(IOgn)o‘,V(x)<€}1/3/51}]1{xeﬁn}]
z|=k

—V(m
[Z € {V(:r >(logn)e, V(z)<£1/3/51} {V(z)- V(z)<logn}} 0.

lz|=k

Recall that W =3, _, e~V and

Z (\I/fL,n”/(logn)2 (fn’k> + E[WWfL,nb/(W(log n)z)(fn’k)]) < Z (\I/l;,(fnﬁk) + E[W\Ilﬁ(fn’k)])’

k>1 k>1

which is equal to 23", <, Uk (f™*) since E[W] = ¢¥(!) =1 and thanks to (24) with i = ¢ = 0 and
<L in place of e -

k n, k e
2 E e (fm™ { E e ]l{V(l‘ 1/3)>(log n)« }} < 2e s(logn)>~1(1-3L)
k>1 veo,

< g—callogn)* " (1-)

a—1 a—1 a—1 £1
Moreover efcg(logn) (17—) —e 3 L cg(logn) 7C3(logn) (1+ ) < 651hn Zk>1 nnb(fn k) the

last inequality comes from the fact that h, ~ cs(logn)®~! and (25) with i =m = 0. O
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Proof of Theorem 1.3.

Assume first that a = d = 1 and « € (1,2) which corresponds to the second and third case of the
theorem. Let us start with the proof of the two facts, note that we distinguish whether b = 0 or
be (0,1/2).

Facts for the case b= 0 : for all B,§ > 0, ¢ € (0,&5) and n large enough, for any ¢t > —B,

TEO,

a/2
=1 V(z)>(logn)>—t :| S 65t72(10gn) (17€)a (27)
S Ty, V20087 —0)

and for all 0 < m <logn, 0 < M < e(logn)*/?

e—2(logn)a/2(1+s), (28)

E{Z er(m)]l{weTn,m@\n,l}ﬂ } >
V(z)>(logn)®+m -
= Mz 430 < Ha, e

with A, 1 = ne—12(logn)‘*/"‘ and
T = Tale) = {z € T; Hy < 208" V() > —B}.

We first deal with the upper bound (27). Note that if ¢ > (logn)®/2, then (27) is obviously satisfied.
Indeed, (35, Hy ) 'y (2)>(logn)yo—t} < 1 so for n large enough

e_V(x)

E -
{ 2 i< He,

z€0,

Livozosme—n | SB[ 3 eV ]emel < gt ilosm”
TEO,
< eét—2(logn)a/2(1—s)7

where we have used Remark 2. Now assume t < (logn)®/2, by the many-to-one Lemma, the
expectation in (27) is smaller than

1 —V(x
Z E [Wﬂ{n]og nye —¢ <k, max;<p Hfgn}] + E|: Z € ( )]l{meﬁ,,,} ’ (29)
E<|AL,] j=1""j |z|>[Aly ]

the second sum is treated as usual : Remark 2 with a chosen A, together with the fact that o € (1, 2)
and t > — B implies that E[ZITEINAEW,J e*V(z)]l{zEm}] <1l/n< %6&72(10%”)&/2(175)' Also using
that (Z_];:l HJS)*1 < e~ M%<k 555 Jeads to

1 _

—manST n _ Sj—Sj
Z [7216 HS ]l{T(log n)"‘ftgk? max; < H]SSH}:| S LAEHJE |:€ (logn)™*—t .
k<| AL, ] j=1"j

Since t < (logn)®/2, (logn)®—t > (logn)*/2 so by Lemma 4.2 with § instead of € and any ¢t > —B

log n)® —(t+B)

— _ _ e (
E[ei MAXG<T(log ny —t SJ'*SJ} < e 20-3)y(ogn)a—t ¢ 20-8)" Mo t5 < %eﬁ*?(logn)am(l*f)'

This treats the first sum in (29) and yields (27).
We now turn to the lower bound (28). Recall ¢/, = (logn)?, using that Z§:1 HJS < kmax;<g HJS

and the fact that m < logn, 0 < M < ellog n)*/? and A, > ellog ")a/z, we obtain thanks to the
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many-to-one Lemma

_V( )]l{meTn 1ﬁﬁ>\n 1} 1
M|z| + ZJ<‘I| H,, {V(z)>(logn)*+m}

S,>—B, Si= sk}]

1
_k; {leaogn)a/? {Sk2an, max; <p HY Sclosm®/?,

e—(logn)®/?

= 20 Z p Sk 2 O, maxHS < ellos )™/ .S, > —B,S) = Sk)
n

k<e,

where o, = (logn)® + logn. By Lemma 4.5 (with £ = (logn)?, ty = a,,, d = /4 and a = 0), the
previous probability is larger than e~ (o8 n)*/2(1+5) Finally collecting the inequalities, we get (28).
Facts for the case b € (0,1/2) : for any t > =B, r > 0 and w > 0

e V@1, b _ _
E {r+Hz>n®/(w(logn)?)} —b_&t—1==(logn)~~1!
E[ 1 Vi(z)>(log n)® —+ :| (w+1) e b . (30)
z€l, " Z]<|I| fo = toam) )

Also for all 0 < m <logn, 0 < M < nb
,V( )]]'{TGT-,, 2NO,y 12.nb}

[Z Lv()> (bgnmm}} 2n
z€T Miz| + ZJ<|EI He,

7befl—'lt'5(logn)""1’ (31)

)afl

. _s
with Ap 2 = ne g (logn and

YTho="Tyo(e)={zeT,H, < nbe%(log")%l,V(m) > —B}.

We first deal with the upper bound (30). We split the sum according to the generation of :
when ‘$| > |_A€ J we use that ]1{r+H >nb/(w(logn)?),V (x)>(log n)* — t}(’l“—l— ZJ<‘1| ij) 1 <1 so the
expectation in (30) is smaller than

—V(z

5|
“Vix e r+Hy, b 1 2
E{ > e )]l{xem] +E[ > r{+2>n /1(;( LM 4 (0> (o myo -1y Lzc o} |-

|z|> Al | lz| < | ALy, | J<|z| T

Then, when |z| < |Af,], we again split the sum but this time according to max;<|,| Hz,: when

a—1 —
maxj< (g Hy, > nbet108m" ™ wouge € that 1ot >t/ o(log n)2)V (@) (o )=t} (T 25 < oy ) =
(Mmax;<|q ij)_l < nbe=sogm)*” Otherwise, one can observe that 1, g, >nb/(w(logn)2)} (" +
Zjﬁlxl Hy )7l < pim, snt j(wiogny2yy (r + Hy) 71 < wn~"(logn)?. Therefore, the expectation in
(30) is smaller than

|z|> AL, | |z|<[ALn ]

—b 2 —V(x)
+wn " (logn) E{ > e {V<m)z<1ogn)a—t,mawa.Snbe%“"g"“”J’
|z| <ALy ] j<lz| 7Y

which, by Remark 2 and the many-to-one Lemma, is smaller, for n large enough, than

]. 1 1 o —
= 4 lynbemp g™ "t wn ®(logn)? Z P Sk (logn)® —t,max HY < nbeslogn) 1).
K k<| AL, | sk
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Also, 34 < as, | P(Sk > (logn)* —t, max Hy < nbe*%(logn)a_l) s smaller than
j<

LA&JP( max S —5; <blogn+ - (logn) ) < elo;n_%(logn)aﬂ(l—%)’
J<T(logn)e —t b
where Lemma A.3 in [HS16a] provides us the last inequality for n large enough and any ¢. Finally,

note that for any § > 0, n large enough anyw > O0andany ¢t > —B,1/n < in7? *53*1*(1%”)& ' <
w;;l —b (5t— 7= (logn)*~ 1’ Enn g(logn)o‘ ! < én—b —§B—17%(logn)>~! < w+ yo—t

h £ (logn
)

%(logn)a_l(lfg) < Ltl( %(logn)” 1(175) < w+1 (5t— E(logn)"‘*1
= n

—b 20Togm 2 B
wn~°(logn)?elos logn)“elos and
this finish the proof of the first fact. We now turn to the lower bound ( 1). By the many-to-
one Lemma, for any m < logn, 0 < M < nb® and A > 0, the mean in (31) is larger than (as

a—1
An2 > nbessloan)® ™)

Y E ! 1 }
N N -
’m’”er—l HS {Sk>an,maxi<j< HY <nbeds 5™ gSsnb 5, > B}

E<|Al,]
> 2744 e anllosn)™” Z P(Sk > an, max HS < nbeSb(logn)ailaHlf >n’, Sy > -B),
n k<AL, |

with a,, := (logn)® +logn. By Lemma 4.3 (77) (with £ = (logn)?, ty = an, ¢ =b, ap = —a = —
d = 27! and ¢ = ) the above sum is larger, for n large enough, than e~ (logn)* 1 (1+45)

2A0, et o8 ”)a71(1+5), which completes the proof of the upper bound.

VA

We are ready to prove that f™ satisfies assumptions (A1), (A2), (A3) and (A4).
e Check of (A1) and asymptotic of h,,. (28) with m = M = 0 implies, for b = 0 and n large enough

e_V(w)

k¢ e,k
Z (") 2 E { Z mﬂ{V(I)Z(logn)“‘}]l{mETn,lﬂﬁA,hl}
k>1 zeT 2ej<|z| e

o—2(log n)*/2(14¢)

This implies that ko = max % = 0 (see the part concerning k; in the proof of Theorem 1.1 for
details) and additionally with (27) and ¢t =0

™ log (Y WE f”v’f))’ ~ 2(logn)/2.
k>1

We also deduce from the previous lower bound that (A1) is satisfied.
From (30) with r =¢ =0, w = 1 and § instead of ¢, we get for all b € (0,1) and n large enough

n, k e_V(x)Il{HI>nb/(logn)2} _p 1=
D V(M) < E[ > S o H 1{V(w>z<logn>a}] snive®
E>1 TEC, J<]z| Ty

a—1

(logn)

This implies that for all b € (0,1), k > b. From (31) with m = M = 0, we get that for all b € (0, 1)

er(x)

n, — s (logn
Z \I/n nb f k [Z 7H]1{V(;c)> log n)™ }]l{gce’rn Qﬁ(]’A 2 nb}] >n b == (logn)
E>1 z€T ZJ<I:Jv\

a—1

This implies that for all b € (0,1/2), xp < b. Finally, for any b € (0,1/2), x, = b and

e n 1 —
tlog (Y Uk L (f vk))‘ ~ J(logn)* .
k>1
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We also deduce from the previous lower bound that (A1) is satisfied.
e For (A2), recalling m,, = [eh,/ca] (see (16)) and for all s = (s1,...,8m,) € R™ t =
(t1,. . tr) € RF with w = (51, 8m,,t1 + Smys- >tk + Sm, )
1
mp+k :
S Hy(u)
Note that Y272 H(w) = Y7 Hj(s) + 35—, (€7 Hon, () + Hy(t)) > 325, H,(t) so

K : ,
fsnhn(th"'?tk): - hlnfh ] fnm”+k(81,...,smn,t1+Smn7...,tk+8mn)
se|—¢chp,ehy|™mn

fn’TrL”+k<81, ey Sm s 1 T Sy, s bl T Sm") = ]l{thrSng(lOgn)o‘} (32)

. 1 Lit,>(logn)e+ehn}
< inf Lty 450, >(logn)o} = — -
b€l ehn o] S X ()

It follows that fgh’i(tl,...,tk) < ﬂ{tkz(logn)(’}(Z?:l Hj(tj))il and for |z| = k with u, =
(tla"'atlav(xl)+tla"'7v(x)+tl)

n 1
fE}ZiL+k(t17 e 7tl7 V(xl) + tla ey V(.’E) + tl) S ]]-{V(r(:)Z(logn)o‘—tl} I+k

Ej:l(uw) .

Assume b = 0. Observe again that ZHk (ug) = 25‘:1 H;(t) + Z?Zl (e"V@IH(t) + Hy,) >
> j<k Haz;. Then, by definition of vk (F|t) (see (18)), for all A, B,e,0 > 0, n large enough, for any
leN*and all t = (ty,...,t;) € Rl with t; > —B

I+k I+k
Z\I]nnb H(t) Enthr |t <E{Z€ V(z) Ethr (tl,...,tl,V(xl)+tl,...,V($)+tl):|
k>1 €0,

)

1 —2(logn)*/?(1— -5
<E{Ze My (2)> (log n)o— “}27} < ePhim20osn)" (1 =5%)

TEO, 1<k

where we have used (27) with ¢ = ¢; and replaced € by 35 for the last inequality. Finally, observe
that

—2(logn)*/*(1-5%) — o35 (logn)*/? ,~2(logn)*/?(145%) < efihn Z\I, b (F7F),

k>1

where we have used that h,, ~ 2(logn)®/? and (28) with m = M = 0.
Assume b € (0,1/2). Note that EHk Hj(uz) > Hi(t) + ;< Hy;. Then for all A,B,e,6 >0, n
large enough, for any [ € N* and all t = (¢1,...,%) € R! with t; > —B

I —V(2) HV(@)>(ogn)>—t}
D (F5 1) < B[ Y eV L(a )+ o >n0 /(logn)?)
E>1 : ) €O, H(t )+ZjSIIIH-Tj Z

< 2n7b65tl7%(logn)o‘71(1fﬁ) < nfbeﬁt;,f%(logn)afl(lfﬁ)

)

where we have used (30) with r = H(t), w = 1, t = t; and ;5 instead of ¢ for the last inequality.
Finally, observe that

—b_ot lonull—— 2 lon"‘fl— logn)*~ 1 (1+ hE: n,k
n et b( gn) ( erA( gn) b( gn) ( 3A)<€A n \Ijnnb f )’

k>1
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where we have used that h, ~ §(logn)*~! and (31) with m = M = 0.

We are left to prove that technical assumptions (A3) and (A4) are realized.
e For (A3), recall that YE = {t = (t1,...,tx) € R¥; Hy(t) < nbeshn V(x) > 2&11/3/51,731@ > —B}.
By (32), for |z| = k with v, = (s1,..., S$m,, V(Z1) + Smps -, V(X) + Sm,,)

1
my,+k
and recall that Zm"Jrk Hj(vy) = 2700 Hy(s) + EI’? (e7V@)H,, (s)+ H,,). For |z| = k such
that V(z) > —B, observe, as s € [—chy, eh,|™", that Zm"Jrk H;(vy) < mpe®hn + km2e2ehntB 4
Zle H,,. Also recall, by definition, that h, > (logn)” for v € (0,1) so Z;n:"frk Hj(v,) <
2km2e2ehn+B 4 22?11 H,, < kedehn 4 Z?Zl H,,. It follows that

n,k i
fz-:iin (V($1)7 I V(ﬂ?)) - SG[*Ehlerl,Ehn]mn 1{V($)+S”’Ln2(10g n)*}

3

k
-1
f:i{k (V(ml)a B V(J})) > IL{V(I)Z(log'rL)"‘JrEhn} (kegshn + Z Hmj)
j=1
Let 0 < 1 < ¢ and recall \,, = ne= % > 2A,i, © € {1,2}. Thanks to the previous inequality and
the fact that (logn)® > 2&1/3/(51, we have

—V(x)ﬂ

€ {V(2)>(log n)® +<hn }

\I/)\ b n, ]l k)>E|: 1 boch _ }
E : /2n TE) = E : 3ch,, {H;<nbeshn V(z)>—-B}
E>1 z€0; [le + 2 i<tal He,

Jiom

Assume b = 0. By (28) with m = h,, M = ellogm)™? and 5 instead of ¢, together with the fact
that h,, ~ 2(logn)®/2, for n large enough

eV Oy >0 n)a+h }
>R (0 ) >E[Z e ]l{zen (5)N0, 1}
=1 E |Z‘|6(1 g ) _|_Z <‘m| 1 An,1

> e <1ogn>“/2<1+%1>_

_ a/2 1 _ e a/2 a/21_f1 _
Moreover, e 2(logn) (1+3) — e~ 3 (logn) e 2(logn)*/2(1 3) > e erhn Zk>1 \Ilfy,,nb(fn’k)v the

last inequality comes from the fact that h,, ~ 2(logn)®/? and (27) with ¢ = 0.
Assume b € (0,1/2). By (31) with m = h,, and M = n®, together with the fact that h, ~
3+ (logn)®~1, for n large enough

—V(m)]l
k n,k € {V(z)>(logn)*+h,}
SO (i ey) 2 B[ Y o Lt a(3)00n, )
k>1 zeT J<]z| T

Z n—be—%(log n)o‘fl(l—i-%)’

1 a—1 £1 _2e7 a—1 _ 1 a—1 -2
Moreover, e 5 (logn) (I+5) — e~ b (log n) e 5 (logn) (1-5L) > nbe—¢c1hn Zk>1 . nb(fn k)
the last inequality comes from the fact that h,, ~ %(log n)®~1 and (30) with r =t =0, w =1 and
we have used that n®(logn)=2 < n’.

e Finally for (A4), we first observe that for all £ € N* and « € (1,2), (logn)* > 26}/3/(51 for n
large enough so

e~ V(@)

k¢ e,k _ _
(™ Lrysen )=E Z H ]l{V(r)>(logn)‘1 V($)<€1/3/61}1{$Eﬁn}:| =0.
|z|=k £=j=1""%j

1/3/51
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Recall that W =3, _, eV and E[W] = e¥® =1 so when b =0

Z (‘I’Z,nb/(log n)2(f"’k) + E[W‘I’Z,nb/(waogn)z)(fn’k)]) < Z (‘I”:i(fn’k) + E[W‘I’]fb(f"’km
k>1 k>1

=2) (™),

k>1

and thanks to (27) for n large enough with ¢ =0

23 Wi (f™F) = QE[ > S H ]l{V(w)Z(logn)”}} <2e7?
i1 e, 2i<lal He;

—V(x
) (tog n)*/2(1- %)

< o—200gm)*/2(1-5})

—2(logn)*/2(1-5L) _ %L(logn)*/2 —2(logn)*/2(1+ L h k K
Moreover, e~2(08m)* " (1=3) — =" (logn)® "o =2(logn)*"(1+3) < ee1hn s U (fF), the last

inequality comes from the fact that h,, ~ 2(logn)*/? and (28) with m = M = 0.
Otherwise, b € (0,1/2) and thanks to (30) for n large enough with 7 =¢ =0, w = 1 and < instead
of e

3 B! 1 .
k n,ky _ € {H.>nb/(logn)?} —L(logn)*~t(1-%L
Z \I/n,nb/(logn)2(f ) - [ "+ Z Hz 1{V(w)2(logn)@}:| S ﬁe b( gn) ( 3 )’
k>1 €O, J<lm| T

and we also get from (30) with » =¢ = 0 and w = W that for n large enough

7V(a:)]1
k nky _ € {Hz>nb /(W (logn)2)}

VS e sw s () = B[ 2 S S 1(v(@2ogm))

TEO, ISz Zi

<

WAL togmta-2
TLb

By (5), telling that E[W?] < co, we have Cy := E[W(W + 1) + 1] = E[W? + 2] < co and then

C4 1 a—1 g1
k n,k k n,k —+(logn 1—-L
D (W sogmy (F5) BV gy (/)] < —pem #0750
k>1
]. 7l(1 N a—1¢q__ €1

< —e b ogn) (1 3 )

~ 2nb
Moreover, e~ 510sm)* 7 (1=F) — 3k (logn)* ™ o= flogm)* 7 (1+F) < pbeeihn D k>1 ‘I’Z,nb(fn’k), the
last inequality comes from the fact that h, ~ f(logn)*~' and (31) with m = M = 0. This
completes the proof for these two cases.
Assume now o« = 1 and @ € R (with ¢ > 1/6; when d = 1), which corresponds to the first case of
the theorem. As usual, let us first state the following two facts:
forallbe [0,1/(d+1)), B,d >0, e € (0,e,) and n large enough, for any ¢t > —B, r > 0 and w > 0

{r+H,>n?/(w(logn)?
Bl ) :
T€ED, (T+Z]§|x|H$J)
For any 0 < M < nb ¢ < b/3 (when b > 0)

67‘/(1’)

eV

)} ]l{V(m)Zalogn—t}] < (w + 1)£ie5tn—bd’ (33)

Liger,no, .} 1
)\nvnbd_ﬂ{V(m)Zalogn}} > ﬁn_bda (34)
z€T (M|x| + ngm HT,) n

B[
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with A, = n'~!1€ and for any a’ > 1/4;
T, =7T,(e):={zeT;H, <n’ V(z)>d'logn,V(z) > —B}.

These facts ensure that f” satisfies assumptions (A1), (A2), (A3) and (A4) for b € (0,1/(d + 1)).
(A3) does not hold exactly when b = 0 so we use (38) (which appears in the proof of Theorem 1.5)
together with the result when b > 0 to conclude this case.

e Check of (A1) and asymptotic of h,. We get from (34) that s, = max %, < bd and (33) gives
Kp > bd. It follows that for all b € [0,1/(d + 1)), ky = bd and for any n > 2, h,, = logn. Indeed, on
the one hand, (33) with r =¢ =0 and w = 1 gives, for n large enough

—V(z)

e
WY W () =B Y e < 26,
k>1 veo , (Xj=1 Ha,)

and on the other hand, we get from (34), for n large enough that

ne N wh (R > L

2
k>1 n

,n

From these inequalities, we get that for any v € (0,1), |log(n" >, -, ¥¥ nb(f" N < 3logt,
o((logn)7). Then h,, = logn and we also deduce that (A1) is satisfied.

e For (A2), let |z| = k and observe that f[) Hk(tl,.. L, Vi(xn),. ( ) < ( ( )+ H)~% so
it follows, for all € € (0,ep), A,d,B > 0, n large enough, any [ € N* = (t1,...,t;) € Rl and
t; > —B, by (33) with r = H;(t )7 t=t;and w=1

k l-‘rk d é —bd & hnp k
Z\Iln,nbel(t)( n |t) <2 62 fn <e it Z\I]n nb fn’ )’
k>1 E>1

where the last inequality comes from (34).
e For (A3), recall that YF = {t = (t1,...,tx) € R¥; Hi(t) < n*e V(z) > 26711/3/51715;C > —B}. For
|z| = k, we have

n,k 3e a —d
fehn(V(Jfl),...,V(J?)) > ]l{V(w)Z(aJre) (logn)} (kn +ZH1J) )
Jj=1
and thanks to (34) with M =nb b€ (0,1/(d + 1))
eV Oy o, 4y 1
Z\Iﬂ;\ b(fnﬁkﬂ’rk) >E[Z nl &5, nb i| > bd>€ e1hn Z\IJ b fnk
n/277l hp n’/ — b d n,n
k>1 ) z€T (Jeln® + Zjﬁ\zl Hy;) E k>1

where we recall \,, = nt—10¢.

e Finally, for (A4) with d = 1 (and then a > 1/47)

\I/k<f”k]l \jf ): :O

[ €_V($)]l{xeﬁn}
/8,

k d {V(m)Zalogn,V(m)<ﬁ/3/5 }:|
= (Xj-1 Ha)) '

Otherwise, d = 0 and for any a € R, thanks to Remark 2

k n,k —Vi(x (z
Z\P (f™ ]IJR\%’U3 [ Z eV )]I{V(a:)>alognV(z)<€ Y35 }} [ Z e )} < L,

k>1 o1 €O, T€EO,
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which, thanks to (34), is smaller than et~ %7, WF  (fmk) for all 1 > 0. We get from (33) with
r=t=0and w = W that for n large enough

eV O, st (W (log n)
(Cj<to) Hay)?

nky — )} .
\I/']rcl,nb/(W(logn)Q)(f ") = E[ Z ]l{v(a:)Zalogn}:| < (W +1)2n0,

TEO,

By (5), telling that E[IW?] < oo, we have Cy := E[W(W + 1) + 1] = E[W? + 2] < oo and then

Z (\:[Jf:l,nb/(logn)2 (fmk) + E[W\I}Z,nb/(W(logn)Q)(fn7k)]) < 2C4£n_bd < ealhn Z \Ilﬁ,nb(fmk)V
k>1 k>1

where, again, the last inequality comes from (34). This finishes the proof of the result of the theorem
for b€ (0,1/(d+1)).

Now assume b = 0 and let € > 0. Using the result of the theorem with b. = /(2 + d) and the
fact that Zp,(Ljnee 00y, ) < Zn(L(1,00), "), We get the following lower bound for %, (11 o0y, f"):
P(log™ (11 00), ") < (1 — £)logn) is smaller than

P(log® Zn(Linbe o), £7) < (1= (L4 d)b. — /(2 + d))logn) — 0,

where we have used the case b > 0. For the upper bound, we use an intermediate result in the
proof of Theorem 1.5: recall that kg = 0 and h,, = logn.
Also recall € = limy, o0 hy, ' log(n'™ 37,5 Uk (f™F)). It’s easy to see that £ = 0 and by (38)

1
P(log" Zn(Li1.ce), ) > (1+€) logn) < P~ Zn(Lip),£7) > ) =0,

this ends the proof of the theorem for all b € [0,1/(d + 1)). O

Proof of Theorem 1.4. Here fF(ty,tg, - ,tx) = 11{twmz(logn)”}(Z]LZ/lm H;(t))™' with 8 > 1
and a € (1,2). We state the following facts: for all B;d > 0, ¢ € (0,¢,), n large enough, any
t>—-BandieN

e Miseo,) st—2(log n)™/2(1—
E Z L=1/8] g ]l{V(xL(\wHi)/ﬂj—i)Z(lOgn)a—t}} < et Allosn) =), (35)
Zj:l x5

;| |z +i/B]>i

and for all 0 < i,m <logn, 0 < M < (losm)"”

;| || +i/B] >i

e_v(z)]l{zer,mmn}

Mz + WV

_ a/2
{V(Iumw)/m7i)2(10gn)0‘+m}} > e 2losm)™(1e), (36)

with A, = ne~12(o8 m*’* and for any a > é

Yy = Tole) = {z € T; H, < 05" V(1) > alogn, V(z) > —B}.

Using these two facts, we follow the same lines as in the previous theorem to prove that h, ~
2(logn)®/? and that (A1) to (A4) are satisfied. O
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2.3. Proof of Theorem 1.5

First, note that Remark 1 implies that £ = lim,,_,o h;, tlog(n™ >, o, \I/fln,,(f"k)) well exists. To
prove Theorem 1.5, we first show that Assumptions (A3) and (A4) yield a simpler statement for
both lower and upper bound of Proposition 1. This implies a convergence in probability for stopped
ranges Zrr, with k, = [n/(logn)®?] and %Zr-. Then, we use a result of [HS16b] (Proposition
2.4) implying that T,,/(nlogn) converges in probability to a positive limit in order to obtain the
result for %,,. Let us start with the

Lower bound : Recalling the expression of u1, = >+ \Pin/z,nb (fglh’i]lyﬁ) (see below (20)), to-
gether with (A3) choosing ; = min(1, c5)§ (see Proposition 1 for ¢5), we get

2 0TS (),
k>1
This, together with the fact that, by definition of &, n®* Y, Wk  (fmk) > el&=)hn for n large

> . n,nb
enough, implies

P(«@Tkn (gn. ") < €(§f7s)hn) <
nl*b*ﬁbw(nb) -

=

( Rrin (Gn, ) < 6765hn)
nt=bp(nb) 375, ‘I’ﬁmb (fF)

% ‘n n7fn —
IE”( 1T;: (gb ) <e 55hn>.
nt=lo(n®)us ,

IN

‘%Tkn (gn-,fn)
nt=to(n®)ur n

Also considering (20), P( < e7%") is smaller than

e~ min(e log n,3hy)+min(1,c5)5hn

(nf 2okt ‘I’Z,nb(f"’k))Z

—min(e log n,3hn)+§hn+2|log(n"t 3y 5, U8 (F7F))]

min(1,c5)

6(765+f)5hn+hn675hn+

ecy
<e M4 e e

Now, thanks to Remark 1, for n large enough, [log(n™ >, -, Uk (f™F))] is smaller than £ logn <

n,nb

2
Shn +2|log(n™ 37,5, \Ilflnb(f"k)ﬂ is smaller than —1 min(elogn, h,,). Finally, for all £ € (0,¢p)

2
and n large enough

— min(—£ logn, —hy) and £hy, is smaller than < —1 min(—elogn, —h,) so — min(elogn, 3h,) +

<‘%;T7;n (gnvfn) < e(g—?g)hn) < e—%hn +hne—562hn _i_e—imin(slogn,hn)
n!=b=mp(nt)

)

then switching e by €/7 in the above probability, we obtain as h, — 400, the desired expression :
for all € € (0, 7ep)

lim P(i‘%k" 6. 1) e‘f‘f)h”) =0.
n—oo \pl=b=rbp(nb)
We are now ready to move from %k, to %Z,. First note that

Hn(gn, ") (€=e)hn K (G- £") (6—&)hn kn K
P(m<@ )Sp(m<e T Sn)—HP’(T >n),

recalling that %, (gn, fn) = erﬂ‘ gn(gI")me(V(xl)’ V(wa), - ,V(.T)) and gn(t) = @(t)]l{thb}
with b € [0,1). Then, as ¢ is non-decreasing and positive, so is g, hence Tk» < n implies
gn(Zkan) < gn(Z7) and therefore Zopr, (gn, f") < Bn(gn, ") since f™* > 0. It follows that

K (G, 1) (6—&)hn Rrin (Gn, ") (6—&)hn K
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and thanks to the above convergence, together with the fact that (7" /(nlogn)), convergences
in P-probability to an almost surely finite and positive random variable, we obtain the desired
expression: for all € € (0, 7ey):

. K (gn, £7) (E—e)hn | _
Jim P <€) =0, 37)

Upper bound: we prove the following statement, for all € > 0

. %n(gna fn) (é+e)hn ) _

Recall that ug n = Y25 5q (W5 (f™ gy A )FCE o stogmyz P FEWEE i ogmyz) (F)))-
Assumption (A4) with e; = § gives that

g, < TN WE (),
k>1

so for n large enough, as n 3, o, WF  (frh) < el6+2)h and T0 > n

R (gn, £") (4€)h Lrn (gn, ") (E+e)h
g n < 1 n
P<n1—b—nb(p(nb) =€ ) = ]P)(n1—b—nw(nb) > )

IN

%T” (g'm fn) £h
P > ez
<n1_b¢’(nb) Zk21 \I’ﬁnb(fnk) )

'%T"(gn fn) £h —£h
]}D(—” > el n) < glin 1),
T (n) i e <e +o(1)

IN

where the last inequality comes from (21) replacing € by . Then, taking the limit, we get (38).
We are now ready to prove the theorem. We split this proof in three parts depending on the values
of (recall) L = liminf,, o hy,; ' log (n! =07 (nb)).

o Assume L € (—¢,+oc]. For any ¢ € R, el°8" t = ¢los(tV1) > ¢ 50 for any € € (0,e,) and n large
enough, IP’(logJr R (g, £") — log(n* ="+ p(nP)) < (€ — €)hy,) is smaller than

R (gn, ")

P(elo8" Znl(gn ") o pl—b—re by (E—)hn <IP’<7
(e n p(n’)e ) < nl—b=r o (nb)

< e(ffe)h") -0,

where the limit comes from (37). Note that this lower bound remains true even when L ¢ (—¢&, +00].
However, we need that L € (—¢,+o0] for the upper bound. Indeed, in this case, for n large
enough, n'~"*vp(n?) > e~ and for any ¢ > 0, n! 70 Fep(nb)elthn > ehn > 1 50 for
n large enough P(log™ %, (gn, ") — log(n'~=*v@(nt)) > (& + )h,) = P(log" Zn(gn, ") >
log(n' =t~ p(nb)el&t)n) 2, (g,,£") > 1). Moreover, when %, (gn, ") > 1, log™ % (gn, ") =
log % (gn, ™) so the previous probability is equal to

mn —0—K n %n(gn’f")
P(log 2, (g2, £7) > log(n! ()€1 ), 8, (3, 7) > 1) < B > et ).

Then, taking the limit, we get the result thanks to (38).
e Assume L = —£. Recall that A, = h ! log(n! =% p(n)) —infys, by ' log(£1 =0 e p(0b)). L = —¢

€

implies that for any ¢ € (0,&,) and n large enough, infys,, hy " log(£1 =" (%)) > —¢ — £ so
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hnA,, <log(n'=t="p(nb)) + (£ + £)hy, and as elog™t > ¢
P (R, 1og" R (gn, £7) < —€ + A,) < P(Zn(gn, £7) < e~ hntns

<]P’( K (gn, ) elé— %)h") -0
= P gty < 7

where the limit comes from (37). Also, L = —¢ implies that for any € € (0,e,) and n large
enough, infys, by ' log(£1=07R0p(€b)) < =€ + 5 s0 hpA,, > log(n!=t="0p(nb)) 4 (£ — §)h, and as
hn(€+én) > O’ P(h;l 10g+ '@n(gn’fn) > €+An) (log‘@n(gﬂdfn) > h (€+An) %H(gﬂdfn) > 1)
which is smaller than

P (gn, ") <
n ehpn+hnA, n\Jn, (E+5)hn
P (%0 (gn, ) > € ) < P(nl_b—”bgo(nb) > el6+5 ) -0,
where the limit comes from (38).
e Assume L € [—o0,—¢). In this case, there exists an increasing sequence (ng), of positive inte-
gers (with ny = ¢ when lim h,,; 1 log(n'=*~**¢(n’)) = L) and 1, > 0 such that for any ¢ € N*,

ny P o(nh) < e~ (€425 and for any ' > 0

P(%ng(gngaf’w) > El) < ]P(t%ng(gnwfnz) > 6—6Lhn) < P(fnzb(g:bwf(. )) > €(§+8L)hn) N 07

where the limit comes from (38) with € = ¢, which ends the proof. O

3. Proof of Proposition 1

The proof of Proposition 1 is decomposed as follows. In the first short section below, we present the
expression of the generating function with constraint of edge local time. In a second sub-section, we
prove the lower bound (20), this section is itself decomposed in different steps treating successively
the random walk at fixed environment and then an important quantity of the environment. Finally,
in a third section, we obtain the upper bound (21). Note that the fact that the upper and the lower
bounds are robust when replacing 7" by T"*» with k,, = [n/(logn)?], with p > 0, does not need
extra arguments than the ones that follow.

3.1. Preliminary

We first introduce the edge local time N’ of a vertex z € T, that is the number of times the
random walk X visits the edge (z*, x) before the instant n:

= Z ]l{Xi71:Z*7 Xi=x}> (39)
i=1
the law of Nle (recall that T is the instant of the first return to the root e) and D NyT1 at

fixed environment, that is under P4, are given by

Lemma 3.1. Let x € T, and T, := inf{k > 0, X} = 2}, then P®(T, < T') = e=V@ /H, and for
any i € N*, s € [0,1] anduzo
i) The distribution of Nle under PZ (1) = P¥ (| Xo = ) is geometrical on N with mean H,—1 =
do1<i<al eV @)=V In particular
e_V(x)

] — 7(1_ i)lils—
Wz T T H,) 1-s(1—4)

Tl

E¢ [s”Nw 1
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it) For any z € T such that z* = x, the distribution of Zy-y*:x NyT1 under P¢ is geometrical on
N with mean H, := H, DI e VW) with V,(y) = V(y) — V(z) . In particular

1 =V(=) 7 i—1 iv
E¢ [5” Eyema Ny 1 = ¢ Hﬂf (1 — ! _ ) 5
1—s¥(

S R N TI ATA G w3 -5

Proof. The fact that P¢ (T, < T') = e~V (®) /H, comes from a standard result for one-dimensional
random walks in random environment, see for example [Gol84]. The proofs of points ) and %) are
very similar and elements for the first one can be found in [AD20] so we will only deal with the
second one.

For any « € T, min,.,~—, T, is the first hitting time of the set {y € T; y* = x} of children of z and
let B3, :=P¢ (mlny y+=z Ty < T') be the quenched probability, starting from z, to reach a children

of z before hitting the root e. Hence, > ._ Ny T" is the number of times the random walk X visits

the «edge» (x,{y € T; y* = x}) before the 1nbtant T*. It follows, thanks to the strong Markov
property, that for all z € T such that 2* =z and k € N

PE(Y NI =) =B - B). (40)

Yyt =z
Note that the right part above does n?t depend on z. We now compute 5,. On the one hand,
thanks to (40), we have ]Eéo[zy;y*_r NI'] = B,/(1—B,) and on the other hand, thanks to the first
point, Ef[zyy*_l NI =3 e Eé"[NTl] = Y a(Hy = 1) = Hy Yo eV = [,
Zy;y*:w NyT is finally geometrical on N under P¢ with mean H, and 8, = ﬁx/(l + ffl)

Introduce o, := P¢ (miny,,«—, T}, < T"), the quenched probability to reach the set {y € T; y* = x}
during the first excursion. Thanks to (40), we have for all k¥ € N*

]Pé”( SN :k) = 0,511 - B,) and IP'f( SN :o) =1 ay,
Yyt =x Yy =z

N, Tl] a,/(1—f;) and on the other hand, thanks to the first point,

so on the one hand, E D
& 7! ETNT? eV —

I[*E Dy Ny 1= 2= ECIN =32, @), Tt follows that a, = 3

H,) and the result is proved.

Yy =x

O

3.2. Lower bound for %rn(gn,f™)

Let us first introduce two key random variables denoted Zr= (£) and R(f™). Zr- (f") is a simplified
version of %7« (gn, ™) which does not depend on the function g,, and with a constraint on V' : recall
A, = ne~min(10elogn,5hn) 514 jf;’fb = {(t1,...,tx) € R*; ¢, > 3,} where we set for convenience

3 1= L3 /8, with €, = (logn)3 and 6, € (0,1/2) (see (5)), then

Zr- (£ Z Z 1 {NTI_NT= l>nb} {Vj#i:NTI _NTI~1 o}f ml ‘]l%‘ 1(Va),

in
=1 z€0,

n,n

where we use the notation F(V,) = F(V(z1),---,V(x)). Note that the local time until 7™ which
appears in Zrpn(gn, ") is replaced in %~ (f*) by edge local times excursion by excursion. Also,
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visited vertices are restricted to some V-regular lines 0y ,,v. Z1n(gn,f") and Zrn (f") are related
as follows, first since ¢ is non-decreasing

Rre (gn, ") > 0(n") Y 1{35"LGb}f”’|m‘]1%\:\ (Va).
zeT

Then, introduce E? = Y7, L gri_ gri-15qy, the number of excursions to the root where the walk

hits vertex z. Notice that £’ = 1 if and only if there exists 7 € {1,...,n} such that Zqu —fgcTFl >
1 and for any j € {1,...,n},j #i, LT — LT =0 that is N’ — NI’ = 0. Thus

Z]l{_ngnan}f“'l‘]l%w(Vz)2 > 1{2’5‘"znb,Egzl}fn’lml]ljf;w\(Vx)

n
zeT meﬁ/\nrnb

2> 2 Lerogrose by v oo (Va),

i=1 :L’Eﬁknynb

so finally, as £ — ZT"" > NT' — NT"" we have the following relation
R (gn, ) > (n°) R (£7). (41)

The second random variable R(f™) depends only on the environment :

n - xr 1 1 nb_l n,|xr
R(f ):: Z e v( )F(l - F) f | l]lyf‘ls\(vm)a

IGﬁAn,nb

it can be related to the quenched mean of %~ (f™) as follows

nR(f™)

S B ()]

< (1—e3n)~(n=h), (42)

Indeed, the random variables N7 — NZ'"" i € {1,...,n}, are i.i.d under P¢ so,

ES [%r+(E)] =n > PENI >nh)PS (NI =0)" ! f”"“ll%\z\ (V).

z€0 b

An,n

Moreover, on the event {V (z) > 3, }, thanks to Lemma 3.1, P (N7 = 0)»~! = P¢(T, > T)"~! =
(1—e V@ /H)""1 > (1 —e V@)=t > (1 — e73n)" ! since H, > 1, and thanks to Lemma 3.1
i) with v =0, PE(NL" > nb) = e V®)(1 - 1/H,)""~1/H, which gives (42). We are now ready to
obtain a relation between a lower bound for Zrn(g,,f™) and a lower bound for R(f™).

Lemma 3.2. Recall e, = min(b + 1y—gy,1 —0)/13 and let (a,) be a sequence of positive numbers.
For all € € (0,ep) and n large enough

ne~ min(9e log n,4h,,)

P* (B (gn, £7) < np(n”)an /4n") < P* (R(E") < an/n’) + (43)

2/{1, 2
n an

Proof. Note that thanks to (42), for n large enough, nR(f") < 2E¢[%r« (f")], so by (41), on the
event {R(f") > a,/n’}

P (B (gn, £7) < nip(n®)a, /4n) < PE (Bra (£7) < ES [%rn (£7)]/2).
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Using Bienaymé-Tchebychev inequality and the fact that NzTi — NITi_l,i € {1,...,n}, are i.i.d
under P¢ implies, on the event {R(f") > a,,/n"}

4

P? (Rrn (f7) < EY (%7 (£7)] /2) < B [Gore (E)2

nVar® (% (f))
1612

2
azn

S PEWIAND > )L (Vo) L 101 (V). (44)

“Yin

z,yel, b

The last inequality coming from the fact that, on { R(f") > a,, /n®}, thanks to (42) E¢[%7 (f)]? >
n?R(f")?/4 > n2a2 /4n?’. Markov inequality in (44) yields IP’g’(]\ffl/\NyT1 >nb) < Eéa[NglNyTl]/nzb,
so finally, on the event {R(f") > a,/n"}

n 16 1 L n,|r n
P (B (gn, £7) < np(n®)an/An®) < — D 7 EEING NS 0 (Va) 70 (V).

" ay€l, b

(45)

To treat the above sum, we first make a simplification by using the uniform upper bound of the
set %, see (11)

1 1y |z n Cgo 1 1
S BV NI (V) (V) < 2 ST ESINDINETL ()

n2Kb
Y€l b z,y€0y,,

n,n

We then split the computations in two distinct steps: the first step is dedicated to the cases
rz < gy or y < x and the second one to the cases nor x < y neither y < x. The key here is to
take into account that we are only interested in vertices belonging to A,-regular lines &), with
Ay = ne” min(10e log n,5hy,) for € € (O,Eb).

We start with the cases x < y and y < x and as they are symmetrical, we only deal with the first
one. First note that as E¢ {N?Nfl} <2 VWH, =2H,e "V ®e V) (see [AD20] Lemma 3.6)

E{ Z Eéa[NleNyTl]} SQE[ Z e V@R, Z e—Vz(y)} §2E[ Z e—v(z)r)\n

<y €Dy, y>x €Dy,
z,y€O0x,, yeﬁf\‘n

<202\,
where for all A > 0, Y is translated set of A-regular lines

ﬁf = {y c ']I‘7y > x; max Hﬂiﬂlj < )\}, sz,yj — Z eVm(w)_Vm(yj)’
lz|<ji<|yl ‘ ‘
z<w<y;
also, the second inequality is obtained thanks to the regular line which yields H,1¢, (z) < A,
and the last one comes from Remark 2.
We then move to the second case, neither x < y nor y < z, that we denote x ¢ y. In this case,

R [NleNfl} = 2H, pyeV @ =V@) V) (see [AD20] Lemma 3.6). Thus

Eé“[NglNyTl] <2\, Z Z ei‘/(Z)]l{zeﬁ)\n} Z e~ Va(u) o=V (v) Z e Vu(®) Z erv(y)’

>1 |z|=l uFv z>u y>v
ur=v*=z zeﬁ";fn yeﬁ’in
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where we have used again the regular line &), which gives an upper bound for Hy,,. Finally,
independence of the increments of V' conditionally to (T, V(w);w € T,|w| <1+ 1) and Remark 2
yields

E{ S ESINT NI }<2)\ EK 3 e—V(“)) ] { 3 e—V(ﬂg

Ty lul=1 2€0,
T,y€0,,
2
o ( X oY
Jul=1

and thanks to (5), the second moment above is finite. Collecting the upper bounds for the two
cases and moving back to (46), we get for n large enough

(én)4>‘n ne— min(9e logn,4hy)

E[ Y ECININTI 0 (V) 0 (V)] <

in
T, Yyel

9

n2K:b - n2'§b
An,nb

(47)

the last inequality is justified by the fact (see Remark 1) that (£,)* = o(e/") and (£,)* = o(es!°8™).
We are now ready to conclude the proof of the lemma : P* (%1 (g5, f") < np(n®)a, /4n’) is smaller
than

P*(R(f") < a,/n®) + P* (%rn (gn, ") < np(n®)a, /4n®, R(f") > an/nb),
then, as the second term in the above inequality is nothing but
E* [P* (Zrn (gn, ") < nio(n®)an /4n") L p(en)>a, /vy )

the proof ends thanks to (45) and (47). O

3.2.1. Lower bound for R(f")

This is the most technical part of the proof of Proposition 1. For any n > 2 and ¢ € (0, &), recall
that \, = ne~min(10slogn.5hn) and 3, — 6}/3/51, 81 € (0,1/2) (see (5)) with £,, = (logn)3. For any
€ > 0, let us choose (a,) as follows

_4€h Z\P)\ /2n sh ]lTk) (48)
k>1

with Tk = {t € R¥; Hy(t) < nle}n f%ﬂg’%n. Recall that \Iliw, B, 1%”15725 and f i can be
found respectively in (9), (13), (19) and (17).

Lemma 3.3. There exists ¢4 > 0 such that for any e € (0,e,) and n large enough

*%’”"E[Zﬂ

P* (R(f") < a,/n") < -
(Zk>1 An/2,nb (feﬁf,]lTii))

5 + hype =2hn, (49)

with, recall, m,, = [ehy,/ca] (see (16)).
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Proof. Recall the expression of R(f™):

| LA™ e
= 3 (o) g Ve, Vi)
P (14 :

An,nb

with H, and jfﬁ‘fl respectively defined in (8) and (19). The main idea here is to cut the tree at
the generation m,, to introduce independence between generations. First note that

n e_V(l) 1 n? n m
R(f™) > E E g Vi (1_ }T) frok+ "Lt (V(@1), -, V@),
lu|=myn k21 |z|=k+m, z z
z>u; x€EC

Ap,nb

from here we would like to make a translation to decompose the trajectories of V' before and after
the generation m, and to do that, we have in particular to re-write H,, for j < |z|. Let u < x
with |u| = m,,. For all m,, < j < |z|, we have H,, = Hye Vulzi) 4 Hy ., where, for any z < v,
H.o =Y. _yeyt Va(w)=Vz(v)

So on the events {max|, <, |V(w)| < ehy,} and {V, (z):= min,<w<.(V(w) — V(u)) > —B}, for
any B >0:

Vi <my: Hy, < mpe®™ and Vm, <j<|z|: Hy, < mye2chntB + Hyp,

Assume n® < H,, , < nbe». Then, H, > n® and for n large enough (recall h,, < logn for n large
enough, h,, — 0o and € € (0,¢&))

n® _ byn® _ byn® —3¢eh,
1(1_i> < (1-1/n") S (1-1/n% S .

]_[ac Hx - mn62shn+B + Hu,x - mn€25hn+B —|—nb65h" - nb

Now introduce the translated (A, \')-regular lines

Oy ={yeT,y>v; max H,, <A\ H,, >N}
’ lv|<i<l|yl

Note that for n large enough, &Y , , C O, n». Indeed, if |lu| = my and m,, < j < |z|, then

H,, < mpe*'+8 + H, . . Moreover, m,e?"m*8 < ¢3hn <\, /2 for n large since € € (0,1/13),
$0 Hyo, < An/2 1mphesH < A\
For f™ bk , we simply write (still on the event { max |V (w)| < eh,})

|Jw|<m,
T, My, n,k
f ' +k(V(x1)’ R V('T)) > fshn (Vu(xanrl)v R Vu(x))v
where we recall that f;’k(tl, oo ty) = infgepp pym FrmtE (s, Syt + Sy - -tk + Sm) With

m = [h/co]. In the same way, if |V (u)] < ehy then Ly z)>5.1 > Ly, (2)>2;,} since ¢ < 1

and h, < f}/ . We finally obtain, for n large enough (independently of the environment) on
{maX|w‘§mn |V (w)| < ehy,} that R(f™) is larger than

—V(u — T k
Z o=V )Z Z o= Vul >1{Hu’wgnbeghn}f:hnn”;m(Vu(xmnﬂ),...,Vu(x))

|u|= k>1 |z|=k+my,

T>u; xEﬁ)\ J2.mb

S > eV @ s (Vi@ 41), - - Vi) (50)

lu|=my k>1 |z|=k+my

u
r>u; Teﬁ N j2mb
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Now, introduce the random variable Z

ZY = Z Z B_V“(x)f:ﬁiﬂ‘rﬁ(Vu<$mn+1)a oy V()

k>l |z|=k+mn

r>u; cEOY
>u; T An/2,nb

we obtain

n —4eh, b u
P(R(E") < e M B[Z,)/n', max |V(w)| < ehn) < P( ugﬂ Zi < E[Z,)),

with

Zn= > VORI (V). V(@) (51)

T€D, /3. mb

Hence, by Lemma 2.4 in [AD20], there exists ¢4 > 0 such that for n large enough

B .. E[22]
* n 4eh, b < < CaMp n
P (R(E") < e BZ,]/n", maxc [V(w)] < chy) < 70 P 52)

and finally, (48) yields

_5i4hn 9
2" "E(Z
P*(R(f") < an/nb, max |V (w)| < Shn) < e . 2 [ nnl]C .
|w|<my (Zkzl \I/An/2,nb (faI;,LﬂTﬁ))

)

we have used that E[Z,] = 3, -, \I/’)“m/2 b (f",;i]lm) and m,, = [ehy/co]. Finally, (16) finishes the

€

proof. O

The next step is to give a lower bound for E[Z2], we do that in the dedicated section below.

3.2.2. Control of the second moment E[Z2]

In this section we prove the following lemma,

Lemma 3.4. Assume (A1) and (A2) hold. For all e € (0,ep), A > 2/c5 and n large enough

2
B(Z) < H (W)

k>1
recall also that c3 comes from Remark 2.
Proof. The expression of Z2 is given by Zx,yeﬁk o e*V(x%V(y)fg;Inxl]lTw(V;)f:};‘j!\]quu,\(%)
(see (51)) and A\, < n so
zi< Y0 VWO (VO T (V). (53)

z,yeO

n,n

b

with (recall) F(V,) = F(V(w1),...,V(w)). Let us split the computations of the upper bound of
the mean of Z2 into two main cases : the first one is when z and y in the sum (53) are directly
related in the tree and the second one when it is not:
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Cases 1 (x <yory < x):recall 3, = Ei/3/51 with ¢, = (logn)3, §; € (0,1/2) (see (5)). For this
case, we simply use the fact that f:hi < Cy and 6_2‘/(”)]1{‘/(“,)223"} < eV /n? s0 by symmetry

Bl 3 VOV Oy | <28 30 e O, 3 e )

z<y or y<z €0, y>x
Y€, b yeoy,
2
< 7E{ Y oev@ 3 e—my)}’
n2
€O, y=>x
yeos

which is equal, by using that the increments of V' are conditionally independent and stationary, to
2E[Y o, e~V (®)]2 /n2. Then, thanks to Remark 2 and the fact that h, > (logn)” with 0 < v <1,

2E[Y,cp €7V O]2 < 4, < /4 In addition with assumption (A1), the part {z <y or y < z}
in the sum (53) is smaller than ex" (Zk>1 . nb(f” k))

Cases 2 (x ¢ y) : recall that x ¢ y if and only if neither < y nor y < z. First let

Yo(z) = Z ]l{z/\yzz}e_V(m)e_V(y)f:ﬁlfl]1%1\;,2\3 (V. )f ’Iy‘]l%\y\ (Vy)
Ty »23n in

z,Yye€0, b

n,n

We decompose Eo(z) as follows: for all A > 2/cs3

YT = D T+ Y, (Bi(z)+%a(2), (54)

z€T |z|>|Aln ] |z|<| AL ]

and for any ¢ € {1,2},

Yi(z) = Z 1{x/\y=z}eiv(aj)ei‘/(y)f:f;l;jl]]'jf]‘;jgjn(V )f;hly‘]ljfggjn(Vy)]l{(af,y)e%”i,z}’

zby

z,yeﬁnynb

with €1 . == {(z,y) € T%2* > z and y* > 2z} and 62, == {(z,9) € T%;2* = z or y* = 2}.
Let us start with the easiest part: 3, 5| 45, | Zo(2). Observe that

Z 2) < 05 Z ZH{V(ZP B, 2€0,} Z Z —V(@) Ze—V(y).

|z|> A, | 1> AL, ] |z|=1 uFv T>u y>v
ur=v*=z €0, yeEOy,

By conditional independence of the increments of V' and Remark 2, for any n large enough

Y )| <caenl( X ) Te[ 3 ) 5 B3 e i)

|2/ ¢, z€0, 1Al |z
< CﬁoeBE[( 3 e—VW)) }52 -2 < pr (), (55)
jul=

where we have used (A1) and (5) for the last inequality.
For ¥1(2), |z| < |Al,], we decompose according to the value of V(w) with w € {u,v}: X1(z) =
2171(,2) + 2172(2) with

E1,1(25) = Z ]l{V(u)\/V(v )<23n} Z fehi‘ml]ljfgm; (Vx) Z er(y)f;l’ijA]l%gyL (Vy)a
u#v T>u i y>v san
ur=v*=z z€l, b YED, b
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and
Yi2(2) = Z Livwyvvw)>2;5,} Z eV ’mﬂ P (Va) Z e_V(y)f:;{Lylﬂjfgyg (Vy).
utv i 5n ysov in
ur=v*=z weﬁn’nb yeo

n,nb

We first deal with ¥;1(z). Observe that x € &, v (resp. y € 0, ,») means H, < n (resp.
H, < n),z € O (resp. y € O7) and n® — He V+® < H, , (resp. n® — Hye VW) < [, ).
Besides, V(u) < 23, and V(z) > 23, (resp. V(v) < 23, and V(y) > 23,) implies V,,(z) > 0 (resp.
V,(y) > 0) that is n® — H, < H, , (resp. n® — H, < H, ), so $1 1(z) is smaller than

S Vwwnvws-paavm<ny Y. € OV S e VWnlv,) (56)

uFv T>u y>v
*—p*= xeo" v
w v z ":ﬂ-b—Hu yEﬁn,nbev

We now move to £ 2(z). Note that {V(u) vV V(v) > 23,} ={V(u) > 23,,V(v) < 23,} U{V(v) >
23, V(u) < 23, U{V(u) AV (v) > 23, }. By symmetry, 21 2(2) is equal to

2 Y Lwwez.ve<ag D, € I)fnhlflllﬁjw;; Dy WL (V)
uFv r>u Sin y>v 23n
ur=v*=z z€0, b yeo,,
— xT - n
+ Y Lywavezag O, ¢ VOSIL0 (Vo) D e V(y)fsﬁl?‘]lx;yg (V).
uFv >u y>o 25n
ur=v*=z Ieﬁn,nb yeﬁn’nb

The same decomposition of H, we used for X1 1 (z) also works for the part {V (v) < 23, } in the above
sum, so as in (56) and first using that on {V(u) > 23, }N{V.(y) > —B} ,V(u) > (1-61)V (u)+2logn
and 61V (v) > —61 B, then using that on {V(u) A V(v) > 23,}, V(u) + V(v) > (1 —61)(V(u) +
V(v)) +4logn, £ 2(2) is smaller than

Cgo u ’U x —
Ly (35 se0, 2647 T I @HVE) § Vel $ )

uFv T>u y>v
ur=v*=z TEOY yeoy
C? (1 _ _
Flzopeeny o Y e ITRVIVON $7 V) 7 Vel
uFv T>Uu y>v
ur=v*=z TEOY yeoy
C? 1 _ _
S Lsopreande P 30 e UmIV@IVED §7 ) §7 ),
uFAv r>u y>v
ur=v*=z Tely yeoy,

Note that the genealogical common line between = and y is the common line of individuals before
u and v so for any p < |z|, z, = yp, = u, = v, and

P VL) = WV (), V), Vi) + V), -, V() + V),
and

V) = F OV (1), V() Vaoen) + V), -+, Va(y) + V().
Recall that for all ¢ > 1 and t, = (¢1,...,t;) € RY,

Uk (Ft,) E[ N e VOR(t, Lty V(@) + ... V() + 1)1, ()]
|z|=k
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We naturally note U¥(F|V,,) when we evaluate the function W% (F|.) at (V(wy),...,V(w)).
By conditional independence of the increments of V, E[}~ |, ¥1(2)] = E[X2),_; E1,1(2) +X1,2(2)]
is smaller, for n large enough with [ < | A4, ], than

E[Y Y lwwwws st Y [T eV, (5 V)]

lz|=l  u#v 4,521 (k,w)e{(:,u);(j,v)}

ur=v*=z

Cc% (- w4V (v
3P PESE] Y Lz paco,y y, e (TIVERO],
|z|=l uFv

u*=v*=z

where we have used that E[}° _, e e~V®)] < ¢,,. Then, by assumption (A2) with § = 6, (see (5)
for the definition of 1), for all I < |A¢,] (Ju] = |v| =1+ 1) and n large enough, on the event
{V(u)AV(v) > -B,H,V H, <n}

S TL e (VL) S e (k)

i, >1 (kyw)€{ (i,u);(j,v)} k21

Hence, E[Z\ZKLAan 3] is smaller, for n large enough, than

efhnE[( Z e—(1—51)V(w))2}E|: Z e VEH-U-20VE o B}KZ\I/ f”’“)

[w|=1 2] < | ALy | k>1

+3661B£%%E[< 3 e_(l_‘;l)v(w))Q}E[ S VOOV ]

|w]=1 z2E€0,

Finally, thanks to assumption (A1), (5) and by Remark 2, for n large enough

B[ Y mie)] i (L uk.0mh)” (57)

2| <| AL, ] k>1

We now turn to Xa(z), that is the sum

Z ]l{."c/\y:z}e—V(w)e_V(y)f:!;,‘nzll:}fézéb (Vf)f:};‘"ylﬂjféygj (Vy):ﬂ'{(ifyy)é%zz}’

zoby

z,yel, b

with €. := {(z,y) € T?;2* = z or y* = z}. The first step is to split the set {z* = 2 or y* = 2}
into three disjoint sets: {#* = z and y* > z}, {* > z and y* = 2z} and {z* = z and y* = z}. By
symmetry, the previous sum is equal to

2 Z ]l{weﬁnmb}efv(w)fgﬁlf‘]l%,\| (Va) Z eiv(y)f;ﬂllylﬂyfgfgsn(vy)

B,25n

TH#v y>v
Tr=v*=z yeo, b
“V(z) —V ) )
+ >, eV (y)ﬂ{m,yeﬁwb}f:hf‘13@;;5 (%)f:hlyl]bf);\% (V).
oty 23m 23m

T*=y*=z
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We then use a similar approach as the one we used for ¥1(z) to obtain

202, v .
Z Yo(2) < — e~ (1=81)V( )]I{K(v)Z—B} Z e~V

1=t s=l arv y>v
r*=v*=z yeoy
G (1-62)(V (@) +V (1))
00 —(1— T
D Lwes-m Y ¢ it
|z|=l Ay
Tr=y*=z

Hence, by using conditional independence of the increments of V', B[}, _; ¥2(2)] is smaller, for n
large enough, than

C?
B 00 —(1=61)(V +Vi(v
2e EnjE[ E ]I{V(z)> B} E e ( )(V(z) (1))}
|z|=l TF£v

r*=v*=z

2E{Z]1{V<z)z_3} > e_(l_‘sl)(v(w)-ir‘/(y))]’

|z|=l TFv

rr=y*=z

where we used as usual E[}] _, e~V(®@)] < ¢,. Hence, thanks to assumption (A1) and (5), for n
large enough

B[ Y S <l (3w f"k) (58)

2] < [AL, | k>1

Collecting Case 1, Case 2 ((54), inequalities (55), (57) and (58)) and considering (53) give the
lemma.
O

We are now ready to prove the lower bound of %Zrn(gn,f™) in Proposition 1. Recall uq, =
izt IR, 0 o (F55 ps ) where TE = {t € R¥; Hy(t) < nbeshn} 0oty A, is defined

in (19) and 3, = 261/3/51 Thanks to Lemmata 3.2, 3.3 and the expression of a,, (48), for n large
enough, as e~“"» < 1. the probability P(%Zrn (gn, f") < n'=Pp(nb)e=5ny; ) is smaller than

hp—mi 1 JAhy,
_Eih E[ZZ} " h _caoh, N e8¢ min(9e logn )

P(%T" (gn, ") < n@(nb)eikh" ul,n/4nb) <e

2Kp g2
ln n bulm

Then, Lemma 3.4 provides the upper bound of E[Z2] so P(Zrn (gn, ™) < np(n®)e™* muy ,, /4nb)
is smaller, for n large enough, than (recall that h,, <logn)

e~ min(e log n,3h,,)

2Ky 9,2 ’
nrouy ,

)Eh (Z \Iln nb f’n - /ul n) + hne_gézh" +

E>1
which yields the lower bound of Proposition 1.
3.3. Upper bound for Zrn(gn,{f™)

For all n > 1 and z € T, recall that E7 is the number of excursions, among the first n excursions
to the root, for which the edge (z*, ) is reached. In a similar way, EZ is the number of excursions
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such that the vertex z is reached more often from above than from below :

n n
E) = Z]].{N;TiiNg‘i—lzl} and £ = Z]l{zy;y*:z NI NTI=1 s NTI_NTIT1)-
i=1 i=1
Also introduce the event <, such that all vertices of the trace of {X,k < T™} have exponential

downfall fluctuation lower than n, potential larger than 3, = &11/ 3 /01 and which are visited during
a single excursion to the root

oy, = {Vj <T™ Xj € Oy, Z (]I{E;LEZ} =+ ]I{Egzg}mjgglz\(v;) = 0}- (59)
T€ED,

Note that lim,, o, P(4%,) = 1. Indeed, E;L > 2 implies E? > 2 so

1= P(e) SPEj < T X5 ¢ 00) +P( S Lmypon 100 (Vi) > 0).
xeﬁn In
By [AC18] (equation 2.2), P(3 j <T" : X; & 0,) — 0. Moreover, P(3_ 5 Lign>oyl 101 (Ve) >
" = in

0) is smaller than

B[ Y PO 2 2010 (V)| = B[ 3 (BF(EF 2 1) - PE(EY = D)1 (Va)].
€0, z€0,

Thanks to the strong Markov property, NIT fNTTi_1 vie{l,...,n}, areii.d under P¥ so P¢(E? >
1) —Pf(Er =1) <ES[E"] —P¥(E? = 1) = nP¢(NL' > 1)(1 —PS(NT' = 0)"~!) < n2P¥ (NI >
1)2 and by Lemma 3.1, for all  with V(z) > 3, n2P%(NZ" > 1)2 < n2e=2V(@) < n2_1/616_v($)/€}/61.
01 € (0,1/2), hence, by Remark 2
2—-1/68; 2—-1/61
IP’( > Agmpeayl e (Va) > 0) < "EWE[ 3 e—vw} < 721/57*1 0.
T€EO, n €0, n

Lemma 3.5. Let (u,,n) be a sequence of positive numbers, then

PE (R (Gn, £7) > U, ) < M(%,n + Zon + Xz n)s
where
Pin=Y. mvm)qﬂ}(e”@) + ) e*”y))f”v‘z‘(vgg), (60)
zEO, Yyt =z
“V(z b g7
Fani= go;n ]l{vmz;m}e};:) (1 B H%) e 1(nb + Hy) (v, (61)
and

(n® + 1+ H,) f1"(V,),  (62)

e~ V(@) H, 1 [nb/21-1
Zan =D L@z . z (1* 1 )

rEC,,

recall the definition of H, in Lemma 5.1.
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Proof. Since g,,(0) = 0, we have, by Markov inequality, that P% (% (g, ") > un, %, is smaller
than

2 n
= (3 Lwes B [ (215 (V)
" zeo,
+ Z I{V(w)zzn}Eéa [gn(zgn)ﬂ{EgE;e{m}}]fn’lx‘(vz))-
rEC,,

The first part in the above sum is the easiest to deal with. Indeed, the application ¢t € [1,00) —
©(t)/t is non-increasing so g, (t) < tn~%p(n’) and we have

3 L es B [gn (LT )] V) <0t Po(n?) D7 Uivayes,y BE [T ] F11(V2)
r€l,, rEly,

_ Tllib(p(nb)%vn.

We have used that for all 1 < i < n, £T f - LT " is distributed as LT " under P¢ with mean
e V@ 43 e eV ® by Lemma 3.1.

We then move to the high potential part. Assume E} € {0,1} and E;LN € {0,1}. If E? = 0, then
the vertex z is never visited during any of the first n excursions and E7 = 0. Thus, g, (Z") =

gn(0) = 0. If E? =1 and Eg = 0, then there exists ¢ € {1,...,n} such that Ng — Ngiil >1
and Vj #i, NI' = NI'" =0and¥me {1,....n}, ¥, ., NI = NI" < NI" - NI""'.In
particular, since, starting from the root e, Z! = > (Ngj NI 4w NyTj - NyTj_l),
we have, on {E? =1, E? = 0}

Yy =x

21" =N NI ST NI NI <o(NT - NTTH. (63)

Y Y T
Yyt =z
Otherwise, if E? = 1 and E™ = 1, then there exists i € {1,...,n} such that N7 — N7 > 1 and
AT j-1 m? m’ 21 m m’ -1
Vj#i, NI —NI""" =0and 3m’ € ’{17,1. ..,n} such thgt ;y;y*:m N =NJ > NI —NT
and Vm #m', 3 ., NUT - NyT < NI™ — NI So we have necessarily m’ = 4 and, on

(B =1,En =1}

LT =N NI N NI NI <2 Y NI NI (64)

xr
Yyt =x Yyt =x

gn is non-decreasing so (63) and (64) give, when E? € {0,1} and E? € {0,1}
T " Tl Tifl " T’L Tifl
a0 (L0 <30T = NI D ga2 D0 NN,
i=1 i=1 Yy =z
From this inequality, it follows that E€ [gn (.,waT n)]l (En Bre {071}}} is smaller than

nE?® [gn (QNEI)} + nE?® [gn (2 Z NTI)] Snl_b@(nb)ﬂ‘:g [NJ?IIL{NIT1 z[nbm}]
Yyt =x

— éa 1
+ PR [ > N NyTlZW/Q]}]

Yy =z
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We have used that for all 1 < i < n, NZ' — NT'" (resp. >y =a NyT - NyTi_l) is distributed

as NI (resp. > e NyTl) under P¢ and the fact that the application ¢t € [1,00) > o(t)/t is
non-increasing. Then, by Lemma 3.1

—V(z) 1\ [n?/2]-1
& Tt € b
E [Nl’ H{Na?lZFnb/21}] < H, (1 - Fx) (n” + Hy),
and
& T _e "W H, 1 \[m'/21-1 .
E |: Z Ny 1{Zy;y*:zN512rnb/2]}] = "H, 1—|—£’ (1_ 1—|—I€I ) (n +1+H, )
Y;yT=x z z

which ends the proof. O

Lemma 3.6. Let b € [0,1). For n large enough

E[f%‘l,n + e%/‘Q,n + %,n] S 3(10g n)2u2,n~

where we recall uz n =35, (vk (fn’k]lR’“\ﬁfz,’jl)""\I/fz,nb/(logn)?(f M) +E[W Uk o) (W togm)2) (" "),
with W =322y e V),

Proof. We start with the easiest part, that is the expression of E[Z7 ,,]. Thanks to hypothesis (2)

E[2),] :E[ - 1{V(z)<5n}(€_v(m) FeV 3 6—vt<y))fn,\x|(vw)}

ﬂieﬁn y.y*::E
— 2E|: Z ]l{v(;p)<3"}€ V(I)fﬂ |I| :| — 2 Z \I, fn,k]le\jfiji).
€O, k>1
Let
s b9l -1 4C olnn?
Ap 1= M with ¢, : o )
log gn Zk>1 n nb/(]og n)2 (fn’ )

and let us find an upper bound for E[%5 ,]. For that, we decompose £5 ,, into two parts according
to the value of H,:

)" o (v

V()

e

Zon < D Migasy + Mmsing) (1_ i
€0y, v v

b

<C. (le + ;\n) (1 o ;\i)fn”/ﬂ—l Z e~ V(@) + (1 + %) Z 67V(z)fn7\z|(‘/x).

n €0, " reo

X
By definition of X, and ¢, (see above), (1 — l/S\n)[”b/ﬂ*1 < 1/¢,. Moreover, by Remark 2,

E[Zmeﬁn e=V®@)] < ¢, and E[Zk21 \Ilﬁ b (f"k)] < CooE[erﬁn e=V@)] < Coot,, so for n large
enough (g, > 4n® implying \,, < n®), we obtain

b

n n
3{2” - 2:\:[]77471”/(10gn)2 f ’ )+(1+5\7)Z\Pﬁ’5\n(f 7k).

k>1 nooE>1
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For E[Z5 ], we decompose £73 ,, into two parts according to the value of H,: Z3.n is smaller than

e V@ [, (1 1 )[nbmfl

b [ n,|x
> Cpsa, g T Lusasny) T+ B (n” + 1+ Hy) f1*1(V2)

€O, 1+j—:[
~ 1 n _
SCoo(nb+)\n)(1_ 7)[ 5/21 1 Z —V(x)+ 1+ Z e~ (x) ]1{1+H1>5\n}
n €O, n rE€E0,
X Z e*VI(y)fn,‘El(%)
Yyt =z

3 3\ In'/21-1 n
",Fhen7 as above, C (nb + )\n) (1 — 1/)\n) < 21@1 \Ilfmb/(logn)z (f ’k)/2, also recall that
H,=H, Zy;y*:x e~ V=) 5o by conditional independence of H, and Zy;y*:x e~ V=) together with

the fact that this random variable has the same law as W = Zm:l e~ V@)

B[ Y V@1 400, Y e FOmivy)] = STE[wet o gmh).

r€0, yy*=x k>1
Hence
b
s n k n,k
‘% n] < Z \I/n ,nb/(logn)? f ) + (1 + ~7) ZE[W\IITL’(S\”,D/W(JC )]
k>1 nooE>1
Finally, note that \I/’fL nb(f”’k) < \Ilfb b/ (log n)? (f”’k) so using assumption (Al), we get ¢, <

4Cs0l,n' TP thus giving A, — 1 > n’(logn)=2 for all b € (0,1) and n large enough. Hence, for all
b € 10,1) and n large enough, (1 +n’/\,) < 2(logn)? and ¥* e 1)/W(f" *) (resp. \Ilk (f" )

is smaller than \DfL,nb/(W(log n)2)(f ) (resp. WF e/ (lognyz (F™ k)) so we obtain the result. O

We are now ready to prove the upper bound in Proposition 1. Recall (59) and let € > 0

R (Gn, ) h R (gn, £™) h
R S n < R e A ENn _
P(nlfbga(nb)uz,n > e ) - P(nlfbgo(nb)uZn > ¢ "Q{n) +1-P(ah),

where ugn = 2@1(‘% (fn’k]IRk\%;’;) + ‘I'fb,nb/(logny(fn’k) + E[W‘I’ﬁ,nb/(waognm(fn’k)])- By

eh 1-b

Lemma 3.5 with u,, = e*"»n'~%¢(n®)us,, and Lemma 3.6, for n large enough

% n ns fTL 2 _Ehn
P(% o 65“7%) < B[ 210+ Lan + Zaa] < 6(logn)e <,
n QD(TL )u2,n u2,n

and then for n large enough

Rrn (gn, ") h 2 —ch
ENnp < ENnp .
]P’(—nl_b (W) >e ) 6(logn)“e +1-P(e,)

Finally, observe (see Remark 1) that (logn)? = o(e*"~) and we complete the proof of the upper
bound recalling (see below (59)) that 1 — P(«7,) = o(1).

4. Technical estimates for one-dimensional random walk

In this section, we prove some technical expressions involving sums of i.i.d. random variables
introduced via the many-to-one Lemma at the beginning of Section 2. Recall that (S; — S;—1,7 >
1) is a sequence of i.i.d. random variables such that E(S7) = 0, there exists n > 0 for which
E(e"91) < 400. Also we denote 0 = 1" (1) = E(S?). We also use the following notations : for any
a, 7o := inf{k >0, Sy > a}, 7, :=inf{k >0, Sy <a} and 75-5 .= inf{k > 0,5}, — S, > a} with
gk = Naxi<m<k Sm and HJS = g: Si S
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4.1. Two Laplace transforms
In this section, we deal with Laplace transforms which appear when we study the range with

underlying constraint on V.

Lemma 4.1. Let r := r(€) such that limy_, o 7(£)/¢ = +00, then for any e >0

e~ (HVE—p(@)F(1+e) < | [e*%“]l } < e~ (1HVe—p(e) (1)

TrS 7'[

co

2
with p(c) = = O+°° e~ T f(u)du, and f(u) = ZzP(W > 1/Vuo?) — f y31/2 P(m; >
1/y/yo?)dy. Note that p can be explicitly calculated : for any ¢ > 0

— e Ve
sinh(4/c)

Proof. We start with the upper bound.
Let us introduce the usual strict ladder epoch sequence (T}, := inf{i > Ty_1,S; > St,_, }, k;
To = 0). Then for any k

ple) = 2ve( =) —2(ve —log((eV* +1)/2).

co? _co?
E [e_ﬁﬂﬂ‘r <T§—S} <E [e 27 TT]ISTk <7“]1n§75_s} + P(STk > 7')

rSTy

0(72 k
< (& [e—mmnmgilb +P(Sp, > 1), (65)

where the last equality comes from the strong Markov property and equality T} = 7p := inf{m >
60'2
0, Sy, > 0}. From here we need the asymptotic in £ of E[e_WTOIlTO <T7J. First we use following
identity
Eledmr, | =Bl 2]~ Br > ) +E((1 - @ )5, ). (66)

TOST:Z

and then give an upper bound for each of the three terms. Lemma 2.2 in [A1d10] gives for m large
enough

P(ro > 72,) = —E(%‘)) +o (2) , (67)

Both of the other terms can be obtained with a Tauberian theorem, we give here some details
for the third one which is more delicate. Let dH,(u) the measure defined by P(ry > 20% 19 >

= [ dHy(u), integration by part gives E ((1 - G%TO)]IT@T}) = O+°o(1 — e’A“)ng(u) =
A f+°° “MCP(1g > wl?, 79 > 7_,)du. So we need an asymptotic in ¢ of the tail probability P(r

wl? 19 > 71" ,)- Let us decompose this probability as follows

P(ro > 202,70 < 7°,) = P(19 > 77, > 2£%) + P(10 > 20%, 77, < 24?)
=P(ry > 1 > 20%) + P(19 > 22,7 < 20%) =: P, + P. (68)
where 75 := inf{k > 0, Sj < 0} with for any k, S = —S) and similarly 7, := inf{k > 0, S} > ¢}.

For P, we just use Donsker’s theorem for conditioned random walk to remain positive obtain in
[Bol76] which gives limy_, o P(1¢ < 202|719 > 2¢%) = P(m; > 1/0+/z), where m is the Brownian
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meander and m; = sup,.; ms. Also we know from Feller [Fel68] (see the first equivalence page 514
of Caravenna [Car(5] for the expression we use here) that for any z > 0 :

. 2E(S,)
2\ _ = 0
Zh_{goﬂ["(7'0>z£)— T Vo?

SO

2 E(S,)
T v/ 202

For P; we use a similar strategy, for any A > x, € > 0 and ¢ large enough

Jlim ¢P; = P > 1/0v/2). (70)
— 00

P < P(ZéQ <7 < AEZ, T0 > Tg) —|—P(T0 > A€2)

Ar?
< Y P(Sko1 4.8k > U] 7o > k)P(ro > k) + P > AL?)
k=202
2 E(Sy,) 14 C
S(].""f‘:) ; EO- ZPSk 1<£ Sk>€|7’()>k)k1/2 €A1/27

k=242

where we have used (69) for the last inequality and C' > 0 is a constant. Also functional limit the-
orem [Bol76] implies that lim,_, ;o Zk o2 P(Sk_ = ff 11/2 dP(m; >
1/+/yo?). We deduce from that, taking limits A — +o0o and e—0,

lim ¢ * P;
£—00

2E(S,,) [T~ 1 _
< —4 /= ( )/z yl/QdIP’(m1>1/\/y02)

s (o

—+00
zw( 11/2 P(m; > 1/\/7)—*/ #P(ﬁl > 1/@)6@)

™ g

Note that just by noticing that P; > P(2¢? < 1, < A%, 19 > 74), above expression is also a lower
bound for limy_,+, ¢ * P;. Considering this, (70) and (68), we obtain

lim (P(rg > 20%, 70 > 7°,) = \/51E:(Sm)f(z) (71)
{—00 ™ g

where f is the function given in the statement of the Lemma. Note that this convergence is uniform
on any compact set in (0,00) by monotonicity of z — (P(ro > 2¢%,79 < 7_,), continuity of the
limit and Dini’s theorem. From here we follow the same lines of the proof of a Tauberian theorem
(Feller [Fel68]) for completion we recall the main lines for our particular case. For any € > 0, by
the uniform convergence we have talked about just above,

1/e 1/e
lim ¢ e MP(ro > wl? 79 > 77,)du = \/51%3(5’70)/ e M f (u)du
™ €

L——+o00 c o

By (69), we also have for any £ and z > 0, P(1p > 202,79 > 77,) < Cf}f‘; and as f+°° —Aug=1/2 4y, <
+00, we get lime_,o limy—, o0 [ €™ UP(10/6% > u) = 0.
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Similarly lim._,o limg_ 4 oo fj/? e MUP(10 /0% > u, 79 > 7~,)du = 0. Finally

+oo _
lim ¢ (1—e)dH(u) = lim (E ((1 - erz*TO)an)

{—+40c0 0
=\ /E% /+Oo e_’\“f(u)du. (72)
™ g 0

Note also that just by using (69) we also have lim,_, o /E[1 — e_e%m] = V2XE(S;,)o . Then
collecting (66), (67) and (72) and taking A = co?/2 we obtain for ¢ large enough

E [ef%TO]lTOST:J =1- E(iﬂ]) (1 + \ﬁ -z - ¢ Caj“f(u)dlt) * O<%)' (73>

27 Jo

To obtain an explicit expression for the above integral, we integrate by parts

+oo
/ e~ M f(u)du
0

400 _—Au 1 +oo 1
= 2/ L[P(ﬁl > 1/Vuo?)du — 7/ — (1 — e *)P(m; > 1/Vuo?)du,
0 0

ul/2 2\ u3/2

then using the expression of P(my > u) := -2, _, (—1)* exp(—(ku)?/2), Vu > 0, and elementary
computations

too “ T e~V2A/o o271 (V2 -
/0 e M f(u)du = 2\/:<sinh(\}ﬁ/a) - sinh(\/ﬁ/a)> - )\2 ( 02)\ —log((eV?M7 + 1)/2)>.
(74)

Now we deal with the probability P(St, > r) in the same way as [HS16a]. As T} can be written as a
sum of i.i.d random variables with common law given by 7, the exponential Markov property gives
for any n > 0, P(S7, > ) < e " (E(e"%70))¥. Taking k = (1 —¢)r/E(S,,) we can find constants ¢’
and ¢” such that P(Sy, > ) < ce=" for any r > 1. So replacing this and (73) in (65), we finally
get for any m large enough

o2 co? k
E [e*W”nT 3 g,s] < (IE [e*zzﬁwmu}) +P(Sp, > )
rTy -
+oo

< <1 - E(im) (1 ++ec— \;(2% ; e cc’;uf(u)du)

2

,
+ce ¢,

) (1=&)r/B(Sr)

which gives the upper bound.
For the lower bound the very beginning starts with the same spirit as the proof of Lemma A.2 in
[HS16a] : let 1, = axk for 0 <k < N := T and a > 0 (chosen later) then

m;cvzo{lnf{z > TTmSi > rk+1} < lnf{Z > Trk,Si <7rp— 6}} C {Tr < 7—25'75}’

then, the strong Markov property gives

2 2
E e_%n]l s_s| > HN E eiﬁﬂk#—l]l _
<7, = Mk=0"Tk Trep1 <Trp —
o2
TN E(e 5211 _
k=0 Trpp1—m <T_y¢

c02 N+1
- (E (67272%]17&77)) '
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So we only need a lower bound for Laplace transform of the form E(e’hTa]lTa <T:e)’ with h =

h(¢) — 0. From here we follow the same lines as for the upper bound with following differences, 7y
(resp. 7, ) is replaced by 7, (resp. by 7_,), also estimation (69) should be replaced by following
one that can be found in [AS14] : there exists 0 < # < 400 such that uniformly in a € [0, as] with
ag = o({Y/?)

Y Pail)

)

N

for large ¢, where R is the usual renewal function (see (2.3) in [AS14]) with following property (see
(2.6) together with Lemma 2.1 in [AS14])

lim 1@ _ 1 ( 2 >1/2. (75)

a—oo @ 0 \ wo?

Now considering (68), with the change we have just talked above, as for any a > 0, limy_, 4 o P(7¢ <
202|T=, > 20%) =P(my > 1/0+/2), we obtain

0R(a)

lim (P, = lim (P(T°, > 20% 1, < 20%) = —=~
L—o00 z

m—r oo

P(, > 1/0v/Z),

similarly for P; = P(7, > 7y > 2£2), for £ large enough and then taking the limit A — +o0

Ar?
OR(a — _ 4
P>(1-¢) e( ) kz_ ﬁp(sk_l <S>t Ty > k)
OR(a) [T 1 _

We then obtain the equivalent of (71), that is limy_,o (P(7, > 20%,7, > 77,) = OR(a)f(z) from
which we deduce following lower bound for associated Laplace transform :

—A too
lim mE ((1 - 6727“)]lfa>u> - /\GR(a)/ e M f (u)du.
0

{——+oo

In the same spirit limy_, o (E[1 — e_z%t“] = VArOR(a). Also first Lemma 2.2 in [Aid10] gives
for any a > 0 and any ¢ large P(7_, > 7_,) =P_,(19 > 7_,_,) ~ E(=S-_,)/¢. So finally collecting
these estimates and taking A = o%¢/2, for any € > 0 and ¢ large enough

E[e 5771
2¢ g
€ <y T8

> (1= (B8 B oo 2 [T e puan) ) +5>)N“.

Now recall that N = r/a, so let us take a large enough in such a way that (using (75)) R(a)/a <

3 (%2)1/2 (1 +¢). Also for large a, E(—=S,_,)/a < (1 + ¢) (this can be seen easily, noticing that
undershoot S,_, — a has a second moment). This finishes the proof. O

Lemma 4.2. For anye > 0, 8> 0, any r large enough uniformly in t = t(r) with im, o r—t =
+00,

E (67 maxi<;j<r,._, Sj*Sj) < 6—2\/7"—15(1—5).
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Proof. Like in the proof of Lemma 4.1 we use strict ladder epoch sequence (T := inf{s >

Ti—1,8 > St,_, },k;To = 0), also let us introduce random variable Y}, := maxr, ,<;<7, S; — 5;
for any k£ > 1. Let m a positive integer to be chosen later, by the strong Markov property

m

— max c<m Y7 _ —Y5
E (e ks k) = E E(e kﬂYk>maxigk71 Y, YkZmanHgingi)
k=1

<mE(e”2(1 —P(Y; > Ya|Y2))™ 1.

At this point we need an asymptotic in y of M(y) := P(Y1 > y) = P(maxo<s<m, Ss < —y) =
P(19 > 7—,), for that we use following equality (see for example [Aid10] Lemma 2.2) : for large y,
P(ro > 7—y) = E(S+,)/y + 0(1/y). So for any large A, and € > 0

e Y2 (1 = P(Y; > Ya|Vy))™ !
:esz(l _ P(Y1 > Y2|Y2))m71]ly2>,4 + €7Y2(1 — ]P’(Yl > Y2|Y2))m7111Y2§A
<™ (1= E(S7,)(1 =) (¥2) ™)™ Lypsa 4+ (1 - B(¥1 > 4)" 7,

For the second term above we can find constant ¢ = ¢(A) such that (1 —P(Y; > A))m~! < e~o™.
For the first term , let us introduce measure dM defined as M (x) = j:_oo dM (z)dz, then integrating
by parts

B (1B, - 05ty = - [ e (12 EERIAEIN T g

<e (1~ W)m_l - /m e (1 - W)ml R;dx
A x
—(m—1)S,, (1—¢) /;oo e; (1 _ W)mz R(x)da

< 6—2(1—45). /E(STO)m,

the last inequality is definitely not optimal but enough for what we need, we can obtain it eas-
ily decomposing the interval (A4, +o00) on the intervals (A4, \/E(S;,)m(1 — €)), (v/E(Sr)m(1l —
), VE(Sr,)m(1l + ¢)) and (y/E(S;,)m(1 + €),400). Collecting the above inequalities, we obtain
that for any € > 0 and m large enough

E (e— maxi<k<m Yk) S 2m6_2(1_48)‘/E(S70)m_

To finish the proof we follow the same lines as the end of the proof of Lemma 4.1 (below (74)),
that is saying that E (67 MAXLSI STy SFSJ') < E(e-maasksm ¥e) 4 P(Spy, > r —t) then taking
kE=(1—-¢)(r—1t)/E(S). O

4.2. Additional technical estimates

Lemma 4.3. Let (t;) a positive increasing sequence such that tel~Y2? — 400 but ty~' — 0. For
any B > 0 and ¢ large enough

— t
(5 V iy > 1) 2 e Vi), (76)
Let A >0 large, d € (0,1/2), a>0,0<b<1, g€ b1], ap:=a(2lyg>p — 1) and ¢ >0

Z P(Sj > 4, SUp H;;S:L < eq\/zfabld76b\/2 < HJS < eb\/z+céd7§j > 78) > equjz(lJro(l)). (77)
. m<j
J<AL/2
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Proof. The proof of (76) follows the same lines as the proof of Lemma A.2 in [HS16a]. For (77), a
j < AL32 for any (d,e) and any m < j, Al3/2exp(Sy, — Sp) < e?VHel" implies HS < ed\[“z
then

RSN

{S >ty e etV < HS < bViret ,sup HS < earVi—ant! , 8> —B}

m<j

>IP’[S >t V< S — S <bVl+t sup S,y — S < gVl —d't?, S, > B}

m<j

with ¢/ = ¢/2 and @’ = a + 1. To obtain a lower bound for the above probability, the idea is to say
that maximum of S is obtained at a certain instant £ < j and that this maximum is larger than
ty + bVl + 0% 4 1 for a certain > 0 to be chosen latter, then above probability is larger than :

> P(Si—1 < Sk, Sk > to + bVl + 0 v, sup Sy, — Sy <VE—ath, Sy > —B;S; — Sk >ty — Sk,

k<j m<k
W< S, —8; <O+ Ym >k +1,8, < Sk, Sk — Sm < VI —d't?, S, — S, > B —Sy).

Now, the events {S,, — Sr > —B — z}, as well as {S; — Sy > t; — x} increases in = and as
S >t 4+ bVl + 0% + r so we can replace, in the two events of the above probability, «—Si» by
—(te + b+ 0 + r). This makes appear two independent events, so above probability is larger
than

P(Sk—1 < Sk, Sk > te + bVl + 04 + 7, sup Sy, — Sy < VE—a/t?, Sy > —B)x

m<k

P(S; — Sy, > —bVE — 4 —r, bV < Sy — S; <OV + 4 Ym > k41,

—B—ty—bVIl+ 0 —r < S, — Sk <0,8, — Sk > —VI+d 0% = pi(k)*pa(k,j).  (78)
Probability ps can be easily simplified, indeed as limy_, 4 tg/\/z = 400 and /¢ large, —B — t;, —
bVl + 0% — 1 < —/C and by taking r = ¢£%, py is smaller than

P(—bVl — 11 < S; — S < —bVEYm > k+1, -V +d't? < 8, — S, <0)

—P(Vm <j—k, —Vl+dt? <8, <0,-bVi—?<S; . <—bV0)

=P(VYm < j—k, S <VI—a't¥S;_, >0,8;_1 € bVE,bVE+ 14))x

P(S;_ ) > 0,81 € BV + 1)),
with S, = —S,, for any m. For the conditional probability we can use a similar result proved by
Caravenna and Chaumont [CC13] telling that the distribution P,(-|Vm < n,S,, > 0,5, € [0,h))
converges. Note that they need in their work additional hypothesis on the distribution of S (more

especially absolute continuity of the distribution of S;) which is not necessary here as the size of
interval [bvV/2, bVl + 0% equals ¢4 — +00. So as a’'0? = o(\/{)

lim P(Vm < (,8,, <Vl —dt48, > 0,8, € [bVi,bVi+ 1) = Cte > 0.

{— 400

Moreover another work of Caravenna ([Car05] Theorem 1) gives for large ¢, P(S, > 0,S, €
[V, bV + 4% > b/L. So finally when j — k is of the order of ¢, there exists a constante Cte > 0
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such that py(k,j) > Cte * £~1. Turning back to (78) and summing over k and j, we obtain

> > pi(k)pa(k, )

JSAB/2 k<]

= > pk)> pak,j) >ZP1 > palk,))

k<AL3/2 >k Gkt
_Ct
> 25N P(Siet < Sk Sk = te+ b(L+ 26)VE, sup Sy — Sy < VI, S, > —B)
g k<A3/2 msk

Cte S g -
2 T(P( vi VI-B>T +bf+c/£d) - Z P(:;g;sm —Sm < \/E))
k>A03/2 =
Now we can check that above sum ), _ 4,s/> -+ as a negligible contribution, indeed the probability
P(Sup,<k Sm — Sm < V) is smaller, thanks to Proposition 3.1 in [FHS11], to e~ "3/4¢ this
implies that Y, 4ys/2 P(Sup,,<j, Sm—Sm < Vi) < e~ AL?/2 Now if we apply (76) to the first
probability above as bv/l + ¢/£% = o(t), this finishes the proof. O
Lemma below is a simple extension of FKG inequality.
In the following, a function F : R¥ — R is said to be non-decreasing if: for all s = (s1,...,s;) € R¥
and t = (t1,...,tx) € RF, s <; t implies F(s) < F(t) where s <, t if and only if s; < ¢; for all
jed{l,... k}.
Lemma 4.4. Letr >0, k € N*, fi, fo: R’i—) R*. For any i € {1,2}, introduce fi(u, ... U 1=
filur,ug +ugy ... ug +us + ... +ug). If f1 and fo are non-decreasing then

E[f1(S1, 8%, -, Sk) f2(S1, 92 -, Sk)] = E[f1(S1, Sa,- -, Si)|E[f2(S1, S, - -, Sk)]-

Proof. When R* is a totally order set, the first inequality above is the well known regular FKG
inequality. Here, we can easily extend it to the partial order <j. Indeed, since f; is non-decreasing
for any ¢ € {1, 2}, we have, by independence of increments of S

II Elfi(S1, 82,80 = [ E[fi(S1,82 = S1,..., 8k — Sk-1)] = E[F1(S1)|E[F2(S)],
ie€{1,2} i€{1,2}
with F;(uq) := ]E[fi(ul, So—S51,...,S,— Sk,l)} for any i € {1,2}. Since f; is non-decreasing, F; is
also non-decreasing so thanks to the regular FKG inequality, E[F;(S1)]E[F2(S1)] < E[F1F2(S1)].

Again, using that the increments of S are independent and stationary, the result follows by induc-
tion. 0

Lemma 4.5. Let (t¢) a sequence of positive numbers such that tg/¢ — 0. For all d € (0,1/2] such
that ty /04 — 400 and all e, B >0, a >0 and 0 < d’' < d for n large enough

d d’ — _te
§ P(S) > te,mgng <e" " 8, >-B,S,=5)>e ea (14e)
]
k<t?

Proof. Recall that 7, = inf{i > 1; S; > r}. First, observe that for all j < k < ¢2, HJS < (255
S0

Z P(S) >tg,maXHS < ot -at” .Sy > —B,S), = Sk)
k<(2

> Zpk_m,maxs —S; < —at? —2logt,S;, > —B),
k<t2
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which is equal to P(Sg > t,Vj <1, : S — S; < 0% — at? —2logl,S; > —B).
NOW let kg = | (e“t¢)?] + 2. First note that, since £? < ky, we have, on {Sp2 > t,}, 7, = Ttkf with

th = ke ANinf{i < kg; S; >t} so
P(Sp > t0,Vj <7, :8; — 85 < 4 —at? —2logl,S; > —B)
=P(Spe > te,Vj <778~ 8; <! —at? —2logl,S; > —B).
For any k € N* and r > 0, let t = (¢1,...,t;) € R* and define the t-version 7%* of 7% that is

7kt — k Ainf {z <k;t;> T},
with the usual convention inf @ = +o0o0. Then
P(Sp > tn,Vj <78 :8; = 8; < 04— at? —2logt,S; > ~B) = E[f1f2(S1,Sa, ..., 5],
with for all ¢ € {1,2}, f; := 1 4¢, f1f2(u) = fi(u)f2(u) and
Al ={u=(u,...,ur,) ER"; 35 <2 u; > t,},
and
Ay ={u=(u,...,up,) ER";Vj <7 /”’t V< gruy—u > 0%+ al® + 21og ¥, u; > —B}.

Then, it is easy to see that for all ¢ € {1,2}, ﬁ (see Lemma 4.4 for the definition) is non-decreasing
according to the partial order <j, defined above. Then, thanks to Lemma 4.4, E[f1 f2(S1, S2, .. ., Sk, )]
is larger than

> P((S1, 52, ..,Sk,) € AD)P((S1,Sa, ..., Sk,) € A5)

>P(Spe > t)P(Vj <7 : S — 85 <4 —at? —2logt,S; > —B, 1, < k).

Again, on {1, < k¢}, Ttkf = 7, and thanks to [Koz76] (Theorem A), there exists Cx > 0 such that
for £ large enough

P(Vj <785 —8; <t —at? —2logl,S; > B, 7, < ki)

> P(Vj <, :gj -5; < 04— qpd — 2log?,S; > —B) —P(7¢, > ki)

>P(Vj<m,:8; -8 <! —at? —2logl,S; > —B) — Cge™"
Moreover, t¢/f — 0 so P(Sp2 > t;) — 1. Finally, by (76) together with the fact that ¢4 ~ (¢ —
altd —2log? (as d > d') for ¢ large enough, ]P’(Vj < Tt[ S;—8; <d— alt —2log, S; > B) >
2e~te¢"(149) and since t;, /0% = o((), Cxe~ < e=t¢ "(149) the result follows. O
Lemma 4.6. Let o € (1,2) and e, € [0, — 1) and introduce L, := Lxﬁ1+57aj, x > 0. For alle > 0,
¢ large enough and any k € {Ly,...,0*}

P(max HS < e\[) <e” b= (1-e) (79)
i<k ’

and for any a,d,c >0, b € (0,1), ¢ large enough and any k € {Ly, ..., ¢*}

P(maXHS < pVi—at? Ve Hf < ebﬂ+cgd7§k > 0) > et 252 (1+e). (80)

1<k
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Proof. Let us start with the upper bound. Thanks to the Markov property, for any k£ € N, k > L,

P( max HS<e\/)<IP(maXS - 5; <\f)<]P’(maxS - S; <\f)LLI
J<k i<k

J— 7252 -
and thanks to [FHS11], for £ large enough, P(max;<z, S;—S; < VY) < e‘TLK(l_f), so for any
e, £ large enough and any k > L,

WULZL ]er

(maxSfS <\[)<e (1-%) J<e(1 €)

i<k

For the lower bound, observe that for any k < (2, P(max;<y H]S < eVi-at! Vi HP <
eb‘/z"’dd,ﬁk > O) is larger than P(maxjgk gj—Sj < )\Z,b\/z < Sp—5; < b\/@—l—cﬂd—logﬁz,ﬁk > O),
where Xj, := VIl — al® —log (2. As %ﬁd > log¢? (d > 0), the previous probability is larger than
]P’(maxjgk §j -5 <Ay, bWl < S, — Sp <bV/l+ %Ed,ﬁk > 0). We need independence to compute
this probability so for all k € N*, L, < k < 02, we say that Sy, = Sp_s > A} which gives that for all
k—10< j < k’, Sj < Sk_g and then, maXg —¢<j<k Sk_g — Sj < )\le implies that Sj > Sk_g — A;L > 0
for all Kk — ¢ < j < k. Hence

P(maxS; — S; < X, bVl < Sy = S <0V + éd Sy > 0) > P(Age N Bre) = P(Ak,0)P(Br,0),
1<k

with

Apyp = {jrélgfe S; =8 <AL Sk_y=0,8k—¢ =Skt =N},

and

Broi={Vk—€<j<k Skt~ <N,S;j < S, bVl < Sp_¢— S <bVI+ ged}.
Let S := —S. P(By,¢) is nothing but

P(S) < A, S, > 0,8 € WEWI+ = SE) =B(S, > 0)P(S € (bV,bvVT + ged} 1S, > 0)

x P(S, < A)|S, > 0,8, € (WE,bVE+ ged]),

which is larger than C/¢ for ¢ large enough (see Lemma 4.3).
We then deal with P(Ag ). Thanks to Lemma 4.4, this probability is larger than

— 2
P(]Ig?xé S —=8; <AYP(Skee = A))P(S,_, > 0)7,

and again, using [Koz76] together with the fact that P(Sr, > A}) — 1, there exists C > 0 such
that for £ large enough and any k € {Ly,...,¢*},

P(Sk_t > VOP(S,_, > 0) > P(Sp, > VIP(S,: > 0)° > > &

We now turn to the most important part: IE"(maXJ<;c ¢ § S; < /\Z) We follow the same lines
as the proof of (79): for any k € {Ly,..., 0}, k—{¢> Ly —{ so maxj<r,—¢ S; —S; < A, together
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with SL‘, ¢=Srp,—¢ < 5; and maxy, _r<i<;j S; — 55 < )‘e for all Ly — ¢ < j < k — £ implies that
mMax;<k—¢ Sj —S; <A It follows that IP’(maX]<1€ ) Sj S; < )‘e) is larger than

P( max S _Sg<)\e>SLg ¢=3SL,—¢, max Si—SjSAé,SjZSLK,gVLg—f<j§kJ—£)

j<Lo—t L,—0<i<j
= P(jgﬁg Sj—8; <Xy, Sp,—e = SLH)P(],Q_Y;EXLZ_@ Sj =85 <X Skt—(ro—t) 2 0)-

Moreover, by Lemma 4.4, P(manSk._g_(Lz_g) Ej -5; < Xe,ﬁk_e_(,—%_g) > O) is larger than
P(max;<_¢—(,—e) S;—S; < X))P (Sk—¢—(L,—e) = 0). By induction, we get that P(max;<p—¢ Sj—
S; < )\2) is larger than

P( max 5;—8; <X, 50, = Sz T P(Sicicitzi—n 2 0)
¢ i<Lo(k)

with L(k) := [(k — €)/(L¢ — £)]. Again, by Lemma 4.4, P(maxj<r,—¢ S; —S; < X, SL,—¢

Sp,—¢) > P(maxj<r,—¢ Sj—5; < XN)P(Sy,_, > 0)andas k < €2, P(Sy_y_jz,—p = 0) > P(S), >
0) > P(S,» > 0). Hence, by [Koz76]
C _ L,(k)
-5 < > =5 < N
]P(J%?Xg Sj—8; < Aé) = (fx/T (J<L£ ' S;—=8; < )‘f))

for some C' > 0. Then, thanks to [FHS11], for all € > 0 and ¢ large enough P(maxj<r,_¢ S;—S5; <

7252 ) I .
Ap) > e~ (143 FE2 N7 0 for 4 large enough and any k € {Ly,...,¢%}, ]P’(maxjgk_g S; —
S; < )\2) is larger than

( C —(1+% >%%;;,“)Le<k> S s >%,L;;,’”L (k) —(h=H)(1+5 )m o
NI = - ’

o w202(Ly-0)
where we have used for the first inequality that e "TSADTT s smaller than
Collecting previous inequalities, we obtain

for any n,n' > 0.

7

g 7\'2G2
P(Ak,e) > O 008357

Finally, observe that A), ~ v/¢ and then for any k € {Ly,..., %}

P(Ay,) > e—’”ngz (1+s)’

which completes the proof. O

Notations

In this section, we have summarized the transversal notations, give a short description of them
when it is possible and the page or equation where they are introduced.

Sequences and constants in the statement of the main theorem
kp (equation (12)), critical exponent.
hy, (equation (13)), resume the constraint on V' and second order for %, (gn,f™).
L (equation (14)).
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¢ (equation (15)).

Different form of the cumulative exponential drop of V
H, (below (8)), variable appearing in the distribution under P¢ of the edge local time
at = before the instant T*.
H, (Lemma 3.1), variable appearing in the distribution under P¢ of the sum of edge
local times of the descendants of 2 before the instant T'.
H?® (page 15) version of above H after the many to one Lemma is applied.

The regular lines and their possible parameters : Oy y 1= {x eT; mzlauxl Hy, <X\ Hp> /\’}
71<]|z X

A = A, (above 21), A = A, (below (23)), A = A, 1 and A :_)\n,g (in the proof of Theorem
1.3), A = )\, in the proof of Lemma 3.6. All along the paper \’ is typically of order n®.

Secondary constraints on the environment : %g,a ={(t1,...,tx) € RE; ) > 3, min;<x t; > —B}

3=3n = E}/S/él (beginning of Section 3.2).
T (Proposition 1) : various intersections of conditions on H and %g

The branching function ¥
\Il’;,)\/ (equation (9)), k is a generation, A an upper bound for H, " a lower bound for H.
W%/ (--) (equation (18)) a conditional version of W% ,,.

Elementary random variables related to the random walk X
NI Edge local time at (z*,z) before n (equation (39)).
T™ (page 7) n-th instant of return to the root e.
E™, E™ (above 59).

Different ranges
R (gn, ™) the generalized range (equation (3)) with
gn function of constraints on the trajectory of (X,,n),
f™ function of constraints on the potential V.
R1rn(gn, 1) variant of Zrn (gn, ") with additional condition on V' (page 7).
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