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Abstract: In this work we are interested in the set of visited vertices of a tree T by a
randomly biased random walk X := (Xn, n ∈ N). The aim is to study a generalized range,
that is to say the volume of the trace of X with both constraints on the trajectories of X
and on the trajectories of the underlying branching random potential V := (V (x), x ∈ T).
Focusing on slow regime’s random walks (see [HS16b], [AC18]) we prove a general result
and detail examples. These examples exhibit many different behaviors for a wide variety of
ranges, showing the interactions between trajectories of X and the ones of V.
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1. Introduction

The construction of the process we are interested in starts with a supercritical Galton-Watson tree
T with offspring distributed as a random variable ν such that E [ν ] > 1. We adopt the following
usual notations for tree-related quantities: the root of T is denoted by e, for any x ∈ T, νx denotes
the number of descendants of x, the parent of a vertex x is denoted by x∗ and its children by{
xi, 1 ≤ i ≤ νx

}
. For technical reasons, we add to the root e, a parent e∗ which is not considered

as a vertex of the tree. We denote |x| the generation of x, that is the length of the path from
e to x and we write x < y when y is a descendent of x, also x ≤ y signifying that x can also
be equal to y. Finally, we write Tn for the tree truncated at generation n. We then introduce
a real-valued branching random walk indexed by T: (V (x), x ∈ T ). We suppose that V (e) = 0
and for any generation n, conditionally to En = {Tn, (V (x), x ∈ Tn)}, the vectors of increments
((V (xi) − V (x), i ≤ νx), |x| = n) are assumed to be i.i.d. Finally we denote P the distribution of
E = {T, (V (x), x ∈ T )} and P∗, the probability conditioned on the survival set of the tree T.

We can now introduce the main process of this work which is a random walk (Xn)n∈N on
T∪{e∗ } : for a given realization of the environment E , (Xn)n∈N is a Markov chain with transition
probabilities given by

PE (Xn+1 = e|Xn = e∗ ) = 1 ,

∀x ∈ T r {e∗ } , PE (Xn+1 = x∗|Xn = x ) =
e−V (x)

e−V (x) +
∑νx
i=1 e

−V (xi)
,

∀j ≤ νx, PE
(
Xn+1 = xj |Xn = x

)
=

e−V (xj)

e−V (x) +
∑νx
i=1 e

−V (xi)
.
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The measure PE is usually referred to as the quenched distribution of the walk (Xn)n∈N in contrast

to the annealed distribution P which is the measure PE integrated with respect to the law of E :

P( · ) =

∫
PE ( · ) P(dE ) .

Similarly P∗ is the annealed probability conditioned on the survival set of the tree T (defined by
replacing P by P∗ in the above probability). For x ∈ T ∪ {e∗ }, we use the notation PE

x for the
conditional probability PE (·|X0 = x); when there is no subscript, the walk is supposed to start at
the root e. Recurrent criteria for these walks is determined from the fluctuations of log-Laplace
transform

ψ(s) := log E
( ∑
|z|=1

e−sV (z)
)
,

for s > 0. If inf0≤s≤1 ψ(s) > 0 then (Xn, n) is P almost surely transient and recurrent otherwise.
It turns out that recurrent cases can be themselves classified, this can be found in the works of G.
Faraud [Far11] and equivalently for transient cases in E. Aidekon [Aı̈d08].

Here we consider recurrent cases and more particularly in the regime where the random walk is
particularly slow (see [HS16b]) that is to say we put ourselves in the boundary case for which

ψ(1) = ψ′(1) = 0. (1)

We focus on a generalization of the range defined as follows : for any n, let fn = {fn,k : Rk →
R+; k ∈ N∗} be a collection of bounded functions. Also let gn : R+ → R a positive function. Then
generalized range Rn(gn, f

n) is given by

Rn(gn, f
n) :=

∑
x∈T

gn(L n
x )fn,|x|(V (x1), V (x2), · · · , V (x)), with (2)

L n
x :=

n∑
k=1

1{Xk=x},

(xi, i ≤ |x|) being the sequence of vertices of the unique path from the root (excluded) to vertex x
and L n

x is the usual local time of the walk at x before the instant n. As we may see Rn(gn, f
n) is

quite general and can not be treated in this form at once for any of these functions gn and fn so
additional assumptions (involving fn, gn and distribution P) will be introduced in Section 1.2.
The aim of studying this extended range is twofold, first it allows to understand the interactions
between trajectories of the main process X and of the underlying branching potential V, second we
develop a general tool allowing to treat many examples (for chosen fn and gn). Note, for example,
that if we take for any n, trivial fn = 1 and for any u, gn(u) = 1{u≥1} then we get the regular
range (treated in [AC18]), and if gn(u) = 1{u≥nb} with 0 < b < 1 we get the heavy-range (see
[AD20] and [Che20]).
The presentation of the results is divided into two subsections, in the first one below we detail
and comment particular examples showing a large variety of behaviors for different fn and gn. In
a second subsection we present a general result including all previous examples, its statement will
need additional technical assumptions.

1.1. First results : examples

The first two theorems (Theorems 1.1 and 1.2), we present in this section, derive from three other
works : in the first one [HS16a] it is proved that, during its first n steps, the walk can reach height of
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potential of order (log n)2. More precisely it is proved that random variable max1≤k≤n V (Xk)/(logn)2

converges almost surely to one half. Note that this behavior can be quite disappointing if we have
in mind the intuitive behavior of Sinai’s one dimensional random walk in random environment
[Sin82] for which the highest height of potential reached by the walk is of order log n. Of course
the fact that the walk evolves on a tree instead of a one dimensional lattice changes the deal but
at the same time it is also proved in [HS16b] that this walk has a similar behavior than Sinai’s one
(they are both at a distance of order (log n)2 from the origin at a given instant n). In both cases,
the potential plays a crucial role. In the two other papers ([AC18] and [AD20]) the range is studied
: in [AC18] it is proved that regular range (the number of visited vertices before the instant n) is
of order n/logn, whereas in [AD20] it is proved that the number of edges visited more than nb (with
0 < b < 1) times is typically of order n1−b (this particular range is called ”heavy range” in that
paper, see also [Che20] for a refinement of this work).
Our first theorem below mixes the two approaches showing the influence of a strong constraint on
V on both regular or heavy range. What we mean by strong constraint here is a condition of the
form V ≥ (log n)α with 1 < α < 2, that is to say when the potential is larger than what we can
call regular height of potential for this walks (that is height of order log n, as it can be proved that
V (Xn)/logn converges weakly, see [HS16b]) but smaller than the extreme value (log n)2 of [HS16a].
Before stating this result, let us introduce the following hypothesis on distribution of branching
random walk : there exists θ > 0 and δ1 ∈ (0, 1/2] such that

E
[ ∑
|z|=1

e−(1+θ)V (z)
]

+ E
[ ∑
|z|=1

eθV (z)
]
<∞, (3)

E
[( ∑
|z|=1

(1 + |V (u)|)e−V (u)
)2]

+ E
[( ∑
|z|=1

e−(1−δ1)V (x)
)2]

<∞, (4)

these are common hypothesis used for example in [AC18].

Theorem 1.1. Assume (1), (3) and (4) hold. If for any n and k, fn,k(t1, t2, · · · , tk) = 1{tk≥(logn)α}
with α ∈ (1, 2) and if gn(t) = 1{t≥nb} with b ∈ [0, 1), then

log+ Rn(gn,f
n)−(1−b) logn

(logn)α−1 converges in P∗-probability to −1,

where log+ x = log(max(1, x)).

This result shows that the number of vertices with high potential visited at least once (resp.
strongly visited, with b > 0) is of the same order, though smaller, than the regular range (resp.
heavy-range). So visiting hight potential is not just an accident appearing a couple of times on
very specific paths of the tree. Far from that in fact as the constraint of high potential creates a
decrease of order e−(logn)α−1+o(1) and therefore appears as a second order correction comparing to
ranges without constraint on the environment.
In the second theorem below we add a slight different constraint which force the random walk to
reach a high level of potential far from the ultimate visited vertices of given paths :

Theorem 1.2. Assume (1), (3) and (4) hold. If for any n and k, fn,k(t1, t2, · · · , tk) =
1{tbk/βc≥(logn)α} with β > 1, α ∈ (1, 2) and for any b ∈ [0, 1), gn(t) = 1{t≥nb} then

log+ Rn(gn,f
n)−(1−b) logn

(logn)α−1 converges in P∗-probability to −1− π
2

√
β − 1 + ρ

(
(β − 1)π

2

4

)
,

where for any c > 0,

ρ(c) :=
cσ√
2π

∫ +∞

0

e−
cσ2

2 u
[ 2

u1/2
P(m1 > 1/

√
uσ2)− 1

2

∫ +∞

u

1

y3/2
P(m1 > 1/

√
yσ2)dy

]
du,
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where m is the Brownian meander, m1 := sups≤1 ms and σ2 := E[
∑
|x|=1 V

2(x)e−V (x)]. Also bxc
stands for the integer part of x.

As we may see, a slight change in function fn (comparing to previous theorem), makes appear
something new as the constant in the limit is very different than in Theorem 1.1. Note that ρ can
be explicitly calculated : for any c > 0

ρ(c) = 2
√
c
(1− e−

√
c

sinh(
√
c)

)
− 2
(√

c− log((e
√
c + 1)/2)

)
, (5)

so clearly we obtain continuity when β converges to 1 getting back previous theorem. At this point
we would like also to discuss the appearance of Brownian meander distribution in ρ. First note
that a Brownian meander appears in the asymptotic distribution of the (correctly normalized)
generation of Xn (see [HS16b]) which is the consequence the positivity of V (see Fact 4 below)
together with an induced constraint on the largest downfall of V (we call here maximal downfall,
for a given x ∈ T, the quantity maxy≤x(V (y) − V (y), where V (y) := maxz≤y V (z)) visited by
the walk before instant n. Also in [AC18] the distribution of two independent Brownian meanders
(m1 and m1) appears in the result for the regular range Rn (that is when fn = 1 and for any u,
gn(u) = 1{u≥1}) : in P∗-probability

lim
n→+∞

Rn
log n

n
= C(Dm1 ,Dm2), (6)

one of these Brownian meander coming also from the positivity of V and the other one coming
from the fact that for a given visited vertex x the maximum of V (on the unique path from the
root to x) is attained pretty near the generation of x.
Here the brownian meander appears as we ask a visited vertex x to have reached a high level of
potential in an early generation before the one of x, and it turns out that the constraint of low
downfall of V appearing in [HS16b] (maxy≤x(V (y) − V (y) ≤ log n) along this kind of path pro-
duces this appearance of the Brownian meander. However contrarily to (6), Brownian meander is

involved in the correction of the main fluctuation (e−C(Dm)(logn)α−1

) and not just in the constant
of the limit (C(Dm1 ,Dm2)).

In the third example below we choose f in such a way that an interaction appears between the
trajectory of X and the downfalls of V which have an important role in the behavior of these walks.
More particularly let us introduce, for given t = (t1, t2, · · · , tk) with k a positive integer, following
quantity,

Hk(t) :=

k∑
j=1

etj−tk ,

then we call sum of exponential downfalls of V at x ∈ T with |x| = k the quantity

H|x|(Vx) := H|x|(V (x1), · · · , V (xk)) =

|x|∑
i=1

eV (xi)−V (xk), (7)

to simplify notation and when there is no possible confusion we will simply write Hx instead of
H|x|(Vx) in the sequel.

Theorem 1.3. Assume (1), (3) and (4) hold.

For any n and k let fn,k(t1, t2, · · · , tk) = 1{tk≥a(logn)α}(
∑k
j=1Hj(t))−d with α ∈ [1, 2), a ∈ R,

d ∈ {0, 1} and gn(t) = 1{t≥nb} for b ≥ 0, then :
If b ∈ [0, 1/(1 + d)) and α = 1 (with a > 1/δ1 when d = 1) then
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log+ Rn(gn,f
n)

logn converges in P∗-probability to 1− (1 + d)b,

otherwise if a = 1, b = 0, d = 1 and 1 < α < 2

log+ Rn(gn,f
n)−logn

(logn)α/2
converges in P∗-probability to −2,

finally if a = 1, 0 < b < 1/2, d = 1 and 1 < α < 2

log+ Rn(gn,f
n)−(1−2b) logn

(logn)α−1 converges in P∗-probability to −1/b.

For the first limit (when α = 1, implying that we have set a common height of potential - see Fact
1) by taking d = 0 we obtain the limit (1− b) of the usual heavy range of [AD20] otherwise if we
add the penalization with the cumulative exponential downfalls (

∑
y≤xHy) that is when d = 1

then an extra cost d ∗ b = b appears. This example can be used as a point of comparison to the
two other more interesting cases that follow.
The second case (with b = 0 but 1 < α < 2), has two constraints on the environment so the
normalization (log n)α/2 appears as a compromise between the fact that high level of potential is
asked (1{tk≥(logn)α}), which alone yields by Theorem 1.1 a normalization (log n)α−1, but at the
same time cumulative exponential downfall fluctuations (

∑
m≤kHm(t)) can not be two large as it

appears in the denominator of the range, this yields the (log n)α/2 (note that as α < 2, α/2 > α−1).

For the last case (0 < b < 1/2 and 1 < α < 2), the range is of order n1−2be−(logn)α−1/b comparing

to ne−2(logn)α/2 when b = 0 of the previous case. In particular the parameter b of the heavy range
appears in both the main normalization n1−2b and in the correction e−(logn)α−1/b. This can be
intuitively understand as follows : first n1−2b = n ∗ n−b ∗ n−b, one n−b is classical from the heavy
range when asking for a local time to be larger than nb (which already appears in the first part
of the Theorem), the second n−b comes from the fact that a local time at a given vertex x can be

larger than nb only if
∑|x|
j=1 e

V (xj)−V (x) ≥ nb and as this quantity appears in the normalization

of the range (via fn,k(t1, t2, · · · , tk)) this produced this second n−b. So this part (n1−2b) appears
as a first interaction between the constraints on the trajectory of X and the one of V. Let us now

discuss about e−(logn)α−1/b = e−
(logn)α

b logn for this term we see, intuitively, the constrains for the walk
to reach height of potential of order (log n)α but a the same time, in order to keep the denomina-
tor

∑
j≤kHj(t) as low as possible, the maximal downfall has to remain smaller than b log n this

produces the ratio (log n)α/(b log n).

In the ultimate example below we ask similar constraints for the environment than above but
only in the early visited generations :

Theorem 1.4. Assume (1), (3) and (4) hold. Let β > 1. For any n and k let fn,k(t1, t2, · · · , tk) =

1{tbk/βc≥(logn)α}(
∑bk/βc
j=1 Hj(t))−1, α ∈ (1, 2) and if gn(t) = 1{t≥nb} with b ∈ (0, 1),

log+ Rn(gn,f
n)−(1−b) logn

(logn)α/2
converges in P∗-probability to −2.

This last theorem just prove that if the factor (
∑bk/βc
j=1 Hj(t))−1 only concerns the beginning

of the trajectory, that is the sites at a distance b|x|/βc of the root (if x is a visited vertex), then
things go back to normal: there is no more multiple interactions between X and V.

We can imagine more examples like the ones we present above (for example we did not act very
much on function gn), but for now let us introduce a more general result with general hypothesis
on gn and fn.
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1.2. A general result

In this section we present results for Rn(gn, f
n) with gn and fn as general as possible including, in

particular, previous results. Comparing to above theorems it is less readable both in its statement
and on the complexity of additional assumptions needed to introduce it. These assumptions that
we describe below mix in particular fn and distribution of V .

First recall the expression of generalized range (2),

Rn(gn, f
n) :=

∑
x∈T

gn(L n
x )fn,|x|(V (x1), V (x2), · · · , V (x)),

with L n
x the local time of X at x before the instant n.

We assume that gn can be written as the product of an indicator function and a function ϕ which
is positive increasing: for any b ≥ 0 and m, gn(m) := 1{m≥nb}ϕ(m). The indicator function is
here to include all types of range (regular or heavy). Also we ask the function t → ϕ(t)/t to be
decreasing, so that ϕ(L n

x ) remains reasonable (at most of the order of the local time itself).
We now introduce more complex assumptions, for that let us first define branching object Ψ(·). Let
0 ∨ λ′ < λ be real numbers and k ∈ N∗ an integer, also let φ : Rk −→ R a bounded function then
Ψk
λ,λ′(φ) is defined as a mean of φ along the trajectory of V (with constraints) until generation k,

that is

Ψk
λ,λ′(φ) := E

[∑
|x|=k

e−V (x)φ (V (x1) , . . . , V (x))1Oλ,λ′ (x)
]
, (8)

where Oλ,λ′ is the set of (λ, λ′)-regular lines

Oλ,λ′ :=
{
x ∈ T; max

j≤|x|
Hxj ≤ λ, Hx > λ′

}
, with Hxj =

j∑
i=1

eV (xi)−V (xj), (9)

also we denote

Oλ :=
{
x ∈ T; max

j≤|x|
Hxj ≤ λ

}
, and Ψk

λ(φ) := E
[∑
|x|=k

e−V (x)φ (V (x1) , . . . , V (x))1Oλ(x)
]
.

Note that since Hx > 1, for all λ′ ≤ 1, Oλ = Oλ,λ′ and Ψk
λ(φ) = Ψk

λ,λ′(φ).

The appearance of this set of regular lines Oλ,λ′ is partly inspired from the works of [HS16b] (λ
representing extreme exponential downfalls of V related to a reflecting barrier for walk (Xk, k ≤ n)),
and also (for λ′) from the constraint on the local time appearing on function gn. It turns out indeed
that constraints on the value of the local time at some site x implies constraints on Hx (this actually
appears clearly in Theorem 1.3).
In all the paper, C∞ := C∞({fn;n ≥ 1}) stands for the supremum of {fn;n ≥ 1} that is

C∞ := sup
m,`
‖fm,`‖∞.

Then, introduce the set

Ub :=
{
κ ≥ 0; for all k ≥ 1, t ∈ Rk, n ≥ 1 : 1{Hk(t)>nb}f

n,k(t) ≤ C∞n−κ
}
, (10)

note that Ub 6= ∅ because 0 ∈ Ub and as the supremum is attained let

κb =: max Ub. (11)
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Finally introduce sequence (hn, n) which is an important quantity appearing on the asymptotic of
the logarithm of (gn, f

n)-range : for any n ≥ 2

hn :=


∣∣ log

(
nκb

∑
k≥1 Ψk

n,nb(f
n,k)

)∣∣ if ∃ γ ∈ (0, 1) : (logn)γ

log
(
nκb

∑
k≥1 Ψk

n,nb
(fk,n)

) → 0

log n otherwise
. (12)

We discuss about the order of hn below (see Remark 1), before that let us introduce our first
main assumption which is a lower bound involving Ψ.

Assumption 1 (lower bound).
For all b ∈ [0, 1), ε > 0 and n large enough∑

k≥1

Ψk
n,nb(f

n,k) ≥ 1

n(κb+ε)∧1
. (A1)

Remark 1. By definition of κb,

nκb
∑
k≥1

Ψk
n,nb(f

n,k) ≤ C∞
∑
k≥1

Ψk
n(1) = C∞E

[∑
x∈T

e−V (x)1{x∈On}

]
≤ C∞(log n)3,

where the last inequality is a quite elementary fact that will be proved later (see Remark 2). This im-
plies, in particular, that if there exists 0 < γ < 0 such that (log n)γ/log

(
nκb

∑
k≥1 Ψk

n,nb(f
k,n)

)
→ 0

necessarily log(nκb
∑
k≥1 Ψk

n,nb(f
n,k)) < 0 and limn→+∞ log(nκb

∑
k≥1 Ψk

n,nb(f
n,k)) = −∞. More-

over in this case, there exists 0 < γ < 1 such that hn ≥ (log n)γ . Also assumption (A1) above
ensures that

log(nκb
∑
k≥1

Ψk
n,nb(f

n,k)) ≥ log
( nκb

n(κb+ε)∧1

)
≥ −((κb + ε) ∧ 1− κb) log n ≥ −ε log n,

overall, definition of hn implies, under (A1), that

(log n)γ ≤ hn ≤ log n.

Before going any further let us give an heuristic about the way
∑
k≥1 Ψk

n,nb(f
n,k) appears in the

asymptotic of the range.
First introduce for any k ≥ 1 the kth return time to e, T k := inf{k > T k−1, Xk = e} and take
T 0 = 0, then let RTn(gn, f

n) :=
∑
x∈T ϕ(L Tn

x )1{L Tn
x ≥nb}f

n,|x|(Vx)1{V (x)≥A logn} with A > 0.

RTn(gn, f
n) is a version of generalized range where we have replaced the instant n by Tn and

we have made appear the additional constraint V (x) ≥ A log n. Note that it is known (following
Lemma 2.1 in [AC18] and its proof at the beginning of Section 4.2) that this additional condition
1{V (x)≥A logn} has no effect on the normalization of the range, that is

Fact 1 : There exists 0 < c1 = c1(A) ≤ 1 such that limn→+ ∞ P∗
(

RTn

RTn
= c1

)
= 1.

So here we typically consider collections of functions fn such that RTn(gn, f
n)/RTn(gn, f

n) →
Cte > 0. One of the main gain of this is the fact that relatively high potential yields interesting
quasi-independence in the trajectory of (Xn, n).
With this fact we have (see Section 3.1) something like RTn(gn, f

n) & nEE [RTe(gn, f
n)] in prob-

ability and thanks to the fact that ϕ is increasing and to the expression of quenched mean of
RTe(gn, f

n), in probability for large n

RTn(gn, f
n) & nEE [RTe(gn, f

n)] &
ϕ(nb)

nb
n
∑
k≥1

Ψk
n,nb(f

n,k)
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which makes appear
∑
k≥1 Ψk

n,nb(f
n,k). This also tells that if this sum is very small (for example

by asking excessive constraints on V), this should lead (if we assume that this lower bound is good
enough) to a very small range. Let us now focus on a second assumption.
Assumption 2 (upper bound).
This assumption ((A2) below) is an upper bound for a conditional version of

∑
k≥1 Ψk

n,nb(f
n,k),

to introduce it we actually need two facts and additional notations.
Fact 2 : ([AD20], Lemma 2.3) there exists two real numbers c2, c̃2 > 0 such that for any h > 0

P∗
(

max
|w|≤dh/c2e

|V (w)| > h
)
≤ he−c̃2h. (13)

This fact, that will be useful when cutting on early generations of the tree, justifies the introduction
of following notation : for any n and k, fn,kh is the function defined by

fn,kh (t1, . . . , tk) := inf
s∈[−h,h]m

fn,k+m (s1, . . . , sm, t1 + sm, . . . , tk + sm) , (14)

with m = dh/c2e and s = (s1, . . . , sm) ∈ Rm.
The second fact is about the largest generation visited by the walk before time n or after n
excursions to vertex e∗.
Fact 3 : ([AD20], Lemma 3.2) let (`n = (log n)3, n ≥ 2), there exists A > 0 such that :

lim
n→+∞

P(max
k≤Tn

|Xk| ≤ A`n) = 1.

This fact is here essentially to justify the introduction of the sequence (`n, n) which appears in our
second assumption and Remark 1. Note that a very precise result on the largest generation visited
by the walk before the instant n can be found in [FHS11] .
A last notation we need to introduce, is a conditional and translated version of Ψk

λ(F ) for a given
bounded function F . Let k ∈ N∗, if l ∈ N∗, F : Rl+k −→ R, for all t = (t1, . . . , tl) ∈ Rl

Ψk
λ,λ′(F |t) := E

[∑
|x|=k

e−V (x)F (t1, . . . , tl, V (x1) + tl, . . . , V (x) + tl)1Oλ,λ′ (x)
]

(15)

otherwise if l = 0, Ψk
λ,λ′(F |t) := Ψk

λ,λ′(F ).
We are now ready to introduce the second assumption : for all δ, ε, A,B > 0 and b ∈ [0, 1) there
exists n0 ∈ N∗ such that for any n ≥ n0, l ≤ bA`nc and any t = (t1, . . . , tl) ∈ Rl with tl ≥ −B and
Hl(t) ≤ n ∑

k≥1

Ψk
n,nb−Hl(t)

(
fn,l+kεhn

|t
)
≤ eδtl+ ε

Ahn
∑
k≥1

Ψk
n,nb(f

n,k). (A2)

Let us comment this inequality which plays two roles. A first one ensures that fluctuations of V in
the early generations of the tree have minor influence, this yields the presence of e

ε
Ahn .

Second point is technical and aims to show that EE [RTe(gn, f
n)] & n−bϕ(nb)

∑
k≥1 Ψk

n,nb(f
n,k) in

probability. For that, the second moment of

Zn :=
∑

x∈O
n,nb

e−V (x)fn,kεhn
(Vx)1{V (x)≥A logn,V (x)≥−B,V (x)=V (x)}

has to be controlled, with Vx := (V (x1), . . . , V (x)) and V (x) := minv≤x V (v). For that we first
observe that

Z2
n ≈

∑
z∈T

∑
x,y>z

∏
u∈{x,y}

1{u∈O
n,nb
}e
−V (u)f

n,|u|
εhn

(Vu)1{V (u)≥A logn,V (u)≥−B,V (u)=V (u)}.



Andreoletti, Kagan/Generalized range for slow random walks on trees 9

Then taking the expectation of Z2
n,
∑
k≥1 Ψk

n,nb−Hl(t)(f
n,l+k
εhn

|t) in (A2) actually appears as the

conditional expectation of a well chosen function of translated potential (Vz(u) := V (u)−V (z))u>z.
Indeed, note that u ∈ On,nb together with V (u) = V (u) implies that u ∈ Oz

n,nb−Hz := {u > z :

maxz<v≤uHz,v ≤ n,Hz,u > nb−Hz} with Hz,v :=
∑
z<w≤v e

Vz(w)−Vz(v). Hence, for all δ ∈ (0, 1/2],
by independence of the increments of branching random walk (T, V (u);u ∈ T)

E[Z2
n] . e(1−2δ)BE

[ ∑
z∈On

e−V (z)
∑
x,y>z

∏
u∈{x,y}

1{u∈Oz
n,nb−Hz

}e
−Vz(u)F

n,|u|
Vz

(Vz(u|z|+1), . . . , Vz(u))
]

≈ e(1−2δ)BE
[ ∑
z∈On

e−V (z)
(
eδV (z)

∑
k≥1

Ψk
n,nb−Hz (f

n,l+k|Vz)
)2]

,

where, for |z| = l and any t = (t1, . . . , tl) ∈ Rl

F
n,|u|
t (Vz(ul+1), . . . , Vz(u)) := eδtlf

n,|u|
εhn

(t1, . . . , tl, Vz(ul+1) + tl, . . . , Vz(u) + tl).

Assumtions (A2) finally allows to say that E[Z2
n] . eεhn(

∑
k≥1 Ψk

n,nb(f
n,k))2 for all ε > 0 and n

large enough.
We are now almost ready to state a first result which is a proposition giving a lower and upper
bound for the generalized range stopped at Tn, this proposition is followed by a theorem more
easy to read but that needs extra assumptions. First, let us introduce two ultimate notations, the
first one is a positive sequence (vn, n), defined as follows, for any n ≥ 2 :

vn :=
1

δ1
log(n`n), (16)

(see (4) for the definition of δ1) and for v > 0, introduce

H k
vn =

{
(t1, . . . , tk) ∈ Rk; tk ≥ v

}
, H k

B,vn = {(t1, . . . , tk) ∈ Rk; tk ≥ vn,min
i≤k

ti ≥ −B} (17)

respectively the set of vectors such that its last coordinate is larger than vn and additionally with
any coordinates larger than −B. The introduction of these last two objects are justified by
Fact 4 : for any ε > 0 there exists a > 0 such that (see [Aı̈d13])

P( inf
u∈T

V (u)<− a) ≤ ε,

and Fact 1 we have already talked about saying that, in P∗-probability, vn is a height of potential
usually reach by the walk.

Proposition 1. Recall (11), let εb := min(b+1{b=0}, 1− b)/13 and W :=
∑
|z|=1 e

−V (z). Assume

(1), (3) and (4) hold as well as (A1) and (A2).
Lower bound: there exists c5 > 0 such that for all b ∈ [0, 1), ε ∈ (0, εb), B > 0 and n large enough

P
( RTn(gn, f

n)

n1−bϕ(nb)u1,n
< e−5εhn

)
≤ e−c5εhn

(u1,n)2

(∑
k≥1

Ψk
n,nb(f

n,k
εhn

)
)2

+ hne
−εc̃2hn +

e−min(ε logn,3hn)

(nκbu1,n)2
, (18)

with

u1,n = u1,n(ε) :=
∑
k≥1

Ψk
λn/2,nb

(
fn,kεhn

1Υkn

)
,
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Υk
n := {t ∈ Rk; Hk(t) ≤ nbeεhn} ∩H k

B,v′n
, v′n = vn + εhn and λn = ne−min(10ε logn,5hn).

Upper bound: for any ε > 0 and n large enough

P
( RTn(gn, f

n)

n1−bϕ(nb)u2,n
> eεhn

)
≤ e− ε2hn + o(1) (19)

with

u2,n :=
∑
k≥1

(
Ψk
n,nb(f

n,k) + Ψk
n

(
fn,k1Rk\H k

vn

)
+ Ψk

n,λ′n
(fn,k) + E

[
WΨk

n,λ′n/W
(fn,k)

])
and λ′n := nb(log n)−2.
(18) and (19) remain true replacing RTn(gn, f

n) by RTkn (gn, f
n) with kn = bn/(log n)pc, p > 0.

This proposition is technical and difficult to read, we present it here however because it shows that
all the estimations depend deeply on Ψ.

.,.(f) and gn, recall indeed that key sequence hn defined in
(12) depends both on Ψ.

.,.(f) and κb (b coming from function gn). This also means that without
any more informations on Ψ.

.,.(f) it is difficult to state a more explicit result. Finally, note that
the exact role of (A1) and (A2) will appear clearly in the proof of the lower bound.
We now present a more readable result involving two additional assumptions (A3) and (A4).
They tell essentially that quantities u1,n and u2,n, which appear as the important sequences in
the proposition, are actually very similar. Before that, introduce two additional values : L (with
L = ±∞ possibly) and ξ ∈ {−1, 0} defined as follows

L := lim inf
n→∞

h−1
n log

(
n1−b−κbϕ(nb)

)
, and (20)

ξ := lim
n→∞

h−1
n log

(
nκb

∑
k≥1

Ψk
n,nb(f

k,n)
)
. (21)

First note that, following Remark 1, ξ necessarily exists. Now introduce (A3) and (A4) :

Assumption 3 : for all b ∈ [0, 1), ε ∈ (0, εb), ε1 ∈ (0, ε) and n large enough

u1,n ≥ e−ε1hn
∑
k≥1

Ψk
n,nb(f

n,k). (A3)

Assumption 4 : for all ε1 > 0, b ∈ [0, 1) and n large enough

u2,n ≤ eε1hn
∑
k≥1

Ψk
n,nb(f

n,k). (A4)

The theorems then writes as follows:

Theorem 1.5. Assume (1), (3) and (4) hold, b ∈ [0, 1) and (A1), (A2), (A3) and (A4) are
satisfied, then if L ∈ (−ξ,+∞] in P∗-probability

h−1
n

(
log+ Rn(gn, f

n)− log(n1−b−κbϕ(nb))
)
−→
n→∞

ξ,

if L = −ξ, with ∆n := h−1
n log(n1−b−κbϕ(nb))− inf`≥n h

−1
` log(`1−b−κbϕ(`b)), in P∗-probability

h−1
n log+ Rn(gn, f

n)−∆n −→
n→∞

0,

otherwise L ∈ [−∞,−ξ[ and in P∗-probability

Rn`(gn` , f
n`) −→

`→∞
0,

for some increasing sequence (n`)` of positive integers. Note that when limh−1
n log(n1−b−κbϕ(nb)) =

L, n` = `.
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We now present examples which lead to different values of L. First note that all theorems presented
in the previous section satisfy condition L = +∞ and ξ = −1, for our point of view it is the most
interesting case.
Let us take, for example, gn(x) = 1{x≥nb} and fn,k(t1, t2 , · · · , tk) = 1{tk≥(logn)α}(

∑
l≤kHl(t))−1,

α ∈ [1, 2) as in Theorem 1.3 with α > 1 but b ∈ (1/2, 1), then we can prove that that hn ∼
(log n)α−1/b (with usual notation tn ∼ sn if and only if tn/sn → 1) and n1−b−κbϕ(nb) = n1−2b so
we obtain limh−1

n log(n1−b−κbϕ(nb)) = L = −∞. Also when still α > 1 and b = 1/2 then we can
prove that hn ∼ (log n)α−1/b, ξ = −1 and n1−b−κbϕ(nb) = 1 so limh−1

n log(n1−b−κbϕ(nb)) = L = 0
and we are in the case L ∈ (−∞,−ξ). Otherwise when α = 1 and b = 1/2, we can prove that
hn = log n, ξ = 0 and we are in the case L = −ξ.
Let us finally take the simple example gn(x) = x1{x≥nb} and fn,k = 1. We can prove that for all

b ∈ (0, 1), hn = log n, ξ = 0 and n1−b−κbϕ(nb) = n so limh−1
n log(n1−b−κbϕ(nb)) = L = 1 and we

are in the case L ∈ (−ξ,+∞).

The rest of the paper is decomposed as follows: in Section 2 after short preliminaries (Section 2.1)
we prove theorems of Section 1.1. For these proofs (Section 2.2) we check that the four assumptions
(A1-A4) of Theorem 1.5 are realized obtaining simultaneously the asymptotic of hn. In section
2.3 we prove Theorem 1.5 : essentially Proposition 1 is assumed to be true and we only check that
if Assumptions (A3) and (A4) are true then the theorem comes.
In Section 3 we prove Proposition 1, this is the most technical part of the paper which can be read
independently of the other parts : in Section 3.1 we summarize usual facts, in a second sub-section
we prove a lower bound for stopped generalized range RTn(gn, fn) and finally in a last one an
upper bound.
Finally in the last section we present some estimates about sums of i.i.d. random variables useful
for the proof of the examples of Section 1.1.

2. Proof of the theorems

This section is decomposed in three parts, in the first section below one can find preliminaries that
are useful all along the rest of the paper. In the second sub-section we prove the four theorems
presented as examples, finally last section is devoted to the proof of Theorem 1.5.

2.1. Preliminary material

We recall the many-to-one formula (see [Shi15] Chapter 1, and [FHS11] equation 2.1) which will
be used several times in the paper to compute expectations related to the environment. Note that
the identity below comes from a change of probability measure (see references above), however we
still keep notations P and E for simplicity.

Lemma 2.1 (Many-to-one Lemma). For any t > 0,

E
[ ∑
|x|=m

f(V (xi), 1 ≤ i ≤ m)
]

= E(etSm+ψ(t)mf(Si, 1 ≤ i ≤ m)).

where (Sn)n∈N is the random walk starting at 0, such that the increments (Sn+1 − Sn )n∈N are
i.i.d. and for any measurable function h : Rm → [0,∞),

E(h(S1)) = e−ψ(t)E(
∑
|x|=1

e−tV (x)h(V (x))).
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A second very useful fact is contained in the following remark, it tells essentially that, in prob-
ability, the e−V (x)-weighted number of vertices x such that x ∈ On (recall (9)) can be found in a
quite small quantity when |x| ≤ A`n and can not be found when |x| > A`n. This remark is not
precise at all but will be enough for our purpose.

Remark 2. There exists c3 ∈ (0, 1) such that for any A > 0 and n large enough

E
[ ∑
|x|>bA`nc

e−V (x)1{x∈On}

]
≤ n−Ac3 and E

[ ∑
|x|≤bA`nc

e−V (x)1{x∈On}

]
≤ `n/2,

which implies E
[∑

x∈T e
−V (x)1{x∈On}

]
≤ `n.

Proof. We give a proof here which essentially use technical Lemma 4.6 (for the second inequality
below), indeed by Lemma 2.1 above

E
[ ∑
|x|>bA`nc

e−V (x)1{x∈On}

]
≤

∑
k>bA`nc

P(sup
i≤k

(Si − Si) ≤ log n)

≤
∑

k>bA`nc

exp(−kπ
2σ2(1− ε)
8 log n

) ≤ n−Ac3 .

A similar computation gives the second fact and both of them the last one.

2.2. Proofs of Theorems 1.1 to 1.4

The pattern of the proofs of each theorem is the following : we first prove two facts (an upper
and a lower bound) about sum

∑
k≥1 Ψk

·,·(F ) with specific F depending on the considered function

fn,k(t1, t2, · · · , tk) and also slightly different wether we are looking for an upper or a lower bound.
Then we use this two facts to prove that (A1), (A2), (A3) and (A4) are satisfied.
In these proof we use several time notation εb = min(b+ 1{b=0}, 1− b)/13 which was introduced
in Proposition 1.

Proof of Theorem 1.1. Recall that fn,k(t1, t2, · · · , tk) = 1{tk≥(logn)α}, α ∈ (1, 2) and see (9) for
the definition of Oλ,λ′ . All along the proof we assume that B, δ > 0, ε ∈ (0, εb), n is large enough
and t ≥ −B. Let us start with the proof of the following two facts:

E
[ ∑
x∈On

e−V (x)1{V (x)≥(logn)α−t}

]
≤ eδt−(logn)α−1(1−ε), (22)

and for any 0 ≤ m ≤ log n

E
[ ∑
x∈O

λn,nb

e−V (x)1{V (x)≥(logn)α+m, Hx≤nbeε(logn)α−1 , V (x)≥−B}

]
≥ e−(logn)α−1(1+ε), (23)

with λn = ne−6(logn)α−1

and recall V (x) = minu≤x V (u). We first deal with the upper bound (22).
Recall `n = (log n)3,

E
[ ∑
x∈On

e−V (x)1{V (x)≥(logn)α−t}

]
≤

∑
k≤bA`nc

E
[ ∑
|x|=k

e−V (x)1{V (x)≥(logn)α−t}1{x∈On}

]
+ E

[ ∑
|x|>bA`nc

e−V (x)1{x∈On}

]
,
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where A > 0 is chosen such that E[
∑
|x|>bA`nc e

−V (x)1{x∈On}] ≤ 1/n (see Remark 2). This yields,

as α ∈ (1, 2), E[
∑
|x|>bA`nc e

−V (x)1{x∈On}] ≤ eδ(t+B) 1
n ≤

1
2e
δt−(logn)α−1(1−ε) for n large enough

and any t ≥ −B. Thanks to many-to-one Lemma 2.1, the first sum in the above inequality is
smaller than∑

k≤bA`nc

P
(
Sk ≥ (log n)α − t, max

j≤k
Sj − Sj ≤ log n

)
≤ bA`ncP

(
max

j≤τ(logn)α−t
Sj − Sj ≤ log n

)
,

with τr = inf{i ≥ 1;Si ≥ r}. Then, thanks to Lemma A.3 in [HS16a], and as t ≥ −B

bA`ncP
(

max
j≤τ(logn)α−t

Sj − Sj ≤ log n
)
≤ bA`nce

t
logn−(logn)α−1(1− ε2 ) ≤ bA`nce

t+B
logn−(logn)α−1(1− ε2 )

≤ eδt+δB−(logn)α−1(1− ε2 )

≤ 1

2
eδt−(logn)α−1(1−ε),

so we get exactly (22).
We now turn to the lower bound (23). Let `′n = (log n)4 and αn = (log n)α+log n. By many-to-one
Lemma, for any m ≤ log n, expectation in (23) is larger than∑

k≥1

P
(
Sk ≥ αn, max

j≤k
HS
j ≤ λn, nb < HS

k ≤ nbeε(logn)α−1

, Sk ≥ −B
)
,

with HS
j :=

∑j
i=1 e

Si−Sj . For any b ∈ (0, 1), by Lemma 4.3 (76) (with ` = (log n)2, t` = αn,

q = 1, ab = a = 6, d = (α − 1)/2 and c = ε) above sum is larger than e−(logn)α−1(1+ε). Otherwise
if b = 0, observe that for all k ≤ `′n, Sk = Sk implies HS

k ≤ k ≤ `′n so the sum is larger than∑
k≤`′n

P
(
Sk ≥ αn, maxj≤k HS

j ≤ λn, Sk = Sk, Sk ≥ −B
)
. Lemma 4.5 (with ` = (log n)2,

t` = αn, d = 1/2, a = 6 and d′ = (α− 1)/2) leads to (23) also for b = 0.
We are now ready to prove that fn satisfies assumptions (A1), (A2), (A3) and (A4). Recall
that Ψk

n,nb(f
n,k) = E

[∑
|x|=k e

−V (x)fn,k(V (x1), . . . , V (x))1{x∈O
n,nb
}
]

where x ∈ On,nb if and

only if maxj≤|x|Hxj ≤ n and Hx > nb, also Ub = {κ ≥ 0; for all k ≥ 1, t ∈ Rk, n ≥ 1 :

1{Hk(t)>nb}f
n,k(t) ≤ C∞n−κ} with C∞ = supn,` ‖fn,`‖∞.

• Check of (A1) and asymptotic of hn. We obtain from (23) with m = 0 that for any ε ∈ (0, εb)
and n large enough E[

∑
x∈O

n,nb
e−V (x)1{V (x)≥(logn)α}] is larger than (as λn ≤ n)

E
[ ∑
x∈O

λn,nb

e−V (x)1{V (x)≥(logn)α}1{Hx≤nbeε(logn)α−1 ,V (x)≥−B}

]
≥ e−(logn)α−1(1+ε).

Note that, above inequality, implies that for all b ∈ [0, 1), κb = max Ub = 0, indeed if we had
κb > 0 then this should imply that for any x ∈ T

e−V (x)1{x∈O
n,nb
}f
n,k(V (x1), . . . , V (x)) ≤ C∞n−κbe−V (x)1{x∈O

n,nb
}

which implies that E[
∑
x∈O

n,nb
e−V (x)1{V (x)≥(logn)α}1{Hx≤nbeε(logn)α−1 ,V (x)≥−B}] is smaller than

C∞n
−κbE[

∑
x∈On

e−V (x)] ≤ C∞`nn
−κb by Remark 2, but this contradicts the above lower bound

(23) as α ∈ (1, 2).
Then, by definition of Ψk

n,nb ,∑
k≥1

Ψk
n,nb(f

n,k) = E
[ ∑
x∈O

n,nb

e−V (x)1{V (x)≥(logn)α}

]
≥ e−(logn)α−1(1+ε),
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and additionally with (22) (taking t = 0) asymptotic of hn is given by

hn =
∣∣∣nκb log

(∑
k≥1

Ψk
n,nb(f

n,k)
)∣∣∣ =

∣∣∣ log E
[ ∑
x∈O

n,nb

e−V (x)1{V (x)≥(logn)α}

]∣∣∣ ∼ (log n)α−1.

We also deduce from the previous lower bound that (A1) is satisfied, indeed, as α ∈ (1, 2),∑
k≥1 Ψk

n,nb(f
n,k) ≥ n−(κb+ε1)∧1 for any ε1 > 0 and n large enough.

• For (A2), recalling mn = dεhn/c2e (see (13)), then by definition

fn,jεhn
(t1, . . . , tj) = inf

s∈[−εhn,εhn]mn
fn,mn+j(s1, . . . , smn , t1 + smn , . . . , tj + smn)

= inf
smn∈[−εhn,εhn]

1{tj+sm≥(logn)α} = 1{tj≥(logn)α+εhn}.

Observe that for A > 0, n large enough, any l ∈ N and t = (t1, . . . , tl), by definition of Ψk
n(F |t)

(see (15)) and (22) with ε/3A instead of ε∑
k≥1

Ψk
n,nb−Hl(t)

(
fn,l+kεhn

|t
)

= E
[ ∑
x∈On

e−V (x)1{V (x)+tl≥(logn)α+εhn}1{Hx>nb−Hl(t)}

]
≤ E

[ ∑
x∈On

e−V (x)1{V (x)≥(logn)α−tl}

]
≤ eδtl−(logn)α−1(1− ε

3A ).

Moreover, e−(logn)α−1(1− ε
3A ) = e

2ε
3A (logn)α−1

e−(logn)α−1(1+ ε
3A ) ≤ e

ε
Ahn

∑
k≥1 Ψk

n,nb(f
n,k), the last

inequality coming from the fact that hn ∼ (log n)α−1 and (23) with m = 0 and as above ε
3A

instead of ε. So (A2) is satisfied.

We are left to prove that technical assumptions (A3) and (A4) are realised.
• For (A3), recall first, from Proposition 1, that for all b ∈ [0, 1), Υk

n is the set

{t = (t1, . . . , tk) ∈ Rk;Hk(t) ≤ nbeεhn , tk ≥ v′n,min
j≤k

tj ≥ −B},

with v′n = log(n`n)/δ1 + εhn and λn = nemin(10ε logn,−5hn) = ne−5hn for large n. Let 0 < ε1 < ε,

note that λn/2 ≥ λn = ne−6(logn)α−1

so for n large enough

u1,n =
∑
k≥1

Ψk
λn/2,nb

(fn,kεhn
1Υkn

) = E
[ ∑
x∈O

λn/2,nb

e−V (x)1{V (x)≥(logn)α+εhn,Hx≤nbeεhn ,V (x)≥−B}

]
≥ E

[ ∑
x∈O

λn,nb

e−V (x)1
{V (x)≥(logn)α+hn,Hx≤nbe

ε1
3

(logn)α−1
,V (x)≥−B}

]
≥ e−(logn)α−1(1+

ε1
3 ).

where we use that (log n)α > log(n`n)/δ1 for the second equality and the last inequality comes
from (23), with m = hn and ε1/3 instead of ε.

Moreover e−(logn)α−1(1+
ε1
3 ) = e−

2ε1
3 (logn)α−1

e−(logn)α−1(1− ε13 ) ≥ e−ε1hn
∑
k≥1 Ψk

n,nb(f
n,k) which

comes from the fact that hn ∼ (log n)α−1 and (22) with t = 0, ε13 instead of ε.
• Finally for (A4), recall definition of u2,n just below (19). First observe that as α ∈ (1, 2), for n
large enough, (log n)α > log(n`n)/δ1 so for any k

Ψk
n(fn,k1R\H k

vn
) = E

[ ∑
|x|=k

e−V (x)1{V (x)≥(logn)α,V (x)<log(n`n)/δ1}1{x∈On}

]
= 0.



Andreoletti, Kagan/Generalized range for slow random walks on trees 15

Recall that E[W ] = eψ(1) = 1 and λ′n = nb(log n)−2 so∑
k≥1

(
Ψk
n,λ′n

(fn,k) + E
[
WΨk

n,λ′n/W
(fn,k)

])
≤
∑
k≥1

(
Ψk
n(fn,k) + E

[
WΨk

n(fn,k)
])

= 2
∑
k≥1

Ψk
n(fn,k),

2
∑
k≥1 Ψk

n(fn,k) = 2E[
∑
x∈On

e−V (x)1{V (x)≥(logn)α}] ≤ 2e−(logn)α−1(1− ε16 ) ≤ e−(logn)α−1(1− ε13 )

thanks to (22) with t = 0, ε1/6 instead of ε.

Moreover e−(logn)α−1(1− ε13 ) = e
2ε1
3 (logn)α−1

e−(logn)α−1(1+
ε1
3 ) ≤ eε1hn

∑
k≥1 Ψk

n,nb(f
n,k). The last

inequality comes from the fact that hn ∼ (log n)α−1 and (23) with m = 0, ε13 instead of ε.

Proof of Theorem 1.2. Here fn,k(t1, t2, · · · , tk) = 1{tbk/βc≥(logn)α} with β > 1 and α ∈ (1, 2), let
us start with the proof of the two following facts, for all B, δ > 0, ε ∈ (0, εb), n large enough, any
t ≥ −B and i ∈ N

E
[ ∑
x,b(|x|+i)/βc>i

e−V (x)1{V (xb(|x|+i)/βc−i)≥(logn)α−t}1{x∈On}

]
≤ eδt−cβ(logn)α−1(1−ε), (24)

and for any m ≤ log n

E
[ ∑
x,b(|x|+i)/βc>i

e−V (x)1{V (xb(|x|+i)/βc−i)≥(logn)α+m}1{x∈Υn∩O
λn,nb

}

]
≥ e−cβ(logn)α−1(1+ε), (25)

with λn = ne−6cβ(logn)α−1

, for any a > 1
δ1

Υn = Υn(ε) := {x ∈ T;Hx ≤ nbeεcβ(logn)α−1

, V (x) ≥ a log n, V (x) ≥ −B},

and cβ = −1 − π
√
β − 1/2 + ρ((β − 1)π2/4) (for ρ see (5)). Recall `n = (log n)3 and introduce

Ln := b(log n)2+εαc with εα ∈ (0, α− 1).
Proof of (24) : first note that if t > (log n)α/2, (24) is obviously satisfied, indeed

E
[ ∑
x,b(|x|+i)/βc>i

e−V (x)1{V (x(b(|x|+i)/βc−i))≥(logn)α−t}1{x∈On}

]
≤ E

[ ∑
x∈On

e−V (x)
]
,

and by Remark 2, E[
∑
x∈On

e−V (x)] = E[
∑
x∈On

e−V (x)]eδt−δt ≤ `ne
δt− δ2 (logn)α ≤ eδt−cβ(logn)α−1

for n large enough. Now assume t ≤ (log n)α/2. Expectation in (24) is smaller than∑
k≤bA`nc

∑
p≥1

1{p=b k+i
β c−i}

E
[ ∑
|x|=k

e−V (x)1{V (xp)≥(logn)α−t}1{x∈On}

]
+ E

[ ∑
|x|>bA`nc

e−V (x)1{x∈On}

]
with A > 0 such that the last term is smaller than 1/n (Remark 2). Note that p = bk+i

β c − i

implies k ≥ dβpe and as
∑
k≤bA`nc 1{p=b k+i

β c−i}
≤ β for any p ≥ 1, the sum above is smaller, by

many-to-one Lemma, than

β
∑

p≤bA`nc

P
(
Sp ≥ (log n)α − t, max

j≤dpβe
HS
j ≤ n

)
+

1

n
≤β
bA`nc∑
p=Ln

P
(
Sp ≥ (log n)α − t, max

j≤dpβe
HS
j ≤ n

)
(26)

+ β
∑
p<Ln

P
(
Sp ≥ (log n)α − t

)
+

1

n
.
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For the second sum in (26), by exponential Markov inequality, for n large enough, all p < Ln and
t ≥ −B

P
(
Sp ≥ (log n)α − t

)
≤ eδnt−δn(logn)α+pψ(1−δn) ≤ eδn(t+B)− (logn)2α

2σ2Ln
+Lnψ(1−δn) ≤ eδt−(1−ε) (logn)2α

2σ2Ln ,

with δn := (log n)α/σ2Ln, and we have used that ψ(1 − δn) ∈ R+ for the second inequality and
that δn → 0 (α ∈ (1, 2)) together with ψ(1) = ψ′(1) = 0 and ψ′′(1) = σ2 for the last one.
For the first sum in (26), which gives the main contribution, by Markov property at time p,
P
(
Sp ≥ (log n)α − t,maxj≤dβpeH

S
j ≤ n

)
is smaller than P

(
Sp ≥ (log n)α − t,maxj≤pH

S
j ≤

n
)
P
(

maxj≤d(β−1)peH
S
j ≤ n

)
. Then thanks to Lemma 4.6 (78) (with ` = (log n)2, d(β − 1)pe and

ε/2 instead respectively of k and ε), for n large enough and any p ∈ {Ln, . . . , bA`nc}

P
(

max
j≤d(β−1)pe

HS
j ≤ n

)
≤ e−p

π2σ2(β−1)

8(logn)2
(1− ε2 )

= e
−p π2σ2(β−1)

8((1−ε/2)−1/2 logn)2 .

Hence, as log n ≤ (1 − ε/2)−1/2 log n,
∑bA`nc
p=Ln

P
(
Sp ≥ (log n)α − t,maxj≤dpβeH

S
j ≤ n

)
is smaller

than

bA`nc∑
p=Ln

E
[
1{τ(logn)α−t≤p, maxj≤k Sj−Sj≤(1−ε/2)−1/2 logn}e

−p π2σ2(β−1)

8((1−ε/2)−1/2 logn)2

]
≤ A`nE

[
1{maxj≤τ(logn)α−t Sj−Sj≤(1−ε/2)−1/2 logn}e

−τ(logn)α−t
π2σ2(β−1)

8((1−ε/2)−1/2 logn)2

]
≤ A`ne

√
1− ε2

cβt

logn−cβ(logn)α−1(1− ε2 ) ≤ A`ne
cβ(t+B)

logn −cβ(logn)α−1(1− ε2 ) ≤ 1

3
eδt−cβ(logn)α−1(1−ε),

where Lemma 4.1 (with ` = ((1 − ε/2)−1/2 log n)2, r(`) = (log n)α − t, c = π2(β − 1)/4 and
1 −

√
1− ε/2 instead of ε) provides the second inequality. Finally collecting all upper bounds of

the three sums in (26), for n large enough

E
[ ∑
x;b(|x|+i)/βc>i

e−V (x)1{V (x(b(|x|+i)/βc−i))≥(logn)α−t}1{x∈On}

]
≤ 1

3
eδt−cβ(logn)α−1(1−ε) + βe

δt−(1−ε) (logn)2α

2σ2Ln +
1

n
≤ 2

3
eδt−cβ(logn)α−1(1−ε) +

eδ(t+B)

n
,

which is smaller than eδt−cβ(logn)α−1(1−ε) (we have used that (log n)2α/Ln ≥ (log n)2(α−1)−εα and
(log n)α−1 = o((log n)2(α−1)−εα)). This yields the upper bound in (24).
Proof of (25). Let αn := (log n)α + log n. For all m ≤ log n, by many-to-one Lemma expectation
in (25) is larger than∑
p,k≥1

1{p=b(k+i)/βc−i}P
(
Sp ≥ αn, nb < HS

k ≤ nbeεcβ(logn)α−1

,max
j≤k

HS
j ≤ λn, Sk ≥ v′n, Sk ≥ −B

)
.

The probability above is larger than (as αn > a log n for all a > 1
δ1

)

P
(
Sp ≥ αn, Sp ≥ −B,Sp = Sp, n

b < HS
k ≤ nbeεcβ(logn)α−1

,max
j≤k

HS
j ≤ λn, min

p<j≤k
Sj ≥ Sp

)
.

Recall that HS
j =

∑j
i=1 e

Si−Sj so we have, for any p < j ≤ k, HS
j = eSp−SjHS

p + HS
p,j where

HS
p,j =

∑j
i=p+1 e

Si−Sj . Note that Sp = Sp and minp<j≤k Sj ≥ Sp implies HS
j ≤ p + HS

p,j so the
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previous probability is larger than

P
(
Sp ≥ αn, Sp ≥ −B,Sp = Sp,max

j≤p
HS
j ≤ λn, nb < HS

p,k ≤nbeεcβ(logn)α−1

− p

, max
p<j≤k

HS
p,j ≤ λn − p, min

p<j≤k
Sj ≥ Sp

)
,

which, thanks to Markov property at time p, is nothing but the product of P
(
Sp ≥ αn, Sp ≥

−B,Sp = Sp,maxj≤pH
S
j ≤ λn

)
and P

(
nb < HS

k−p ≤ nbeεcβ(logn)α−1−p,maxj≤k−p H
S
j ≤ λn−p =

ne−6(logn)α−1 − p, Sk−p ≥ 0
)
. From now, let p ∈ {Ln, . . . , `′n = (log n)4}. We first deal with the

second probability. Observe that for all i ≥ 0, p = b(k + i)/βc − i implies k − p ≥ d(β − 1)Lne.
It follows that for all ε ∈ (0, εb), n large enough, for all Ln ≤ p ≤ `′n, k ≥ 1, i ≥ 0 such that

p = b(k + i)/βc − i, P
(
nb < HS

k−p ≤ nbeεcβ(logn)α−1 − p,maxj≤k−p HS
j ≤ λn − p, Sk−p ≥ 0

)
is

larger than (as λn − p ≥ λn − `′n ≥ ne−7cβ(logn)α−1

)

P
(
nb < HS

k−p ≤ nbe
ε
2 cβ(logn)α−1

, max
j≤k−p

HS
j ≤ ne−7cβ(logn)α−1

, Sk−p ≥ 0
)
≥ e−

π2σ2

8
(k−p)

(logλ′n)2 ,

with λ′n := n(1+ε/2)−1/2

. Last inequality comes from Lemma 4.6 (79) (with ` = (log n)2, a = 7,
c =

εcβ
2 , d = α−1

2 , k − p and ε/2 instead respectively of k and ε). Equality p = b(k + i)/βc − i
also implies, for any 0 ≤ i ≤ log n that k − p ≤ (p + log n)(β − 1) + β so it follows that above

probability is larger than C exp(π
2σ2(β−1)

8(logλ′n)2 p) for some positive constant C ∈ (0, 1). Collecting the

previous inequalities together with Lemma 4.4 give, as
∑
k≥1 1{p=b(k+i)/βc−i} ≥ 1, that for n large

enough mean in (25) is larger than

C

`′n∑
p=Ln

E
[
e
−π

2σ2(β−1)

8(logλ′n)2
p
1
{Sp≥αn,Sp≥−B,Sp=Sp,maxj≤pH

S
j ≤ne

−7cβ(logn)α−1
}

]∑
k≥1

1{p=b(k+i)/βc−i}

≥ CP(S`′n ≥ 0)2E
[
e
−π

2σ2(β−1)

8(logλ′n)2
ταn1{Ln≤ταn≤`′n,∀j≤ταn :Sj−Sj≤logλ′n}

]
≥ CP(S`′n ≥ 0)2P(S`′n ≥ αn)E

[
e
−π

2σ2(β−1)

8(logλ′n)2
ταn1{∀j≤ταn :Sj−Sj≤logλ′n}

]
−P(SLn ≥ αn).

Note that thanks to (68) and the fact that α ∈ (1, 2), we can find constant c(1.2) > 0 such that

CP
(
S`′n ≥ 0

)2
P
(
S`′n ≥ αn

)
≥ c(1.2)(`

′
n)−1 ≥ 2e−

ε
2 (logn)α−1

. Then applying Lemma 4.1 (with

` = logλ′n, r = αn, c = π2(β − 1)/4 and
√

1 + ε/2− 1 instead of ε), for n large enough

E
[
e
−π

2σ2(β−1)

8(logλ′n)2
ταn1{∀j≤ταn :Sj−Sj≤logλ′n}

]
≥ e−cβ(logn)α−1(1+ ε

2 ).

Finally, by Markov inequality, P(SLn ≥ αn) ≤ Lne
−c′(1.2)α

2
n/Ln for some constant c′(1.2) > 0.

Since α2
n/Ln ≥ (log n)2(α−1)−εα and (log n)α−1 = o((log n)2(α−1)−εα) we get that P(SLn ≥ αn) ≤

e−cβ(logn)α−1(1+ε). Collecting the different estimates yields (25).

We are ready to prove that fn satisfies assumptions (A1), (A2), (A3) and (A4). Recall that
Ψk
n,nb(f

n,k) = E
[∑

|x|=k e
−V (x)fn,k(V (x1), . . . , V (x))1{x∈O

n,nb
}
]

where x ∈ On,nb if and only if

maxj≤|x|Hxj ≤ n and Hx > nb, Ub = {κ ≥ 0; for all k ≥ 1, t ∈ Rk, n ≥ 1 : 1{Hk(t)>nb}f
n,k(t) ≤

C∞n
−κ} with C∞ = supn,` ‖fn,`‖∞.
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• Check of (A1) and asymptotic of hn. We obtain from (25) with i = m = 0 and n large enough

E
[ ∑
x∈O

n,nb

e−V (x)1{V (xb|x|/βc)≥(logn)α}

]
≥ E

[∑
x∈T

e−V (x)1{V (xb|x|/βc)≥(logn)α}1{x∈Υn∩O
λn,nb

}

]
≥ e−cβ(logn)α−1(1+ε).

This implies that for all b ∈ [0, 1), κb = max Ub = 0 (we use a similar argument than in the proof
of Theorem 1.1) and additionaly with (24), gives, taking i = t = 0

hn =
∣∣∣nκb log

(∑
k≥1

Ψk
n,nb(f

n,k)
)∣∣∣ =

∣∣∣ log E
[ ∑
x∈O

n,nb

e−V (x)1{V (xb|x|/βc)≥(logn)α}

]∣∣∣ ∼ cβ(log n)α−1.

We also deduce from the previous lower bound that (A1) is satisfied.
• For (A2), recalling mn = dεhn/c2e (c2 is defined in (13)), by definition, for any j > 0

fn,jεhn
(t1, . . . , tj) = inf

s∈[−εhn,εhn]mn
fn,mn+j(s1, . . . , smn , t1 + smn , . . . , tj + smn)

= inf
smn∈[−εhn,εhn]

1{tb(mn+j)/βc−mn≥(logn)α−smn}

= 1{b(mn+j)/βc>mn}1
{
tb(mn+j)/βc−mn≥(logn)α+εhn

}.
Then for any l ∈ N∗ and all t = (t1, . . . , tl) ∈ Rl, fn,l+kεhn

(t1, . . . , tl, V (x1) + tl, . . . , V (x) + tl), with
|x| = k, is equal to

1{mn<b(k+i)/βc≤i}1{tb(k+i)/βc−mn≥(logn)α+εhn} + 1{b(k+i)/βc>i}1{V (x(b(k+i)/βc−i))+tl≥(logn)α+εhn},

with i = mn + l. Recall definition of Ψ.
.,.(F |t) in (15), we have∑

k≥1

Ψk
n,nb−Hl(t)

(
fn,l+kεhn

|t
)
≤ E

[ ∑
x∈On

e−V (x)fn,l+kεhn
(t1, . . . , tl, V (x1) + tl, . . . , V (x) + tl)

]
≤
∑
k≥1

1{mn<b(i+k)/βc≤i}1{tb(i+k)/βc−mn≥(logn)α}Ψ
k
n(1)

+ E
[ ∑
x;b(|x|+i)/βc>i

e−V (x)1{V (x(b(|x|+i)/βc−i))≥(logn)α−tl}1{x∈On}

]
.

∑
k≥1 1{mn<b(i+k)/βc≤i}1{tb(i+k)/βc−mn≥(logn)α}Ψ

k
n(1) is equal to

l∑
p=1

1{tp≥(logn)α}
∑
k≥1

Ψk
n(1)1{p=b i+kβ c−mn}

≤ β
l∑

p=1

1{tp≥(logn)α},

where we used that
∑
k≥1 Ψk

n(1)1{p=b i+kβ c−mn}
≤ eψ(1)

∑
k≥1 1{p=b i+kβ c−mn}

≤ β. Also by (24)

with i = mn + l, t = tl,
ε

4A instead of ε,

E
[ ∑
x;b(|x|+i)/βc>i

e−V (x)1{V (x(b(|x|+i)/βc−i))≥(logn)α−tl}1{x∈On}

]
≤ eδtl−cβ(logn)α−1(1− ε

4A ),

so ∑
k≥1

Ψk
n,nb−Hl(t)

(
fn,l+kεhn

|t
)
≤ β

l∑
p=1

1{tp≥(logn)α} +
1

2
eδtl−cβ(logn)α−1(1− ε

3A ).
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Note that β
∑l
p=1 1{tp≥(logn)α} is very small for n large enough, any l < bA`nc and Hl(t) ≤ n.

Indeed
∑l
p=1 e

δ(tp−tl) ≤ lHl(t)δ ≤ A`nnδ so

β

l∑
p=1

1{tp≥(logn)α} = eδtlβ

l∑
p=1

eδ(tp−tl)e−δtp1{tp≥(logn)α} ≤ eδtlβA`nnδe−δ(logn)α ,

which, as α ∈ (1, 2), is smaller than 1
2e
δtl−cβ(logn)α−1(1− ε

3A ). Finally observe that

e−cβ(logn)α−1(1− ε
3A ) = ecβ(logn)α−1 2ε

3A e−cβ(logn)α−1(1+ ε
3A ) ≤ e εAhn

∑
k≥1

Ψk
n,nb(f

n,k),

where we have used that hn ∼ cβ(log n)α−1 and (25) with i = m = 0.

We are left to prove that technical assumptions (A3) and (A4) are realised, the ideas are very
similar than for the same assumptions of previous theorem we detail them here however to keep
the proofs independent the one from others.
• For (A3), recall that Υk

n is the set

{t = (t1, . . . , tk) ∈ Rk;Hk(t) ≤ nbeεhn , tk ≥ v′n,min
j≤k

tj ≥ −B},

with v′n = 1
δ1

log(n`n) + εhn. Let 0 < ε1 < ε and recall that λn = ne−5hn . Note that λn/2 ≥ λn =

ne−6(logn)α−1

so
∑
k≥1 Ψk

λn/2,nb
(fn,kεhn

1Υkn
) ≥

∑
k≥1 Ψk

λn,nb
(fn,kεhn

1Υkn
) which is nothing but

E
[ ∑
x∈O

λn,nb

e−V (x)1{b |x|+mnβ c>mn}
1{V (xb(|x|+mn)/βc−mn )≥(logn)α+εhn,Hx≤nbeεhn ,V (x)≥v′n,V (x)≥−B}

]
≥ E

[ ∑
x,b(|x|+mn)/βc>mn

e−V (x)1{V (xb(|x|+mn)/βc−mn )≥(logn)α+hn}1{x∈Υn(
ε1
3 )∩O

λn,nb
}

]
≥ e−cβ(logn)α−1(1+

ε1
3 ).

where that last inequality comes from (25) with i = m = mn and ε1/3 instead of ε. Moreover

e−cβ(logn)α−1(1+
ε1
3 ) = e−

2ε1
3 cβ(logn)α−1

e−cβ(logn)α−1(1− ε13 ) ≥ e−ε1hn
∑
k≥1 Ψk

n,nb(f
n,k), the last in-

equality comes from the fact that hn ∼ cβ(log n)α−1 and (24) with i = t = 0.
• For (A4), recall that λ′n = nb(log n)−2. First, observe that for all k ∈ N∗, α ∈ (1, 2), (log n)α −
log(n`n)/δ1 > log n for n large enough so

Ψk
n(fn,k1R\H k

vn
) = E

[ ∑
|x|=k

e−V (x)1{V (xb|x|/βc)≥(logn)α,V (x)<log(n`n)/δ1}1{x∈On}

]
≤ E

[ ∑
|x|=k

e−V (x)1{V (x)≥(logn)α,V (x)<log(n`n)/δ1}1{V (x)−V (x)≤logn}

]
= 0.

Recall that, W =
∑
|z|=1 e

−V (z) and E[W ] = eψ(1) = 1 so∑
k≥1

(
Ψk
n,λ′n

(fn,k) + E
[
WΨk

n,λ′n/W
(fn,k)

])
≤
∑
k≥1

(
Ψk
n(fn,k) + E

[
WΨk

n(fn,k)
])

= 2
∑
k≥1

Ψk
n(fn,k)

and thanks to (24) with i = t = 0 and ε1
4 instead of ε

2
∑
k≥1

Ψk
n(fn,k) = 2E

[ ∑
x∈On

e−V (x)1{V (x|x|/β)≥(logn)α}

]
≤ 2e−cβ(logn)α−1(1− ε14 )

≤ e−cβ(logn)α−1(1− ε13 ).
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Moreover e−cβ(logn)α−1(1− ε13 ) = e
2ε1
3 cβ(logn)α−1

e−cβ(logn)α−1(1+
ε1
3 ) ≤ eε1hn

∑
k≥1 Ψk

n,nb(f
n,k), the

last inequality comes from the fact that hn ∼ cβ(log n)α−1 and (25) with i = m = 0.

Proof of Theorem 1.3.
Assume first that a = d = 1 and α ∈ (1, 2) which corresponds to the second and third case of
the theorem. Let us start with the proof of the two facts, note that we distinguish wether b = 0 or
b ∈ (0, 1/2).
Facts for the case b = 0 : for all B, δ > 0, ε ∈ (0, εb) and n large enough, for any t ≥ −B,

E
[ ∑
x∈On

e−V (x)∑
j≤|x|Hxj

1{V (x)≥(logn)α−t}

]
≤ eδt−2(logn)α/2(1−ε), (27)

and for all 0 ≤ m ≤ log n, 0 ≤M ≤ e(logn)α/2

E
[∑
x∈T

e−V (x)1{x∈Υn,1∩Oλn,1}

M |x|+
∑
j≤|x|Hxj

1{V (x)≥(logn)α+m}

]
≥ e−2(logn)α/2(1+ε), (28)

with λn,1 = ne−12(logn)α/2 and

Υn,1 = Υn,1(ε) := {x ∈ T;Hx ≤ e2ε(logn)α/2 , V (x) ≥ −B}.

We first deal with the upper bound (27). Note that if t > (log n)α/2, (27) is obviously satisfied,
indeed, (

∑
j≤|x|Hxj )

−11{V (x)≥(logn)α−t} ≤ 1 so for n large enough

E
[ ∑
x∈On

e−V (x)∑
j≤|x|Hxj

1{V (x)≥(logn)α−t}

]
≤ E

[ ∑
x∈On

e−V (x)
]
e−δteδt ≤ `neδt−

δ
2 (logn)α

≤ eδt−2(logn)α/2(1−ε),

where we have used Remark 2. Now assume t ≤ (log n)α/2, by many-to-one Lemma, expectation
in (27) is smaller than∑

k≤bA`nc

E
[ 1∑k

j=1H
S
j

1{τ(logn)α−t≤k, maxj≤kH
S
j ≤n}

]
+ E

[ ∑
|x|>bA`nc

e−V (x)1{x∈On}

]
, (29)

the second sum is treated as usual : Remark 2 with a choosen A, together with the fact that

α ∈ (1, 2) and t ≥ −B implies that E
[∑

|x|>bA`nc e
−V (x)1{x∈On}

]
≤ 1/n ≤ 1

2e
δt−2(logn)α/2(1−ε).

Also using that (
∑k
j=1H

S
j )−1 ≤ e−maxj≤k Sj−Sj leads to

∑
k≤bA`nc

E
[ 1∑k

j=1H
S
j

1{τ(logn)α−t≤k, maxj≤kH
S
j ≤n}

]
≤ bA`ncE

[
e
−maxj≤τ(logn)α−t Sj−Sj

]
.

Since t < (log n)α/2, (log n)α−t > (log n)α/2 so by Lemma 4.2 with ε
2 instead of ε and any t ≥ −B

E
[
e
−maxj≤τ(logn)α−t Sj−Sj

]
≤ e−2(1− ε2 )

√
(logn)α−t ≤ e

−2(1− ε2 )
(logn)α−(t+B)√

(logn)α+B ≤ 1

2
eδt−2(logn)α/2(1−ε).

this treats the first sum in (29) and yields (27).

We now turn to the lower bound (28). Recall `′n = (log n)4, using that
∑k
j=1H

S
j ≤ kmaxj≤kH

S
j
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and the fact that m ≤ log n, 0 ≤ M ≤ e(logn)α/2 and λn,1 > e(logn)α/2 , we obtain thanks to
many-to-one Lemma

E
[∑
x∈T

e−V (x)1{x∈Υn,1∩Oλn,1}

M |x|+
∑
j≤|x|Hxj

1{V (x)≥(logn)α+m}

]
≥
∑
k≤`′n

E
[ 1

2ke(logn)α/2
1{Sk≥αn, maxj≤kH

S
j ≤e(logn)α/2 , Sk≥−B, Sk=Sk}

]

≥ e−(logn)α/2

2`′n

∑
k≤`′n

P
(
Sk ≥ αn, max

j≤k
HS
j ≤ e(logn)α/2

, Sk ≥ −B,Sk = Sk
)
,

where αn = (log n)α + log n. By Lemma 4.5 (with ` = (log n)2, t` = αn, d = α/4 and a = 0) the

previous probability is larger than e−(logn)α/2(1+ ε
2 ) . Finally collecting the inequalities we get (28).

Facts for the case b ∈ (0, 1/2) : for any t ≥ −B, r ≥ 0 and w > 0

E
[ ∑
x∈On

e−V (x)1{r+Hx>λ′n/w}

r +
∑
j≤|x|Hxj

1{V (x)≥(logn)α−t}

]
≤ (w + 1)n−beδt−

1−ε
b (logn)α−1

(30)

where we recall that λ′n = nb(log n)−2. Also for all 0 ≤ m ≤ log n, 0 ≤M ≤ nb

E
[∑
x∈T

e−V (x)1{x∈Υn,2∩O
λn,2,n

b}

M |x|+
∑
j≤|x|Hxj

1{V (x)≥(logn)α+m}

]
≥ n−be−

1+ε
b (logn)α−1

(31)

with λn,2 = ne−
6
b (logn)α−1

and

Υn,2 = Υn,2(ε) := {x ∈ T;Hx ≤ nbe
ε
b (logn)α−1

, V (x) ≥ −B}.

We first deal with the upper bound (30). We split the sum according to the generation of x: when
|x| > bA`nc, we use that 1{r+Hx>λ′n/w,V (x)≥(logn)α−t}(r +

∑
j≤|x|Hxj )

−1 ≤ 1 so expectation in

(30) is smaller than

E
[ ∑
|x|>bA`nc

e−V (x)1{x∈On}

]
+ E

[ ∑
|x|≤bA`nc

e−V (x)1{r+Hx>λ′n/w}

r +
∑
j≤|x|Hxj

1{V (x)≥(logn)α−t}1{x∈On}

]
.

Then, when |x| ≤ bA`nc, we again split the sum but this time according to maxj≤|x|Hxj : when

maxj≤|x|Hxj > nbe
1
b (logn)α−1

, we use that 1{r+Hx>λ′n/w,V (x)≥(logn)α−t}(r +
∑
j≤|x|Hxj )

−1 ≤
(maxj≤|x|Hxj )

−1 ≤ n−be− 1
b (logn)α−1

. Otherwise, observe that 1{r+Hx>λ′n/w}(r+
∑
j≤|x|Hxj )

−1 ≤
1{r+Hx>λ′n/w}(r +Hx)−1 ≤ w/λ′n. Therefore, expectation in (30) is smaller than

E
[ ∑
|x|>bA`nc

e−V (x)1{x∈On}

]
+ E

[ ∑
|x|≤bA`nc

e−V (x)1{x∈On}

]
n−be−

1
b (logn)α−1

+
w

λ′n
E
[ ∑
|x|≤bA`nc

e−V (x)1
{V (x)≥(logn)α−t,max

j≤|x|
Hxj≤nbe

1
b

(logn)α−1
}

]
,

which, by Remark 2 and many-to-one Lemma, is smaller, for n large enough, than

1

n
+ `nn

−be−
1
b (logn)α−1

+
w

λ′n

∑
k≤bA`nc

P
(
Sk ≥ (log n)α − t,max

j≤k
HS
j ≤ nbe

1
b (logn)α−1)

.
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Also
∑
k≤bA`ncP

(
Sk ≥ (log n)α − t,max

j≤k
HS
j ≤ nbe−

1
b (logn)α−1)

is smaller than

bA`ncP
(

max
j≤τ(logn)α−t

Sj − Sj ≤ b log n+
1

b
(log n)α−1

)
≤ e

t
logn−

1
b (logn)α−1(1− ε2 ),

where Lemma A.3 in [HS16a] provides us the last inequality for n large enough and any t. Fi-

nally, note that for any δ > 0, n large, w > 0 and t ≥ −B, 1/n ≤ 1
3n
−be−δB−

1−ε
b (logn)α−1 ≤

w+1
3 n−beδt−

1−ε
b (logn)α−1

, `nn
−be−

1
b (logn)α−1 ≤ 1

3n
−be−δB−

1−ε
b (logn)α−1 ≤ w+1

3 n−beδt−
1−ε
b (logn)α−1

,
w
λ′n
e

t
logn−

1
b (logn)α−1(1− ε2 ) ≤ (w+1)n−b(log n)2e

t+B
logn−

1
b (logn)α−1(1− ε2 ) ≤ w+1

3 n−beδt−
1−ε
b (logn)α−1

and

this finish the proof of the first fact. We now turn to the lower bound (31). By many-to-one Lemma

for anym ≤ log n, 0 ≤M ≤ nb and A > 0, the mean in (31) is larger than (as λn,2 > nbe
ε
3b (logn)α−1

)∑
k≤bA`nc

E
[ 1

knb +
∑k
j=1H

S
j

1{Sk≥αn,max1≤j≤kH
S
j ≤nbe

ε
3b

(logn)α−1
,Hk>nb,Sk≥−B}

]
≥ n−b

2A`n
e−

ε
3b (logn)α−1 ∑

k≤bA`nc

P
(
Sk ≥ αn, max

1≤j≤k
HS
j ≤ nbe

ε
3b (logn)α−1

, Hk > nb, Sk ≥ −B
)
,

with αn := (log n)α+ log n. By Lemma 4.3 (76) (with ` = (log n)2, t` = αn, q = b, ab = −a = − ε
3b ,

d = α−1
2 and c = ε

3b .) the above sum is larger, for n large enough, than e−
1
b (logn)α−1(1+ ε

2 ) ≥
2A`ne

− 1
b (logn)α−1(1+ε), which completes the proof of the upper bound.

We are ready to prove that fn satisfies assumptions (A1), (A2), (A3) and (A4).
• Check of (A1) and asymptotic of hn. (28) with m = M = 0 implies for b = 0 and n large enough∑

k≥1

Ψk
n(fn,k) ≥ E

[∑
x∈T

e−V (x)∑
j≤|x|Hxj

1{V (x)≥(logn)α}1{x∈Υn,1∩Oλn,1}

]
≥ e−2(logn)α/2(1+ε).

This implies that κ0 = max U0 = 0 (see the part concerning κb of the proof of Theorem 1.1 for
details) and additionaly with (27) and t = 0

hn =
∣∣∣nκb log

(∑
k≥1

Ψk
n,nb(f

n,k)
)∣∣∣ ∼ 2(log n)α/2.

We also deduce from the previous lower bound that (A1) is satisfied.
From (30) with r = t = 0, w = 1 and ε

2 instead of ε we get for all b ∈ (0, 1) and n large enough

∑
k≥1

Ψk
n,nb(f

n,k) ≤ E
[ ∑
x∈On

e−V (x)1{Hx>λ′n}∑
j≤|x|Hxj

1{V (x)≥(logn)α}

]
≤ n−be−

1−ε
b (logn)α−1

.

This implies that for all b ∈ (0, 1), κb ≥ b. From (31) with m = M = 0, we get that for all b ∈ (0, 1)∑
k≥1

Ψk
n,nb(f

n,k) ≥ E
[∑
x∈T

e−V (x)∑
j≤|x|Hxj

1{V (x)≥(logn)α}1{x∈Υn,2∩O
λn,2,n

b}

]
≥ n−be−

1+ε
b (logn)α−1

.

This implies that for all b ∈ (0, 1/2), κb ≤ b. Finally, for any b ∈ (0, 1/2), κb = b and

hn =
∣∣∣nκb log

(∑
k≥1

Ψk
n,nb(f

n,k)
)∣∣∣ ∼ 1

b
(log n)α−1.
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We also deduce from the previous lower bound that (A1) is satisfied.
• For (A2), recalling mn = dεhn/c2e (see (13)) and for all s = (s1, . . . , smn) ∈ Rmn , t =
(t1, . . . , tk) ∈ Rk, with u = (s1, . . . , smn , t1 + smn , . . . , tk + smn)

fn,mn+k(s1, . . . , smn , t1 + smn , . . . , tk + smn) = 1{tk+smn≥(logn)α}
1∑mn+k

j=1 Hj(u)
(32)

Note that
∑mn+k
j=1 Hj(u) =

∑mn
j=1Hj(s) +

∑k
j=1

(
e−tjHmn(s) +Hj(t)) ≥

∑k
j=1Hj(t

)
so

fn,kεhn
(t1, . . . , tk) = inf

s∈[−εhn,εhn]mn
fn,mn+k(s1, . . . , smn , t1 + smn , . . . , tk + smn)

≤ inf
smn∈[−εhn,εhn]

1{tk+smn≥(logn)α}
1∑k

j=1Hj(t)
=
1{tk≥(logn)α+εhn}∑k

j=1Hj(t)
.

It follows that fn,kεhn
(t1, . . . , tk) ≤ 1{tk≥(logn)α}

(∑k
j=1Hj(tj)

)−1
and for |x| = k with ux =

(t1, . . . , tl, V (x1) + tl, . . . , V (x) + tl)

fn,l+kεhn
(t1, . . . , tl, V (x1) + tl, . . . , V (x) + tl) ≤ 1{V (x)≥(logn)α−tl}

1∑l+k
j=1(ux)

.

Assume b = 0. Observe again that
∑l+k
j=1(ux) =

∑l
j=1Hj(t) +

∑k
j=1

(
e−V (xj)Hl(t) + Hxj

)
≥∑

j≤kHxj . Then by definition of Ψk
n

(
F |t
)

(see (15)), for all A,B, ε, δ > 0, n large enough, for any

l ∈ N∗ and all t = (t1, . . . , tl) ∈ Rl with tl ≥ −B∑
k≥1

Ψk
n,nb−Hl(t)

(
fn,l+kεhn

|t
)
≤ E

[ ∑
x∈On

e−V (x)fn,l+kεhn
(t1, . . . , tl, V (x1) + tl, . . . , V (x) + tl)

]
≤ E

[ ∑
x∈On

e−V (x)1{V (x)≥(logn)α−tl}
1∑

j≤kHxj

]
≤ eδtl−2(logn)α/2(1− ε

3A ),

where we have used (27) with t = tl and replaced ε by ε
3A for the last inequality. Finally, observe

that

e−2(logn)α/2(1− ε
3A ) = e

4ε
3A (logn)α/2e−2(logn)α/2(1+ ε

3A ) ≤ e εAhn
∑
k≥1

Ψk
n,nb(f

n,k),

where we used that hn ∼ 2(log n)α/2 and (28) with m = M = 0.

Assume b ∈ (0, 1/2). Note that
∑l+k
j=1Hj(ux) ≥ Hl(t) +

∑
j≤kHxj . Then for all A,B, ε, δ > 0, n

large enough, for any l ∈ N∗ and all t = (t1, . . . , tl) ∈ Rl with tl ≥ −B∑
k≥1

Ψk
n,nb−Hl(t)

(
fn,l+kεhn

|t
)
≤ E

[ ∑
x∈On

e−V (x) 1{V (x)≥(logn)α−tl}

Hl(t) +
∑
j≤|x|Hxj

1{Hl(t)+Hx>λ′n}

]
≤ 2n−beδtl−

1
b (logn)α−1(1− ε

4A ) ≤ n−beδtl− 1
b (logn)α−1(1− ε

3A ),

where we used (30) with r = Hl(t), w = 1, t = tl and ε
4A instead of ε for the last inequality.

Finally, observe that

n−beδtl−
1
b (logn)α−1(1− ε

3A ) = e
2ε

3bA (logn)α−1

n−be−
1
b (logn)α−1(1+ ε

3A ) ≤ e εAhn
∑
k≥1

Ψk
n,nb(f

n,k),
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where we used that hn ∼ 1
b (log n)α−1 and (31) with m = M = 0.

We are left to prove that technical assumptions (A3) and (A4) are realised.
• For (A3), recall that Υk

n = {t = (t1, . . . , tk) ∈ Rk;Hk(t) ≤ nbeεhn , V (x) ≥ v′n, tk ≥ −B}, whith
v′n = 1

δ1
log(n`n) + εhn. By (32), for |x| = k with vx = (s1, . . . , smn , V (x1) + smn , . . . , V (x) + smn)

fn,kεhn
(V (x1), . . . , V (x)) = inf

s∈[−εhn,εhn]mn
1{V (x)+smn≥(logn)α}

1∑mn+k
j=1 Hj(vx)

.

and recall that
∑mn+k
j=1 Hj(vx) =

∑mn
j=1Hj(s) +

∑k
j=1

(
e−V (xj)Hmn(s) + Hxj

)
. For |x| = k such

that V (x) ≥ −B, observe as s ∈ [−εhn, εhn]mn , that
∑mn+k
j=1 Hj(vx) ≤ mne

2εhn + km2
ne

2εhn+B +∑k
j=1Hxj . Also recall, by definition, that hn ≥ (log n)γ for γ ∈ (0, 1) so

∑mn+k
j=1 Hj(vx) ≤

2km2
ne

2εhn+B +
∑k
j=1Hxj ≤ ke3εhn +

∑k
j=1Hxj . It follows that

fn,kεhn
(V (x1), . . . , V (x)) ≥ 1{V (x)≥(logn)α+εhn}

(
ke3εhn +

k∑
j=1

Hxj

)−1

.

Let 0 < ε1 < ε and recall λn = ne−5hn ≥ 2λn,i, i ∈ {1, 2}. Thanks to the previous inequality and
the fact that (log n)α > 1

δ1
log(n`n), we have

∑
k≥1

Ψk
λn/2,nb

(fn,kεhn
1Υkn

) ≥ E
[ ∑
x∈O

λn,i,n
b

e−V (x)1{V (x)≥(logn)α+εhn}

|x|e3εhn +
∑
j≤|x|Hxj

1{Hx≤nbeεhn ,V (x)≥−B}

]
.

Assume b = 0. By (28) with m = hn, M = e(logn)α/2

and ε1
3 instead of ε, together with the fact

that hn ∼ 2(log n)α/2, for n large enough∑
k≥1

Ψk
λn/2

(fn,kεhn
1Υkn

) ≥ E
[∑
x∈T

e−V (x)1{V (x)≥(logn)α+hn}

|x|e(logn)α/2 +
∑
j≤|x|Hxj

1{x∈Υn,1(
ε1
3 )∩Oλn,1}

]
≥ e−2(logn)α/2(1+

ε1
3 ).

Moreover e−2(logn)α/2(1+
ε1
3 ) = e−

4ε1
3 (logn)α/2

e−2(logn)α/2(1− ε13 ) ≥ e−ε1hn
∑
k≥1 Ψk

n,nb(f
n,k), the last

inequality comes from the fact that hn ∼ 2(log n)α/2 and (27) with t = 0.
Assume b ∈ (0, 1/2). By (31) with m = hn and M = nb, together with the fact that hn ∼
1
b (log n)α−1, implies for n large enough∑

k≥1

Ψk
λn/2,nb

(fn,kεhn
1Υkn

) ≥ E
[∑
x∈T

e−V (x)1{V (x)≥(logn)α+hn}

|x|nb +
∑
j≤|x|Hxj

1{x∈Υn,2(
ε1
3 )∩Oλn,2}

]
≥ n−be− 1

b (logn)α−1(1+
ε1
3 ).

Moreover e−
1
b (logn)α−1(1+

ε1
3 ) = e−

2ε1
3b (logn)α−1

e−
1
b (logn)α−1(1− ε13 ) ≥ nbe−ε1hn

∑
k≥1 Ψk

n,nb(f
n,k),

the last inequality comes from the fact that hn ∼ 1
b (log n)α−1 and (30) with r = t = 0, w = 1 and

we have used that λ′n = nb(log n)−2 < nb.
• Finally for (A4), we first observe that for all k ∈ N∗, α ∈ (1, 2), (log n)α > 1

δ1
log(n`n) for n

large enough so

Ψk
n(fn,k1R\H k

vn
) = E

[ ∑
|x|=k

e−V (x)∑k
j=1Hxj

1{V (x)≥(logn)α,V (x)<log(n`n)/δ1}1{x∈On}

]
= 0.
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Recall that W =
∑
|z|=1 e

−V (z) and E[W ] = eψ(1) = 1 so when b = 0∑
k≥1

(
Ψk
n,λ′n

(fn,k) + E
[
WΨk

n,λ′n/W
(fn,k)

])
≤
∑
k≥1

(
Ψk
n(fn,k) + E

[
WΨk

n(fn,k)
])

= 2
∑
k≥1

Ψk
n(fn,k)

and thanks to (27) for n large enough with t = 0

2
∑
k≥1

Ψk
n(fn,k) = 2E

[ ∑
x∈On

e−V (x)∑
j≤|x|Hxj

1{V (x)≥(logn)α}

]
≤ 2e−2(logn)α/2(1− ε14 )

≤ e−2(logn)α/2(1− ε13 ).

Moreover e−2(logn)α/2(1− ε13 ) = e
4ε1
3 (logn)α/2

e−2(logn)α/2(1+
ε1
3 ) ≤ eε1hn

∑
k≥1 Ψk

n,nb(f
n,k), the last

inequality comes from the fact that hn ∼ 2(log n)α/2 and (28) with m = M = 0.
Otherwise, b ∈ (0, 1/2) and thanks to (30) for n large enough with r = t = 0, w = 1 and ε1

4 instead
of ε ∑

k≥1

Ψk
n,λ′n

(fn,k) =
[ ∑
x∈On

e−V (x)1{Hx>λ′n}

r +
∑
j≤|x|Hxj

1{V (x)≥(logn)α}

]
≤ 1

nb
e−

1
b (logn)α−1(1− ε13 ),

and we also get from (30) with r = t = 0 and w = W that for n large enough

Ψk
n,λ′n/W

(fn,k) = E
[ ∑
x∈On

e−V (x)1{Hx>λ′n/W}

r +
∑
j≤|x|Hxj

1{V (x)≥(logn)α}

]
≤ W + 1

nb
e−

1
b (logn)α−1(1− ε14 ).

By (4), telling that E[W 2] <∞, we have C4 := E[W (W + 1) + 1] = E[W 2 + 2] <∞ and then∑
k≥1

(
Ψk
n,λ′n

(fn,k) + E
[
WΨk

n,λ′n/W
(fn,k)

])
≤ C4

nb
e−

1
b (logn)α−1(1− ε14 ) ≤ 1

2nb
e−

1
b (logn)α−1(1− ε13 ).

Moreover e−
1
b (logn)α−1(1− ε13 ) = e

ε1
3b (logn)α−1

e−
1
b (logn)α−1(1+

ε1
3 ) ≤ nbeε1hn

∑
k≥1 Ψk

n,nb(f
n,k), the

last inequality comes from the fact that hn ∼ 1
b (log n)α−1 and (31) with m = M = 0. Proof is

complete for these two cases.
Assume now α = 1 and a ∈ R (with a > 1/δ1 when d = 1) which corresponds to the first case
of the theorem. As usual, let us first state the following two facts:
for all b ∈ [0, 1/(d+ 1)), B, δ > 0, ε ∈ (0, εb) and n large enough, for any t ≥ −B, r ≥ 0 and w > 0

E
[ ∑
x∈On

e−V (x)1{r+Hx>λ′n/w}(
r +

∑
j≤|x|Hxj

)d 1{V (x)≥a logn−t}

]
≤ (w + 1)`2ne

δtn−bd, (33)

with λ′n = nb(log n)−2. For any 0 ≤M ≤ nb, ε < b/3 (when b > 0)

E
[∑
x∈T

e−V (x)1{x∈Υn∩O
λn,nb

}(
M |x|+

∑
j≤|x|Hxj

)d1{V (x)≥a logn}

]
≥ 1

`2n
n−bd, (34)

with λn = n1−11ε and for any a′ > 1/δ1

Υn = Υn(ε) := {x ∈ T;Hx ≤ nb+ε, V (x) ≥ a′ log n, V (x) ≥ −B}.
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These facts ensure that fn satisfies assumptions (A1), (A2), (A3) and (A4) for b ∈ (0, 1/(d+ 1)).
(A3) does not hold exactly when b = 0 so we use (38) (which appears in the proof of Therorem
1.5) together with the result when b > 0 to conclude this case.
• Check of (A1) and asymptotic of hn. We get from (34) that κb = max Ub ≤ bd and (33) gives
κb ≥ bd. It follows that for all b ∈ [0, 1/(d+ 1)), κb = bd and for any n ≥ 2, hn = log n. Indeed, on
the one hand, (33) with r = t = 0 and w = 1 gives, for n large enough

nκb
∑
k≥1

Ψk
n,nb(f

n,k) = nbdE
[ ∑
x∈O

n,nb

e−V (x)(∑k
j=1Hxj

)d1{V (x)≥a logn}

]
≤ 2d`2n,

and on the other hand, we get from (34), for all n large enough that

nκb
∑
k≥1

Ψk
n,nb(f

n,k) ≥ 1

`2n
.

From these inequalities, we get that for any γ ∈ (0, 1), | log(nκb
∑
k≥1 Ψk

n,nb(f
n,k))| ≤ 3 log `n =

o((log n)γ). Then hn = log n and we also deduce that (A1) is satisfied.

• For (A2), let |x| = k and observe that fn,l+kεhn
(t1, . . . , tl, V (x1), . . . , V (x)) ≤ (Hl(t) + Hx)−d so

it follows, for all ε ∈ (0, εb), A, δ,B > 0, n large enough, any l ∈ N∗, t = (t1, . . . , tl) ∈ Rl and
tl ≥ −B, by (33) with r = Hl(t), t = tl and w = 1∑

k≥1

Ψk
n,nb−Hl(t)

(
fn,l+kεhn

|t
)
≤ 2d`2ne

δtln−bd ≤ eδtl+ ε
Ahn

∑
k≥1

Ψk
n,nb(f

n,k)

where last inequality comes from (34).
• For (A3), recall that Υk

n = {t = (t1, . . . , tk) ∈ Rk;Hk(t) ≤ nb+ε, V (x) ≥ v′n, tk ≥ −B}, where
we recall v′n = 1

δ1
log(n`n) + εhn. For |x| = k, we have

fn,kεhn
(V (x1), . . . , V (x)) ≥ 1{V (x)≥(a+ε)(logn)}

(
kn3ε +

k∑
j=1

Hxj

)−d
,

and thanks to (34) with M = nb, b ∈ (0, 1/(d+ 1))

∑
k≥1

Ψk
λn/2,nb

(fn,kεhn
1Υkn

) ≥ E
[∑
x∈T

e−V (x)1{Υn∩O
λn,nb

}

(|x|nb +
∑
j≤|x|Hxj )

d

]
≥ 1

`2n
n−bd ≥ e−ε1hn

∑
k≥1

Ψk
n,nb(f

n,k),

where we recall λn = n1−10ε.
• Finally for (A4) with d = 1 (and then a > 1/δ1)

Ψk
n(fn,k1R\H k

vn
) = E

[ ∑
|x|=k

e−V (x)1{x∈On}(∑k
j=1Hxj

)d 1{V (x)≥a logn,V (x)<log(n`n)/δ1}

]
= 0,

otherwise, d = 0 and for any a ∈ R, thanks to Remark 2∑
k≥1

Ψk
n(fn,k1R\H k

vn
) = E

[ ∑
x∈On

e−V (x)1{V (x)≥a logn,V (x)<log(n`n)/δ1}

]
≤ E

[ ∑
x∈On

e−V (x)
]
≤ `n,

which, thanks to (34) is smaller than eε1hn
∑
k≥1 Ψk

n,nb(f
n,k) for all ε1 > 0. We get from (33) with

r = t = 0 and w = W that for n large enough

Ψk
n,λ′n/W

(fn,k) = E
[ ∑
x∈On

e−V (x)1{Hx>λ′n/W}

(
∑
j≤|x|Hxj )

d
1{V (x)≥a logn}

]
≤ (W + 1)`2nn

−bd
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By (4), telling that E[W 2] <∞, we have C4 := E[W (W + 1) + 1] = E[W 2 + 2] <∞ and then∑
k≥1

(
Ψk
n,λ′n

(fn,k) + E
[
WΨk

n,λ′n/W
(fn,k)

])
≤ 2C4`n

−bd ≤ eε1hn
∑
k≥1

Ψk
n,nb(f

n,k),

where, again, last inequality comes from (34). This finishes the proof of the result of the theorem
for b ∈ (0, 1/(d+ 1)).
Now assume b = 0 and let ε > 0. Using the result of the theorem with bε = ε/(2 + d) and the
fact that Rn(1[nbε ,∞), f

n) ≤ Rn(1[1,∞), f
n), we get the following lower bound for Rn(1[1,∞), f

n):

P(log+ Rn(1[1,∞), f
n) < (1− ε) log n) is smaller than

P
(

log+ Rn(1[nbε ,∞), f
n) < (1− (1 + d)bε − ε/(2 + d)) log n

)
→ 0,

where we have used the case b > 0. For the upper bound, we use an intermediate result in the
proof of Theorem 1.5: recall that κ0 = 0 and hn = log n.
Also recall ξ = limn→∞ h−1

n log(nκb
∑
k≥1 Ψk

n,nb(f
k,n)). It’s easy to see that ξ = 0 and by (38)

P(log+ Rn(1[1,∞), f
n) > (1 + ε) log n) ≤ P

( 1

n
Rn(1[1,∞), f

n) > eεhn
)
→ 0,

this ends the proof of the theorem for all b ∈ [0, 1/(d+ 1)).

Proof of Theorem 1.4. Here fn,k(t1, t2, · · · , tk) = 1{tbk/βc≥(logn)α}(
∑bk/βc
j=1 Hj(t))−1 with β > 1

and α ∈ (1, 2). We state the following facts: for all B, δ > 0, ε ∈ (0, εb), n large enough, any
t ≥ −B and i ∈ N

E
[ ∑
x;b|x|+i/βc>i

e−V (x)1{x∈On}∑b|x|/βc
j=1 Hxj

1{V (xb(|x|+i)/βc−i)≥(logn)α−t}

]
≤ eδt−2(logn)α/2(1−ε), (35)

and for all 0 ≤ i,m ≤ log n, 0 ≤M ≤ e(logn)α/2

E
[ ∑
x;b|x|+i/βc>i

e−V (x)1{x∈Υn∩Oλn}

M |x|+
∑b|x|/βc
j=1 Hxj

1{V (xb(|x|+i)/βc−i)≥(logn)α+m}

]
≥ e−2(logn)α/2(1+ε), (36)

with λn = ne−12(logn)α/2 and for any a > 1
δ1

Υn = Υn(ε) := {x ∈ T;Hx ≤ e2ε(logn)α/2 , V (x) ≥ a log n, V (x) ≥ −B}.

From these two facts we follow the same lines as in the previous theorem to prove that hn ∼
2(log n)α/2 and that (A1) to (A4) are satisfied.

2.3. Proof of Theorem 1.5

First, note that Remark 1 implies that ξ = limn→∞ h−1
n log(nκb

∑
k≥1 Ψk

n,nb(f
k,n)) well exists. To

prove Theorem we first show that assumptions (A3) and (A4) yield a simpler statement for both
lower and upper bound of Proposition 1. This implies a convergence in probability for stopped
ranges RTkn with kn = dn/(log n)3/2e and RTn . Then we use result of [HS16b] (Proposition 2.4)
implying that Tn/(n log n) converges in probability to a positive limit to obtain the result for Rn.
Let us start with the
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Lower bound : Recalling the expression of u1,n =
∑
k≥1 Ψk

λn/2,nb
(fn,kεhn

1Υkn
) (see below (18)) togeher

with (A3) choosing ε1 = min(1, c5) ε4 (see Proposition 1 for c5) we get

u1,n ≥ e−min(1,c5) ε4
∑
k≥1

Ψk
n,nb

(
fk,n

)
.

This together with the fact that, by definition of ξ, for n large enough nκb
∑
k≥1 Ψk

n,nb(f
n,k) >

e(ξ−ε)hn , implies

P
( RTkn (gn, f

n)

n1−b−κbϕ(nb)
< e(ξ−7ε)hn

)
≤ P

( RTkn (gn, f
n)

n1−bϕ(nb)
∑
k≥1 Ψk

n,nb
(fk,n)

< e−6εhn
)

≤ P
( RTkn (gn, f

n)

n1−bϕ(nb)u1,n
< e−5εhn

)
.

Also considering (18), P
( R

Tkn
(gn,f

n)

n1−bϕ(nb)u1,n
< e−5εhn

)
is smaller than

e(−c5+
min(1,c5)

2 )εhn + hne
−εhn +

e−min(ε logn,3hn)+min(1,c5) ε2hn(
nκb

∑
k≥1 Ψk

n,nb
(fk,n)

)2
≤ e−

εc5
2 hn + hne

−εhn + e
−min(ε logn,3hn)+ ε

2hn+2| log(nκb
∑
k≥1 Ψk

n,nb
(fk,n))|

.

Now, thanks to Remark 1, for n large enough | log(nκb
∑
k≥1 Ψk

n,nb(f
k,n))| is smaller than ε

8 log n ≤
−min(− ε8 log n,−hn) and ε

2hn is smaller than ≤ − 1
2 min(−ε log n,−hn) so −min(ε log n, 3hn) +

ε
2hn + 2| log(nκb

∑
k≥1 Ψk

n,nb(f
k,n))| is smaller than − 1

2 min(ε log n, hn). Finally, for all ε ∈ (0, εb)
and n large enough

P
( RTkn (gn, f

n)

n1−b−κbϕ(nb)
< e(ξ−7ε)hn

)
≤ e−

εc5
2 hn + hne

−εc̃2hn + e−
1
4 min(ε logn,hn),

then switching ε by ε/7 in the above probability, we obtain as hn → +∞, the desired expression :
for all ε ∈ (0, 7εb)

lim
n→∞

P
( RTkn (gn, f

n)

n1−b−κbϕ(nb)
< e(ξ−ε)hn

)
= 0.

We are now ready to move from RTkn to Rn, first note that :

P
( Rn(gn, f

n)

n1−b−κbϕ(nb)
< e(ξ−ε)hn

)
≤ P

( Rn(gn, f
n)

n1−b−κbϕ(nb)
< e(ξ−ε)hn , T kn ≤ n

)
+ P(T kn > n),

with recall Rn(gn, f
n) :=

∑
x∈T gn(L n

x )fn,|x|(V (x1), V (x2), · · · , V (x)) and gn(t) = ϕ(t)1{t≥nb}

and b ∈ [0, 1). Then as ϕ is increasing and positive so is gn, hence T kn ≤ n implies gn(L Tkn
x ) ≤

gn(L n
x ) and therefore RTkn (gn, f

n) ≤ Rn(gn, f
n) since fn,k ≥ 0. It follows that

P
( Rn(gn, f

n)

n1−b−κbϕ(nb)
< e(ξ−ε)hn

)
≤ P

( RTkn (gn, f
n)

n1−b−κbϕ(nb)
< e(ξ−ε)hn

)
+ P(T kn > n),

and thanks to the above convergence together with the fact that (Tn/(n log n))n convergences
in P-probability to an almost surely finite and positive random variable we obtain the desired
expression: for all ε ∈ (0, 7εb):

lim
n→∞

P
( Rn(gn, f

n)

n1−b−κbϕ(nb)
< e(ξ−ε)hn

)
= 0. (37)
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Upper bound : we prove the following statement, for all ε > 0

lim
n→∞

P
( Rn(gn, f

n)

n1−b−κbϕ(nb)
> e(ξ+ε)hn

)
= 0. (38)

Recall that u2,n =
∑
k≥1(Ψk

n,nb(f
n,k) + Ψk

n(fn,k1Rk\H k
vn

) + Ψk
n,λ′n

(fn,k) + E[WΨk
n,λ′n/W

(fn,k)]).

Assumption (A4) with ε1 = ε
4 gives that

u2,n ≤ e
ε
4hn

∑
k≥1

Ψk
n,nb(f

n,k),

so for n large enough, as nκb
∑
k≥1 Ψk

n,nb(f
n,k) ≤ e(ξ+ ε

2 )hn and Tn ≥ n

P
( Rn(gn, f

n)

n1−b−κbϕ(nb)
> e(ξ+ε)hn

)
≤ P

( RTn(gn, f
n)

n1−b−κbϕ(nb)
> e(ξ+ε)hn

)
≤ P

( RTn(gn, f
n)

n1−bϕ(nb)
∑
k≥1 Ψk

n,nb
(fk,n)

> e
ε
2hn
)

≤ P
( RTn(gn, f

n)

n1−bϕ(nb)u2,n
> e

ε
4hn
)
≤ e− ε8hn + o(1),

where the last inequality comes from (19) replacing ε by ε
4 . Then taking the limit we get (38).

We are now ready to prove the theorem, we split this proof in three parts depending on the values
of (recall) L = lim infn→∞ h−1

n log
(
n1−b−κbϕ(nb)

)
.

• Assume L ∈ (−ξ,+∞]. For any t ∈ R, elog+ t = elog(t∨1) ≥ t so for any ε ∈ (0, εb) and n large
enough, P

(
log+ Rn(gn, f

n)− log(n1−b−κbϕ(nb)) < (ξ − ε)hn
)

is smaller than

P
(
elog+ Rn(gn,f

n) < n1−b−κbϕ(nb)e(ξ−ε)hn
)
≤ P

( Rn(gn, f
n)

n1−b−κbϕ(nb)
< e(ξ−ε)hn

)
→ 0,

where the limit comes from (37). Note that this lower bound remains true even when L 6∈ (−ξ,+∞].
However, we need that L ∈ (−ξ,+∞] for the upper bound. Indeed, in this case, for n large
enough, n1−b−κbϕ(nb) > e−ξhn and for any ε > 0, n1−b−κbϕ(nb)e(ξ+ε)hn > eεhn > 1 so for
n large enough P(log+ Rn(gn, f

n) − log(n1−b−κbϕ(nb)) > (ξ + ε)hn) = P(log+ Rn(gn, f
n) >

log(n1−b−κbϕ(nb)e(ξ+ε)hn),Rn(gn, f
n) > 1). Moreover, when Rn(gn, f

n) > 1, log+ Rn(gn, f
n) =

log Rn(gn, f
n) so the previous probability is equal to

P
(

log Rn(gn, f
n) > log(n1−b−κbϕ(nb)e(ξ+ε)hn),Rn(gn, f

n) > 1
)
≤ P

( Rn(gn, f
n)

n1−b−κbϕ(nb)
> e(ξ+ε)hn

)
.

Then taking the limit we get the result thanks to (38).
• Assume L = −ξ. Recall that ∆n = h−1

n log(n1−b−κbϕ(nb))−inf`≥n h
−1
` log(`1−b−κbϕ(`b)). L = −ξ

implies that for any ε ∈ (0, εb) and n large enough, inf`≥n h
−1
` log(`1−b−κbϕ(`b)) > −ξ − ε

2 so

hn∆n < log(n1−b−κbϕ(nb)) + (ξ + ε
2 )hn and as elog+ t ≥ t

P
(
h−1
n log+ Rn(gn, f

n) < −ε+ ∆n

)
≤ P

(
Rn(gn, f

n) < e−εhn+hn∆n
)

≤ P
( Rn(gn, f

n)

n1−b−κbϕ(nb)
< e(ξ− ε2 )hn

)
→ 0,

where the limit comes from (37). Also, L = −ξ implies that for any ε ∈ (0, εb) and n large
enough, inf`≥n h

−1
` log(`1−b−κbϕ(`b)) < −ξ + ε

2 so hn∆n > log(n1−b−κbϕ(nb)) + (ξ − ε
2 )hn and as
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hn(ε+∆n) > 0, P(h−1
n log+ Rn(gn, f

n) > ε+∆n) = P(log Rn(gn, f
n) > hn(ε+∆n),Rn(gn, f

n) > 1)
which is smaller than

P
(
Rn(gn, f

n) > eεhn+hn∆n
)
≤ P

( Rn(gn, f
n)

n1−b−κbϕ(nb)
> e(ξ+ ε

2 )hn
)
→ 0,

where the limit comes from (38).
• Assume L ∈ [−∞,−ξ). In this case, there exists an increasing sequence (n`)` of postive inte-
gers (with n` = ` when limh−1

n log(n1−b−κbϕ(nb)) = L) and εL > 0 such that for any ` ∈ N∗,
n1−b−κb
` ϕ(nb`) < e−(ξ+2εL)hn and for any ε′ > 0

P
(
Rn`(gn` , f

n`) > ε′
)
≤ P

(
Rn`(gn` , f

n`) > e−εLhn
)
≤ P

(Rn`(gn` , f
n`)

n1−b−κb
` ϕ(nb`)

> e(ξ+εL)hn
)
→ 0,

where the limit comes from (38) with ε = εL which ends the proof. �

3. Proof of Proposition 1

The proof of Proposition 1 is decomposed as follows. In the first short section below we present the
expression of the generating function with constraint of edge local time. In a second sub-section we
prove the lower bound (18), this section is itself decomposed in different steps treating successively
the random walk at fixed environment and then an important quantity of the environment. Finally
in a third section we obtain the upper bound (19). Note that the fact that the upper and lower
bound are robust when replacing Tn by T kn with kn = bn/(log n)pc, with p > 0 does not need
extra arguments than the ones that follow.

3.1. Preliminary

We first introduce the edge local time Nn
x of a vertex x ∈ T that is the number of times the random

walk X visits the edge (x∗, x) before time n:

Nn
x :=

n∑
i=1

1{Xi−1=x∗, Xi=x},

the law of NTe
x and

∑
y;y∗=xN

Te
y at fixed environment are given by

Lemma 3.1. Let x ∈ T, and Tx := inf{k > 0, Xk = x}, then PE (Tx < Te) = e−V (x)/Hx and for
any i ∈ N∗, s ∈ [0, 1] and ν ≥ 0,

i) The distribution of NTe
x under PE

x is geometrical on N with mean Hx−1 =
∑
j<|x| e

V (xj)−V (x).
In particular

EE
[
sνN

Te
x 1{NTex ≥i}

]
=
e−V (x)

H2
x

(
1− 1

Hx

)i−1 siν

1− sν(1− 1
Hx

)
.

ii) For any z ∈ T such that z∗ = x, the distribution of
∑
y;y∗=xN

Te
y under PE

z is geometrical on

N with mean H̃x := Hx

∑
y;y∗=x e

−Vx(y) with Vx(y) = V (y)− V (x). In particular

EE
[
sν

∑
y;y∗=xN

Te
y 1{

∑
y;y∗=xN

Te
y ≥i}

]
=
e−V (x)

Hx

H̃x

(1 + H̃x)2

(
1− 1

1 + H̃x

)i−1 siν

1− sν(1− 1
1+H̃x

)
.
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Proof. The fact that PE (Tx < Te) = e−V (x)/Hx, comes from a standard result for one-dimensional
random walks in random environment, see for example [Gol84]. The proofs of points i) and ii) are
very similar and elements for the first one can be found in [AD20] so we will only deal with the
second one.
For any x ∈ T, let Cx := {y ∈ T; y∗ = x} and βx := PE

x (TCx < Te) be respectively be the set of
children of x and the queuched probability, starting from x, to reach Cx before hitting the root e,
TCx = miny∈Cx Ty and Ty = min{j ≥ 1; Xj = y}. Hence,

∑
y;y∗=xN

Te
y is nothing but the number

of times the random walk X visits the ”edge” (x,Cx) before time Te. It follows, thanks to strong
Markov property that for all z ∈ T such that x∗ = z and k ∈ N

PE
z

( ∑
y;y∗=x

NTe
y = k

)
= βkx(1− βx). (39)

Note that the right part above doesn’t depend on z. We now compute βx. On the one hand,
thanks to (39), we have EE

z [
∑
y;y∗=xN

Te
y ] = βx/(1 − βx) and on the other hand, thanks to the

first point, EE
z [
∑
y;y∗=xN

Te
y ] =

∑
y;y∗=x EE

z [NTe
y ] =

∑
y;y∗=x(Hy− 1) = Hx

∑
y;y∗=x e

−Vx(y) = H̃x.∑
y;y∗=xN

Te
y is finally geometrical on N under PE

z with mean H̃x and βx = H̃x/(1 + H̃x).

We define αx := PE (TCx < Te) the quenched probability to reach Cx during the first excursion.
Thanks to (39) we have for all k ∈ N∗. It follows that

PE
( ∑
y;y∗=x

NTe
y = k

)
= αxβ

k−1
x (1− βx) and PE

( ∑
y;y∗=x

NTe
y = 0

)
= 1− αx,

so on the one hand, EE [
∑
y;y∗=xN

Te
y ] = αx/(1−βx) and on the other hand, thanks to the first point,

EE [
∑
y;y∗=xN

Te
y ] =

∑
y;y∗=x EE [NTe

y ] =
∑
y;y∗=x e

−V (y). It follows that αx =
∑
y;y∗=x e

−V (y)/(1+

H̃x) and the result is proved.

3.2. Lower bound for RTn(gn, fn)

Let us first introduce two key random variables denoted RTn(fn) and R(fn). RTn(fn) is simplified
version of RTn(gn, f

n) which does not depend on function gn and with a constraint to V : recall
H k
vn =

{
(t1, . . . , tk) ∈ Rk; tk ≥ vn

}
with vn = log(n`n)/δ1, δ1 ∈ (0, 1/2], `n = (log n)3 and λn =

ne−min(10ε logn,5hn), then

RTn(fn) :=

n∑
i=1

∑
x∈O

λn,nb

1{NTix −NT
i−1

x ≥nb}1{∀j 6=i:NTjx −NT
j−1

x =0}f
n,|x|1

H
|x|
vn

(Vx),

where we use notation F (Vx) = F (V (x1), · · · , V (x)). Note that the local time until Tn which
appears in RTn(gn, f

n) is replaced in RTn(fn) by edge local times excursion by excursion, also
visited vertices are restricted to some V -regular lines Oλn,nb . RTn(gn, f

n) and RTn(fn) are related
as follows, first since ϕ is increasing

RTn(gn, f
n) ≥ ϕ(nb)

∑
x∈T

1{L Tn
x ≥nb}f

n,|x|1
H
|x|
vn

(Vx).

Then introduce, Enx =
∑n
i=1 1{L Ti

x −L Ti−1
x ≥1} the number of excursions to the root where the walk

hits vertex x. Notice that Enx = 1 if and only if there exists i ∈ {1, . . . , n} such that L T i

x −L T i−1

x ≥
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1 and for any j ∈ {1, . . . , n}, j 6= i, L T j

x −L T j−1

x = 0 that is NT j

x −NT j−1

x = 0. Thus∑
x∈T

1{L Tn
x ≥nb}f

n,|x|1
H
|x|
vn

(Vx) ≥
∑

x∈O
λn,nb

1{L Tn
x ≥nb,Enx=1}f

n,|x|1
H
|x|
vn

(Vx)

≥
n∑
i=1

∑
x∈O

λn,nb

1{L Ti
x −L Ti−1

x ≥nb}1{∀j 6=i: NTix −NT
i−1

x =0}f
n,|x|1

H
|x|
vn

(Vx),

so finally as L T i

x −L T i−1

x ≥ NT i

x −NT i−1

x we have the following relation :

RTn(gn, f
n) ≥ ϕ(nb)RTn(fn). (40)

Second random variable R(fn) depends only on the environment :

R(fn) :=
∑

x∈O
λn,nb

e−V (x) 1

Hx

(
1− 1

Hx

)nb−1

fn,|x|1
H
|x|
vn

(Vx),

it can be related to the quenched mean of RTn(fn) as follows :

1 ≤ nR(fn)

EE [RTn(fn)]
≤ (1− e−vn)−(n−1). (41)

Indeed, random variables NT i

x −NT i−1

x , i ∈ {1, . . . , n} are i.i.d under PE so,

EE [RTn(fn)] = n
∑

x∈O
λn,nb

PE (NTe
x ≥ nb)PE (NTe

x = 0)n−1fn,|x|1
H
|x|
vn

(Vx).

Moreover, on the event {V (x) ≥ vn} thanks to iii) of Lemma 3.1, PE (NTe
x = 0)n−1 = PE (Tx >

Te)
n−1 = (1 − e−V (x)/Hx)n−1 ≥ (1 − e−V (x))n−1 ≥ (1 − e−vn)n−1 since Hx > 1, and thanks to

Lemma 3.1 i) with ν = 0, PE (NTe
x ≥ nb) = e−V (x)(1−1/Hx)n

b−1/Hx which gives (41). We are now
ready to obtain a relation between a lower bound for RTn(gn, f

n) and a lower bound for R(fn).

Lemma 3.2. Recall εb = min(b+1{b=0}, 1− b)/13 and let (an) be a sequence of positive numbers,
then for all ε ∈ (0, εb) and n large enough

P∗
(
RTn(gn, f

n) < nϕ(nb)an/4n
b
)
≤ P∗

(
R(fn) < an/n

b
)

+
ne−min(9ε logn,4hn)

n2κba2
n

. (42)

Proof. Note that thanks to (41) for n large enough nR(fn) ≤ 2EE [RTn(fn)], so by (40), on the
event {R(fn) ≥ an/nb}

PE
(
RTn(gn, f

n) < nϕ(nb)an/4n
b
)
≤ PE

(
RTn(fn) < EE [RTn(fn)]/2

)
.

Using Bienaymé-Tchebychev inequality and the fact that NT i

x − NT i−1

x , i ∈ {1, . . . , n}, are i.i.d
under PE implies, on the event {R(fn) ≥ an/nb},

PE (RTn(fn) < EE [RTn(fn)] /2) ≤ 4

EE [RTn(fn)]2
nVarE (RTe(f

n))

≤16n2b

a2
nn

∑
x,y∈O

λn,nb

PE (NTe
x ∧NTe

y ≥ nb)fn,|x|1H
|x|
vn

(Vx)fn,|y|1
H
|y|
vn

(Vy). (43)
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the last inequality coming from the fact that on {R(fn) ≥ an/nb}, thanks to (41) EE [RTn(fn)]2 ≥
n2R(fn)2/4 ≥ n2a2

n/4n
2b. Markov inequality in (43) yields PE (NTe

x ∧NTe
y ≥ nb) ≤ EE [NTe

x NTe
y ]/n2b,

so finally on the event {R(fn) ≥ an/nb}

PE (RTn(gn, f
n) < nϕ(nb)an/4n

b) ≤ 16

na2
n

∑
x,y∈O

λn,nb

EE [NTe
x NTe

y ]fn,|x|1
H
|x|
vn

(Vx)fn,|y|1
H
|y|
vn

(Vy).

(44)

To treat the above sum, we first make a simplification by using the uniform upper bound of the
set Ub see (10),

∑
x,y∈O

λn,nb

EE [NTe
x NTe

y ]fn,|x|1
H
|x|
vn

(Vx)fn,|y|1
H
|y|
vn

(Vy) ≤ C2
∞

n2κb

∑
x,y∈Oλn

EE [NTe
x NTe

y ]. (45)

We then split computations in two distinct steps: first cases x ≤ y or y ≤ x and then cases nor
x ≤ y neither y ≤ x. The key here is to take into account that we are only interested in vertices
belonging to λn-regular lines Oλn with λn = ne−min(10ε logn,5hn) for ε ∈ (0, εb).
We start with cases x ≤ y and y ≤ x and as they are symmetrical we only deal with the first one.
First note that as EE

[
NTe
x NTe

y

]
≤ 2e−V (y)Hx = 2Hxe

−V (x)e−Vx(y) (see [AD20] Lemma 3.6)

E
[ ∑

x≤y
x,y∈Oλn

EE [NTe
x NTe

y ]
]
≤ 2E

[ ∑
x∈Oλn

e−V (x)Hx

∑
y≥x
y∈Oxλn

e−Vx(y)
]
≤ 2E

[ ∑
x∈Oλn

e−V (x)
]2
λn

≤ 2`2nλn,

where for all λ > 0, Ox
λ is translated set of λ-regular lines

Ox
λ =

{
y ∈ T, y > x; max

|x|<j≤|y|
Hx,yj ≤ λ

}
, Hx,yj =

∑
x<w≤yj

eVx(w)−Vx(yj),

also second inequality is obtained thanks to the regular line which yields, Hx1Oλn (x) ≤ λn, the
last one comes from Remark 2.
We then move to the second case, nor x ≤ y neither y ≤ x, that we denote x 6∼ y. In this case
EE
[
NTe
x NTe

y

]
= 2Hx∧ye

V (x∧y)−V (x)−V (y) (see [AD20] Lemma 3.6). Thus

EE [NTe
x NTe

y ] ≤ 2λn
∑
l≥1

∑
|z|=l

e−V (z)1{z∈Oλn}
∑
u 6=v

u∗=v∗=z

e−Vz(u)e−Vz(v)
∑
x≥u
x∈Ouλn

e−Vu(x)
∑
y≥v
y∈Ovλn

e−Vv(y)

where we have used again the regular line Oλn which gives an upper bound for Hx∧y. Finally,
independence of increments of V conditionally to (T, V (w);w ∈ T, |w| ≤ l + 1) and Remark 2
yields

E
[ ∑

x6∼y
x,y∈Oλn

EE [NTe
x NTe

y ]
]
≤ 2λnE

[( ∑
|u|=1

e−V (u)
)2]

E
[ ∑
z∈Oλn

e−V (z)
]3

≤ 2λnE
[( ∑
|u|=1

e−V (u)
)2]

(`n)3
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and thanks to (4) the second moment above is finite. Collecting the upper bounds for the two cases
and moving back to (45), for n large enough we get

E
[ ∑
x,y∈O

λn,nb

EE [NTe
x NTe

y ]fn,|x|1
H
|x|
vn

(Vx)fn,|y|1
H
|y|
vn

(Vy)
]
≤ (`n)4λn

n2κb
≤ ne−min(9ε logn,4hn)

n2κb
, (46)

last inequality is justified by the fact (see Remark 1) that (`n)4 = o(ehn) and (`n)4 = o(eε logn). We
are now ready to conclude the proof of the lemma : P∗

(
RTn(gn, f

n) < nϕ(nb)an/4n
b
)

is smaller
than

P∗(R(fn) < an/n
b) + P∗

(
RTn(gn, f

n) < nϕ(nb)an/4n
b, R(fn) ≥ an/nb

)
,

then as the second term in the above inequality is nothing but

E∗
[
PE
(
RTn(gn, f

n) < nϕ(nb)an/4n
b
)
1{R(fn)≥an/nb}

]
,

the proof ends thanks to (44) and (46).

3.2.1. Lower bound for R(fn)

This is the most technical part of the proof of Proposition 1. For any n ≥ 2 and ε ∈ (0, εb) recall
that λn = ne−min(10ε logn,5hn) and vn = log(n`n)/δ1, δ1 ∈ (0, 1/2] (see (4)) with `n = (log n)3. For
any ε > 0, let us choose (an) as follows

an := e−4εhn
∑
k≥1

Ψk
λn/2,nb

(
fn,kεhn

1Υkn

)
(47)

with Υk
n = {t ∈ Rk; Hk(t) ≤ nbeεhn}∩H k

B,v′n
. Recall that Ψk

λ,λ′ , hn, H k
B,v′n

and fn,kεhn
can be found

respectively in (8), (12), (17) and (14) and v′n = vn + εhn.

Lemma 3.3. There exists c4 > 0 such that for any ε ∈ (0, εb) and n large enough

P∗
(
R(fn) < an/n

b
)
≤ e−ε

c4
c2
hnE[Z2

n](∑
k≥1 Ψk

λn/2,nb

(
fn,kεhn

1Υkn

))2 + hne
−εc̃2hn , (48)

with, recall, mn = dεhn/c2e (see (13)).

Proof. Recall the expression of R(fn):

R(fn) =
∑

x∈O
λn,nb

e−V (x) 1

Hx

(
1− 1

Hx

)nb−1

fn,|x|1
H
|x|
vn

(V (x1), · · · , V (x)),

with Hx and H
|x|
vn respectively defined in (7) and (17) for any z ∈ T. The main idea here is to cut

the tree at generation mn to introduce independence between generations.

R(fn) ≥
∑
|u|=mn

∑
k≥1

∑
|x|=k+mn

x>u; x∈O
λn,nb

e−V (x)

Hx

(
1− 1

Hx

)nb
fn,k+mn1H k+mn

vn
(V (x1), . . . , V (x)),

from here we would like to make a translation to decompose trajectories of V before and after
generation mn, to do that we have in particular to re-write Hxj for j ≤ |x|. Let u < x with
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|u| = mn. For all mn < j ≤ |x|, we have Hxj = Hue
−Vu(xj) + Hu,xj where, for any z < v,

Hz,v :=
∑
z<w≤v e

Vz(w)−Vz(v).
So on events {max|w|≤mn |V (w)| ≤ εhn} and {V u(x):= minu<w≤x(V (w)− V (u)) ≥ −B} for

any B > 0

∀i ≤ mn : Hxi ≤ mne
2εhn and ∀ mn < j ≤ |x| : Hxj ≤ mne

2εhn+B +Hu,xj .

Assume nb < Hu,x ≤ nbeεhn . Then, Hx > nb and for n large enough (recall hn ≤ log n for n large
enough, hn →∞ and ε ∈ (0, εb))

1

Hx

(
1− 1

Hx

)nb
≥ (1− 1/nb)n

b

mne2εhn+B +Hu,x
≥ (1− 1/nb)n

b

mne2εhn+B + nbeεhn
≥ e−3εhn

nb
.

Now introduce the translated (λ, λ′)-regular lines

Ov
λ,λ′ :=

{
y ∈ T, y > v; max

|v|<j≤|y|
Hv,yj ≤ λ, Hv,y > λ′

}
.

Note that for n large enough Ou
λn/2,nb

⊂ Oλn,nb , indeed, as we said before, for all i ≤ mn we have

Hxi ≤ mne
2εhn ≤ e3hn ≤ λn/2 for n large since ε ∈ (0, 1/13). Moreover, if Hu,xj ≤ λn/2 for any

mn < j ≤ |x|, Hxj ≤ mne
2εhn+B + λn/2 ≤ λn.

For fn,mn+k, we simply write (still on the event { max
|w|≤mn

|V (w)| ≤ εhn}),

fn,mn+k(V (x1), . . . , V (x)) ≥ fn,kεhn
(Vu(xmn+1), . . . , Vu(x)),

where we recall that fn,kh (t1, . . . , tk) = infs∈[−h,h]m f
n,m+k (s1, . . . , sm, t1 + sm, . . . , tk + sm) with

m = dh/c2e. In the same way 1{V (x)≥vn} ≥ 1{Vu(x)≥v′n} with v′n = vn + εhn and we finally obtain,
for n large enough (independently of the environment) on {max|w|≤mn |V (w)| ≤ εhn}, R(fn) is
larger than

e−3εhn

nb

∑
|u|=mn

e−V (u)
∑
k≥1

∑
|x|=k+mn

x>u; x∈Ou
λn/2,nb

e−Vu(x)1{Hu,x≤nbeεhn}f
n,k
εhn

1H k
B,v′n

(Vu(xmn+1), . . . , Vu(x))

≥ e−4εhn

nb

∑
|u|=mn

∑
k≥1

∑
|x|=k+mn

x>u; x∈Ou
λn/2,nb

e−Vu(x)fn,kεhn
1Υkn

(Vu(xmn+1), . . . , Vu(x)). (49)

Now, introduce the random variable Zun

Zun :=
∑
k≥1

∑
|x|=k+mn

x>u; x∈Ou
λn/2,nb

e−Vu(x)fn,kεhn
1Υkn

(Vu(xmn+1), . . . , Vu(x)),

we obtain

P∗
(
R(fn) < e−4εhnE[Zn]/nb, max

|w|≤mn
|V (w)| ≤ εhn

)
≤ P∗

( ∑
|u|=mn

Zun < E[Zn]
)
,

with

Zn :=
∑

x∈O
λn/2,nb

e−V (x)f
n,|x|
εhn

1
Υ
|x|
n

(V (x1), . . . , V (x)). (50)
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Hence, by Lemma 2.4 in [AD20], there exists c4 > 0 such that for n large enough

P∗
(
R(fn) < e−4εhnE[Zn]/nb, max

|w|≤mn
|V (w)| ≤ εhn

)
≤ e−c4mn E[Z2

n]

E[Zn]2
(51)

and finally, (47) yields

P∗
(
R(fn) < an/n

b, max
|w|≤mn

|V (w)| ≤ εhn
)
≤ e−ε

c4
c2
hnE[Z2

n](∑
k≥1 Ψk

λn/2,nb

(
fn,kεhn

1Υkn

))2 ,
and we have used that E[Zn] =

∑
k≥1 Ψk

λn/2,nb

(
fn,kεhn

1Υkn

)
and mn = dεhn/c2e. Finally, (13) finishes

the proof.

The next step is to give a lower bound for E[Z2
n] we do that in the dedicated section below.

3.2.2. Control of the second moment E[Z2
n]

In this section we prove the following lemma,

Lemma 3.4. Assume (A1) and (A2) hold. For all ε ∈ (0, εb), A > 2/c3 and n large enough

E[Z2
n] ≤ e 6ε

A hn
(∑
k≥1

Ψk
n,nb(f

n,k)
)2

recall also that c3 comes from Remark 2.

Proof. Expression of Z2
n is given by

∑
x,y∈O

λn/2,nb
e−V (x)−V (y)f

n,|x|
εhn

1
Υ
|x|
n

(Vx)f
n,|y|
εhn

1
Υ
|y|
n

(Vy) (see

(50)) and λn ≤ n so

Z2
n ≤

∑
x,y∈O

n,nb

e−V (x)e−V (y)f
n,|x|
εhn

1
H
|x|
B,v′n

(Vx)f
n,|y|
εhn

1
H
|y|
B,v′n

(Vy) (52)

with (recall) F (Vw) = F (V (w1), . . . , V (w)). Let us split computations of the upper bound of the
mean of Z2

n into two main cases : the first one is when x and y in the sum (52) are directly related
in the tree and the second when it is not the case:
Cases 1 (x ≤ y or y ≤ x) : recall v′n = vn + εhn with vn = log(n`n)/δ1, δ1 ∈ (0, 1/2] (see (4))
for this case we simply use the fact that fn,iεhn

≤ C∞ and e−2V (w)1{V (w)≥v′n} ≤ e−V (w)/n2 so by
symmetry

E
[ ∑
x≤y or y≤x
x,y∈O

n,nb

e−V (x)−V (y)1{V (x)≥v′n}

]
≤ 2E

[ ∑
x∈On

e−2V (x)1{V (x)≥v′n}
∑
y≥x
y∈Oxn

e−Vx(y)
]

≤ 2

n2
E
[ ∑
x∈On

e−V (x)
∑
y≥x
y∈Oxn

e−Vx(y)
]
.

which is equal, by using independence and stationarity of increments of V , to 2E[
∑
x∈On

e−V (x)]2/n2.

Then, thanks to Remark 2 and the fact that hn ≥ (log n)γ with 0 < γ ≤ 1, 2E[
∑
x∈On

e−V (x)]2 ≤
`n ≤ eεhn/A in addition with assumption (A1), the part {x ≤ y or y ≤ x} in the sum (52) is

smaller than e
ε
Ahn

(∑
k≥1 Ψk

n,nb(f
n,k)

)2
.
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Cases 2 (x 6∼ y) : recall that x 6∼ y iff nor x ≤ y neither y ≤ x. First let

Σ0(z) :=
∑
x 6∼y

x,y∈O
n,nb

1{x∧y=z}e
−V (x)e−V (y)f

n,|x|
εhn

1
H
|x|
B,v′n

(Vx)f
n,|y|
εhn

1
H
|y|
B,v′n

(Vy).

We decompose Σ0(z) as follows: for all A > 2/c3∑
z∈T

Σ0(z) =
∑

|z|≥bA`nc

Σ0(z) +
∑

|z|<bA`nc

(Σ1(z) + Σ2(z)), (53)

and for any i ∈ {1, 2},

Σi(z) :=
∑
x 6∼y

x,y∈O
n,nb

1{x∧y=z}e
−V (x)e−V (y)f

n,|x|
εhn

1
H
|x|
B,v′n

(Vx)f
n,|y|
εhn

1
H
|y|
B,v′n

(Vy)1{(x,y)∈Ci,z},

with C1,z := {(x, y) ∈ T2;x∗ > z and y∗ > z} and C2,z := {(x, y) ∈ T2;x∗ = z or y∗ = z}.
Let us start with the easiest part:

∑
|z|≥bA`ncΣ0(z). Observe that∑

|z|≥bA`nc

Σ0(z) ≤ C2
∞

∑
l≥bA`nc

∑
|z|=l

1{V (z)≥−B, z∈On}
∑
u6=v

u∗=v∗=z

∑
x≥u
x∈On

e−V (x)
∑
y≥v
y∈On

e−V (y).

By independence of increments of V conditionally to (T, V (w);w ∈ T, |w| ≤ l + 1) and Remark 2
for any n large enough

E
[ ∑
|z|≥bA`nc

Σ0(z)
]
≤ C2

∞e
BE
[( ∑
|u|=1

e−V (u)
)2]

E
[ ∑
x∈On

e−V (x)
]2 ∑

l≥bA`nc

E
[ ∑
|z|=l

e−V (z)1{z∈On}

]
≤ C2

∞e
BE
[( ∑
|u|=1

e−V (u)
)2]

`2nn
−2 ≤

∑
k≥1

Ψk
n,nb(f

n,k), (54)

where we have used (A1) and (4) for the last inequality.
For Σ1(z), |z| < bA`nc, we decompose according to the value of V (w) with w ∈ {u, v}: Σ1(z) =
Σ1,1(z) + Σ1,2(z) with

Σ1,1(z) :=
∑
u6=v

u∗=v∗=z

1{V (u)∨V (v)<v′n}
∑
x>u

x∈O
n,nb

e−V (x)f
n,|x|
εhn

1
H
|x|
B,v′n

(Vx)
∑
y>v

y∈O
n,nb

e−V (y)f
n,|y|
εhn

1
H
|y|
B,v′n

(Vy),

and

Σ1,2(z) :=
∑
u6=v

u∗=v∗=z

1{V (u)∨V (v)≥v′n}
∑
x>u

x∈O
n,nb

e−V (x)f
n,|x|
εhn

1
H
|x|
B,v′n

(Vx)
∑
y>v

y∈O
n,nb

e−V (y)f
n,|y|
εhn

1
H
|y|
B,v′n

(Vy).

We first deal with Σ1,1(z). Observe that x ∈ On,nb (resp. y ∈ On,nb) means Hu ≤ n (resp. Hv ≤ n),

x ∈ Ou
n (resp. y ∈ Ov

n) and nb − Hue
−Vu(x) < Hu,x (resp. nb − Hve

−Vv(y) < Hv,y). Besides,
V (u) < v′n and V (x) > v′n (resp. V (v) < v′n and V (y) > v′n) implies Vu(x) > 0 (resp. Vv(y) > 0)
that is nb −Hu < Hu,x (resp. nb −Hv < Hv,y), so Σ1,1(z) is smaller than∑

u 6=v
u∗=v∗=z

1{V (u)∧V (v)≥−B,Hu∨Hv≤n}
∑
x>u

x∈Ou
n,nb−Hu

e−V (x)f
n,|x|
εhn

(Vx)
∑
y>v

y∈Ov
n,nb−Hv

e−V (y)f
n,|y|
εhn

(Vy). (55)
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We now move to Σ1,2(z). Note that {V (u) ∨ V (v) ≥ v′n} = {V (u) ≥ v′n, V (v) < v′n} ∪ {V (v) ≥
v′n, V (u) < v′n} ∪ {V (u) ∧ V (v) ≥ v′n}. By symmetry, Σ1,2(z) is equal to

2
∑
u 6=v

u∗=v∗=z

1{V (u)≥v′n,V (v)<v′n}
∑
x>u

x∈O
n,nb

e−V (x)f
n,|x|
εhn

1
H
|x|
B,v′n

(Vx)
∑
y>v

y∈O
n,nb

e−V (y)f
n,|y|
εhn

1
H
|y|
B,v′n

(Vy)

+
∑
u 6=v

u∗=v∗=z

1{V (u)∧V (v)≥v′n}
∑
x>u

x∈O
n,nb

e−V (x)f
n,|x|
εhn

1
H
|x|
B,v′n

(Vx)
∑
y>v

y∈O
n,nb

e−V (y)f
n,|y|
εhn

1
H
|y|
B,v′n

(Vy)

The same decomposition of Hy we used for Σ1,1(z) also works for the part {V (v) < v′n} in the
above sum so as in (55) and using that on {V (u) ≥ v′n}, V (u) ≥ (1 − δ1)V (u) + log n, Σ1,2(z) is
smaller than

2C∞
n

∑
u6=v

u∗=v∗=z

e−(1−δ1)V (u)1{V (u)≥v′n,V (v)<v′n,V (v)≥−B,Hv≤n}
∑
x>u
x∈Oun

e−Vu(x)
∑
y>v

y∈Ov
n,nb−Hv

e−V (y)f
n,|y|
εhn

(Vy)

+ 1{V (z)≥−B,z∈On}
C2
∞
n2

∑
u6=v

u∗=v∗=z

e−(1−δ1)(V (u)+V (v))
∑
x>u
x∈Oun

e−Vu(x)
∑
y>v

y∈Ovn

e−Vv(y).

Note that the genealogical commun line between x and y is the commun line of individuals before
u and v so for any p ≤ |z|, xp = yp = up = vp and

f
n,|x|
εhn

(Vx) = f
n,|x|
εhn

(V (u1), · · · , V (u), Vu(x|u|+1) + V (u), · · · , Vu(x) + V (u)),

and

f
n,|y|
εhn

(Vy) = f
n,|y|
εhn

(V (v1), · · · , V (v), Vv(y|v|+1) + V (v), · · · , Vv(y) + V (v)).

Recall that for all q ≥ 1 and tq = (t1, . . . , tq) ∈ Rq,

Ψk
n(F |tp) = E

[ ∑
|x|=k

e−V (x)F (t1, . . . , tp, V (x1) + tp, . . . , V (x) + tp)1On(x)
]
.

We naturally note Ψk
n(F |Vw) when we evaluate the function Ψk

n(F |·) at (V (w1), . . . , V (w)).
By using independence of increments of V conditionally given (T, V (w);w ∈ T, |w| ≤ l + 1),
E[
∑
|z|=l Σ1(z)] = E[

∑
|z|=l Σ1,1(z) + Σ1,2(z)] is smaller, for n large enough with l < bA`nc, than

E
[ ∑
|z|=l

∑
u6=v

u∗=v∗=z

1{V (u)∧V (v)≥−B,Hu∨Hv≤n}
∑
i,j≥1

∏
(k,w)∈{(i,u);(j,v)}

e−V (w)Ψk
n,nb−Hw

(
f
n,|w|+k
εhn

|Vw

)]

+
2`nC∞
n

E
[ ∑
|z|=l

∑
u6=v

u∗=v∗=z

e−(1−δ1)V (u)1{V (v)≥−B,Hv≤n}
∑
j≥1

e−V (v)Ψj
n,nb−Hv

(
f
n,|v|+j
εhn

|Vv

)]

+
`2nC

2
∞

n2
E
[ ∑
|z|=l

1{V (z)≥−B,z∈On}
∑
u6=v

u∗=v∗=z

e−(1−δ1)(V (u)+V (v))
]
.

We have used that E[
∑
x∈On

e−V (x)] ≤ `n. Then, by assumption (A2) with δ = δ1 (see (4) for
the definition of δ1), for all l < bA`nc (|u| = |v| = l + 1) and n large enough on the event
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{V (u) ∧ V (v) ≥ −B,Hu ∨Hv ≤ n}∑
i,j≥1

∏
(k,w)∈{(i,u);(j,v)}

Ψk
n,nb−Hw

(
f
n,|w|+k
εhn

|Vw

)
≤ eδ1V (u)+δ1V (v)+ 2ε

A hn
(∑
k≥1

Ψk
n,nb(f

n,k)
)2

,

and similarly on the event {V (v) ≥ −B,Hv ≤ n}∑
j≥1

Ψj
n,nb−Hv

(
f
n,|v|+j
εhn

|Vv

)
≤ eδ1V (v)+ ε

Ahn
∑
k≥1

Ψk
n,nb(f

n,k).

Hence, E[
∑
|z|<bA`ncΣ1] is smaller, for n large enough, than

e
2ε
A hnE

[( ∑
|w|=1

e−(1−δ1)V (w)
)2]

E
[ ∑
|z|<bA`nc

e−V (z)−(1−2δ1)V (z)1{V (z)≥−B}

](∑
k≥1

Ψk
n,nb(f

n,k)
)2

+
2`n
n
e
ε
AhnC∞E

[( ∑
|w|=1

e−(1−δ1)V (w)
)2]

E
[ ∑
|z|<bA`nc

e−V (z)−(1−2δ1)V (z)1{V (z)≥−B}

]
×
∑
k≥1

Ψk
n,nb(f

n,k) +
`2nC

2
∞

n2
E
[ ∑
z∈On

e−V (z)−(1−2δ1)V (z)1{V (z)≥−B}

]
.

Finally, thanks to assumption (A1), (4) and by Remark 2, for n large enough

E
[ ∑
|z|<bA`nc

Σ1(z)
]
≤ e 5ε

A hn
(∑
k≥1

Ψk
n,nb(f

n,k)
)2

. (56)

We now turn to Σ2(z), that is the sum∑
x6∼y

x,y∈O
n,nb

1{x∧y=z}e
−V (x)e−V (y)f

n,|x|
εhn

1
H
|x|
B,v′n

(Vx)f
n,|y|
εhn

1
H
|y|
B,v′n

(Vy)1{(x,y)∈C2,z},

with C2,z := {(x, y) ∈ T2;x∗ = z or y∗ = z}. The first step is to split the set {x∗ = z or y∗ = z}
into three disjoint sets: {x∗ = z and y∗ > z}, {x∗ > z and y∗ = z} and {x∗ = z and y∗ = z}. By
symmetry, the previous sum is equal to

2
∑
x 6=v

x∗=v∗=z

1{x∈O
n,nb
}e
−V (x)f

n,|x|
εhn

1
H
|x|
B,v′n

(Vx)
∑
y>v

y∈O
n,nb

e−V (y)f
n,|y|
εhn

1
H
|y|
B,v′n

(Vy)

+
∑
x 6=y

x∗=y∗=z

e−V (x)e−V (y)1{x,y∈O
n,nb
}f
n,|x|
εhn

1
H
|x|
B,v′n

(Vx)f
n,|y|
εhn

1
H
|y|
B,v′n

(Vy).

We then use a very similar approach as the one we used for Σ1(z): split the first above sum
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according to the value of V (v) then make the previous decomposition of Hy to obtain, as in (55)

E
[ ∑
|z|=l

Σ2(z)
]
≤2C∞

n
E
[ ∑
|z|=l

∑
x6=v

x∗=v∗=z

e−(1−δ1)V (x)1{V (v)≥−B,Hv≤n}
∑
y>v

y∈Ov
n,nb−Hv

e−V (y)f
n,|y|
εhn

(Vy)
]

+
2C2
∞

n2
E
[ ∑
|z|=l

1{V (z)≥−B}
∑
x 6=v

x∗=v∗=z

e−(1−δ1)(V (x)+V (v))
∑
y>v

y∈Ovn

e−Vv(y)
]

+
C2
∞
n2

E
[ ∑
|z|=l

1{V (z)≥−B}
∑
x 6=y

x∗=y∗=z

e−(1−δ1)(V (x)+V (y))
]
.

Hence, by using independence of increments of V conditionally given (T, V (w);w ∈ T, |w| ≤ l+ 1),
E[
∑
|z|=l Σ2(z)] is smaller, for n large enough, than

2C∞
n

E
[ ∑
|z|=l

1{V (z)≥−B}
∑
x 6=v

x∗=v∗=z

e−(1−δ1)V (x)1{V (v)≥−B,Hv≤n}
∑
j≥1

e−V (v)Ψj
n,nb−Hv

(
f
n,|v|+j
εhn

|Vv

)]

+
3`nC

2
∞

n2
E
[ ∑
|z|=l

1{V (z)≥−B}
∑
x 6=v

x∗=v∗=z

e−(1−δ1)(V (x)−V (v))
]
,

where we used as usual E[
∑
x∈On

e−V (x)] ≤ `n. Then, by assumption (A2) with δ = δ1, for all
l < bA`nc (|v| = l + 1) and n large enough on the event {V (v) ≥ −B,Hv ≤ n}∑

j≥1

Ψj
n,nb−Hv

(
f
n,|v|+j
εhn

|Vv

)
≤ eδ1V (v)+ ε

Ahn
∑
k≥1

Ψk
n,nb(f

n,k),

so E[
∑
|z|=l Σ2(z)] is smaller than

2C∞
n

e
ε
AhnE

[( ∑
|w|=1

e−(1−δ1)V (w)
)2]

E
[ ∑
|z|=l

e−V (z)−(1−2δ1)V (z)1{V (z)≥−B}

]∑
k≥1

Ψk
n,nb(f

n,k)

+
3`nC

2
∞

n2
E
[( ∑
|w|=1

e−(1−δ1)V (w)
)2]

E
[ ∑
|z|=l

e−V (z)−(1−2δ1)V (z)1{V (z)≥−B}

]
.

Hence, thanks to assumption (A1), (4) and Remark 2, for n large enough

E
[ ∑
|z|<bA`nc

Σ2(z)
]
≤ e 3ε

A hn
(∑
k≥1

Ψk
n,nb(f

n,k)
)2

. (57)

Collecting Case 1, Case 2 ((53), inequalities (54), (56) and (57)) and considering (52) give the
lemma.

We are now ready to prove the lower bound of RTn(gn, f
n) in Proposition 1. Recall u1,n =∑

k≥1 Ψk
λn/2,bn

(
fn,kεhn

1Υkn

)
where Υk

n = {t ∈ Rk; Hk(t) ≤ nbeεhn} ∩ H k
B,v′n

, H k
B,v′n

is defined

in (17) and v′n = vn + εhn. Thanks to Lemmata 3.2, 3.3 and the expression of an (47), for n large
enough as e−εhn ≤ 1

4 , P(RTn(gn, f
n) < n1−bϕ(nb)e−5εhnu1,n) is smaller than

P
(
RTn(gn, f

n) < nϕ(nb)e−4εhnu1,n/4n
b
)
≤ e−ε

c4
c2
hn E[Z2

n]

u2
1,n

+ hne
−εc̃2hn +

e8εhn−min(9ε logn,4hn)

n2κbu2
1,n

.
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Then Lemma 3.4 provides majoration of E[Z2
n] so P

(
RTn(gn, f

n) < nϕ(nb)e−4εhnu1,n/4n
b
)

is
smaller, for n large enough than (recall that hn ≤ log n)

e−(
c4
c2
− 6
A )εhn

(∑
k≥1

Ψk
n,nb(f

n,k)/u1,n

)2

+ hne
−εc̃2hn +

e−min(ε logn,3hn)

n2κbu2
1,n

.

which yields the lower bound of Proposition 1.

3.3. Upper bound for RTn(gn, f
n)

For all n ≥ 1 and x ∈ T, recall that Enx is the number of excursions, among the first n excursions
to the root, for which the edge (x∗, x) is reached, in a similar way Ẽnx is the number of excursions
such that x is reaching more often from above than from below :

Enx =

n∑
i=1

1{NTix −NT
i−1

x ≥1} and Ẽnx :=

n∑
i=1

1{
∑
y;y∗=xN

Ti
y −NT

i−1
y >NTix −NT

i−1
x }.

Also introduce the event An such that all vertices of the trace of {Xk, k ≤ Tn} have exponential
downfall fluctuation lower than n, potential larger than vn and which are visited during a single
excursion to the root

An :=
{
∀ j ≤ Tn, Xj ∈ On,

∑
x∈On

(1{Enx≥2} + 1{Ẽnx≥2})1H
|x|
vn

(Vx) = 0
}
. (58)

Note that limn→∞ P(An) = 1, indeed, Ẽnx ≥ 2 implies Enx ≥ 2 so

1− P(An) ≤ P(∃ j ≤ Tn : Xj 6∈ On) + P
( ∑
x∈On

1{Enx≥2}1H
|x|
vn

(Vx) > 0
)
.

By [AC18], equation 2.2, P(∃ j ≤ Tn : Xj 6∈ On)→ 0. Moreover, P(
∑
x∈On

1{Enx≥2}1H
|x|
vn

(Vx) > 0)

is smaller than

E
[ ∑
x∈On

PE (Enx ≥ 2)1
H
|x|
vn

(Vx)
]

= E
[ ∑
x∈On

(
PE (Enx ≥ 1)− PE (Enx = 1)

)
1

H
|x|
vn

(Vx)
]
.

Thanks to strong Markov property, NT i

x −NT i−1

x , i ∈ {1, . . . , n}, are i.i.d under PE so PE (Enx ≥ 1)−
PE (Enx = 1) ≤ EE [Enx ] − PE (Enx = 1) = nPE (NTe

x ≥ 1)(1 − PE (NTe
x = 0)n−1) ≤ n2PE (NTe

x ≥ 1)2

and by Lemma 3.1, for all x with V (x) ≥ vn, n2PE (NTe
x ≥ 1)2 ≤ n2e−2V (x) ≤ n2−1/δ1e−V (x)/`

1/δ1
n .

δ1 ∈ (0, 1/2], hence, by Remark 2

P
( ∑
x∈On

1{Enx≥2}1H
|x|
vn

(Vx) > 0
)
≤ n2−1/δ1

`
1/δ1
n

E
[ ∑
x∈On

e−V (x)
]
≤ n2−1/δ1

`
1/δ1−1
n

→ 0.

Lemma 3.5. Let (un, n) be a sequence of positive numbers, then

PE (RTn(gn, f
n) > un,An) ≤ 2n1−bϕ(nb)

un
(X1,n + X2,n + X3,n)

where

X1,n :=
∑
x∈On

1{V (x)<vn}

(
e−V (x) +

∑
y;y∗=x

e−V (y)
)
fn,|x|(Vx), (59)
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X2,n :=
∑
x∈On

1{V (x)≥vn}
e−V (x)

Hx

(
1− 1

Hx

)dnb/2e−1

(nb +Hx)fn,|x|(Vx), (60)

and

X3,n :=
∑
x∈On

1{V (x)≥vn}
e−V (x)

Hx

H̃x

1 + H̃x

(
1− 1

1 + H̃x

)dnb/2e−1

(nb + 1 + H̃x)fn,|x|(Vx) (61)

recall the definition of Hx and H̃x in Lemma 3.1.

Proof. Since gn(0) = 0, we have, by Markov inequality, that PE (RTn(gn, f
n) > un,An) is smaller

than

2

un

( ∑
x∈On

1{V (x)<vn}E
E
[
gn
(
L Tn

x

)]
fn,|x|(Vx)

+
∑
x∈On

1{V (x)≥vn}E
E
[
gn
(
L Tn

x

)
1{Enx ,Ẽnx∈{0,1}}

]
fn,|x|(Vx)

)
.

The first parts in the above sum is the easiest to deal with. Indeed, the application t ∈ [1,∞) 7→
ϕ(t)/t is non increasing so gn(t) ≤ tn−bϕ(nb) and we have∑

x∈On

1{V (x)<vn}E
E
[
gn
(
L Tn

x

)]
fn,|x|(Vx) ≤ n1−bϕ(nb)

∑
x∈On

1{V (x)<vn}E
E
[
L Te
x

]
fn,|x|(Vx)

= n1−bϕ(nb)X1,n.

We used that for all 1 ≤ i ≤ n, L T i

x − L T i−1

x is distributed as L Te
x under PE with mean

e−V (x) +
∑
y;y∗=x e

−V (y) by Lemma 3.1.

We then move to the high potential part. Assume Enx ∈ {0, 1} and Ẽnx ∈ {0, 1}. If Enx = 0,
then the vertex x is never visited during any of the first n excursions and Ẽnx = 0. Thus,

gn
(
L Tn

x

)
= gn(0) = 0. If Enx = 1 and Ẽnx = 0 there exists i ∈ {1, . . . , n} such that NT i

x −NT i−1

x ≥ 1

and ∀j 6= i, NT j

x −NT j−1

x = 0 and ∀m ∈ {1, . . . , n},
∑
y;y∗=xN

Tm

y −NTm−1

y ≤ NTm

x −NTm−1

x . In

particular, since, starting from the root e, L Tn

x =
∑n
j=1

(
NT j

x −NT j−1

x +
∑
y;y∗=xN

T j

y −NT j−1

y

)
,

we have, on {Enx = 1, Ẽnx = 0}

L Tn

x = NT i

x −NT i−1

x +
∑

y;y∗=x

NT i

y −NT i−1

y ≤ 2
(
NT i

x −NT i−1

x

)
. (62)

Otherwise, if Enx = 1 and Ẽnx = 1 there exists i ∈ {1, . . . , n} such that NT i

x −NT i−1

x ≥ 1 and ∀j 6= i,

NT j

x − NT j−1

x = 0 and ∃m′ ∈ {1, . . . , n} such that
∑
y;y∗=xN

Tm
′

y − NTm
′−1

y > NTm
′

x − NTm
′−1

x

and ∀m 6= m′,
∑
y;y∗=xN

Tm

y − NTm−1

y ≤ NTm

x − NTm−1

x . So we have necessarily m′ = i and, on

{Enx = 1, Ẽnx = 1}

L Tn

x = NT i

x −NT i−1

x +
∑

y;y∗=x

NT i

y −NT i−1

y ≤ 2
∑

y;y∗=x

NT i

y −NT i−1

y . (63)

gn is increasing so (62) and (63) give, when Enx ∈ {0, 1} and Ẽnx ∈ {0, 1}

gn
(
L Tn

x

)
≤

n∑
i=1

gn
(
2
(
NT i

x −NT i−1

x

))
+

n∑
i=1

gn
(
2
∑

y;y∗=x

NT i

y −NT i−1

y

)
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From this inequality, it follows that EE
[
gn
(
L Tn

x

)
1{Enx ,Ẽnx∈{0,1}}

]
is smaller than

nEE
[
gn
(
2NTe

x

)]
+ nEE

[
gn
(
2
∑

y;y∗=x

NTe
)]
≤n1−bϕ(nb)EE

[
NTe
x 1{NTex ≥dnb/2e}

]
+ n1−bϕ(nb)EE

[ ∑
y;y∗=x

NTe
y 1{

∑
y;y∗=xN

Te
y ≥dnb/2e}

]
We used that for all 1 ≤ i ≤ n, NT i

x − NT i−1

x (resp.
∑
y;y∗=xN

T i

y − NT i−1

y ) is distributed as NTe
x

(resp.
∑
y;y∗=xN

Te
y ) under PE and the fact that the application t ∈ [1,∞) 7→ ϕ(t)/t is deacresing.

Then, by Lemma 3.1

EE
[
NTe
x 1{NTex ≥dnb/2e}

]
≤ e−V (x)

Hx

(
1− 1

Hx

)dnb/2e−1

(nb +Hx)

and

EE
[ ∑
y;y∗=x

NTe
y 1{

∑
y;y∗=xN

Te
y ≥dnb/2e}

]
≤ e−V (x)

Hx

H̃x

1 + H̃x

(
1− 1

1 + H̃x

)dnb/2e−1

(nb + 1 + H̃x)

which ends the proof.

Lemma 3.6. Let b ∈ [0, 1). For n large enough

E[X1,n + X2,n + X3,n] ≤ 2(log n)2u2,n.

where we recall u2,n =
∑
k≥1

(
Ψk
n,nb(f

n,k)+Ψk
n

(
fn,k1Rk\H k

vn

)
+Ψk

n,λ′n
(fn,k)+E[WΨk

n,λ′n/W
(fn,k)]

)
,

with λ′n = nb(log n)−2 and W =
∑
|z|=1 e

−V (z).

Proof. We start with the easiest part that is the expression of E[X1,n]. Thanks to hypothesis (1)

E[X1,n] = E
[ ∑
x∈On

1{V (x)<vn}

(
e−V (x) + e−V (x)

∑
y;y∗=x

e−Vx(y)
)
fn,|x|(Vx)

]
= 2E

[ ∑
x∈On

1{V (x)<vn}e
−V (x)fn,|x|(Vx)

]
= 2

∑
k≥1

Ψk
n

(
fn,k1Rk\H k

vn

)
.

Let

λ̃n =
dnb/2e − 1

log qn
with qn =

4C∞`nn
b∑

k≥1 Ψk
n,nb

(
fn,k

) ,
and let us find an upper bound for E[X2,n]. For that we decompose X2,n into two parts according
to the value of Hx:

X2,n ≤
∑
x∈On

(1{Hx≤λ̃n} + 1{Hx>λ̃n})
e−V (x)

Hx

(
1− 1

Hx

)dnb/2e−1

(nb +Hx)fn,|x|(Vx)

≤ C∞
(
nb + λ̃n

)(
1− 1

λ̃n

)dnb/2e−1 ∑
x∈On

e−V (x) +
(
1 +

nb

λ̃n

) ∑
x∈On,λ̃n

e−V (x)fn,|x|(Vx).
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By definition of λ̃n and qn (see above), (1 − 1/λ̃n)dn
b/2e−1 ≤ 1/qn. Moreover, by Remark 2,

E[
∑
x∈On

e−V (x)] ≤ `n and E[
∑
k≥1 Ψk

n,nb

(
fn,k

)
] ≤ C∞E[

∑
x∈On

e−V (x)] ≤ C∞`n so for n large

enough (qn ≥ 4nb implying λ̃n ≤ nb), we obtain

E[X2,n] ≤ 1

2

∑
k≥1

Ψk
n,nb

(
fn,k

)
+
(
1 +

nb

λ̃n

)∑
k≥1

Ψk
n,λ̃n

(
fn,k

)
.

For E[X3,n], we decompose X3,n into two parts according to the value of H̃x: X3,n is smaller than∑
x∈On

(1{1+H̃x≤λ̃n} + 1{1+H̃x>λ̃n})
e−V (x)

Hx

H̃x

1 + H̃x

(
1− 1

1 + H̃x

)dnb/2e−1

(nb + 1 + H̃x)fn,|x|(Vx)

≤ C∞
(
nb + λ̃n

)(
1− 1

λ̃n

)dnb/2e−1 ∑
x∈On

e−V (x) +
(
1 +

nb

λ̃n

) ∑
x∈On

e−V (x)1{1+H̃x>λ̃n}

×
∑

y;y∗=x

e−Vx(y)fn,|x|(Vx).

Then as above C∞
(
nb + λ̃n

)(
1 − 1/λ̃n

)dnb/2e−1 ≤
∑
k≥1 Ψk

n,nb

(
fn,k

)
/2, also recall that H̃x =

Hx

∑
y;y∗=x e

−Vx(y) so by conditional independence of Hx and
∑
y;y∗=x e

−Vx(y) together with the

fact that this random variable has the same law as W =
∑
|x|=1 e

−V (x),

E
[ ∑
x∈On

e−V (x)1{1+H̃x>λ̃n}

∑
y;y∗=x

e−Vx(y)fn,|x|(Vx)
]

=
∑
k≥1

E
[
WΨk

n,(λ̃n−1)/W
(fn,k)

]
.

Hence

E[X3,n] ≤ 1

2

∑
k≥1

Ψk
n,nb

(
fn,k

)
+
(
1 +

nb

λ̃n

)∑
k≥1

E
[
WΨk

n,(λ̃n−1)/W
(fn,k)

]
.

Finally, by assumtpion (A1), qn ≤ 4C∞`nn
1+b so for all b ∈ (0, 1) and n large enough λ̃n − 1 ≥

nb(log n)−2 = λ′n. Hence, for all b ∈ [0, 1) and n large enough (1 + nb/λ̃n) ≤ 2(log n)2 and
Ψk
n,(λ̃n−1)/W

(fn,k) (resp. Ψk
n,λ̃n

(fn,k)) is smaller than Ψk
n,λ′n/W

(fn,k) (resp. Ψk
n,λ′n

(fn,k)) so we

obtain the result.

We are now ready to prove the upper bound in Proposition 1. Recall (58), and let ε > 0

P
( RTn(gn, f

n)

n1−bϕ(nb)u2,n
> eεhn

)
≤ P

( RTn(gn, f
n)

n1−bϕ(nb)u2,n
> eεhn ,An

)
+ 1− P(An).

where u2,n =
∑
k≥1

(
Ψk
n,nb(f

n,k) + Ψk
n

(
fn,k1Rk\H k

vn

)
+ Ψk

n,λ′n
(fn,k) + E

[
WΨk

n,λ′n/W
(fn,k)

])
. By

Lemma 3.5 with un = eεhnn1−bϕ(nb)u2,n and Lemma 3.6, for n large enough

P
( RTn(gn, f

n)

n1−bϕ(nb)u2,n
> eεhn ,An

)
≤ 2e−εhn

u2,n
E[X1,n + X2,n + X3,n] ≤ 4(log n)2e−εhn ,

and then for n large enough

P
( RTn(gn, f

n)

n1−bϕ(nb)u2,n
> eεhn

)
≤ 4(log n)2e−εhn + 1− P(An).

Finally, observe (see Remark 1) that (log n)2 = o(eεhn) and we complete the proof of the upper
bound recalling (see below (58)) that 1− P(An) = o(1).



Andreoletti, Kagan/Generalized range for slow random walks on trees 45

4. Technical estimates for one-dimensional random walk

In this section we prove some technical expressions involving sums of i.i.d. random variables, the
ones introduced via the many-to-one Lemma at the beginning of Section 2. Recall that (Si −
Si−1, i ≥ 1) is a sequence of i.i.d. random variables such that E(S1) = 0, there exists η > 0 for
which E(eηS1) < +∞. Also we denote σ2 = ψ′′(1) = E(S2

1). We use the following notations : for
any a, τa := inf{k > 0, Sk ≥ a}, τ−a := inf{k > 0, Sk ≤ a} and τ S̄−Sa := inf{k > 0, Sk − Sk ≥ a}
with Sk := max1≤m≤k Sm and Hj :=

∑j
i=1 e

Si−Sj .

4.1. Two Laplace transforms

In this section we deal with Laplace transforms which appear when we study the range of high
potential with the underlying constraint of the reflecting barrier and also when a penalization via
cumulative downfalls of V is introduced.

Lemma 4.1. Let r := r(`) such that lim`→+∞ r(`)/` = +∞, then for any ε > 0

e−(1+
√
c−ρ(c)) r` (1+ε) ≤ E

[
e−

cσ2

2`2
τr1

τr≤τ S̄−S`

]
≤ e−(1+

√
c−ρ(c)) r` (1−ε),

with ρ(c) = cσ√
2π

∫ +∞
0

e−
cσ2

2 uf(u)du, and f(u) = 2
u1/2P(m1 > 1/

√
uσ2) − 1

2

∫ +∞
u

1
y3/2P(m1 >

1/
√
yσ2)dy. Note that ρ can be explicitly calculated : for any c > 0

ρ(c) = 2
√
c
(1− e−

√
c

sinh(
√
c)

)
− 2
(√

c− log((e
√
c + 1)/2)

)
.

Proof. We start with the upper bound.
Let us introduce the usual strict ladder epoch sequence (Tk := inf{i > Tk−1, Si > STk−1

}, k;
T0 = 0). Then for any k

E
[
e−

cσ2

2`2
τr1

τr≤τ S̄−S`

]
≤ E

[
e−

cσ2

2`2
τr1STk<r1τr≤τ S̄−S`

]
+ P(STk ≥ r)

≤
(
E
[
e−

cσ2

2`2
τ+
0 1τ+

0 ≤τ
−
−`

])k
+ P(STk ≥ r), (64)

where the last equality comes from the strong Markov property and equality T1 = τ+
0 := inf{m >

0, Sm > 0}. From here we need the asymptotic in ` of E
[
e−

cσ2

2`2
τ+
0 1τ+

0 ≤τ
−
−`

]
. First we use following

identity

E
[
e−

λ
`2
τ+
0 1τ+

0 ≤τ
−
−`

]
= E[e−

λ
`2
τ+
0 ]− P(τ+

0 > τ−−`) + E
(

(1− e
−λ
`2
τ+
0 )1τ+

0 >τ−`

)
, (65)

and then give an upper bound for each of the term appearing, first Lemma 2.2 in [Aı̈d10] gives for
m large enough

P(τ+
0 > τ−−`) =

E(Sτ+
0

)

`
+ o

(
1

`

)
, (66)

Both of the other terms can be obtained with a Tauberian theorem, we give here some details
for the third one which is more delicate. Let dH`(u) the measure defined by P(τ+

0 > z`2, τ+
0 >

τ−−`) =
∫∞
z
dH`(u), integration by part gives E

(
(1− e

−λ
`2
τ+
0 )1τ+

0 >τ
−
−`

)
=
∫ +∞

0
(1− e−λu)dH`(u) =
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λ
∫ +∞

0
e−λu P(τ+

0 > u`2, τ+
0 > τ−−`)du. So we need an asymptotic in ` of the tail probabililty

P(τ+
0 > u`2, τ+

0 > τ−−`). Let us decompose this probability as follows

P(τ+
0 > z`2, τ+

0 > τ−−`) = P(τ+
0 > τ−−` > z`2) + P(τ+

0 > z`2, τ−−` ≤ z`
2)

= P(τ−0 > τ` > z`2) + P(τ−0 > z`2, τ` ≤ z`2) =: P1 + P2. (67)

where τ−0 := inf{k > 0, Sk < 0} with for any k, Sk = −Sk and similarly τ` := inf{k > 0, Sk ≥ `}.
For P2, we just use Donsker’s theorem for conditioned random walk to remain positive obtain in
[Bol76] which gives lim`→+∞ P(τ` ≤ z`2|τ−0 > z`2) = P(m1 > 1/σ

√
z), where m is the Brownian

meander and m1 = sups≤1 ms. Also we know from Feller [Fel68] (see the first equivalence page 514
of Caravenna [Car05] for the expression we use here) that for any z > 0 :

lim
`→∞

`P(τ−0 > z`2) =

√
2

π

E(Sτ+
0

)
√
zσ2

, (68)

so

lim
`→∞

`P2 =

√
2

π

E(Sτ+
0

)
√
zσ2

P(m1 > 1/σ
√
z). (69)

For P1 we use a similar strategy, for any A > x, ε > 0 and ` large enough

P1 ≤ P(z`2 ≤ τ` ≤ A`2, τ−0 > τ`) + P(τ−0 > A`2)

≤
A`2∑
k=z`2

P(Sk−1 ≤ `,Sk > `| τ−0 > k)P(τ−0 > k) + P(τ−0 > A`2)

≤ (1 + ε)

√
2

π

E(Sτ+
0

)

`σ

A`2∑
k=z`2

P(Sk−1 ≤ `,Sk > `| τ−0 > k)
`

k1/2
+

C

`A1/2
,

where we have used (68) for the last inequality and C > 0 is a constant. Also functional limit the-

orem [Bol76] implies that lim`→+∞
∑A`2

k=z`2 P(Sk−1 ≤ `,Sk > `| τ−0 > k) `
k1/2 = −

∫ A
z

1
y1/2 dP(m1 >

1/
√
yσ2). We deduce from that, taking limits A→ +∞ and ε→ 0,

lim
`→∞

` ∗ P1

≤ −
√

2

π

E(Sτ+
0

)

σ

∫ +∞

z

1

y1/2
dP(m1 > 1/

√
yσ2)

=

√
2

π

E(Sτ+
0

)

σ

( 1

z1/2
P(m1 > 1/

√
zσ2)− 1

2

∫ +∞

z

1

y3/2
P(m1 > 1/

√
yσ2)dy

)
.

Note that just by noticing that P1 ≥ P(z`2 ≤ τ` ≤ A`2, τ−0 > τ`), above expression is also a lower
bound for limm→∞ ` ∗ P1. Considering this, (69) and (67), we obtain

lim
`→∞

`P(τ+
0 > z`2, τ+

0 > τ−−`) =

√
2

π

E(Sτ+
0

)

σ
f(z). (70)

where f is the function given in the statement of the Lemma. Note that this convergence is uniform
on any compact set in (0,∞) by monotonicity of z → `P(τ+

0 > z`2, τ+
0 < τ−−`), continuity of the

limit and Dini’s theorem. From here we follow the same lines of the proof of a Tauberian theorem
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(Feller [Fel68]) for completion we recall the main lines for our particular case. For any ε > 0, by
the uniform convergence we have talked about just above,

lim
`→+∞

`

∫ 1/ε

ε

e−λuP(τ+
0 > u`2, τ+

0 > τ−−`)du =

√
2

π

E(Sτ+
0

)

σ

∫ 1/ε

ε

e−λuf(u)du.

By (68), we also have for any ` and z > 0, P(τ+
0 > z`2, τ+

0 > τ−−`) ≤
Const
z1/2`

and as
∫ +∞

0
e−λuu−1/2du <

+∞, we get limε→0 lim`→+∞
∫ ε

0
e−λu`P(τ+

0 /`
2 > u) = 0.

Similarly limε→0 lim`→+∞
∫ +∞

1/ε
e−λu`P(τ+

0 /`
2 > u, τ+

0 > τ−−`)du = 0. Finally

lim
`→+∞

`

∫ +∞

0

(1− e−λu)dH`(u) = lim
`→+∞

`E
(

(1− e
−λ
`2
τ+
0 )1τ+

0 >τ−`

)
= λ

√
2

π

E(Sτ+
0

)

σ

∫ +∞

0

e−λuf(u)du. (71)

Note also that just by using (68) we also have lim`→+∞ `E[1 − e−
λ
`2
τ+
0 ] =

√
2λE(Sτ+

0
)σ−1. Then

collecting (65), (66) and (71) and taking λ = cσ2/2 we obtain for ` large enough

E
[
e−

cσ2

2`2
τ+
0 1τ+

0 ≤τ
−
−`

]
= 1−

E(Sτ+
0

)

`

(
1 +
√
c− cσ√

2π

∫ +∞

0

e−
cσ2u

2 f(u)du

)
+ o
(1

`

)
. (72)

To obtain an explicit expression for the above integral, we integrate by parts∫ +∞

0

e−λuf(u)du

= 2

∫ +∞

0

e−λu

u1/2
P(m1 > 1/

√
uσ2)du− 1

2λ

∫ +∞

0

1

u3/2
(1− e−λu)P(m1 > 1/

√
uσ2)du,

then using the expression of P(m1 > u) := −2
∑
k=1(−1)k exp(−(ku)2/2), ∀u > 0, and a little of

computations gives :∫ +∞

0

e−λuf(u)du = 2

√
π

λ

( 1

sinh(
√

2λ/σ)
− e−

√
2λ/σ

sinh(
√

2λ/σ)

)
− σ
√

2π

λ

(√2λ

σ
− log((e

√
2λ/σ + 1)/2)

)
.

(73)

Now we deal with the probability P(STk ≥ r) in the same way as [HS16a]. As Tk can be written
as a sum of i.i.d random variables with common law given by τ+

0 , exponential Markov property

gives for any δ > a > 0, P(STk ≥ r) ≤ e−ηr(E(e
ηS
τ
+
0 ))k. Taking k = (1 − ε)r/E(Sτ+

0
) we can find

constants c′ and c” such that P(STk ≥ r) ≤ c′e−c”r for any r ≥ 1. So replacing this and (72) in
(64), we finally get for any m large enough

E
[
e−

cσ2

2`2
τr1

τr≤τ S̄−S`

]
≤
(
E
[
e−

cσ2

2`2
τ+
0 1τ+

0 ≤τ−`

])k
+ P(STk ≥ r)

≤

(
1−

E(Sτ+
0

)

`

(
1 +
√
c− cσ√

2π

∫ +∞

0

e−
cσ2

2 uf(u)du
))(1−ε)r/E(S

τ
+
0

)

+ c′e−c”r,

which gives the upper bound.
For the lower bound the very beginning starts with the same spirit as the proof of Lemma A.2 in
[HS16a] : let rk = a ∗ k for 0 ≤ k ≤ N := r

a and a > 0 (chosen later) then

∩Nk=0{inf{i > τrk , Si ≥ rk+1} < inf{i > τrk , Si ≤ rk − `}} ⊂ {τr ≤ τ
S̄−S
` },
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then, strong Markov property gives

E
[
e−

cσ2

2`2
τr1

τr≤τ S̄−S`

]
≥ ΠN

k=0Erk
(
e−

cσ2

2`2
τrk+11τrk+1

<τ−rk−`

)
= ΠN

k=0E
(
e−

cσ2

2`2
τrk+1−rk1τrk+1−rk<τ

−
−`

)
=
(
E
(
e−

cσ2

2`2
τa1τa<τ−−`

))N+1

.

So we only need a lower bound for Laplace transform of the form E(e−hτa1τa<τ−−`
), with h =

h(`)→ 0. From here we follow the same lines as for the upper bound with following differences, τ+
0

(resp. τ−0 ) is replaced by τa (resp. by τ−−a), also estimation (68) should be replaced by following
one that can be found in [AS14] : there exists 0 < θ < +∞ such that uniformly in a ∈ [0, a`] with
a` = o(`1/2) for large `, where R is the usual renewal function (see (2.3) in [AS14]) with following
property (see (2.6) together with Lemma 2.1 in [AS14])

lim
a→∞

R(a)/a =
1

θ

(
2

πσ2

)1/2

. (74)

Now considering (67), with the change we have just talked above, as for any a > 0, lim`→+∞ P(τ` ≤
z`2|τ−−a > z`2) = P(m1 > 1/σ

√
z), we obtain

lim
m→∞

`P2 = lim
`→∞

`P(τ−−a > z`2, τ` ≤ z`2) =
θR(a)√

z
P(m1 > 1/σ

√
z),

similarly for P1 = P(τ−a > τ` > z`2), for ` large enough and then taking the limit A→ +∞

P1 ≥ (1− ε)θR(a)

`

A`2∑
k=z`2

P(Sk−1 ≤ `,Sk > `| τ−a > k)
`

k1/2

≥ (1− 2ε)
θR(a)

`

∫ +∞

z

1

y1/2
dP(m1 > 1/

√
yσ2).

We then obtain the equivalent of (70), that is lim`→∞ `P(τa > z`2, τa > τ−−`) = θR(a)f(z) from
which we deduce following lower bound for associated Laplace transform :

lim
`→+∞

mE
(

(1− e
−λ
`2
τa)1τa>τ−`

)
= λθR(a)

∫ +∞

0

e−λuf(u)du.

in the same spirit lim`→+∞ `E[1− e−
λ
`2
τ−a ] =

√
λπθR(a), also first Lemma 2.2 in [Aı̈d10] gives for

any a > 0 and any ` large P(τ−a > τ−−`) = P−a(τ0 > τ−−`−a) ∼ E(−Sτ−a)/`. So finally collecting
these estimates and taking λ = σ2c/2, for any ε > 0 and ` large enough

E
[
e−

cσ2

2`2
τr1

τr≤τ S̄−S`

]
≥
(

1−
(E(−Sτ−a)

`
+
θR(a)

`

(√π

2
σ
√
c− cσ2

2

∫ +∞

0

e−
cσ2

2 uf(u)du
))

(1 + ε)

)N+1

.

Now recall that N = r/a, so let us take a large enough in such a way that (using (74)) R(a)/a ≤
1
θ

(
2
πσ2

)1/2
(1 + ε) also for large a, E(−Sτ−a)/a ≤ (1 + ε) (this can be seen easily, noticing that

undershoot Sτ−a − a has a second moment). This finish the proof.
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Lemma 4.2. For any ε > 0, β > 0, any r large enough uniformly in t = t(r) with limr→+∞ r−t =
+∞,

E
(
e−max1≤j≤τr−t Sj−Sj

)
≤ e−2

√
r−t(1−ε).

Proof. Like in the proof of Lemma 4.1 we use strict ladder epoch sequence (Tk := inf{s >
Tk−1, Ss > STk−1

}, k;T0 = 0), also let us introduce random variable Yk := maxTk−1≤j≤Tk Sj − Sj
for any k ≥ 1. Let m a positive integer to be chosen later, by strong Markov property

E
(
e−max1≤k≤m Yk

)
=

m∑
k=1

E(e−Yk1Yk>maxi≤k−1 Yi, Yk≥maxk+1≤i≤m Yi)

≤ mE(e−Y2(1− P(Y1 > Y2|Y2))m−1).

At this point we need an asymptotic in y of M(y) := P(Y1 > y) = P(max0≤s≤T0
Ss < −y) =

P(τ0 > τ−y), for that we use following equality (see for example [Aı̈d10] Lemma 2.2) : for large y,
P(τ0 > τ−y) = E(Sτ0)/y + o(1/y). So for any large A, and ε > 0

e−Y2(1− P(Y1 > Y2|Y2))m−1

=e−Y2(1− P(Y1 > Y2|Y2))m−11Y2>A + e−Y2(1− P(Y1 > Y2|Y2))m−11Y2≤A

≤e−Y2
(
1− E(Sτ0)(1− ε)(Y2)−1

)m−1
1Y2>A + (1− P(Y1 > A))m−1,

For the second term above we can find constant c = c(A) such that (1− P(Y1 > A))m−1 ≤ e−cm.

For the first term , let us introduce measure dM defined as M(x) =
∫ +∞
x

dM(z)dz, then integrating
by parts

E(e−Y2
(
1− E(Sτ0)(1− ε)(Y2)−1

)m−1
1Y2>A) = −

∫ +∞

A

e−x
(

1− E(Sτ0)(1− ε)
x

)m−1

dR(x)

≤ e−A
(

1− E(Sτ0)(1− ε)
A

)m−1

−
∫ +∞

A

e−x
(

1− E(Sτ0)(1− ε)
x

)m−1

R(x)dx

− (m− 1)Sτ0(1− ε)
∫ +∞

A

e−x

x2

(
1− E(Sτ0)(1− ε)

x

)m−2

R(x)dx

≤ e−2(1−4ε)
√

E(Sτ0 )m,

last inequality is definitely not optimal but enough for what we need, we can obtain it eas-
ily decomposing the interval (A,+∞) on the intervals (A,

√
E(Sτ0)m(1 − ε)), (

√
E(Sτ0)m(1 −

ε),
√
E(Sτ0)m(1 + ε)) and (

√
E(Sτ0)m(1 + ε),+∞). Collecting the above inequalities, we obtain

that for any ε > 0 and m large enough

E
(
e−max1≤k≤m Yk

)
≤ 2m−2(1−4ε)

√
E(Sτ0 )m.

To finish the proof we follow the same lines as the end of the proof of Lemma 4.1 (below (73)),

that is saying that E
(
e−max1≤j≤τr−t Sj−Sj

)
≤ E

(
e−max1≤k≤m Yk

)
+ P(STk ≥ r − t) then taking

k = (1− ε)(r − t)/E(Sτ0).

4.2. Additional technical estimates

Following Lemma and more especially inequality (76) below is used when we ask for the behavior
of heavy range together with high potential.
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Lemma 4.3. Let (t`) a positive increasing sequence such that t``
−1/2 → +∞ but t``

−1 → 0. For
any B > 0 and ` large enough

P(τS−S
`1/2 ∨ τ−−B > τt`) ≥ e

− t√̀
`
(1+o(1))

. (75)

Let A > 0 large, d ∈ (0, 1/2), a > 0, 0 < b < 1, q ∈ [b, 1], ab := a(21q>b − 1) and c > 0∑
j≤A`3/2

P
(
Sj ≥ t`, sup

m≤j
HS
m ≤ eq

√
`−ab`d , eb

√
` ≤ HS

j ≤ eb
√
`+c`d , Sj ≥ −B

)
≥ e−

t`
q
√
`
(1+o(1))

. (76)

Proof. The proof of (75) follows the same lines as the proof of Lemma A.2 in [HS16a]. For (76), as

j ≤ A`3/2, for any (d, e) and any m ≤ j, A`3/2 exp(Sm − Sm) ≤ ed
√
`+e`d implies HS

m ≤ ed
√
`+e`d

then

P
[
Sj ≥ t`, eb

√
` ≤ HS

j ≤ eb
√
`+c`d , sup

m≤j
HS
m ≤ eq∗

√
`−ab`d , Sj ≥ −B

]
≥ P

[
Sj ≥ t`, b

√
` ≤ Sj − Sj ≤ b

√
`+ c′`d, sup

m≤j
Sm − Sm ≤ q

√
`− a′`d, Sj ≥ −B

]
with c′ = c/2 and a′ = ab + 1. To obtain a lower bound for the above probability, the idea is to say
that maximum of S is obtained at a certain instant k ≤ j and that this maximum is larger than
t` + b

√
`+ c′`d + r for a certain r > 0 to be chosen latter, then above probability is larger than :∑

k≤j

P(Sk−1 < Sk, Sk ≥ t` + b
√
`+ c′`d + r, sup

m≤k
Sm − Sm ≤

√
`− a′`d, Sk ≥ −B;Sj − Sk ≥ t` − Sk,

b
√
` ≤ Sk − Sj ≤ b

√
`+ c′`d,∀m ≥ k + 1, Sm ≤ Sk, Sk − Sm ≤

√
`− a′`d, Sm − Sk ≥ −B − Sk).

Now, the events {Sm − Sk ≥ −B − x}, as well as {Sj − Sk ≥ t` − x} increases in x and as

Sk ≥ t` + b
√
` + c′`d + r so we can replace, in the two events of the above probability, ”−Sk” by

−(t` + b
√
`+ c′`d + r). This makes appear two independent events, so above probability is larger

than

P(Sk−1 < Sk, Sk ≥ t` + b
√
`+ c′`d + r, sup

m≤k
Sm − Sm ≤

√
`− a′`d, Sk ≥ −B)×

P(Sj − Sk ≥ −b
√
`− c′`d − r, b

√
` ≤ Sk − Sj ≤ b

√
`+ c′`d,∀m ≥ k + 1,

−B − t` − b
√
`+ c′`d − r ≤ Sm − Sk ≤ 0, Sm − Sk ≥ −

√
`+ a′`d) =: p1(k) ∗ p2(k, j). (77)

Probability p2 can be easily simplified, indeed as lim`→+∞ t`/
√
` = +∞ and ` large, −B − t` −

b
√
`+ c′`d − r ≤ −

√
` and by taking r = c′`d, p2 is smaller than

P(−b
√
`− c′`d ≤ Sj − Sk ≤ −b

√
`,∀m ≥ k + 1,−

√
`+ a′`d ≤ Sm − Sk ≤ 0)

=P(∀m ≤ j − k,−
√
`+ a′`d ≤ Sm ≤ 0,−b

√
`− c′`d ≤ Sj−k ≤ −b

√
`)

=P(∀m ≤ j − k, Sm ≤
√
`− a′`d|Sj−k ≥ 0,Sj−k ∈ [b

√
`, b
√
`+ c′`d])×

P(Sj−k ≥ 0,Sj−k ∈ [b
√
`, b
√
`+ c′`d]),

with Sm = −Sm for any m. For the conditional probability we can use a similar result proved by
Caravenna and Chaumont [CC13] telling that the distribution Px(·|∀m ≤ n, Sm ≥ 0, Sn ∈ [0, h))
converges. Note that they need in their workr additional hypothesis on the distribution of S1 (more
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especially absolute continuity of the distribution of S1) which is not necessary here as the size of
intervall [b

√
`, b
√
`+ c′`d] equals c′`d → +∞, in particular as a′`d = o(

√
`)

lim
`→+∞

P(∀m ≤ `,Sm ≤ c
√
`− a′`d|S` ≥ 0,S` ∈ [b

√
`, b
√
`+ c′`d]) = Cte > 0.

Moreover another work of Caravenna ([Car05] Theorem 1) gives for large `, P(S` ≥ 0,S` ∈
[b
√
`, b
√
`+ c′`d) ≥ b/`. So finally when j − k is of the order of `, there exists a constante Cte > 0

such that p2(k, j) ≥ Cte ∗ `−1. Turning back to (77) and summing over k and j, we obtain∑
j≤A`3/2

∑
k≤j

p1(k)p2(k, j)

=
∑

k≤A`3/2
p1(k)

∑
j≥k

p2(k, j) ≥
∑
k

p1(k)
∑

j,j−k∼`

p2(k, j)

≥ Cte

`

∑
k≤A`3/2

P(Sk−1 < Sk, Sk ≥ t` + b(1 + 2ε`)
√
`, sup
m≤k

Sm − Sm ≤
√
`, Sk ≥ −B)

≥ Cte

`

(
P(τS−S√

`
∨ τ−B > τt`+b

√
`+c′`d)−

∑
k>A`3/2

P( sup
m≤k

Sm − Sm ≤
√
`)
)

Now we can check that above sum
∑
k>A`3/2 · · · as a negligible contribution, indeed the probability

P(supm≤k Sm − Sm ≤
√
`) is smaller, thanks to Proposition 3.1 in [FHS11], to e−π

2σ2j/4` this

implies that
∑
k>A`3/2 P(supm≤k Sm−Sm ≤

√
`) ≤ e−π2σ2A`1/2/2. Now if we apply (75) to the first

probability above as b
√
`+ c′`d = o(t`), this finishes the proof.

Lemma below is a simple extension of FKG inequality.
In the following, a function F : Rk −→ R is said to be increasing if: for all s = (s1, . . . , sk) ∈ Rk
and t = (t1, . . . , tk) ∈ Rk, s ≤k t implies F (s) ≤ F (t) where s ≤k t if and only if sj ≤ tj for all
j ∈ {1, . . . , k}.

Lemma 4.4. Let r > 0, k ∈ N∗, f1, f2 : Rk −→ R+. For any i ∈ {1, 2}, introduce f̃i(u1, . . . , uk) :=
fi(u1, u1 + u2, . . . , u1 + u2 + . . .+ uk). If f̃1 and f̃2 are increasing then

E
[
f1(S1, S2, . . . , Sk)f2(S1, S2, . . . , Sk)

]
≥ E

[
f1(S1, S2, . . . , Sk)

]
E
[
f2(S1, S2, . . . , Sk)

]
.

Proof. When Rk is a totally order set, the first inequality above is the well known regular FKG
inequality. Here, we can easly extend it to the partial order ≤k. Indeed, since f̃i is increasing for
any i ∈ {1, 2}, we have, by independence of increments of S∏
i∈{1,2}

E
[
fi(S1, S2, . . . , Sk)

]
=

∏
i∈{1,2}

E
[
f̃i(S1, S2 − S1, . . . , Sk − Sk−1)

]
= E[F1(S1)]E[F2(S1)],

with Fi(u1) := E
[
f̃i(u1, S2−S1, . . . , Sk−Sk−1)

]
for any i ∈ {1, 2}. Since f̃i is increasing, Fi is also

increasing so thanks to the regular FKG inequality, E[F1(S1)]E[F2(S1)] ≤ E[F1F2(S1)]. Again,
using independence and stationarity of increments of S and the result follows by induction.

Lemma 4.5. Let (t`) a sequence of positive numbers such that t`/`→ 0. For all d ∈ (0, 1/2] such
that t`/`

d → +∞ and all ε,B > 0, a ≥ 0 and 0 ≤ d′ < d ≤ 1/2 for n large enough∑
k≤`2

P
(
Sk ≥ t`,max

j≤k
HS
j ≤ e`

d−a`d
′

, Sk ≥ −B,Sk = Sk
)
≥ e−

t`
`d

(1+ε).
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Proof. Recall that τr = inf{i ≥ 1; Si ≥ r}. First, observe that for all j ≤ k ≤ `2, HS
j ≤ `2eSj−Sj

so ∑
k≤`2

P
(
Sk ≥ t`,max

j≤k
HS
j ≤ e`

d−a`d
′

, Sk ≥ −B,Sk = Sk
)

≥
∑
k≤`2

P
(
k = τt` ,max

j≤k
Sj − Sj ≤ `d − a`d

′
− 2 log `, Sk ≥ −B

)
,

which is equal to P
(
S`2 ≥ t`,∀j ≤ τt` : Sj − Sj ≤ `d − a`d

′ − 2 log `, Sj ≥ −B
)
.

Now let k` = b(e`t`)2c+ `2. First note that, since `2 ≤ k`, we have, on {S`2 ≥ t`}, τt` = τk`t` with

τk`t` := k` ∧ inf{i ≤ k`; Si ≥ t`} so

P
(
S`2 ≥ t`,∀j ≤ τt` : Sj − Sj ≤ `d − a`d

′
− 2 log `, Sj ≥ −B

)
= P

(
S`2 ≥ t`,∀j ≤ τk`t` : Sj − Sj ≤ `d − a`d

′
− 2 log `, Sj ≥ −B

)
.

For any k ∈ N∗ and r > 0, let t = (t1, . . . , tk) ∈ Rk and define the t-version τk,tr of τkr that is

τk,tr := k ∧ inf
{
i ≤ k; ti ≥ r

}
,

with the usual convention inf ∅ = +∞. Then

P
(
S`2 ≥ tn,∀j ≤ τk`t` : Sj − Sj ≤ `d − a`d

′
− 2 log `, Sj ≥ −B

)
= E

[
f1f2(S1, S2, . . . , Sk`)

]
,

with for all i ∈ {1, 2}, fi := 1A`i
, f1f2(u) = f1(u)f2(u) and

A`1 :=
{
u = (u1, . . . , uk`) ∈ Rk` ;∃ j ≤ `2 : uj ≥ t`

}
,

and

A`2 :=
{
u = (u1, . . . , uk`) ∈ Rk` ;∀ j ≤ τk`,tt`

,∀i < j : uj − ui ≥ −`d + a`d
′
+ 2 log `, uj ≥ −B

}
.

Then, it’s easy to see that for all i ∈ {1, 2}, f̃i (see Lemma 4.4 for the definition) is increasing accord-
ing to the partial order ≤k` defined above on Rk` and thanks to Lemma 4.4, E[f1f2(S1, S2, . . . , Sk`)]
is larger than

≥ P
(
(S1, S2, . . . , Skn) ∈ A`1

)
P
(
(S1, S2, . . . , Sk`) ∈ A`2

)
≥ P(S`2 ≥ t`)P

(
∀j ≤ τk`t` : Sj − Sj ≤ `d − a`d

′
− 2 log `, Sj ≥ −B, τt` ≤ k`

)
Again, on {τt` ≤ k`}, τ

k`
t`

= τt` and thanks to [Koz76] (Theorem A), there exists CK > 0 such that
for ` large enough

P
(
∀j ≤ τk`t` : Sj − Sj ≤ `d − a`d

′
− 2 log `, Sj ≥ −B, τt` ≤ k`

)
≥ P

(
∀j ≤ τt` : Sj − Sj ≤ `d − a`d

′
− 2 log `, Sj ≥ −B

)
− P(τt` > k`)

≥ P
(
∀j ≤ τt` : Sj − Sj ≤ `d − a`d

′
− 2 log `, Sj ≥ −B

)
− CKe−`

Moreover, t`/` → 0 so P(S`2 ≥ t`) → 1. Finally, by (75) together with the fact that `d ∼ `d −
a`d

′ − 2 log ` (as d > d′) for ` large enough P
(
∀j ≤ τt` : Sj − Sj ≤ `d − a`d′ − 2 log `, Sj ≥ −B

)
≥

2e−t``
−d(1+ε) and since t`n/`

d = o(`), CKe
−` ≤ e−t``−d(1+ε) so we obtain the result.
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Lemma 4.6. Let α ∈ (1, 2) and εα ∈ [0, α − 1) and intruduce L` := bχ`1+ εα
2 c, χ > 0. For all

ε > 0, ` large enough and any k ∈ {L`, . . . , `2}

P
(

max
j≤k

HS
j ≤ e

√
`
)
≤ e− kπ

2σ2

8` (1−ε), (78)

and for any a, d, c > 0, b ∈ (0, 1), ` large enough and any k ∈ {L`, . . . , `2}

P
(

max
j≤k

HS
j ≤ e

√
`−a`d , eb

√
` < HS

k ≤ eb
√
`+c`d , Sk ≥ 0

)
≥ e− kπ

2σ2

8` (1+ε). (79)

Proof. Let us start with the upper bound. Thanks to Markov property, for any k ∈ N, k > L`

P
(

max
j≤k

HS
j ≤ e

√
`
)
≤ P

(
max
j≤k

Sj − Sj ≤
√
`
)
≤ P

(
max
j≤L`

Sj − Sj ≤
√
`
)b kL` c,

and thanks to [FHS11], for ` large enough P
(

maxj≤L` Sj −Sj ≤
√
`
)
≤ e−

π2σ2L`
8` (1− ε2 ), so for any

ε, ` large enough and any k > L`

P
(

max
j≤k

Sj − Sj ≤
√
`
)
≤ e−(1− ε2 )

π2σ2L`
8` b kL` c ≤ e−(1−ε) kπ2σ2

8` .

For the lower bound, observe that for any k ≤ `2, P
(

maxj≤kH
S
j ≤ e

√
`−a`d , eb

√
` < HS

k ≤
eb
√
`+c`d , Sk ≥ 0

)
is larger than P

(
maxj≤k Sj−Sj ≤ λ′`, b

√
` < Sk−Sk ≤ b

√
`+c`d−log `2, Sk ≥ 0

)
,

where λ′` :=
√
` − a`d − log `2. As c

2`
d ≥ log `2 (d > 0), the previous probability is larger than

P
(

maxj≤k Sj − Sj ≤ λ′`, b
√
` < Sk − Sk ≤ b

√
`+ c

2`
d, Sk ≥ 0

)
. We need independence to compute

this probability so for all k ∈ N∗, L` < k ≤ `2, we say that Sk = Sk−` ≥ λ′` which gives that for all
k − ` < j ≤ k, Sj ≤ Sk−` and then, maxk−`<j≤k Sk−` − Sj ≤ λ′` implies that Sj ≥ Sk−` − λ′n ≥ 0
for all k − ` < j ≤ k. Hence

P
(

max
j≤k

Sj − Sj ≤ λ′`, b
√
` < Sk − Sk ≤ b

√
`+

c

2
`d, Sk ≥ 0

)
≥ P(Ak,` ∩Bk,`) = P(Ak,`)P(Bk,`),

with

Ak,` :=
{

max
j≤k−`

Sj − Sj ≤ λ′`, Sk−` ≥ 0, Sk−` = Sk−` ≥ λ′`
}
,

and

Bk,` :=
{
∀ k − ` < j ≤ k, Sk−` − Sj ≤ λ′`, Sj ≤ Sk−`, b

√
` < Sk−` − Sk ≤ b

√
`+

c

2
`d
}
.

Let S := −S. P(Bk,`) is nothing but

P
(
S` ≤ λ′`,S` ≥ 0,S` ∈ (b

√
`, b
√
`+

c

2
`d]
)

=P(S` > 0)P
(
S` ∈ (b

√
`, b
√
`+

c

2
`d]|S` ≥ 0

)
× P

(
S` ≤ λ′`|S` > 0,S` ∈ (b

√
`, b
√
`+

c

2
`d]
)
,

which is larger than C/` for ` large enough (see Lemma 4.3).
We then deal with P(Ak,`). Thanks to Lemma 4.4, this probability is larger than

P
(

max
j≤k−`

Sj − Sj ≤ λ′`
)
P
(
Sk−` ≥ λ′`

)
P
(
Sk−` ≥ 0

)2
,
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and again, using [Koz76] together with the fact that P(SL` ≥ λ′`) → 1, there exists C > 0 such
that for ` large enough and any k ∈ {L`, . . . , `2},

P
(
Sk−` ≥

√
`
)
P
(
Sk−` ≥ 0

)
≥ P

(
SL` ≥

√
`
)
P
(
S`2 ≥ 0

)2 ≥ C

`2
.

We now turn to the most important part: P
(

maxj≤k−` Sj − Sj ≤ λ′`
)
. We follow the same lines

as the proof of (78): for any k ∈ {L`, . . . , `2}, k− ` > L` − ` so maxj≤L`−` Sj − Sj ≤ λ′` together
with SL`−` = SL`−` ≤ Sj and maxL`−`<i≤j Si − Sj ≤ λ′` for all L` − ` < j ≤ k − ` implies that
maxj≤k−` Sj − Sj ≤ λ′`. It follows that P

(
maxj≤k−` Sj − Sj ≤ λ′`

)
is larger than

P
(

max
j≤L`−`

Sj − Sj ≤ λ′`, SL`−` = SL`−`, max
L`−`<i≤j

Si − Sj ≤ λ′`, Sj ≥ SL`−` ∀ L` − ` < j ≤ k − `
)

= P
(

max
j≤L`−`

Sj − Sj ≤ λ′`, SL`−` = SL`−`
)
P
(

max
j≤k−`−(L`−`)

Sj − Sj ≤ λ′`, Sk−`−(L`−`) ≥ 0
)
.

Moreover, by Lemma 4.4, P
(

maxj≤k−`−(L`−`) Sj − Sj ≤ λ′`, Sk−`−(L`−`) ≥ 0
)

is larger than

P(maxj≤k−`−(L`−`) Sj−Sj ≤ λ′`)P(Sk−`−(L`−`) ≥ 0). By induction, we get that P
(

maxj≤k−` Sj−
Sj ≤ λ′`

)
is larger than

P
(

max
j≤L`−`

Sj − Sj ≤ λ′`, SL`−` = SL`−`
)L`(k) ∏

i≤L`(k)

P
(
Sk−`−i(L`−`) ≥ 0

)
with L`(k) := b(k − `)/(L` − `)c. Again, by Lemma 4.4, P(maxj≤L`−` Sj − Sj ≤ λ′`, SL`−` =
SL`−`

)
≥ P

(
maxj≤L`−` Sj−Sj ≤ λ′`)P(SL`−` ≥ 0) and as k ≤ `2, P(Sk−`−i(L`−`) ≥ 0) ≥ P

(
Sk ≥

0
)
≥ P

(
S`2 ≥ 0

)
. Hence, by [Koz76]

P
(

max
j≤k−`

Sj − Sj ≤ λ′`
)
≥
( C

`
√
L` − `

P
(

max
j≤L`−`

Sj − Sj ≤ λ′`
))L`(k)

for some C > 0. Then, thanks to [FHS11], for all ε > 0 and ` large enough P(maxj≤L`−` Sj−Sj ≤
λ′`) ≥ e−(1+ ε

4 )
π2σ2(L`−`)

8 (λ′`)
−2

so for ` large enough and any k ∈ {L`, . . . , `2}, P
(

maxj≤k−` Sj −
Sj ≤ λ′`

)
is larger than

( C

`
√
L` − `

e
−(1+ ε

4 )
π2σ2(L`−`)

8(λ′
`
)2

)L`(k)

≥ e
−(1+ ε

3 )
π2σ2(L`−`)

8(λ′
`
)2

L`(k)
≥ e
−(k−`)(1+ ε

2 ) π2σ2

8(λ′
`
)2 ,

where we have used for the first inequality that e
−η π

2σ2(L`−`)
8(λ′

`
)2 is smaller than 1

`η′
for any η, η′ > 0.

Collecting previous inequalities, we obtain

P(Ak,`) ≥
C

`2
e
−(k−`)(1+ ε

2 ) π2σ2

8(λ′
`
)2 .

Finally, observe that λ′` ∼
√
` and then for any k ∈ {L`, . . . , `2}

P(Ak,`) ≥ e−
kπ2σ2

8` (1+ε),

which completes the proof.
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