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Abstract: In this work we are interested in the set of visited vertices of a tree T by a randomly
biased random walk X := (X,,n € N). The aim is to study a generalized range, that is to
say the volume of the trace of X with both constraints on the trajectories of X and on the
trajectories of the underlying branching random potential V := (V(z),x € T). Focusing
on slow regime’s random walks (see [HS16b], [AC18]) we prove a general result and detail
examples. These examples exhibit many different behaviors for a wide variety of ranges,
showing the interactions between trajectories of X and the ones of V.

MSC2020 : 60K37, 60J80.
Keywords and phrases: randomly biased random walks, branching random walks, range.

1. Introduction

The construction of the process we are interested in starts with a supercritical Galton-Watson tree
T with offspring distributed as a random variable v such that E[v] > 1. We adopt the following
usual notations for tree-related quantities: the root of T is denoted by e, for any x € T, v, denotes
the number of descendants of x, the parent of a vertex x is denoted by z* and its children by
{xi, 1<i<y, } For technical reasons, we add to the root e, a parent e* which is not considered
as a vertex of the tree. We denote |z| the generation of x, that is the length of the path from
e to z and we write x < y when y is a descendent of z, also z < y signifying that = can also
be equal to y. Finally, we write T,, for the tree truncated at generation n. We then introduce
a real-valued branching random walk indexed by T: (V(z),z € T). We suppose that V(e) = 0
and for any generation n, conditionally to &, = {T,, (V(x),z € T,)}, the vectors of increments
(V(z%) = V(x),i < v,),|z| = n) are assumed to be i.i.d. Finally we denote P the distribution of
& ={T,(V(z),z € T)} and P*, the probability conditioned on the survival set of the tree T.

We can now introduce the main process of this work which is a random walk (X,),y on
TuU{e*} : for a given realization of the environment &, (Xy), <y is @ Markov chain with transition
probabilities given by

P (Xpi1 =€e|Xp=e€*)=1,
er(a:)

eV + 37 eV’
67V(w-j)

e~ V@) 4 S e Vi)

VeeT~{e*}, P (X, =2"|X,=2)=

Vj<vp, PO(Xpp=2/|X, =2)=
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The measure P is usually referred to as the quenched distribution of the walk (X,,) nen 1D contrast
to the annealed distribution P which is the measure P¢ integrated with respect to the law of &:

P(-):/Pg(-)P(d@@).

Similarly P* is the annealed probability conditioned on the survival set of the tree T (defined by
replacing P by P* in the above probability). For z € T U {e*}, we use the notation P¢ for the
conditional probability P?(:| Xy = z); when there is no subscript, the walk is supposed to start at
the root e. Recurrent criteria for these walks is determined from the fluctuations of log-Laplace

transform
U(s) == logE( Z e_sv(z)),

|z|=1

for s > 0. If info<s<1 9(s) > O then (X,,,n) is P almost surely transient and recurrent otherwise.
It turns out that recurrent cases can be themselves classified, this can be found in the works of G.
Faraud [Farll] and equivalently for transient cases in E. Aidekon [A1d08].

Here we consider recurrent cases and more particularly in the regime where the random walk is
particularly slow (see [HS16b]) that is to say we put ourselves in the boundary case for which

P(1) =¢'(1) =0. (1)

We focus on a generalization of the range defined as follows : for any n, let f* = {f™* : RF —
Ry; k € N*} be a collection of bounded functions. Also let g, : Ry — R a positive function. Then
generalized range %, (gn,f") is given by

(9, £7) =D gu( LIV [NV (21), V (w2), -, V(@)), with (2)

zeT
L= L)
k=1

(24,1 < |x]) being the sequence of vertices of the unique path from the root (excluded) to vertex x
and £ is the usual local time of the walk at « before the instant n. As we may see %Z,,(gn, ") is
quite general and can not be treated in this form at once for any of these functions g, and f™ so
additional assumptions (involving £", g, and distribution P) will be introduced in Section 1.2.
The aim of studying this extended range is twofold, first it allows to understand the interactions
between trajectories of the main process X and of the underlying branching potential V, second we
develop a general tool allowing to treat many examples (for chosen f” and g, ). Note, for example,
that if we take for any n, trivial f* =1 and for any u, g,(u) = 1,>1 then we get the regular range
(treated in [ACI18]), and if g, (u) = 1,5, with 0 <b < 1 we get the heavy-range (see [AD20] and
[Che20]).

The presentation of the results is divided into two subsections, in the first one below we detail
and comment particular examples showing a large variety of behaviors for different f* and g¢,. In
a second subsection we present a general result including all previous examples, its statement will
need additional technical assumptions.

1.1. First results : examples

The first two theorems (Theorems 1.1 and 1.2), we present in this section, derive from three other
works : in the first one [HS16a] it is proved that, during its first n steps, the walk can reach height of
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potential of order (logn)2. More precisely it is proved that random variable maxi<i<n V(Xk)/(10g n)?
converges almost surely to one half. Note that this behavior can be quite disappointing if we have
in mind the intuitive behavior of Sinai’s one dimensional random walk in random environment
[Sin82] for which the highest height of potential reached by the walk is of order logn. Of course
the fact that the walk evolves on a tree instead of a one dimensional lattice changes the deal but
at the same time it is also proved in [HS16b] that this walk has a similar behavior than Sinai’s one
(they are both at a distance of order (logn)? from the origin at a given instant n). In both cases,
the potential plays a crucial role. In the two other papers ([AC18] and [AD20]) the range is studied
:in [AC18] it is proved that regular range (the number of visited vertices before the instant n) is
of order /log n, whereas in [AD20] it is proved that the number of edges visited more than n® (with
0 < b < 1) times is typically of order n'~ (this particular range is called "heavy range” in that
paper, see also [Che20] for a refinement of this work).

Our first theorem below mixes the two approaches showing the influence of a strong constraint on
V on both regular or heavy range. What we mean by strong constraint here is a condition of the
form V > (logn)® with 1 < a < 2, that is to say when the potential is larger than what we can
call regular height of potential for this walks (that is height of order logn, as it can be proved that
V(Xn)/logn converges weakly, see [HS16b]) but smaller than the extreme value (logn)? of [HS16a].
Before stating this result, let us introduce the following hypothesis on distribution of branching
random walk : there exists 6 > 0 and d; € (0,1/2] such that

E[ Z e—(l-&-@)V(z)} +E{ Z e@V(z)} <00, 3)

|z|=1 lz|=1
E[( Z 1+ |V(u)|)e_v(“))2} + EK Z e_(l_‘sl)v(m))z} <00, (4)
|z[=1 |z]=1

these are common hypothesis used for example in [AC18].

Theorem 1.1. Assume (1), (3) and (4) hold. If for any n and k, f™F(ty,ta, - ,tx) = Lite>0gn)ey
with o € (1,2) and if gn(t) = Lyy>pey with b € [0,1), then

10g+ K (gn,£")—(1-b) logn

(log m)o—T1 converges in P*-probability to —1,

where logt = log(max(1,z)).

This result shows that the number of vertices with high potential visited at least once (resp.
strongly visited, with b > 0) is of the same order, though smaller, than the regular range (resp.
heavy-range). So visiting hight potential is not just an accident appearing a couple of times on
very specific paths of the tree. Far from that in fact as the constraint of high potential creates a
decrease of order e~ (108™)" ' +o(1) and therefore appears as a second order correction comparing to
ranges without constraint on the environment.

In the second theorem below we add a slight different constraint which force the random walk to
reach a high level of potential far from the ultimate visited vertices of given paths :

Theorem 1.2. Assume (1), (3) and (4) hold. If for any n and k, f™*(ty,ta,--- 1) =
Lt )5 >(lognyay with B> 1, a € (1,2) and for any b € [0,1), gn(t) = Lyy>py then

log™ % ((qlgg;));(ll_b) g1 converges in P*-probability to —1 — IVB-1+ p((ﬂ - 1)%2),

where for any ¢ > 0,

co Toe co?

e [ 2 Tt~ 1 _
ple)i= 0= | e {W]P’(m1>l/\/u02)—§/u WP(m1>1/\/y02)dy}du,
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where m is the Brownian meander, W, := sup,<; m, and 02 := ED = V2(x)e= V@), Also ||
stands for the integer part of x.

As we may see, a slight change in function f” (comparing to previous theorem), makes appear
something new as the constant in the limit is very different than in Theorem 1.1. Note that p can
be explicitly calculated : for any ¢ > 0

_ e Ve
sinh(y/c)

so clearly we obtain continuity when 3 converges to 1 getting back previous theorem. At this point
we would like also to discuss the appearance of Brownian meander distribution in p. First note
that a Brownian meander appears in the asymptotic distribution of the (correctly normalized)
generation of X,, (see [HS16b]) which is the consequence of an induced constraint on the largest
downfall of V' (we call here maximal downfall, for a given = € T, the quantity max,<,(V (y) -V (y),
where V(y) := max.<, V(z)) visited by the walk before instant n. Also in [AC18] the distribution
of two independent Brownian meanders (m' and m!) appears in the result for the regular range
P, (that is when f” =1 and for any u, g, (u) = 1,>1) : in P*-probability

(o) = 220 ) —o(Ve —log((eV* +1)/2)), (5)

logn

lim %,

n—-+o0o

= C(Dmr, Dw2), (6)

one of these Brownian meander coming from the positivity of V' (see Fact 4 below) and the other
one coming from the fact that for a given visited vertex x the maximum of V' (on the unique path
from the root to ) is attained pretty near the generation of x.

Here the brownian meander appears as we ask a visited vertex x to have reached a high level of
potential in an early generation before the one of x, and it turns out that the constraint of low
downfall of V appearing in [HS16b] (max,<,(V(y) — V(y) < logn) along this kind of path pro-
duces this appearance of the Brownian meander. However contrarily to (6), Brownian meander is
involved in the correction of the main fluctuation (e~¢(Zm)(log ”)0_1) and not just in the constant

of the limit (C(Zm1, Dn2)).

In the third example below we choose f in such a way that an interaction appears between the
trajectory of X and the downfalls of V' which have an important role in the behavior of these walks.

More particularly let us introduce, for given t = (¢1,ta, -+ ,t;) with k a positive integer, following
quantity,
k
Hy(t) =) e,
j=1

then we call sum of exponential downfalls of V' at x € T with |z| = k the quantity

||

H\z\(vw) = H|x\(v($1)a T 7V(xk)) = ZeV(M)_V(Ik)v (7)

to simplify notation and when there is no possible confusion we will simply write H, instead of
H\; (V) in the sequel.

Theorem 1.3. Assume (1), (3) and (4) hold.

For any n and k let f™%(ty,ty, - ,t3) = 14, >a(log n)» (Zj VH;(6)7 with a € [1,2), a € R,
d € {0,1} and g, (t) = Lgy>ney for b >0, then :

Ifbe0,1/(1+4d)) and a =1 (with a > 1/61 when d = 1) then
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log™ % (gn ,f™)
logn

otherwise ifa=1,b=0,d=1and 1 < a <2

converges in P*-probability to 1 — (1 + d)b,

log™ % (gn,f")—logn
(logn)>/2

finally ifa=1,0<b<1/2,d=1and 1 < a <2

log™ %, (gn,f7)—(1—2b) logn
(logn)>—1

converges in P*-probability to —2,

converges in P*-probability to —1/b.

For the first limit (when o = 1, implying that we have set a common height of potential - see Fact
1) by taking d = 0 we obtain the limit (1 — b) of the usual heavy range of [AD20] otherwise if we
add the penalization with the cumulative exponential downfalls (3°, ., H,) that is when (d = 1)
then an extra cost d x b = b appears. This example can be used as a point of comparison to the
two other more interesting cases that follow.

The second case (with b = 0 but 1 < a < 2), has two constraints on the environment so the
normalization (log n)o‘/ 2 appears as a compromise between the fact that high level of potential is
asked (1{4,>(10gn)~}), Which alone yields by Theorem 1.1 a normalization (log n)®~1, but at the
same time cumulative exponential downfall fluctuations (3, ., Hm(t)) can not be two large as it
appears in the denominator of the range, this yields the (logn)®/? (note that as a < 2, a/2 > a—1).
For the last case (0 < b < 1/2 and 1 < o < 2), the range is of order n!=2be¢=(18m" "/ comparing
to ne~2106™"* when b = 0 of the previous case. In particular the parameter b of the heavy range
appears in both the main normalization n'~2% and in the correction e~(°8 n* /b This can be
intuitively understand as follows : first n' =20 = n+n=t «x n=", one n=? is classical from the heavy
range when asking for a local time to be larger than n® (which already appears in the first part
of the Theorem), the second n~" comes from the fact that a local time at a given vertex x can
be larger than n’ only if Zlfz‘l eV (@)=V(@) > nb and as this appears in the normalization of the
range (via f™*(ty,to, - ,t1)) this produced this second n~°. So this part (n'~2") appears as a first
interaction between the constraints on the trajectory of X and the one of V. Let us now discuss

o _ (logm)® ) s .
about e~(108m)" 7" /b — ¢~ Fiwn for this term we see, intuitively, the constrains for the walk to

reach height of potential of order (logn)® but a the same time, in order to keep the denominator
>_j< Hj(t) as low as possible, the maximal downfalls has to remain smaller than blogn this pro-
duces the ratio (logn)®/(blogn).

In the ultimate example below we ask similar constraints for the environment than above but
only in the early visited generations :

Theorem 1.4. Assume (1), (3) and (4) hold. Let 3 > 1. For any n and k let f™*(ty,ta, -+ 1) =
ﬂ{tuc/mZ(logn)“}(zljui/lm etj_tk)_l, a € (1,2) and ifgn(t) = ]l{thb} with b € (O, 1),

logt %, (gn,£™)—(1—b) logn
(log )72

converges in P*-probability to —2.

This last theorem just prove that if the factor ((3>. jui/lﬁ Vets ~t)~1) only concerns the beginning
of the trajectory, that is the sites at a distance ||z|/5] of the root (if x is a visited vertex), then
things go back to normal: there is no more multiple interactions between X and V.

We can imagine more examples like the ones we present above (for example we did not act very
much on function g,), but for now let us introduce a more general result with general hypothesis
on g, and f".
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1.2. A general result

In this section we present a result (see Theorem 1.5) for %, (gn,f") with g, and f™ as general as
possible including, in particular, previous results. Comparing to previous theorems it is less read-
able both in its statement and on the complexity of additional assumptions needed to introduce
it. These assumptions that we describe below mix in particular f* and distribution of V.

First recall the expression of generalized range (2),

PKn(Gn, £") = Zgn(gmn)f’mm(v(ml)’ Vi(x2), -, V(z)),

zeT

with .Z* the local time of X at = before the instant n.

We assume that g,, can be written as the product of an indicator function and a function ¢ which
is positive increasing: for any b > 0 and m, g,(m) := ]l{man}go(m). The indicator function is
here to include all types of range (regular or heavy). Also we ask the function ¢ — ©(t)/t to be
decreasing, so that ¢(.Z") remains reasonable (at most of the order of the local time itself).

We now introduce more complex assumptions, for that let us first define branching object ¥(-). Let
0V ) < X be real numbers and k& € N* an integer, also let ¢ : R¥ — R a bounded function then
\I/]f\ v (@) is defined as a mean of ¢ along the trajectory of V' (with constraints) until generation k,
that is

V() =B Y eV (V (@), V(@) Lo, . (@), (8)
|z|=k

where O » is the set of (A, \')-regular lines

J
Oxn ={z €T max H, <X H, >N}, with H, =Y e"(m)=V(®), (9)
J ’ X
i=1

<|z|
also we denote

On = {w €Ts max Ha, <A}, and 0k (g) = E[ Y e V@OV (@1),.... V(@) Ls, (x)]
Jj<|x 2=k

Note that since H, > 1, for all ' <1, O\ = Oy » and ¥5(¢) = ¥f |, (¢).

The appearance of this set of regular lines & y is partly inspired from the works of [HS16b] (A
representing extreme exponential downfalls of V related to a reflecting barrier for walk (Xj, k& < n)),
and also (for \') from the constraint on the local time appearing on function g,,. It turns out indeed
that constraints on the value of the local time at some site x implies constraints on H, (this actually
appears clearly in Theorem 1.3).

In all the paper, Co 1= Coo({f™;n > 1}) stands for the supremum of {f"”;n > 1} that is

Coo := sup ||fm’é
¢

m,

oo

Then, introduce the set
Uy :={r>0; forallk >1,t € R¥ n > 1: Ly, g)snr} 5 () < Coon™}, (10)
note that %, # 0 because 0 € %, and as the supremum is attained let
Kp =: max %. (11)



Andreoletti, Kagan/Generalized range for slow random walks on trees 7

Finally introduce sequence (h,,,n) which is an important quantity appearing on the asymptotic of
the logarithm of (g, f™)-range : for any n > 2

1 Kb ) n,k if 3 07 1) : (logn)” 0
hn — | og (n Zkzl n,nb (f ))| 1 Y € ( ) log (n“b Zkzl \Ij:,mb(fk’n)) - . (12)

logn otherwise

We discuss about the order of h,, below (see Remark 1), before that let us introduce our first
main assumption which is a lower bound involving V.

Assumption 1 (lower bound).
For all b € [0,1), € > 0 and n large enough

1

n, k:

Z‘I’n () > W’ (A1)
E>1

Remark 1. By definition of Ky,

' SR (PR < O S wE (1) = COOE[Z e—V@)n{xem} < Cooly,

E>1 E>1 z€T

where the last inequality is a quite elementary fact that will be proved later (see Remark 2). This im-
plies, in particular, that if there exists 0 <y < 0 such that (logn)? /log (n"* 3", <, \Ifﬁnb(fk")) —0
necessarily log(n™ 3~ ¥ E (™) <0 and limy, 400 log(n®™ Y o W (f™F)) = —c0. More-
over in this case, there ezxists 0 < v < 1 such that h,, > (logn)V.iAlsoyassumption (A1) above
ensures, that

Kb

log(n"® Z\I, L (fF)) > log (ﬁ) > —((kp +e) ANl — kp)logn > —clogn,
k>1

overall, definition of h,, implies, under (A1), that
(logn)” < h,, < logn.

Before going any further let us give an heuristic about the way >, ‘Ilfl o ( f™*) appears in the
asymptotic of the range. - ’

First introduce for any k > 1 the k*" return time to e* , Tk = inf{k > TF1 X}, = e*} and take
T° = 0, then let Zrn(gn, ") = > cr (L2 )]l{ng> oy SNV, )]l{v(z)>Alogn} with A > 0.
R (gn, ") is a version of generalized range where we have replaced the instant n by 7™ and
we have made appear the additional constraint V(z) > Alogn. Note that it is known (following
Lemma 2.1 in [AC18] and its proof at the beginning of Section 4.2) that this additional condition
H{V(I)Zmogn} has no effect on the normalization of the regular range %Zp» , that is

Fact 1 : There exists 0 < ¢; = ¢1(A) < 1 such that lim,,_,; o P* (% = cl) =1
2

So here we typically consider collections of functions f* such that Zr« (g, ")/ Zrn(gn, ") —
Cte > 0. One of the main gain of this is the fact that relatively high potential yields interesting
quasi-independence in the trajectory of (X,,n).

With this fact we have (see Section 3.1) something like, in probability, Z7n (gn, ") 2 nE® [Z1, (gn, f")]
and thanks to the fact that ¢ is increasing and to the expression of quenched mean of Zr, (g,, "),

in probability for large n

A (gn, £") 2 nEE (A, (g0, £ Z@ Du S wk ()
k>1
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which makes appear ), -, \I/fl ,nb( f™F). This also tells that if this sum is very small (for example
by asking excessive constraints on V), this should lead to a very small range. Let us now focus on
a second assumption.
Assumption 2 (upper bound).
This assumption ((A2) below) is an upper bound for a conditional version of >, -, \I’fmb(f ™R, to
introduce it we actually need two facts and additional notations.
Fact 2 : ([AD20], Lemma 2.3) there exists a real number r2 > 0 such that for any h > 0
N —h

P (|w\21|%1)/{r2'| [V (w)| > h) < he™™. (13)
This fact, that will be useful when cutting on early generations of the tree, justifies the introduction
of following notation : for any n and k, f;’ * is the function defined by

}?’k(tl,...,tk) = inf PRI (s st A+ Stk + Sm) (14)
s€[—h,h]™
with m = [h/r2]| and s = (s1,...,8m) € R™.
The second fact is about the largest generation visited by the walk before time n or after n

excursions to vertex e*.
Fact 3 : ([AD20], Lemma 3.2) let (¢, := (logn)3,n > 2), there exists A > 0 such that :

li P X <A =1.
(Jm P(max | Xi| < Aly)
This fact is here essentially to justify the introduction of the sequence (¢,,,n) which appears in our
second assumption. Note that a very precise result on the largest generation visited by the walk
before the instant n can be found in [FHS11] .

A last notation we need to introduce, is a conditional and translated version of W% (F) for a given
bounded function F. Let k € N*, if | € N*, F: R** — R, for all t = (t1,...,t;) € R!

\Iﬂ;,)\’ (F‘t) = E[ Z 67V(I)F(t17 s ;tla V($1) + tl’ ceey V(’JJ) + tl)]]-ﬁA,A/ (SC) (15)
|z|=k

otherwise if [ = 0, \Il’/{))\, (F|t) == \I!’)f’/\, (F).

We are now ready to introduce the second assumption : for all d,e, A, B > 0 and b € [0,1) there
exists ng € N* such that for any n > ng, [ < [Af,| and any t = (t1,...,%) € R! with ¢, > —B and
Hl(t) <n

n,l+k < hy n,
DUk e (I IE) < eUFERR Y WL L (). (A2)

k>1 k>1

Let us comment this inequality which plays two roles. A first one ensures that fluctuations of V' in
the early generations of the tree have minor influence, this yields the presence of eahn,

Second point is technical and aims to show that E¢[%Z1. (., f")] = n~bp(n?) D k1 \Ilfl’nb(f”’k) in
probability. For that, the second moment of

— x ’I’L,k
Zyi= Y e O VOl atognvie)>— B V(@)= ()
el

n,nb

has to be controlled, with V,, := (V(z1),...,V(z)) and V(x) := min,<, V(v). Observe that

2 —V(u) gn,lul _
Za=dy Y I Tueo, e S0 (Vb s atog nv (s — B —vw)-

ze€Tz,y>zue{x,y}
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Do ¥ nnb H (t)(f" "k1t) in (A2) actually appears as the conditionnal expectation of a well
chosen function of translated potential (V,(u) := V(u) — V(z))u>- in the previous expression of
Z2. Indeed, note that u € &, ,,» together with V(u) = V(u) implies that u € O oy, ={u>z:
max,<p<y Hyp <n, H,, >n’—H,} with H, , := Y cw< eV=(W)=V=(v) Hence, for all § € (0,1/2],
by independence of the increments of branching random walk (T, V (u);u € T)

E[Zﬁ]se“”“BE[Z VN ] 1{%@;”%}e*V*“)F&;‘“'(Vz(u\zm),...,vz(u»]

2E0, T,y>z ue{z,y}
~ e1- 26)BE[ Z e ( 5V (z Z‘I’nnb . (fnl+k|V)) ]
z2€0, k>1

where, for |z| =1 and any t = (t1,...,t;) € R
FPMV(wig), o Va(w) = e 0 o, Vi) + o Vi) + ).

Assumtions (A2) finally allows to say that E[Z2] < ehn (3, o, UF o (T k)2 for all e > 0 and n
large enough.

We are now almost ready to state a first result which is a proposition giving a lower and upper
bound for the generalized range stopped at 7™, this proposition is followed by a theorem more
easy to read but that needs extra assumptions. First, let us introduce two ultimate notations, the
first one is a positive sequence (v,,n), defined as follows, for any n > 2 :

Up 1=

5 log(né ), (16)

(see (4) for the definition of ¢;) and for v > 0, introduce

HF ={(t1,....tx) ERF; tyy >0}, o5, ={(ts,....tx) ERF; t;, > vpomint; > =B} (17)

respectively the set of vectors such that its last coordinate is larger than v, and additionally with
any coordinates larger than —B . The introduction of these last two objects are justified by
Fact 4 : for any € > 0 there exists a > 0 such that (see [Aid13])

P(inf —a) <

(51%TV(u)< a) <,

and Fact 1 we have already talked about saying that, in P*-probability, v, is a height of potential
usually reach by the walk.

Proposition 1. Recall (11), let &, := min(b+ Lyp—0y, 1 —b)/13 and W := -, _, e V&) Assume
(1), (3) and (4) hold as well as (A1) and (A2).

Lower bound: there exists cs > 0 such that for allb € [0,1), € € (0,ep), B > 0 and n large enough
— min(e log n,3h,)

nk €

RBpn(gn, £
IP(—T (gn, £7) <e_5€h”> D557+ B

nlfbw(nb)ul

, (18)

k>1 o (n"ouy pn)?

with

Ut = Upn(E) == Z S o (ffﬁf,]lr’,z)v
E>1
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Tr = {t € R¥; Hy(t) <nbes}yn k., , v}, = vn +chy and Ay = ne” min(10log n,5hn)
Upper bound: for any € > 0 and n large enough

P(M > et ) < e 4 o(1) (19)

ni=bp(nb)us.,
with

g = 3 (U o (F™F) + O (F" e ) + W5 5 (FF) + BWEE L (F79)])
E>1

and X, .= n®(logn)=2.

(18) and (19) remain true replacing Xrn (gn, ") by Brrn (gn, £™) with k, = [n/(logn)?|, p > 0.

This proposition is technical and difficult to read, we present it here however because it shows that
all the estimations depend deeply on ¥ (f) and gy, recall indeed that key sequence h,, defined in
(12) depends both on W' (f) and xy (b coming from function g,,). This also means that without
any more informations on W: (f) it is difficult to state a more explicit result. Finally, note that
the exact role of (Al) and (A2) will appear clearly in the proof of the lower bound.

We now present a more readable result involving two additional assumptions (A3) and (A4).
They tell essentially that quantities u;, and us,, which appear as the important quantities in
the proposition, are actually very similar. Before that, introduce two additional values : L (with
L = £0o0 possibly) and £ € {—1,0} defined as follows

L:= hm inf h, 'log (n' """ ¢(n’)), and (20)
¢:= lim by, o Hlog (nfe Y Wk L (fRm). (21)
k>1

First note that, following Remark 1, £ necessarily exists. Now introduce two additional assumptions

Assumption 3 For all b € [0,1), € € (0,e3), &1 € (0,€) and n large enough
w2 e ST wE (). (43)
E>1
Assumption 4 For all e; > 0, b € [0,1) and n large enough
n e U (), (A4)
E>1
Theorem 1.5. Assume (1), (3) and (4) hold, b € [0,1) and (A1), (A2), (A3) and (A4) are satisfied,
then if L € (=&, +00] in P*-probability

h;l(log+ R (Gn, ") — log(nl_b_"‘bgo(nb))) — &,

n—oo
if L= —¢, with A,, := h; log(n'="="p(n?)) — infys, hy, ' log(£1=0= "0 p(L0)), in P*-probability
h, Y logt Zn(gn, £") — A, — 0

n—oo
Otherwise L € [—o0, —&[ and in P*-probability
Py (Gny, £) — 0,
{— 00

for some increasing sequence (ng)¢ of positive integers. Note that when lim bt log(n!=0="tp(n?)) =
L, Ny = L.
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We now present examples which lead to different values of L. First note that all theorems presented

in the previous section satisfy condition L = +o00 and £ = —1, for our point of view it is the most
interesting case.
Let us take, for example, g, (z) = 1{p>ney and okt ty - ty) = ﬂ{th(logn)“}(Elgk Hi(t)™ 1,

a€[1,2). If a>1and b€ (1/2,1) we can prove that that h, ~ (logn)*~!/b (with usual notation
tn ~ sy if and only if t,, /s, — 1) and n!==*vp(n’) = n'=2® so we obtain lim h; ! log(n!=b="vp(nb))
= L = —co. When o > 1 and b = 1/2 then we can prove that h,, ~ (logn)*~1/b, ¢ = —1 and
nl=0=Fop(nb) = 1 so lim h;, ' log(n!=?~"vp(nb)) = L = 0 and we are in the case L € (—oo, —¢).
Otherwise when o = 1 and b = 1/2, we can prove that h, = logn, £ = 0 and we are in the case
L=—¢

Let us finally take the simple example g, (x) = 21> p0y and f™* = 1. We can prove that for all
be (0,1), hy, =logn, £ =0 and n' =" p(nb) = n so lim h,, * log(n!=*="tp(n’)) = L = 1 and we
are in the case L € (—¢,+00).

The rest of the paper is decomposed as follows, in Section 2 after short preliminaries (Section 2.1)
we prove theorems of Section 1.1. For these proofs (Section 2.2) we check that the four assumptions
A1-A4 of Theorem 1.5 are realized and obtain simultaneously the asymptotic of h,,. In section 2.3
we prove Theorem 1.5 : essentially Proposition 1 is assumed to be true and we only check that if
Assumptions A3 and A4 are true then the theorem comes.

In Section 3 we prove Proposition 1, this is the most technical part of the paper which can be read
independently of the other parts : in Section 3.1 we summarize usual facts, in a second sub-section
we prove a lower bound for stopped generalized range %Z1n(gn,f,) and finally in a last one an
upper bound.

Finally in the last section we present some estimates about sums of i.i.d. random variables useful
for the proof of the examples of Section 1.1.

2. Proof of the theorems

This section is decomposed in three parts, in the first section below one can find preliminaries that
are useful all along the rest of the paper. In the second sub-section we prove the four theorems
presented as examples, finally last section is devoted to the proof of Theorem 1.5.

2.1. Preliminary material

We recall the many-to-one formula (see [Shil5] Chapter 1, and [FHS11] equation 2.1) which will
be used several times in the paper to compute expectations related to the environment. Note that
the identity below comes from a change of probability measure (see references above), however we
still keep notations P and E for simplicity.

Lemma 2.1 (Many-to-one Lemma). For any t > 0,
B[ 3 7(V().1<i<m)| = BES O (5,1 < i < m)).
|z|=m

where (Sy),cn 18 the random walk starting at 0, such that the increments (Spi1 — Sp),cy are
i.i.d. and for any measurable function h : R™ — [0, c0),

E(h(S1)) = e "WE( Y eV Oh(V ().

lz|=1
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A second very useful fact is contained in the following remark, it tells essentially that, in prob-
ability, the e~V (®)-weighted number of vertices = such that z € &, (recall (9)) can be found in a
quite small quantity when |z| < A¢, and can not be found when |z| > A¢,,. This remark is not
precise at all but will be enough for our purpose.

Remark 2. There exists ¢; € (0,1) such that for any A > 0 and n large enough

E{ Z e_V(x)]l{zeﬁn}] <n~4 and E[ Z e_V(”“')]l{xem,}} <Utn/2,
|z|>| Aty | lz|<[Aln]

which implies E[ZIGT e*V(‘”)]l{meﬁn}] <{,.

Proof. We give a proof here which essentially use technical Lemma 4.6 (for the second inequality
below), indeed by Lemma 2.1 above

E[ Z e*V(:v)]l{xeﬁn}] < Z P(sup(S; — S;) < logn)

|2|> AL, | k>[AL,| PSP
kn?o?(1 —¢) A
< — ) < p e,
- Z exp( 8logn Jsn
k> AL, ]
A similar computation gives the second fact and both of them the last one. O

2.2. Proofs of Theorems 1.1 to 1.4

The pattern of the proofs of each theorem is the following : we first prove two facts (an upper
and a lower bound) about sum Y_, -, ¥¥ (F) with specific F' depending on the considered function

f”’k(tl, ta, -+ ,tx) and also slightly different wether we are looking for an upper or a lower bound.
Then we use this two facts to prove that (A1), (A2), (A3) and (A4) are satisfied.

In these proof we use several time notation &, = min(b + 13—oy,1 — b)/13 which was introduced
in Proposition 1.

Proof of Theorem 1.1. Recall that f™F(ti,to, - ,tx) = i, >@0gn)ey, @ € (1,2) and see (9) for
the definition of @) /. All along the proof we assume that B,d > 0, ¢ € (0,¢), n is large enough
and t > —B. Let us start with the proof of the following two facts:

a—1
E[ 3y 6_V(x)]l{V(z)Z(logn)°‘ft}} < et logm)mlme), (22)
€O,

and for any 0 < m <logn

—Vi(z —(logn)*~ (14
E|: Z e ( )H{V(w)Z(logn)a-‘rm, HmSnbei(lc’g")(kl7Z(JC)Z—B}} e (o) ( 6)7 (23)

z€0 b

A,

with A, = ne=60°sm" ™" and recall V(z) = min, <, V(u). We first deal with the upper bound (22).
Recall £,, = (logn)3,

El Y eV lyaseenen| £ X E[ Y e VO lvasene nleeo,)
€0, k<|AL,] |z|=Fk

+E[ Z eiv(w)]l{xe@vn} ,
lz|> AL, |
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where A > 0 is chosen such that E[>_ - 4, | e’V(I)]l{we@l}] < 1/n (see Remark 2). This yields,

as a € (1,2), E[3_ 1,12 a0, e VO e ] < EFBL < 1edt=(ogm)* H(1-¢) for  large enough
and any ¢ > —B. Thanks to many-to-one Lemma 2.1, the first sum in the above inequality is
smaller than

Z P(Sk > (logn)® —t, max S; —S; < logn) < LAEnJP( ~max  S;—9; < logn),
E<|AL,] i<k J<TQogn)o —t

with 7, = inf{i > 1;S; > r}. Then, thanks to Lemma A.3 in [HS16a], and as ¢t > —B

|A6,)P( max 5, —5; <logn) < LAEnJeﬁ—(logn)ailu—g) < |A¢, Jelogn (logn)*~* (1~

J<T(logn)—t

5t+6B—(logn)* 1 (1—%)

IN
)

5t—(logn)*~(1—¢)
€ )

INA
N |

so we get exactly (22).
We now turn to the lower bound (23). Let £/, = (logn)* and «a,, = (logn)® +log n. By many-to-one
Lemma, for any m < logn, expectation in (23) is larger than

ZP Sk > an, maxH < An,n’ <Hk < plesllogn)®™ ,§k2—B),
k>1

with H]S = 25:1 e%i=9% . For any b € (0,1), by Lemma 4.3 (76) (with £ = (logn)?, t; = an,
g=1,a,=0a=6,d=(0—1)/2 and ¢ = ¢) above sum is larger than ¢~ (08" (14€) - Other-
wise if b = 0, observe that for all k < ¢/, S, = S implies H,;9 < k < 0 so the sum is larger
than EkS%P(Sk > oy, maxj<p HY < Ay, S = Sk, S), > —B). Lemma 4.5 (with £ = (logn)?,
te=an, d=1/2,a=06 and d' = (o — 1)/2) leads to (23) also for b = 0.

We are now ready to prove that f™ satisfies assumptions (A1), (A2), (A3) and (A4). Recall
that \I/kn (frF) = [le‘ ke’V(x)f”k( (1), V(@) lizes, b}] where © € 0, ,» if and
only 1fmaX]<|x|H < n and H, > nb, also 02/1, ={k > 0; forallk > 1,t e RFn > 1
]l{Hk(t)>nb}f ( ) < Coon_”} with C'y , .
e Check of (A1) and asymptotic of hn. We obtain from (23) with m = 0 that for any € € (0,¢5)
and n large enough E[>" e‘v(gc)]l{v(z)z(logn)a}] is larger than (as A, < n)

weﬁn,nb

-V _q a—1
E|: Z (x)]l{V(x) >(logn)>} {ng’ﬂb(is(logn)a71,Z((L‘)E—B}} >e (logn) (1+6).

z€0 b

An,n

Note that, above inequality, implies that for all b € [0,1), Kk, = max %4, = 0, indeed if we had
Kp > 0 then this should imply that for any z € T
eV Mppeo, V(@) V(@) < Coon eV o

n,n

which implies that E[Zweﬁn,nb e Vi )ﬂ{v(:p) >(log n)= }]I{H <nbesllognyo—1 (:E)Z—B}} is smaller than

Coon_“bE[zxeﬁ" e‘V(m)] < Coolpyn™" by Remark 2, but this contradlcts the above lower bound
(23) as a € (1, 2).
Then, by definition of ¥*

nnb?

a—1
Z \Iln n" (f™") . |: Z 7V(z)l{v(w)2(logn)a}] > e (logn) (1+5),
k>1 =17

n,nb
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and additionally with (22) (taking ¢t = 0) asymptotic of h,, is given by

n"™ log Z\I'nnb f”’k))’:‘logE{ Z e_V(m)Il{V(m) >(log n)® ”N (logn)*~.
TEOC 4

n,n

h:

We also deduce from the previous lower bound that (Al) is satisfied, indeed, as a € (1,2),
st Yo (™ k) > n~(ete)A for any €1 > 0 and n large enough.
e For (A2) recalling m,, = [ehy,/r2] (see (13)), then by definition

feh (t1,...,t) = inf f"’m”"rj(sh...,smn,tl—i—smn,...,tj—i—smn)
s€[—ehy,ehy,]mn

Observe that for A > 0, n large enough, any [ € N and t = (¢4,...,%), by definition of W% (F|t)
(see (15)) and (22) with /3 A instead of €

n l+k:
Z\IJ” b Hy( t) [ Z e Il{V(a: Yy+t1>(log n)dehy } L{H, >nb — H,(t)}}
k>1 T€0,
[ Z e ]l{V(:z )>(log n)™ — tz}:| < 65151 (logmn)>~ 1(177
z€0),

)afl

a—1 £ 2¢e a—1 £ £
Moreover, e~(108™)* " (1=37) — ¢3x(logn)™ " g=(logn)™ " (1+37) < ehhn D k> \I'Z’nb(f"’k), the last
13

inequality coming from the fact that h, ~ (logn)*~! and (23) with m = 0 and as above 5
instead of . So (A2) is satisfied.

We are left to prove that technical assumptions (A3) and (A4) are realised.
e For (A3), recall first, from Proposition 1, that for all b € [0,1), TF is the set

{t = (t1,...,tr) € R*; Hy(t) < nPehn ) > v;,rjnggtj > —B},

with v/, = log(nt,)/d1 + ch, and A\, = ne™in(10elogn, =5hn) — pe=5hn for Jarge n. Let 0 < &1 < e,
note that A,/2 > A, = ne~61°e™* ™" 5o for n large enough

i = YUK o (£ rs) = E[ Y VO )2 0gm)tehn, H, <nveshn ,m)z—B}}

k>1 meﬁxn/z,nb

v

—V(z) R
E[ ﬁz ‘ 1{V(r>z<logn>a+hn,Hm§nbeT1“°g")“’1M(z)z—B}}
xe b

An,n

> o—(logm)* (143

where we use that (logn)® > log(nf,)/é; for the second equality and the last inequality comes
from (23), with m = h,, and £;/3 instead of e.

Moreover e~ (g™ 1(1+3) = =5 (ogn)* o=(logn)* ' (1=F) > g—e1hn > kst UL o (f7F) which
comes from the fact that h, ~ (logn)®*~! and (22) with ¢ = 0, & instead of e.

e Finally for (A4), recall definition of ug ,, just below (19). First observe that as « € (1,2), for n
large enough, (logn)® > log(nt,)/d1 so for any k

\Ij’rcz(fn)k]l]]{\%’jl) = E{ Z 67‘/(3:)]1{V(x)Z(logn)"‘,V(ac)<log(n£n)/61}]l{xeﬁn}} =0.
|z|=k
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Recall that E[W] = e¥® =1 and X, = n®(logn)~2 so

Z( " (fnk)‘i‘E[W\I/n)\//W(fnk)]) Z(\I/k(fnk)-i-E[W\I/k f-nk _2Z\I]k fnk

k>1 k>1 k>1

€1

2Zk>1 \I/k(fn k) _ 2E[Zzeﬁ e~ V(z )1{V(z)>(logn)"}] < 267(103;”)@71(17?) < e—(logn)a—l(li%)
thanks to (22) with ¢ = 0, £1/6 instead of e.
5 logm)? o —(logm) NS < eeahn S Wk (FF). The last

Moreover e~ (leem)* 1 (1=F) = (=
inequality comes from the fact that h,, ~ (log n)*~! and (23) with m = 0, & instead of e. O
Proof of Theorem 1.2. Here f™*(ty,to,--- ,t) = Lyt 5, >(0gnyey with 8> 1 and o € (1,2), let

us start with the proof of the two following facts, for all B,§ > 0, € € (0,¢;), n large enough, any
t>—-BandieN

—V(z St—cg(logn)* 1 (1—
E[ Z € ()]l{V(wwHi)/m7i)2(logn)“—t}]l{x60n}} < eltesliosm™ =9, (24)

z,[(Jz|+i)/B]>i

and for any m < logn

—V(z —cg(logn)*~1(1
E[ Z eVt )]l{v(zL(\eri)/ﬂJ—i)Z(lOgn)a""m}]]'{ze’rnmﬁknmb}} >e p(logn) (+5)7 (25)

@, (Jl+i) /8] >i

with A, = ne=6¢s10gm)* ™" “for any a > 5

YT,=",(e)={zeT;H, < nbescﬂ(log")%l,V(m‘) > alogn,V(z) > —B},

and cg = —1 — /B —1/2+ p((B8 — 1)w2/4) (for p see (5)). Recall ¢, = (logn)? and introduce
L, = |(logn)?T¢= | with e, € (0, — 1).
Proof of (24) : first note that if t > (logn)®/2, (24) is obviously satisfied, indeed

V CE
E[ Z ( )H{V(ﬁ(m c|+1)/8) —1)) 2 (log n) ™ — t}]l{wem}} < E[ Z e )}
LL(lIIH)/,@JN z€O0,

and by Remark 2, E[erﬁn e—V(m)] — E[Zweﬁn e—V(z)]€5t—6t <4, e&t——(logn)a < e0t— cp(logn)>~1t
for n large enough. Now assume ¢ < (logn)®/2. Expectation in (24) is smaller than

—V(x
)IEDB v ) z}E[ > eV )z togmye -ty Lisea, }] +E{ > eV o,
k<|Al, | p>1 |z|=F |z|> [Aln ]

with A > 0 such that the last term is smaller than 1/n (Remark 2). Note that p = L%J —1
implies k > [Bp] and as ZkgLAé ) L i) y < B for any p > 1, the sum above is smaller, by

many-to-one Lemma, than

LAL ]

154 S>lon—tmaxHS<n—|— <ﬂ S>1on—tmaxH<n
p%e | &) J<[pB] Z &n) i<ipBl ? )

(26)
+ 7 Z P (S, > (logn)* —t) + !

n
p<Ln
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For the second sum in (26), by exponential Markov inequality, for n large enough, all p < L,, and
t>-B

(log n)2™ (log n)2™

P(Sp > (logn)® — t) < eOnt—0n (logn)* +p(1-6n) < eén(t+B)—ﬁ—20 7 tLnt(1=0x) < e&t—(l—e)m’

with 6, := (logn)®/o?L,, and we have used that ¥(1 — &,) € R¥ for the second inequality and
that 6, — 0 (a € (1,2)) together with (1) = 1’(1) = 0 and " (1) = o2 for the last one.

For the first sum in (26), which gives the main contribution, by Markov property at time p,
P(S, > (logn)® — t,max;j<[g HJS < n) is smaller than P(S, > (logn)* — ¢, max;<, HJS <
n)P(max;<fg-1)p] Hf < n). Then thanks to Lemma 4.6 (78) (with ¢ = (logn)?, [(8 — 1)p] and
£/2 instead respectively of k and ¢), for n large enough and any p € {L,, ..., |Al,]}

_ 7r202(t371)(17§) —p n202(8—1)
P( max HJS < n) <e P 8llosny2 2) — o U8((1-</2)"/210gn)?
J<[(B=1)p]

Hence, as logn < (1 —¢/2)"Y2logn, ZLQKL"J P (S, > (logn)* — t, max;<pg HJS < n) is smaller
than

LAL, | . 7(252({3/721)
_ 8((1—e/2)— log n)2
Z E ]l{T(logn)O‘ftépv max; < 5;—5;<(1—£/2)"1/2logn}€ (e &) }
szn
T (log ) w202(8-1)
< _ 08m)Y =t g((1—c/2)~ /2 log n)2
- AEnE |:]l{maxjﬁ’—(logn)@7t S.f_sj§(1_6/2)71/2 logn}e

cg(t+B)

cgt — o — £ o —
< Al eV S rorm—ealosn) T (1=5) < gp o Foga —eallogn)® T (1-5) <  dt—csllogn)® T (1)

W =

where Lemma 4.1 (with ¢ = ((1 —¢/2)"Y2logn)?, r(¢) = (logn)* —t, ¢ = 7%(8 — 1)/4 and
1 —4/1—¢/2 instead of €) provides the second inequality. Finally collecting all upper bounds of
the three sums in (26), for n large enough

-V
E[ Z € (x)]l{V(muzw)/mﬂ))z(logn)“*t}ﬂ{feﬁ"}
;| (|z|+4)/B)>i

< Losi—catogm ta-a) | got-0-0GEEE L 1 2 sicatogme -0 4

- < Z ,
-3 n = 3 n

S(t+B)

which is smaller than e?*—¢#(108m* " (1-¢) (e have used that (logn)2®/L, > (logn)X@~1=ca and
(logn)®~! = o((logn)?(@=N=¢«)). This yields the upper bound in (24).

Proof of (25). Let «, := (logn)® + logn. For all m < logn, by many-to-one Lemma expectation
in (25) is larger than

> Lipmieriy/pl-P(Sp = anyn < HY < nbess08W™ max HF < A, S > 0], S, > —B).
J1=
p,k>1

The probability above is larger than (as a,, > alogn for all a > é)
T _ b S becg(logn)®~? s :
P(Sp > an, 8, > =B, Sy =85,,n” < Hy <n’e a(logn) ,r]nSa? Hy < )\n,pr<nj12k5j > Sp).

Recall that HJS =3y 1eSi_Sﬂ’ so we have, for any p < j < k, HJS = eSP_SJ’HpS + Hzij where

1=

HS, =Y . €55 Note that S, = S, and min,j<; S; > S, implies HY < p+ HZ so the
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previous probability is larger than

— a—1
P(Sp > an, S, > —B,S, = Sp,%lgng < Ap,n’ < Hik <nbeseslloam)™™ _

which, thanks to Markov property at time p, is nothing but the product of P(Sp > ap, 8, >
—B,S, = S, max;j<, HJS < )\n) and P(nb < H,f_p < nbe“ﬁ(l"g")a_l—p, max;<k—p H]S < Ap—p =
ne—6(ogn)* ™" _ P, Sk_p = O). From now, let p € {L,,...,¢, = (logn)*}. We first deal with the
second probability. Observe that for all ¢ > 0, p = [(k +¢)/8] — ¢ implies k —p > [(8 — 1)L, ].
It follows that for all e € (0,&), n large enough, for all L,, < p < ¢/, k > 1, i > 0 such that
p=L(k+4)/B] —i, P(n® < HE , < nbecaloem™™ —pmax;cp, HS < X, —p, 8, > 0) is
larger than (as A, — p > A, — £/, > ne~7es(logm)* ™7y
202 _(k—p)

£ a—1 _ a—1 —
P(nb < H]ffp S anQCB(IOgn) , mkax Hf S ne Tcg(logn) 7£k:7p Z 0) > e 8 (log A,)? ,
Jj<k—p

with A}, = n(+e/27"%  Last inequality comes from Lemma 4.6 (79) (with ¢ = (logn)2, a = 7,

c= E%, d= ‘XT’l, k — p and /2 respectively instead of k and ¢). Equality p = [(k +14)/8] — i

also implies, for any 0 < i < logn that k —p < (p+ logn)(8 — 1) + § so it follows that above
2 _2

probability is larger than C exp(%p) for some positive constant C' € (0,1). Collecting the

previous inequalities together with Lemma 4.4 give, as D, < 1= | (k+i)/8)—i} = 1, that for n large
enough mean in (25) is larger than -

¢

7«%'4’(3—1)])
8(log A7)2 _ . .
C Z E|:6 n ]l{SPZOén,§p273’§pzsp7maxj<p Hfgne—kﬁ(logn)a 1}:| E ]]-{p:\_(k+z)/ﬂj—1}
p=L, - k>1
) _W%Q(ﬁ—}‘gm
8(log A, n —
> CP(S, 20) E[e o8 ) 1{Lngmnsz;wsm:sfsjsmgxn}]

x202(8-1)

> CP(EZIR > O)QP(gg;L > Ozn)E[e_ 8(log A7,)2 a"’I[{ijTanzgjisjglogA;}} —-P(S1, > ay).

Note that thanks to (68) and the fact that o € (1,2), we can find constant c(;.2) > 0 such that
CP(§% > O)QP(EWH > an) > 0(1.2)(621)’1 > 2¢=5(ogn)* ™! Thep applying Lemma 4.1 (with
{=1log X, r=qap, c=7%(B—1)/4 and \/1 +¢/2 — 1 instead of ¢), for n large enough

> ¢—callogn)® " (145).

_r?e2(Bn
E[e 8(log A7, }

P i, 5,8, <log A )
Finally, by Markov inequality, P(Sr, > a,) < Lne a2 /In for some constani iz > 0
Since 2 /L,, > (logn)?@~Y=%a and (logn)*~! = o((logn)?(®~ =2 we get that P(SL, > a,) <
e=es(logm)* " (142)_ Collecting the different estimates yields (25).

We are ready to prove that f™ satisfies assumptions (A1), (A2), (A3) and (A4). Recall that
\Ilfmb(f”vk) = E[le‘:k e’V(f”)f"*k(V(xl),...,V(x))]l{xeﬁmnb}] where © € 0, ,» if and only
if max;<|, Hy; <nand Hy > n®, Uy ={k>0; forallk>1,tcR¥ n>1: ]l{Hk(t)>nb}f"’k(t) <
Coon™"} with Coe = sup,, , | £

oo
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e Check of (A1) and asymptotic of h,,. We obtain from (25) with ¢ = m = 0 and n large enough

E[ Z ei‘/(aj)]l{V(ﬂfuz\/m)Z(logn)“}}ZE{Zeivw)]l{v(xuz\/m)Z(logn)“}ﬂ{HCETnﬂﬁ,\mnb}}
z€el zeT

n,nb

S o—es(logn)* ! (14e)

This implies that for all b € [0,1), kK, = max %, = 0 (we use a similar argument than in the proof
of Theorem 1.1) and additionaly with (24), gives, taking i =¢ =0

™ log Z\IJ” n® fnyk))‘ - llogE{ Z 67V(m)]l{v($uz|/m)E(IOg")a}}‘ ~ epllogn)™
k>1 zel

n,nb

h:

We also deduce from the previous lower bound that (A1) is satisfied.
e For (A2), recalling m,, = [ehy,/r2] (r2 is defined in (13)), by definition, for any j > 0

feh (th...,tj): inf fn’m"+j(817...,8mn,t1+Smn,...,tj+8mn)
s€[—¢ehy,ehy]™mn

= inf

1y , >(log n)e—
s, €[—hn,chn] {t (mn+i)/8)—mn 2(l0gN)* —5m, }

— ]l{um””)/m>m"}]1{tum"+j)/m7mnz(logn)“+ehn}'

Then for any [ € N* and all t = (t1,...,4) € R', f) l+k(t1, ooty Vi) + .., V() + t), with
|x| = k, is equal to
L <)/ B <t Lt iy ) - 2 (ogmya et T 1 LG40) /81> 14V @ (1981 - ) 0> (og m) > +ehn )

with ¢ = m,, + . Recall definition of ¥ (F|t) in (15), we have

SOk e (P <E[Ze‘v(w :hl+k(t1,...,tl,V(x1)+tl,...,V(:c)+tl)]
k>1 rEl,,

k
<Y W< (400781 <0 Lt iy )y > 0z )} T (1)
E>1

—V(x
+E[ Z eVl )]l{V(ﬂU(L(\m\-ﬁ:)/m_i))Z(log”)“*tz}]l{IGﬁn}}'
z; | (|z|+4)/B]>i
ko1 Lmn <1 (i48)/8) < Lt /51— > (G0g m)a} T (1) I8 equal to

l

Z]l{t >(logn)™ }Z \Ij L%J_mn} < ﬂz]l{tPZ(logn)ab

k>1 p=1

where we used that >, o, ¥ k1 )Ly L5 |} < v D kst ]l{p:LinJ—m"} < B. Also by (24)
with i = m, +1, t = t;, 5 instead of e,

—V(z 5t logn)* ' (1— 5%
E[ Z € ()]l{V(m(\zm)/m—w)2(1ogn)a7tz}ﬂ{r€ﬁn}} < eftmeros
@[ (Jal+i) /B >3

SO

a—1 e
Z\I’” nb— Hl(t ”l+k|t < /Bz]l{t >(logmn)>} + 5tl_05(10g") (1-3%)
k>1 =1
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Note that 52;21 Lt >(10gn)e} is very small for n large enough, any [ < |Af,| and H(t) < n.
Indeed 22:1 eStr—t) < 1H(t)? < Al,n’ so

1 !

B Li,2t0gmey = €18 Y ™y 5 (10 myey < €21 S ALy
p=1 p=1

which, as o € (1,2), is smaller than 1e%—cs(os n)*"'(1-5%). Finally observe that

e—eslogn)® M (1=g5) _ pepllogn)® ™' 5 o—csllogn)® ' (14+3%) < ihn E \I/n (),

k>1

where we have used that h,, ~ cg(logn)®~! and (25) with i =m = 0.

We are left to prove that technical assumptions (A3) and (A4) are realised, the ideas are very
similar than for the same assumptions of previous theorem we detail them here however to keep
the proofs independent the one from others.

e For (A3), recall that Y is the set

{t=(t1,....tx) € R¥; Hy(t) < nPen t; > viwm<i}cltj > —B},
1=

with v}, = & - log(nfy) + €h Let 0 < £ < € and recall that \,, = ne~®"~. Note that \,,/2 > X, =
ne—6ogn)® - 80 Y sy ¥ /\ s, nb(fghn]l"f’“) > s \I/kn nb(f:ﬂf]l"f’:;) which is nothing but

E e (x)]l 3 1 beeh ’
E {LW\*{%J>”L”} {V(@ | (ja|4+mn)/B8]—mpn)>(logn)*+ehy, Hy <nbeshn V(z)>v! ,V(z)>—B}
€0, b

—V(x
2 E[ Z e V! )]l{V(ffu\men)/ﬂJ—mn)Z(log")“+hn}]l{rGTn(%)ﬂﬁM‘nb}}
z,[(lz]4+mn)/B]>mn
S oesllogn)* N (1+5)

where that last inequality comes from (25) with ¢ = m = m,, and &;/3 instead of . Moreover
emesllogm)™(145) _ o~ Fhealogm)™ ! gmesllogm) H(1=%) > c=ehn 3 W (f7), the last in-
- f n,n

equality comes from the fact that h,, ~ cs(logn)*~! and (24) with i =¢ = 0.
e Tor (A4), recall that A, = n’(logn)~2. First, observe that for all k € N*, a € (1,2), (logn)® —
log(nt,)/61 > logn for n large enough so

k(n,k _ —V(x
U (f" m e ) = E[ > )ﬂ{vwwm)zaogn)a,v<z><1og<nen)/61}]l{zem}}
|z|=k

V()] B B
< E[ doe ﬂ{vmz(logn)ﬂ,V<ac><log<nen>/61}]1{V(z>—V<w>s10gn}] =0
|z|=k
Recall that, W =37, _, e V() and E[W] = ¥® =1 so0
S (WA ) BV, (7 H)]) < 3 () 4 BRG] = 23wk (e
k>1 k>1 k>1
and thanks to (24) with i =¢ = 0 and % instead of ¢
k n,ky\ __ —Vix —cq(logn)®L(1—EL
ZZ‘Iln(f )_2E{ Z eVt )]I{V("E\m\/ﬁ)Z(logn)"}} < gemeolioan) O
k>1 TED,
< e~callogm)® 1 (1=F)
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. a—1(q_¢€1 26y a1l . P
Moreover e—¢s(logn)* 1 (1=F) — ¢Ttes(logn)® ™ g—ea(logn)*(1+3) < eeihn 21@1 ‘I’Z,nb(fn’k)a the

last inequality comes from the fact that h, ~ cg(logn)®~! and (25) with i =m = 0. O

Proof of Theorem 1.3.

Assume first that a = d = 1 and « € (1,2) which corresponds to the second and third case of the
theorem. Let us start with the proof of the two facts, note that we distinguish wether b = 0 or
be (0,1/2).

Facts for the case b=10: for all B,d > 0, € € (0,¢) and n large enough, for any t > —B,

xeﬁn

—2(log n)*/?(1—¢)
=1 V(x)>(logn)®— :| Seét 2(logn) ( ) (27)
S o H, V@2 osn) )

and for all 0 < m <logn, 0 < M < e(logn)*/?

e_z(logn)a/2(1+6), (28)

eV er, 1o
E = ks 1 Vi(z)>(logn)®+m Z
[m;r M|x|+zjg|x| H,, {V(z)=(logn)>+ }}

with Ap 1 = ne—12(logn)*/? 4
YTo1="Tpi(e) ={zeT;H, < 626(10gn)a/2,z(x) - _n).

We first deal with the upper bound (27). Note that if ¢ > (logn)®/2, (27) is obviously satisfied,
indeed, (ZJSIII Hg;j)_l]l{v(z)z(logn)a,t} < 1 so for n large enough

e—V(;E)

E -
{ stlw\ Ha,

z€0,

]l{V(I)Z(logn)”—t}} < E[ Z e_v(””)}e_‘”e‘;t < 0,8t 5 (logn)
TEO,

< 66t72(10gn)a/2(175)’

where we have used Remark 2. Now assume ¢ < (logn)®/2, by many-to-one Lemma, expectation
in (27) is smaller than

1 —V(x
Z E[Zk HS]I{T(logn)"—tSk) maX;<g Hfgn}i| +E|: Z e ( )]]'{Qfeﬁn} ) (29)
E<| AL, ] j=1" |z|>| ALy |

the second sum is treated as usual : Remark 2 with a choosen A, together with the fact that

: : —V(z —2(logn)*/?(1—
a € (1,2) and t > —B implies that E[EIIDLM"J eV )]l{wem}} <1/n < %e‘;t 2(logn)*/*(1~¢)
Also using that (Z§:1 HJ-S)_1 < e~ maxj<k %=5 |eads to

2 : 1 — max; S;—S;
JI<T(log n)® —¢ P J
E[Zk HS]I{T(logn)(’—tSk, max; <y HJSSTL}:| S LA&LJE[G (logn)® —t .
kSLAénJ j=1 J

Since t < (logn)®/2, (logn)*—t > (logn)*/2 so by Lemma 4.2 with § instead of ¢ and any t > —B

log n)® —(t+B)

— — _ey(dogn)T—(t+B) @
E[e_ MAXj<T(10g nye —¢ SJ—SJ} < ¢~ 20=3)y/(logn)>—t ~ 20-3)" Moanot5 < 16&—2(10%”) 2(1-¢)
- - -2

this treats the first sum in (29) and yields (27).
We now turn to the lower bound (28). Recall £, = (logn)*, using that Z?:l HJS < kmaxj<y HJS
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and the fact that m < logn, 0 < M < e(lc’g")a/2 and A, > e(log”)am, we obtain thanks to
many-to-one Lemma

e_V(x)ﬂ{mGTnylmﬁA”,l}]l
V(z)>(logn)>+m
M\m|+2j<\’ﬂ| ij {V(z)>(logn) }

Sp>-B, §k:Sk}]

1
- k; [le(logn)°/2 {Sk>an, maxj<y Hs<e<1°€">a/2

o~ (logn)®/?

a/2 —
> T T P(S 2 an ma Y £ 5, > BB = 5),

k<t

where «,, = (logn)® + logn. By Lemma 4.5 (with £ = (logn)?, t, = a,,, d = /4 and a = 0) the
previous probability is larger than e~ (o8 m*2(1+5) | Finally collecting the inequalities we get (28).
Facts for the case b € (0,1/2) : for any ¢t > —B, r > 0 and w > 0

¢ r+H: >N\, - —1== (logn)>~*
E[ > e /w}]l{V(ar)>(logn)a—t}} < (w+ D tett T o) (30)

where we recall that X/, = n®(logn)~2. Also for all 0 < m < logn, 0 < M < n’

B>

zeT

,V( ]l{xETn’Qﬁﬁ)\n%”b}]l :| S
. V(z)>(logn)®+m Zn
M+ Sy Hyy (V@200 )

1

1-1{7—6 (logn)a7 (31)

with A, 2 = ne—$ 0o anq
YTho="Tyo(e)={zeTH, < nbe%(log")aﬂ,Z(m) > —B}.

We first deal with the upper bound (30). We split the sum according to the generation of x: when
|z[ > ALy ], we use that Ly m,>x w,v(2)>(ogn)ye—t} (T + Z]‘S\m\ Hmjf1 < 1 so expectation in
(30) is smaller than

-Vi(z)q
—V(x ¢ {r+He >\ /w}
E Z e ( )]]'{IEﬁn}:| +E|: Z +Z H ]l{V(r)>(logn)“‘ t}]l{zeﬁ }]
|z|>[ ALy ] |z|< | AL, | J<|z| 772
Then, when |z| < [Af,], we again split the sum but this time according to max;<|, H,,: when
max;<|q| ij > 'rLbe%(IOg")Oﬁl7 we use that ]l{rJrH >N Jw,V(z)>(logn)>— t}( T+ ZJ<|$|H37])
(max;< |y Ha,) ™' < nbe —300gm)* ™" Otherwise, observe that Lrtmsag fwr (M 2241 H, )™t
L i, >x ywy (1 + He) ™8 < w/ X, Therefore, expectation in (30) is smaller than

E[ Y eV Olpeoy|+EB[ Y VO pep,y|n e loem
o] > [AL, ol <AL,

w

Bl ) Ve o
+ / {V(x)z(logn)‘l—t,mawa.gnbe%(log") 1}’

T el <Al g=l=l

which, by Remark 2 and many-to-one Lemma, is smaller, for n large enough, than

]. 1 1 a—
— 4 fyn e ploam)™ ! ﬂ/ Z P(Sp > (logn)® — t, max HJ‘S < nbesllosm) 1).
" An E<|Al, ] =k
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Also 32y <) ac, | P (S > (logn)> — t,1;1<a£( HJS < nbe*%(logn)a—l) is smaller than

)

= 1 ¢ - c

| AL, |P max S; —S; <blogn+ f(logn)a_l) < oo — 1 (logn)* T (1-5)
J<T(logn)e —t b

where Lemma A.3 in [HS16a] provides us the last inequality for n large enough and any t. Fi-

nally, note that for any § > 0, n large, w >0and t > —B, 1/n < in_b —3B—15=(logn)* !
wtl ) —b 5t— 155 (logn)* ! lan —be—4(logn)*~ < nfb —6B—15=(logn)* ™" w+1 n-b 6t7—(10gn)0‘ v
3 _—

b

Teﬁ—%(logn)""l(l—f) < (w+1)n~P(logn)2etosn —#losm)* 1 (1-5) < wil 7b oSt— 155 (logn) =1 o1 g

this finish the proof of the first fact. We now turn to the lower bound (31) By many-to-one Lemma
for any m < logn, 0 < M < n’ and A > 0, the mean in (31) is larger than (as A, 5 > nbeds (leam)* ™)

1
§ EE——— ¢ (10w myo—1
b k S T {Skp>an,maxi << HS <nbe3s 5™ oy Snb 5, > B}
k<Al | kn Jrzj:lHj <j<k Hj

—b
n I3 a—1 I a—1
> 5 A7 e~ as(logn) E P(Sk > an,lrgjazcka < pbesslosm)™ ™ > n®, S, > —B),
n =J =

k<[ AL, ]

with a, := (logn)® —l—logn By Lemma 4.3 (76) (with £ = (logn)?, ty = an, g = b, ay = —a = — 5,

d = aTl and ¢ = 4.) the above sum is larger, for n large enough, than e~ 3(logn)* 7 (1+5) >
2A¢, e~ #(log ”)Wl(l*‘e), which completes the proof of the upper bound.

We are ready to prove that f™ satisfies assumptions (A1), (A2), (A3) and (A4).
e Check of (A1) and asymptotic of h,,. (28) with m = M = 0 implies for b = 0 and n large enough

—V(x)

n e
S owkE(fmh) > E[Z Wﬂ{V(x>z<logn>a}]l{mem,mﬁxn,l}
k>1 2eT “&~J<|z| "7 %5

> o—2(log n)o‘/2(1+s).

This implies that kg = max % = 0 (see the part concerning k; of the proof of Theorem 1.1 for
details) and additionaly with (27) and t =0

h, = |n

" log Z \Iln nb f”’k))’ ~ 2(logn)*/2.
k>1

We also deduce from the previous lower bound that (A1) is satisfied.
From (30) with 7 =t =0, w = 1 and § instead of ¢ we get for all b € (0,1) and n large enough

k .k e Oy, oay Ly _ie
Z\Iln,nb(f ) < E[ Z Z—H_"]I{V(I)Z(logn)a}} <n7 %" ®
k>1 v€on, i<le| Ha;

-1

(logn)*

This implies that for all b € (0,1), kp > b. From (31) with m = M = 0, we get that for all b € (0,1)

\I/ nk e—V(I) 1 1 > —b —i(logn)a71
k2>:1 wrtld [zze;r S iape He, V2008 {xeT"’Q“ﬁxn,z,nb}] =" '

This implies that for all b € (0,1/2), kp < b. Finally, for any b € (0,1/2), x5 = b and

1 _
h, = |n"* log Z\I!nnb f"’k))‘wg(logn)a L

k>1




Andreoletti, Kagan/Generalized range for slow random walks on trees 23

We also deduce from the previous lower bound that (A1) is satisfied.
e For (A2), recalling m,, = [ehy,/r2] (see (13)) and for all s = (s1,...,8m,) € R™ t =
(t1,. .. tr) € RF with w = (51,..,8m,,t1 + Smys-- >tk + Sm, )
1
ma+k
S Hy(u)
Note that Y27 H(w) = Y77 Hj(s) + 35—, (€7 Hon, () + Hy(t)) > 325, H,(t) so

K : ,
fsnhn(th"'?tk): - hlnfh ] fnm”+k(81,...,smn,t1+Smn7...,tk+8mn)
se|—¢chp,ehy|™mn

fn’m”-"_k(sl, ey Smy st T Smy s Tl T Sm”> = ]l{thrsng(log n)e} (32)

. 1 Lit,>(logn)e+ehn}
< inf Lyt 45, >(logn)} = — -
Sl ehn o] S X ()

It follows that fgh’i(tl,...,tk) < ﬂ{tkz(logn)(’}(Z?:l Hj(tj))il and for |z| = k with u, =
(tla"'atlav(xl)+tla"'7v(x)+tl)

n 1
fE}ZiL+k(t17 e 7tl7 V(xl) + tla ey V(.’E) + tl) S ]]-{V(r(:)Z(logn)o‘—tl} I+k

Ej:l(uw) .

Assume b = 0. Observe again that ZHk( ) = 25‘:1 H;(t) + Z?Zl (e"V@IH(t) + Hy,) >
> j<k Haz;. Then by definition of vk (F|t) (see (15)), for all A, B,e,0 > 0, n large enough, for any
leN*and all t = (ty,...,t;) € Rl with t; > —B

I+k I+k
Z\I]nnb H(t) Enthr |t <E{Z€ V(z) Ethr (tl,...,tl,V(xl)+tl,...,V($)+tl):|
k>1 €0,

)

1 —2(logn)*/?(1— -5
<E{Ze My (2)> (log n)o— “}27} < ePhim20osn)" (1 =5%)

TEO, 1<k

where we have used (27) with ¢ = ¢; and replaced € by 35 for the last inequality. Finally, observe
that

—2(logn)*/*(1-5%) — o35 (logn)*/? ,~2(logn)*/?(145%) < efihn Z\I, b (F7F),

k>1

where we used that h, ~ 2(logn)®/? and (28) with m = M = 0.
Assume b € (0,1/2). Note that EHk Hj(uz) > Hi(t) + ;< Hy;. Then for all A,B,e,6 >0, n
large enough, for any [ € N* and all t = (¢1,...,%) € R! with t; > —B

e - L1y (@)>(ogn)=—t:}
\Iln nb—H;(t H_k‘t) < E|: Vi) — ]l{H (t)+H>X\}
2 ne-auio 2T R T ey Hy L,

< 2n7b66tl7%(logn)°‘71(1 ix) < nfb Sty — 3 (logn)®~ 1(17—

where we used (30) with » = H;(t), w = 1, t = t; and ;5 instead of ¢ for the last inequality.
Finally, observe that

—b_ot lonull—— 2 lon"‘fl— logn)*~ 1 (1+ hE: n,k
n et b( gn) ( erA( gn) b( gn) ( 3A)<€A n \Ijnnb f )’

k>1
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where we used that h,, ~ ¢(logn)*~" and (31) with m = M = 0.

We are left to prove that technical assumptions (A3) and (A4) are realised.
e For (A3), recall that Y% = {t = (¢1,...,tx) € R¥; Hy(t) < nbeshn V(x) > vl tx > —B}, whith
v, = i log(nty,) + €hy,. By (32), for || = k with vy, = (s1,..+, Sm,» V(21) + Smps e o, VI(X) + S, )

1
mn+k :
S Hj(va)
and recall that Z"L"Jrk Hj(ve) = 3200 Hj(s) + E’? (e=V@)H,, (s)+ Hy,,). For |z| = k such
that V(z) > —B, observe as s € [—chy,, eh,|™", that Zm"+k Hj(vy) < mpe®tn 4 km2e2hntB 4
Z?:l H,,. Also recall, by definition, that h, > (logn)Y for v € (0,1) so Z;nz"frk Hj(vy) <
2km?2e2ehntB 4 25:1 H,, < ke* + 2?21 H, . It follows that

IRV (1), V() = inf L{v (@), >(ogn)o}

s€[—ehy,ehy,]mn

n.k 3eh - -t
FEEV @), V@) 2 Ly osne ey (ke + 3 H)
j=1

Let 0 < €1 < € and recall A, = ne=%" > 2An,i, @ € {1,2}. Thanks to the previous inequality and
the fact that (logn)® > é log(nt,,), we have

-V(z)q

n,k € {V(z)>(logn)*+ehy,}

SN (L k)>E[ > 1 boenn _ }
n/2m\Jeh, YE) = 3chn, H {Hy<nbeshn V(x)>—-B}

k>1 €0, jz|e?ehn Zjélx\ zj

n,ism

Assume b = 0. By (28) with m = h,,, M = ellosm)™? and < instead of ¢, together with the fact
that h,, ~ 2(logn)®/2, for n large enough

e VO Ly ()5 (tlogn)e+hn
>R, L )>E[Z e 1 MaeTaa(n0s, )
E>1 z€T |z|eCtos™) +Zi§\z| Ha, e At

> —2(logn)*/2(1+3)

— a/2 1 _ 4y /2 a/2(q_€e1 —
Moreover e¢—2(og M) “(1+3) — o=~ (logn)*/= o —2(logn)*"“(1=3) > g—eihn D k1 \Ifﬁmb(fn’k),the last

inequality comes from the fact that h, ~ 2(logn)*/? and (27) with ¢ = 0.
Assume b € (0,1/2). By (31) with m = h, and M = n’, together with the fact that h, ~
%(log n)*~1, implies for n large enough

e U1y (2)> (log )

504ty > B3 At
n/2,:m hn - YE) =

k>1 : zeT |z[n® +2J<M

Z nfbefi(logn)o‘fl(qu%).

+hn}
Tier,, 2(%)m@w}}

Moreover e~ $108m)" (14+5) — o= (logn)* ! o—F(logn)* 1 (1-F) > pbe—cihn ks i (F7F),
the last inequality comes from the fact that h,, ~ 3 (logn)®~! and (30) with r =¢ =0, w=1and
we have used that A, = n®(logn)~2 < n’.

e Finally for (A4), we first observe that for all k € N*, a € (1,2), (logn)* > i log(nt,,) for n large
enough so

er(a:)

W (M g s ) :E[ >

—1 o 1 =0.
on k {V(z)>(logn)=,V (z)<log(ntn)/d1} {xem}}
|z|=k Zj:l ij
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Recall that W =3, _, eV and E[W] = e¥® =1 so when b =0

Do (Wh ) FEWEL  w (F)]) < D0 (WR(™R) + BIWEE(mH)]) =2 wi ()

k>1 k>1 k>1

and thanks to (27) for n large enough with ¢ =0

e~ V(@) Q/z(l—%)

23 W) =2E] Y

]l{v(m)z(logn)a}] < 26—2(10gn)
k>1 aco. > i<t Ha

< ¢ 2(logn)*/2(1-3)
a/2 /2 /2 e
Moreover e~20ogm)*/2(1=3) — 5L (ogn)*/?=2(log )21+ 3) < ¢e1hn D k=1 ‘I”:L,nb(fn’k)7 the last

inequality comes from the fact that h,, ~ 2(logn)®/? and (28) with m = M = 0.
Otherwise, b € (0,1/2) and thanks to (30) for n large enough with r =¢ = 0, w = 1 and & instead
of e

67V(w)]l{H >A} 1 1 a—1
Z\IIn )\’ fnk: |: Z él{V(m)Z(logn)“}} < —be 3 (logn) (1**)’
E>1 ze0,, 7q—"ZJ’SIIIHGCJ "

and we also get from (30) with » = ¢ =0 and w = W that for n large enough

e~ Vi@)q H.>)\, /W W + 1 a—1
L (fn’k):E{ a2 20/ W3 g V(2)>(log n)e } < 3 (logm)® (1=
AL W a:;n 7‘+ng|$\ H,, {V(@)>(logn)} nb

By (4), telling that E[IW?] < oo, we have Cy := E[W(W + 1) + 1] = E[W? + 2] < oo and then

C4 _1

ok nk Logn)*1(1=%4) — 1 _1laogn)y*—ta—21)
%( o, (FPF) E[WER o (F9)]) < e e TS g pe o

—L(logn)* 1(1-3L) _ logn)®~ 1 —L(logn)* (1451 b,e1hn k n,k
Moreover e~ 5 (10gm)% ( ) = et (logn) pllogn)® T (1+5) < pbesr 21 Yo (f0F), the

last inequality comes from the fact that h, ~ 3(logn)*~! and (31) with m = M = 0. Proof is
complete for these two cases.

Assume now o = 1 and a € R (with ¢ > 1/§; when d = 1) which corresponds to the first case of
the theorem. As usual, let us first state the following two facts:

forallb€[0,1/(d+1)), B,0 >0, e € (0,e;) and n large enough, for any t > —B, r > 0 and w > 0

)]l r+Hy >N, Jw
E Z AR /d}]l{V(T)>alogn f}:| (w + 1)626& _bd (33)
€0, (T+ZJ<|QE|H93J)

with A/, = nb(logn)~2. For any 0 < M < nb & < b/3 (when b > 0)

€7V(:L’

Lizer,no, 3 1
Ao nbd {V($)>alogn}:| Tn_bda (34)
zeT (M|x| + ngm H,, )

with A, = n!7!¢ and for any o’ > 1/6;

B[

3N

T, ="T,(e):={x €T;H, <n’* V(z) > d'logn,V(r) > —B}.
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These facts ensure that f™ satisfies assumptions (A1), (A2), (A3) and (A4) for b € (0,1/(d + 1)).
(A3) does not hold exactly when b = 0 so we use (38) (which appears in the proof of Therorem
1.5) together with the result when b > 0 to conclude this case.

e Check of (A1) and asymptotic of h,. We get from (34) that x, = max%, < bd and (33) gives
Kp > bd. Tt follows that for all b € [0,1/(d + 1)), kp = bd and for any n > 2, h,, = logn. Indeed, on
the one hand, (33) with r =t = 0 and w = 1 gives, for n large enough

. n. e~ V()
n"? Z\Iln nb f k = nde|: Z ﬁﬂ{V(x)zalogn}} < 2d£7217
k>1 zeﬁnmb ( Zj:l ij)
and on the other hand, we get from (34), for all n large enough that
1
' \I]n nb fnk Z .
2 7

From these inequalities, we get that for any v € (0,1), |log(n"* >, -, ¥¥ nb(f” N < 3logt,
o((logn)7). Then h,, = logn and we also deduce that (A1) is satisfied.

e For (A2), let |z| = k and observe that f[) Hk(tl,.. L, Vi(xr), . ( ) < (H, ( )+ H)~% so
it follows, for all € € (0,¢p), 4,5, B > 0, n large enough, any | € N* = (t1,...,t;) € Rl and
t; > —B, by (33) with r = H;(t )7 t=t;and w=1

k I+k dg2 5t —bd Sti+ 5 hn k
DU e ([ IE) S 200l < RIS Twk L ()
k>1 E>1

where last inequality comes from (34).
o For (A3), recall that Y* = {t = (¢,...,t;) € R¥; Hy(t) < n®T¢ V(z) > v),tx > —B}, where we
recall v}, = é log(nty,) + €h,. For |x| = k, we have

k

—d
n,k
fshn (V(x1)7 LR V(‘T)) > ]l{V(:v)Z(aJrs)(logn)} (kn3€ + Z HwJ) )
j=1
and thanks to (34) with M =nb b€ (0,1/(d + 1))
e~ V(@1
k nk {Yan0y, v} L g —eihn, k n.k
D e i) 2 B 3 (e | 2 gz et W (),
E>1 zeT J<lm| T n E>1

where we recall \,, = nt—10¢,

e Finally for (A4) with d =1 (and then a > 1/41)
(x)ﬂ{xeﬁ J g

otherwise, d = 0 and for any a € R, thanks to Remark 2
Z\I}ﬁ(fn’k]llR\%k = |: Z e )]1{V xz)>alogn,V (x)<log(nl, )/61}} < E{ Z 67V(m)} < Ena
k>1 z€0, €0,

which, thanks to (34) is smaller than e=t"» 37, o W, (f™*) for all ; > 0. We get from (33) with
r=t=0and w = W that for n large enough ~

U (S gy e ) = E[ L{v(2)>alogn,V (z)<log(ntn )/51}} =0

—V(a:)]l
k nky € {H>\, /W} —bd
W, w (F*7) = E[ > e He)) H{V(x)>alogn}:| < (W+1)2n
€0, J<|z
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By (4), telling that E[W?] < co, we have Cy := E[W(W + 1) + 1] = E[W? + 2] < co and then

S (TE 0 () +BWEE L, (f79)]) < 2Cutn ™ < et Yk (8,

k>1 k>1

where, again, last inequality comes from (34). This finishes the proof of the result of the theorem
for b€ (0,1/(d+1)).

Now assume b = 0 and let € > 0. Using the result of the theorem with b. = /(2 + d) and the
fact that Zp(Ljnee 00y, ) < Zn(L(1,00), "), We get the following lower bound for %, (11 00y, f"):
P(log™ 2, (11 00), ") < (1 — £)log n) is smaller than

P(log™ P (Ljppe o0y, £") < (1= (1 +d)b. — /(24 d))logn) — 0,

where we have used the case b > 0. For the upper bound, we use an intermediate result in the
proof of Theorem 1.5: recall that kg = 0 and h,, = logn.
Also recall € = lim,, o0 by Mlog(n'™ 37, WE  (f5™)). Tt’s easy to see that £ = 0 and by (38)

P (G, £7)

P(log" %n(Lj1,0c), £) > (1+€) logn) < P

> efh") -0,

this ends the proof of the theorem for all b € [0,1/(d + 1)). O

Proof of Theorem 1.4. Here f™F(ty ty,--- ty) = Ly, ﬂz(lo n) a}(z im H;(t))™' with 8 > 1
and @ € (1,2). We state the following facts: for all B 0>0,¢c¢€ ( ,€p), m large enough, any
t>—-BandieN

B_V(I)]l{;peﬁ } I
E[ Z Wﬂ{v(wmzwn/m—i)Z(logn)°—t}} < ft—2(logn)*"(1—e) (35)
;| || +i/B]>i Zj:l z;

and for all 0 < i,m <logn, 0 < M < ellogn)*/?

_V(x)ﬂ
Z € x
E {zeY,NON, }

—2(log n)®/2(1+€) (36)
M| + $jE/ B,

V(= | (2| +i)/8)—i) = (log n)“-&-m}} ze
z;| || +i/B]>i

. _ a/2
with A, = ne~1200e™)*" and for any a > é

Y, = Tole) i= {z € T H, < *0#M™ V(1) > alogn, V(z) > —B}.

From these two facts we follows the same lines as in the previous theorem to prove that h,,
2(logn)®/? and that Assumptions (A1) to (A4) are satisfied. O

2.3. Proof of Theorem 1.5

First, note that Remark 1 implies that £ = lim,, . h;, * log(n" 21 Yo, B (fFm)) well exists. To
prove Theorem we first show that assumptions (A3) and (A4) yield a snnpler statement for both
lower and upper bound of Proposition 1. This implies a convergence in probability for stopped
ranges Xk, with k, = [n/(logn)3/?] and %Zr». Then we use result of [HS16b] (Proposition 2.4)
implying that T, /(nlogn) converges in probability to a positive limit to obtain the result for %,,.
Let us start with the



Andreoletti, Kagan/Generalized range for slow random walks on trees 28

Lower bound : Recalling the expression of u1,, = 3 3+, \I/’;\n/2 nb(fgﬁi]lﬂi) (see below (18)) togeher

£
4

Ul,n >e min(1,e5) § Z \I}Z’nb (fkﬂ’b) .
k>1

with (A3) choosing €1 = min(1,¢5)% (see Proposition 1 for ¢5) we get

This together with the fact that, by definition of &, for n large enough n"* 3, -, vk (k) >

n,nb
e(f_s)h", implies

%Tkn (g fn) B %Tkn (g f") _
P Rrn (gn, £7) <e(£ 7e)hn, SP ny <e 6ehn,
(nlfb*"”"bga(nb) ) <n1_b¢’(nb) Dok>1 \I/fznb(fkn) )
Repren (G, £ -
<P <)
nt=bp(nblus

Also considering (18), P(% < e‘55h“) is smaller than

— min(e logn,3hy, )+min(1,c5)§hn

(nﬁb Zk21 \I/ﬁ,nb(fk’n))2

—min(e logn,3hn)+5hn+2[log(n"t 3055, Wr o (f57)]

n,n

_ min(1,cg5) _ e
e( s+ ——52> )Eh”—‘rhne ehn+

_ecs _
<e Thmgppe e

Now, thanks to Remark 1, for n large enough [log(n" >, -, Wk (fF™))| is smaller than £ logn <
—min(—£logn, —hy,) and $hy, is smaller than < —3 min(—¢logn, —h,) so —min(elogn, 3h,) +
Shn +2[log(n"™ > 45, \Ilflnb(fk”)ﬂ is smaller than — min(elogn, hy). Finally, for all € € (0,&,)

and n large enough

P %T’Cn (gnafn) < €(§—7€)hn < e—%hn + h e—shn + e—%min(slogn,hn)
nlfbfnbap(nb) — n ’

then switching € by €/7 in the above probability, we obtain as h,, — 400, the desired expression :
for all € € (0, 7eyp)

- Lren (90 ") (e—opn, ) _
Jim P( STy <€) =0
We are now ready to move from %k, to %, first note that :

Pn(gn, £7) (€—€)hn P (gn, 1) (—€)hn mkn kn
with recall Z,(gn,f") := ZmeTgn(Xﬁ)f""“;'(V(xl),V(:Ug), V(@) and gn(t) = @(t)1sney

and b € [0,1). Then as ¢ is increasing and positive so is g,,, hence T*» < n implies g, (,Za:Tk") <
gn (L) and therefore Rk, (gn, f*) < Bn(gn, ") since fF > 0. It follows that

Kn(gn, £") (E—2)h R (gn, ") (-
Ay - n) < e A A e e)hn kn
P<n1—b—nw(nb) <e¢ ) = P(nl—b—nb(p(nb) <e ) +P(T™ >n),

and thanks to the above convergence together with the fact that (7 /(nlogn)), convergences
in P-probability to an almost surely finite and positive random variable we obtain the desired
expression: for all € € (0, 7ey):

. K (G, £7) (E—e)hn | _
i P <) =0 0
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Upper bound: we prove the following statement, for all € > 0

fn
hnlP(—%&gﬁi—L—>e@+@m0:=O. (38)

Recall that ug, = Zk21( n nb(fn k) + o n (™ kll]Rk\%’k ) + \I/n X\, (fm k) + E[Wwfb7x;z/w(fn’k)])-
Assumption (A4) with e; = § gives that

u2n<e4hn§ \Ijnnb fnk
k>1

so for n large enough, as n™ 3, -, ¥} Eoo(fmk) <elt2hn and 7" > n

%n(gnvfn) (&+e)h K (gn7fn) (E+e)h
€)nn | <L €)ln
IEJJ(nl—b—"%go(nb) - e ) - ]P)(nl—b—”bcp(nb) > )

P

%Tn (g’ﬂ7 f’ﬂ) %hn
<n1_b90(”b) Dk U (FF) ~e )
( Rrn (gn, ")

n1=bp(nl)us

IN

IN

P > e%h"> <e 5 4 o(1),

where the last inequality comes from (19) replacing € by §. Then taking the limit we get (38).
We are now ready to prove the theorem, we split this proof in three parts depending on the values
of (recall) L = liminf, o by, log (=07 0 p(nt)).

e Assume L € (—¢,+00]. For any ¢t € R, 18"t = ¢log(tV1) > ¢ 50 for any ¢ € (0,¢,) and n large
enough, P(log™ %, (gn, f") — log(n!=t="r(n’)) < (£ — €)hy,) is smaller than

K, (gn7 fn)

P(elos” Znlgn ") ~ jl=brp (b (E=€)hn <P<
(6 n p(n’)e ) = T\t p(nb)

< e(gfs)h"> — 0,

where the limit comes from (37). Note that this lower bound remains true even when L & (—¢, +0].
However, we need that L € (—¢,+o0] for the upper bound. Indeed, in this case, for n large
enough, n'~"*op(n?) > e~ and for any ¢ > 0, n! 70 Fep(nb)elthn > ehn > 1 50 for
n large enough P(log™ %, (gn, ") — log(n'~=*vp(nt)) > (& + e)h,) = P(log™ Zn(gn, ") >
log(n' =t~ p(nb)el&t)n) 2, (g,,£") > 1). Moreover, when %Z,,(gn, ") > 1, log™ % (gn, ") =
log %5 (gn,f™) so the previous probability is equal to

n 1-b—ryp by (§+e)hn n %n(gna fn) (&+e)hn
P(log % (gn, ") > log(n w(n’)e ), (g, £") > 1) <P S >e )
Then taking the limit we get the result thanks to (38).
e Assume L = —¢. Recall that A, = h; ' log(n! =% (n)) —infys, by ' log(£1 =0 (b)), L = —¢
€

implies that for any ¢ € (0,¢,) and n large enough, infys,, hy ' log(£1=0"" (%)) > —¢ — £ so
hal, < log(n'=b="0o(n?)) 4 (€ + £)h, and as €8t > ¢

]P’(h;1 log™ R (Gn, £7) < —€ +An) IP’(.@ (gn, ™) < e*Eh"*h”fn)

<p(Znlon T o) o,

nl b Kbs@(nb

where the limit comes from (37). Also, L = —¢ implies that for any ¢ € (0,¢;) and n large
enough, infy>, by "log(£1=0="vp(€b)) < =€+ 5 so hpA,, > log(n!=t="0p(n?)) 4+ (£ — §)h, and as
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hn(e+4,,) > 0,P(h,* log™ R (gn, £7) > e+ A,) = Plog Zpn(gn, ") > hn(e+A,,), Zn(gn, ") > 1)
which is smaller than

R (Gn, ™) .
P(Z,, (g, ") > enThnl, <p<#> (§+2)hn) 0,
( (9 )>e )7 N D) e —

where the limit comes from (38).
o Assume L € [—o0,—£). In this case, there exists an increasing sequence (ng), of postive inte-
gers (with ny = ¢ when lim h;,; ! log(n'=*=**¢(n’)) = L) and £, > 0 such that for any ¢ € N*,

ny " p(nh) < e+ and for any &’ > 0

P68 (00, 17) > €) < P ) > 40) < B0t crem)

where the limit comes from (38) with € = ¢, which ends the proof. O

3. Proof of Proposition 1

The proof of the Proposition 1 is decomposed as follows. In the first short section below we present
the expression of the generating function with constraint of edge local time. In a second sub-section
we prove the lower bound, this section is itself decomposed in different steps treating successively
the random walk at fixed environment and then an important quantity of the environment. Finally
in a third section we obtain the upper bound of the Proposition.The fact that the proposition
is robust when replacing 7™ by T** with k, = |n/(logn)?|, with p > 0 does not need extra
arguments than the ones that follow.

3.1. Preliminary

We first introduce the edge local time N’ of a vertex € T that is the number of times the random
walk X visits the edge (z*, z) before time n:

n
= E :]}'{Xi—lzx*1Xi:z}7
i=1

the law of NI¢ and ) sz ¢ at fixed environment are given by

yiyr=z
Lemma 3.1. Let x € T, then P% (T, < T.) = e~V ®) /H, and for anyi € N*, s € [0,1] and v > 0,
i) The distribution of NI under P is geometrical on N with mean H,—1 = Zj<‘w| eV (@)=V(),
In particular
—V(x) 1 \i—1 s
B [ U ynny] = S (1- ) ————
[s {Nz 21}} H? H, 1—s¥(1— i)
ii) For any z € T such that z* = x, the distribution of Zy;y*:m NyTe under P is geometrical on
N with mean H, == H, " e VW) with V,(y) = V(y) — V(x). In particular

Y3 Y*x=x

—V(z) ] i—1 iv
o i | = - = (1- 1 ) S
1—s¥(

A AT A U =)
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Proof. The fact that P¢(T, < T,.) = e~V /H,, comes from a standard result for one-dimensional
random walks in random environment, see for example [Gol84]. The proofs of points i) and i) are
very similar and elements for the first one can be found in [AD20] so we will only deal with the
second one.

For any # € T, let €, := {y € T; y* = x} and B, := PS (T, < T.) be respectively be the set of
children of z and the queuched probability, starting from x, to reach %, before hitting the root e,
Ty, = mingecy, T, and Ty, = min{j > 1; X; = y}. Hence, Z - NyTe is nothing but the number
of times the random Walk X visits the’ edge (:,C C.) before tlme T,. It follows, thanks to strong
Markov property that for all z € T such that z* = z and k € N

PE( DS NI =) =851 - By). (39)

Yy =
Note that the right part above doesn’t depend on z. We now compute ,. On the one hand,
thanks to (39), we have E D NJ] = B2/(1 — ;) and on the other hand, thanks to the
: & T.] _ ETnTe] — 1) — —Ve(y) — 7
first point, EZ[>°,. -, Nyl =22, EZ[Ny©] = Zy;y*:z(Hg 1) =H, 2%1}*:1 e W =H,.
D NyTe is finally geometrical on N under P¢ with mean H, and 8, = H, /(1 + H,).

We define o, := P?(Ty, < T.) the quenched probability to reach €, during the first excursion.
Thanks to (39) we have for all k¥ € N*. It follows that

PSS NP =k) =Bl 1 - B and BO( S NI =0) =1-a,,
Yy =x Yy =z

so on the one hand, E¢ DI Nge] = a,/(1—;) and on the other hand, thanks to the first point,
& T.] _ ENT] — -V _ ~V(y)

EF [y ma Ny = Xy EF NS = 5 e W), Tt follows that c, = 5 e VW /(1+

H,) and the result is proved.

Yyt =x

O

3.2. Lower bound for %rn(gn,fn)

To obtain the lower bound of the range, let us first introduce two key random variables denoted
Rrn (") and R(f™). Zr- (™) is simplified version of Zn (gn, f™) which does not depend on function
gn and with a constraint to V : recall %’;’Z = {(tl, cooty) ERF 1 > vn} with v, = log(nt,)/o1,
61 € (0,1/2], £, = (logn)? and \,, = ne~min(10slogn.5mn) " theyn

%Tn Z Z ]l NTL NT1 1>nb} {V_];él NT] NTJ 1 O}f I ‘]l%\a‘\(v )
i=1 reﬁ

nb

where we use notation F(V,) := F(V(x1),---,V(z)). Note that the local time until 7" which
appears in Zpn(gn,f") is replaced in Zr»(f") by edge local times excursion by excursion, also
visited vertices are restricted to some V-regular lines @y ,,v. Z1n(gn,f") and Zrn (f") are related
as follows, first since ¢ is increasing

Hrn (g, ) 2 () Y Lpgrn sy [0 (V).

z€T

Then introduce, E7 = Y7 | 1 (@i 51} the number of excursions to the root where the walk

hits vertex z. Notice that E” = 1 if and only if there exists i € {1,...,n} such that £7 —£T"" >
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1 and for any j € {1,...,n},j #i, LT — LT =0 that is N/ — NT'"" = 0. Thus

D o Mgrouy [N a (Va) > D0 Bgrmsm prany Y1100 (V)

xz€T meﬁk“mb

> 1

n
= An,nb

, , . , n, |z| Vv
{zguzg“lznb}ﬂ{w# Ng""—NxT“lzo}f ]ljgvl:l( )
i=1 z€0

so finally as £7" — 27" > NT' — NT""" we have the following relation :
Rrn(9n, £7) = o(n°)Bra (£7). (40)
Second random variable R(f™) depends only on the environment :

1 1

nb—
R(f") := Z e—v(r)EOiE) 1f""zlﬂﬂv'z‘(vf)’

Ieﬁknynb

it can be related to the quenched mean of %7~ (f") as follows :

nR(f™) o\ —(n—
1< —— 2 < (1—e )~ (D), 41
Indeed, random variables NITi — Ngiil,i € {1,...,n} are i.i.d under P¢ so,

E (Zre ()] =n > PENT = n)PY (NS =0)" ' L0 (V).

z€0 b

An,n

Moreover, on the event {V(z) > v,} thanks to iii) of Lemma 3.1, P¥ (NI = 0)"~! = P¥(T, >
T)" ' =1 —-eV@/H)" 1 > (1 —e V@)1 > (1 — ¢7v)"~1 since H, > 1, and thanks to
Lemma 3.1 i) with v = 0, P¢ (NTe > nb) = ¢~V @) (1—1/H,)"" ~1/H, which gives (41). We are now
ready to obtain a relation between a lower bound for Zrn (gn,f") and a lower bound for R(f,).

Lemma 3.2. Recall &, = min(b+ L—gy,1 —b)/13 and let (an) be a sequence of positive numbers,
then for all € € (0,ep) and n large enough

ne~ min(9e log n,4h,,)

P* (% (g0, ") < nip(n®)a, /4n") < P* (R(f") < ay/n’) + (42)

2/{1, 2
n an

Proof. Note that thanks to (41) for n large enough nR(f") < 2E®[%r-(f")], so by (40), on the
event {R(f") > a,/n®}

P (Zrn (gn, £7) < nip(n®)ay /An") < P¥ (Bra (£7) < ES (% (£7)]/2).

Using Bienaymé-Tchebychev inequality and the fact that NIT — NITi_l,i € {1,...,n}, are i.i.d
under P¢ implies, on the event {R(f") > a,/n’},

P* (%r- (f") < E® (%1 (£")] /2) gnVar® (%r, (f))

<+
= B8 [ % (£7)]

16n2° ol N
<o Y PONTE AN = al) I (Vi) S (V). (43)
n z,yeﬁ)\n)nb
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the last inequality coming from the fact that on {R(f") > a,,/n’}, thanks to (41) E€[%Zr« (f")]? >

n?R(f")?/4 > n*a? /4n?®. Markov inequality in (43) yields P* (NT* ANTe > nb) <E4[NI-NI<]/n?,
so finally on the event {R(f") > a,/n"}

16
P (R (90, £7) < mip(n’)an fAn") <~ ST EEINTNT I (Vo) 000 (V).

(44)

To treat the above sum, we first make a simplification by using the uniform upper bound of the
set %, see (10),

> ENSNS 'ﬂﬁJ;\(Vz)f "y‘]ljfv\g\(vy) < am > ESINJNJ. (45)
TYel, b z,Yy€0x,,

We then split computations in two distinct steps: first cases * < y or y < = and then cases nor
z < y neither y < z. The key here is to take into account that we are only interested in vertices
belonging to \,-regular lines 0y, with \,, = ne™™in(10slogn.5mn) for ¢ € (0, gp).

We start with cases z < y and y < x and as they are symmetrical we only deal with the first one.
First note that as E¥ [NT*N]*] < 2e VW H, =2H,e V@ e V=) (see [AD20] Lemma 3.6)

E[ Z Eg[NgeNge]} SQE{ Z e V@ | Z e—Vm(y)} SQE{ Z e—v(x)r)\n

<y €Dy, y>x €Dy,
z,y€0x,, yeos

<202\,
where for all A > 0, Y is translated set of A-regular lines

0y ={yeTy>z; max H,, <A}, Hyy = Z Ve (W) =Va(ys)
lz]<5<lyl sewey;
also second inequality is obtained thanks to the regular line which yields, H, 14, () < Ay, the
last one comes from Remark 2.
We then move to the second case, nor x < y neither y < z, that we denote = % y. In this case
E€ [NI<NIe] = 2Hp eV @)=V (@) =V©) (see [AD20] Lemma 3.6). Thus

EINSENS <20 D D e D laeg, ) D, e FWen V) 37 oVl R em )

1>1|z]=1 uF#v T>u y>v

* gk — u v
ur=vr=z meﬁkn yeoy

where we have used again the regular line &), which gives an upper bound for H,,,. Finally,
independence of increments of V' conditionally to (T,V(w);w € T,|w| < I+ 1) and Remark 2
yields

3

E[ 3 ]Eg[N:CTCNyTE]} §2)\nE[< 3 e*"(@ﬂE[ 3 e*Wz)}

zoby |u|=1 2E€E0,,

z,y€0y,,
< 2)\nE[( 3 e—VWﬂ (6n)?

|ul=1
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and thanks to (4) the second moment above is finite. Collecting the upper bounds for the two cases
and moving back to (45), for n large enough we get

(gn)4)\n ne- min(9e log n,4h,,)

B Y NN (V)0 ()] < e < MRSy
z,yel, b

last inequality is justified by the fact (see Remark 1) that (¢,,)* = o(e"") an ( )4 o(ecloe™). We

are now ready to conclude the proof of the lemma : P*(Z7n (g, f") < np(n®)a,/4n’) is smaller

than
P*(R(f") < an/n’) + P*(Zrn (g, ") < np(n®)an /40", R(E") > a,,/n’),
then as the second term in the above inequality is nothing but
E*[P* (1 (g0, £") < np(n”)an /40" ) 1 (r(n)>a, /nv} ]
the proof ends thanks to (44) and (46). O

3.2.1. Lower bound for R(f")

This is the most technical part of the proof of Proposition 1. For any n > 2 and € € (0, &) recall
that ), = ne~ ™in(10=logn.5hn) and 4, = log(nl,) /61, 61 € (0,1/2] (see (4)) with £, = (logn)3. For
any € > 0, let us choose (ay,) as follows

_4€h Z\IIA /2n sh ﬂTk) (47)
k>1

with TE = {t € RF; Hy(t) < nPe'}N#% ,, . Recall that WX ,,, h,,, 75, and f1;* can be found
respectively in (8), (12), (17) and (14) and v, = v, + €hy,.
Lemma 3.3. There exists ¢4 > 0 such that for any € € (0,e,) and n large enough
e R[22
K
(21@1 \I’];n/Q,nb (fghnﬂT’:;))

P* (R(f") < an/n’) < 5 + hpe M, (48)

and recall my, = [eh,/ra] (see (13)).
Proof. Recall the expression of R(f,):

R = Y eV (“gi)nb PP e (V). V(@)

Ha: T
:EGﬁAn,nb

with H, and ,}%‘fl respectively defined in (7) and (17) for any z € T. The main idea here is to cut
the tree at generation m,, to introduce independence between generations.

—V(z)

LCSERED YD DD DI ) P (V(a),. V(E)),

|lu|=my, k>1  |z|=k+m,
x>u; x€EC

)\n‘nb

from here we would like to make a translation to decompose trajectories of V' before and after
generation my, to do that we have in particular to re-write H,, for j < |z|. Let u < z with
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u| = my,. For all m, < j < |z|, we have H,. = Hye Ve + H, . where, for any z < v,
J thatv}
Hz v = Zz<w<'u evz(w)_VZ(U)'
So on events {max|y|<m,,
any B >0

V(w)| < ehyp} and {V ()= min,<y<s(V(w) — V(u)) > —B} for

Vi <my: Hy, < mpehn and Vm, <j< lz| : Hy, < mye2hntB + Hyz;-

Assume nb < H, . < nbeshn. Then, H, > n® and for n large enough (recall h,, < logn for n large
enough, h, — oo and ¢ € (0,¢y))

n® _ by\n® _ byn® —3ehn,
1 (17L) < (1-1/n" - (1-1/n") e '

Ha: H:p — mnezzhn—i—B + Hu,:p - mneQa‘hn-{-B —|—’I’Lbe‘€h” - nb

Now introduce the translated (A, \')-regular lines

O3y ={yeT,y>v; max H,, <\ H,,>\}.
’ lv|<i<lyl
Note that ﬁf{n s2m0 C O, n» for n large enough, indeed, as we said before, for all i < m,, we have
H,, < mpe*hn < 3 < X, /2 for n large enough since € € (0,1/13). Moreover, if Hy 4, < Ay/2
for any m,, < j < |z| it comes that H, < mpehntB 1\ /2 < \,.
For f™™m»*F e simply write (still on the event {‘ rlnax |V (w)| < ehyp}),
w|<my,

Frme R (V(@), . V(@) = o (Va(@m,41), - - Va(2),

where we recall f,f’k(tl, oo ty) = infgep_p pym FrmtE (s, Syt Sy et + Sm) With m =
[h/r2]. In the same way (v (s)>v,} > L{v, (@)>v,} With v}, = v, + ehy, and we finally obtain, for
n large enough (independently of the environment) on {maxj,|<m, [V (w)| < eh,}, R(f") is larger
than

—3ehy,

€
§ —V(u E E —Vu(zx n,k
nb e (u) e u( )]I{Hu=zgnbeeh7,}f€hn]l%§ " (Vu($m1L+1),...7Vu(l‘)>
| =y, E>1 |z|=k+mn o
T>u; weﬁ:n/z)"b

6745h71 _ o) en
> > > > eV @ L (V@ 1) - -5 Va(). (49)

n
|lu|=m, k>1 |z|=k+my,

. U
r>u; xEﬁAn/Q)nb

Introduce the random variable Z}

ZY = Z Z e_‘/‘"(z)f;;;ilrﬁ(Vu(xmn_,_l), oy V()

k>1 |z|=k+my,

. u
T>u; xEﬁ)\n/zmb

we obtain

P(R(E") < e~ =M E[Z,] ", max |V(w)| < ehy) < P( ugﬂ Zv < E[Zn]),

with
Zno= Y e VORI (V). V(@) (50)

€O, /o nb
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Hence, by Lemma 2.4 in [AD20], there exists ¢4 > 0 such that for n large enough

* n —4eh, b —CcqaMmy, E[Z’VQI]
P*(R(f") <e E[Z,]/n’, max |V(w)| <eh,) <e s

|lw|<my, - - E[Zn}z (51)

and finally, (47) yields

—si—4hn 2
max |V (w)| < chy) < 7 A
ol <ma, (Zk>1 An /z,nb(fshnIlTii))

and we have used that E[Z,] =, ¥ >\n/2 b (f:};’jlrﬁ) and m,, = [eh, /r2]. Finally, (13) finishes
the proof. O

P*(R(f") < an/n,

The next step is to give a lower bound for E[Z2] we do that in the dedicated section below.

3.2.2. Control of the second moment E[Z2]

Let us prove following Lemma,

Lemma 3.4. Assume assumptions (A1) and (A2) hold. For all ¢ € (0,&5), A > 2/c1 and n large
enough

E[Z2] < ¢%hn (Zwmb f"k)

k>1

recall also that ¢1 comes from Remark 2.

Proof. Expression of Z2 is given by e V@-Vy) g7 m]l rlzl (Ve )f:};LylﬂTm(Vy) (see

(50)) and A, < n so

I’yeﬁAn/Zn

ZTQL < Z e—V(x)e—V(y)f:’;Lzlﬂ(%gz‘/ (Vx)f ’lylll
z,yel Un

o, (Vy) (52)

b

n,n

with (recall) F(V,,) = F(V(w1),...,V(w)). Let us split computations of the upper bound of the
mean of Z2 into two main cases : the first one is when z and y in the sum (52) are directly related
in the tree and the second when it is not the case:

Cases 1 (x <y ory < x) : recall v, = v, + €h,, with v, = log(nty,)/01, d1 € (0,1/2] (see (4))
for this case we simply use the fact that f:hl < (s and e‘QV(w)]l{V(w)Zvln} < e VW /n? 5o by
symmetry

E[ 3 e‘V(”)‘V‘y)ﬂ{V@)Z%}} < QE[ S VO ey S e—Vﬂy)}

z<y or y<z T€0, y>x
z,Yel, b yeOE
2 3 V@ 3
§—2E e '\ e .
n
re0, y>x
yeoz

which, by using independence and stationarity of increments of V, is 2E[Y_, ., ¢~V (*)]2 /n?. Then,
thanks to Remark 2 and the fact that h, > (logn)” with 0 <~y <1, 2E[}_ ., e V@2 <y, <
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e in addition with assumption (A1), the part {z <y or y < z} in the sum (52) is smaller than
< 2
eAhn(Zk21 q/imb(fn,k)) ]

Cases 2 (x ¢ y) : recall that z «¢ y iff nor z < y neither y < z. First let

S0@) = Y0 angmsye OO (VOSLEm (V).
woby o o
z,yeO

n,nb

We decompose Xg(z) as follows: for all A > 2/¢;

Yn = Y S+ Y (i) + 5a(e), (53)

z€T |z|>|Aly ] |z|< Al |

and for any i € {1, 2},

Si(2) = > ﬂ{sz:z}e‘V(w)e‘V(y)f:ﬁf‘]l;fgwj,(Vm)ffﬁf‘]lﬂgyl,(Vy)]l{(z,y)em,z}a
Ty o

) }/,-L
T, Yyel

n,n

with €1 . == {(z,y) € T%2* > z and y* > 2z} and 62, == {(z,y) € T%2* = z or y* = 2}.
Let us start with the easiest part: 3, 5| 45, | Zo(2). Observe that

Z So(z) < C3, Z Z Tv)>—B, ze00} Z Z e V) Z e V),

2> AL, ] 1> (AL, ] |2]=1 utv  z>u y>o
ur=v*=z zel, yeﬁn

By independence of increments of V' conditionally to (T, V(w);w € T, |w| <1+ 1) and Remark 2
for any n large enough

B ¥ ] <cteel( X o) Je[ X o] S B[ Onn)

2> ALy | [ul=1 z€0, I>Abn]  |z|=l
2
<CLPE[( D e Vi) a2 < 3wk L), (54)
|lul=1 k>1

where we have used assumption (A1) and (4) for the last inequality.
For ¥4(2), |z| < |Al,], we decompose according to the value of V(w) with w € {u,v}: X1(2) =
2171(2) + 2172(2) with

S = Y Lwwwosny 2 ¢ O m (Vo) D0 e VO (V).

wtv z>u n y>v Bvn
ur=v*=z z€l, b YyeD, b
and
— Z Z —V(z) gnl2] 2: —V(y) ¢mlyl
E1,2('2) = ]l{V(u)\/V(v)Zv'} € ( )fghn ]ljflzl/ (Vz) € (y)fghn ]l%m, (Vy)
B B
uFEU T>u n y>v "Vn
ur=v*=z z€D, b yeD, b

We first deal with ¥;;(z). Observe that « € &,, ,,» (resp. y € 0, ,,») means H, < n (resp. H, < n),
x € OV (vesp. y € OY) and n® — Hye "+ < H, . (resp. n® — He V") < H, ). Besides,
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V(u) < vj, and V(x) > v], (resp. V(v) < v}, and V(y) > v},) implies V,,(z) > 0 (resp. V,,(y) > 0)
that is n® — H, < H, . (resp. nt— H, < H, ), so ¥11(%) is smaller than

Yo lwwaves-pava<y O ¢ VOV ST e VWniv,). (55)

uFv T>u y>v

ur=v*=z reo™ ov
n,nb—H, ye n,nb—H,

We now move to X 2(z). Note that {V(u) VV(v) > v} = {V(u) > v}, V(v) < v,} U{V(v) >
v, V(u) <o, } U{V(u) AV (v) > v} }. By symmetry, ¥ 2(2) is equal to

2 Z ]l{V(u)Zv",V(v)<v;} Z 67V(I)fg};|,flﬂjfl‘sxi, (Vx) Z 7V(y)f ’lylﬂ \yl (Vy)

uFv T>u " y>v
wr=v*=z z€l, b YED, b
Vi ,Ir\ —V(y \y\
+ E Livwavw)>oy E (@) fen, ]I%g\ E e 1 f|y\ (Vy)
uFv T>u y>v
ur=v*=z z€0, b yeo,,

The same decomposition of H, we used for 37 1(z) also works for the part {V(v) < v],} in the
above sum so as in (55) and using that on {V(u) > v),}, V(u) > (1 — 61)V (u) + logn, ¥12(2) is
smaller than

2000 —(1— m — T — n,
== Y U s v vz D¢ Y e YWV,

no

uFv o yso
ur=vT=2 zeOy veo:
C2 (1-61)(V V(v)) v, Vo (v)
s —(1— + _ e
-‘r—]l{V(Z)Z_B,ZE(jn}F E e DV (u)+V (v § :e () § :e W (y
uFv T>Uu y>v
ur=v*=z zeﬁ’# yEﬁ:i

Note that the genealogical commun line between x and y is the commun line of individuals before
uw and v so for any p < |z|, z), = yp, = up, = v, and

VL) = FEE W ), V@), Vi@ ) + V@), V(@) + V),
and

IRV ) = SV @) V@), Valgagn) + V), Valy) + V().
Recall that for all ¢ > 1 and t, = (¢1,...,t;) € RY,

Uk (Ft,) E[ N e VOR(t, Lty V() + ... V() + )1, (2)].

|z|=k

We naturally note U¥(F|V,,) when we evaluate the function W% (F|.) at (V(wy),...,V (w)).
By using independence of increments of V' conditionally given (T,V(w);w € T,|w| < 1+ 1),
E> o 21(2)] = E[X), 12 B1.1(2) 4+ X1,2(2)] is smaller, for n large enough with [ < [AZ, |, than

Bl Y 2 twwwes-smvien >, I] eV (5IV)
‘Z‘:l U?E'U 7”_721 (kﬁw)e{(’hu);(]7’u)}

ur=v*=z

% Cos E{Z Z —(1=mv “)]l{v(v)> BH7,<n}Z€ ”)\Ifﬁmb i, ( :ﬁ‘:lﬂwv)}

l2l=t v =t
ur=v*=z
n? |z|=l e uFv

u*=v*=z
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We have used that E[Y_ s e~V(@)] < ¢,. Then, by assumption (A2) with § = §; (see (4) for
the definition of ¢;), for all I < |A¢,] (Ju| = |v]| = I + 1) and n large enough on the event
{V(u)AV(v) >-B,H,V H, <n}

2
n, k u v)+ 2 h, n,
3 I1 UE o (fR V) < eV, (Z‘Pnnb (f ’“)) :
0,7 >1 (kw)€{(i,u);(G.v)} k21

and similarly on the event {V(v) > —B, H, < n}

2 : 7|UH‘J OV W)+ 5hn Z n, k
an nb—H, hn |V ) \I/n nb f
j>1 k>1

Hence, E[} |, | a¢, | 1] is smaller, for n large enough, than

efhnE[(Zefufal)ww))?}E{ S vty o] (S, f"k)

|w|=1 |z]< [ Aly ] E>1
2&1 7hn —(1-61)V —V(2)—(1-261)V
e E{( 3 et (w)) }E[ Y eV (z)ﬂ{v(z)zim}
w|=1 |2 <[ An]
« STk () o CooE[ S e VE@-0-VE }
n,n TL {V(z)>-B} |-
k>1 z€0,

Finally, thanks to assumption (A1), (4) and by Remark 2, for n large enough
. 2
E[ Y mie)] <t (Y wk0mh) (56)
2] < [ ALy | k>1
We now turn to ¥a(z), that is the sum
Z It{mAy:z}e‘V(x)e‘V(y)ff,;L"lljf

||
B!,

TPy
z,yel

(Ve )fgh‘y']ljfg‘, (V)@ yes..)

b

n,n

with 63, := {(z,y) € T%2* = z or y* = z}. The first step is to split the set {z* = 2 or y* = 2}
into three disjoint sets: {#* = z and y* > z}, {z* > z and y* = 2z} and {z* = z and y* = z}. By
symmetry, the previous sum is equal to

2 Y ]l{zeﬁw,,}e_v(x)f?;f‘]ljfm 2 > e VW vy P (Vy)
TH#v 2vn y>v
T*=v*=z yeol, b
+ ), e I VY i lﬂﬁlwl (‘/;U)f;lli;yllljf;y‘/ (V)
Ay T
Tr=y*=z2

We then use a very similar approach as the one we used for X(z): split the first above sum
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according to the value of V' (v) then make the previous decomposition of H,, to obtain, as in (55)

E{Zzg(z)} <—E[Z Z e~ (10)V J3)]l{v(v)> B,H,<n} Z 7V(y)f:LLy|( y)}

= |zl=t @ 2
rF=p*=z yeﬁ:,,nb*Hv
202 ~(1-81)(V(2)+V (v)) —Volw)
[Zﬂ{vm By D e 2 e }
o= p— y>v
A yeoy,
C2 (1=01)(V(2)+V (v))
+?E[Zﬂ{v<z>z—3} D et }
|=|=t 27y
Tr=y*=z

Hence, by using independence of increments of V' conditionally given (T, V(w);w € T, |w| < 1+1),
E[>_. | ¥2(2)] is smaller, for n large enough, than

700]3[ Yo lwez-m Y, e T pcny ) e \I/i wo—rr, (Fon, ", )}
|z|=l TH#v =1

T*=v*=z

MZLS;E[ZH{V@)E—B} Z e_(1_51)(V($)—V(1;))}7

|z|=l T#v

T*=v*=z

where we used that E[Y_ 5 e~V(@)] < ¢, for n large enough (see Remark 2). Then, by assumption
(A2) with § = d1 (see (4) for the definition of d1), for all I < | A¢, | (Jv| =1+ 1) and n large enough
on the event {V(v) > —B, H, < n}

Z\I/ZL,nb—H ( EFZLUH_”V ) 51V )+ 5P Z\I/n nb fnk

j>1 E>1

so E[}7|,_; ¥2(2)] is smaller than

%eﬁhW,E[< 3 67(1751)\/(“}))2}]3[ 3 €7V(Z)7(17261)V(z)]l{v(z)27B}:| SOwk ()

n
lw|=1 |2|=t k=1
30,C% =)V (w) ) —V(2)—(1-261)V (=
(2 ) o[ O ],
wl=1 2=t

Hence, thanks to assumption (A1), (4) and by Remark 2, for n large enough

B Y m@)] < (Suku0mh) (57)
E>1

[2|<[Aln]

Collecting Case 1, Case 2 ((53), inequalities (54), (56) and (57)) and considering (52) gives the
lemma.

O

We are now ready to prove the lower bound of %Zrn(gn,f") in Proposition 1. Recall vy, =
Dok \I!’/{n/2 b, (ff,;fllm) where Y¢ = {t € RF; Hi(t) < nbeshn} n oy f%ﬂgf’v, defined in

[
»Un
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(17) and v], = v, + €h,. Thanks to Lemmata 3.2, 3.3 and the expression of a,, (47), for n large
enough as e~ < 1 P(Zrn(gn, ") < n'"bp(n®)e = "ny, ) is smaller than

. - Ceeap E[ZQ] B eSEhn—min(QalognAhn)
P(Brn (g, £7) < mip(n)e™ vy /4n') < €773 e

1n

Then Lemma 3.4 provides majoration of E[Z2] so P(%Zrn(gn, ") < ne(n®)e= 4 muy , /4nP) is
smaller, for n large enough than (recall that h,, <logn)

— min(e log n,3h,)
(&
e (S () ) hge e T

k>1

2Kp 9,2
nouy ,

which yields the lower bound of Proposition 1.

3.3. Upper bound for Zrn(gn,{f™)

For all n > 1 and z € T, recall that E} is the number of excursions, among the first n excursions
to the root, for which the vertice x is reached, in a similar way E is the number of excursions
such that x is reaching more often from above than from below :

n n
n _ E ' ) ) . § ) ) ) )
Em = ]l{NEz_sz—lzl} and Em = ]l{z:y;y*::z Ng”—Nfl_1>Nz,"—N$1_1}'
i=1 i=1

Also introduce the event <7, such that every vertices of the trace of (Xj,k < T™) has downfall
fluctuations lower than n, potential larger than v,, and which are visited during a single excursion
before during the first n excursions to the root

= {Vj ST X; € On, > (Umpsny + Lipsay)l o1 (Va) = 0. (58)
rEl,,

Note that lim,, o, P(4%,) = 1, indeed, EQ > 2 implies E? > 2 so

1-P(et) <PEj<T": X; & O,) + IP( N Umrsnl (Vi) > 0).
€0,
By [AC18], equation 2.2, P(3j <T" : X; & 0,,) — 0. Moreover, P(}_ 5 Lipn>oy1 0=1(Vz) > 0)
is smaller than "

B[ Y POEL 221, (Vo) =B 3 (PF(EL 2 1)~ PO(EL = 1)1, (Va)].
€O, T€EO,

Thanks to strong Markov property, NI —Nfl_l ;i€ {1,...,n},areiid under P¥ so P¢(E? > 1)—
PE(E? = 1) <EC[E?] —PY(E? = 1) = nP¥(NTe > 1)(1 — PE(NIe = 0)"~ 1) < n2P¥(NTe > 1)?
and by Lemma 3.1, for all 2 with V(z) > v,,, n?P¢(NXe > 1)2 < n2e 2V (@) < n2_1/616_v($)/€i/61.
91 € (0,1/2], hence, by Remark 2

n2=1/81 n2-1/01

—Vi(z
P( > Limpanyl e (Vo) > 0) < WE{ > eV )} s 0
€0, n z€0n "
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Lemma 3.5. Let (u,,n) be a sequence of positive numbers, then

9 1-b b
B (o (g0, £) >, ) < 2 A (4 251 250

where

Lim= Y ]l{V(x)@n}(e*V(‘”) + > e’v(y))f”’lw‘(Vx), (59)

z€0, Yy =z
e~ V(@) 1\m/21-1
o o n,|z|
TED,

and

e V) H 1 [n?/2]-1
%’n = Z ]I{V(‘T)Zvn} = (1 - )
v H, 1+ H, 1

(n® + 1+ H,) = (v,) (61

+ H,

recall the definition of H, and H, in Lemma 3.1.

Proof. Since g,,(0) = 0, we have, by Markov inequality, that P% (% (g, ") > un, @,) is smaller
than

2 n
= (3 Lo B [gn (L)) £7171(V2)
" zeo,
+ Z H{V(a«*)Zvn}Eg [9"(zgn)l{EQ,Ege{m}}]fn’lml(VEc))-
.’L‘Gﬁn

The first parts in the above sum is the easiest to deal with. Indeed, the application t € [1,00) —
©(t)/t is non increasing so g, (t) < tn"%p(n’) and we have

Y Lww<oy B [0 (L) (Vo) <01 70(0?) Y Ly <o B[] F17/(V2)
TECy, TEO,

=n'"Pp(n") 21 n.

We used that for all 1 < i < n, £T t ZT ! s distributed as LT under P¥ with mean

e V@ 43 e eV ® by Lemma 3.1.

We then move to the high potential part. Assume E? € {0,1} and E? e {0,1}. If B} =0,
then the vertex z is never visited during any of the first n excursions and E} = 0. Thus,

9o (L") = g,(0) = 0.If E? = 1 and E" = 0 there exists i € {1,...,n} such that NT'-NT"' > 1
and Vj # i, NI — Ngrl =0and Vm € {1,...,n}, Zy;y*:x Ng"m . Nmi—l < NTT Ngm,l. o

n j j—1 j j—1
particular, since, startiflg from the root e, L1 = > (NP = NI'™ + D NyTJ - NyTJ )
we have, on {E? =1, E? = 0}

2T =N NI 4 ST NI NI <o(NT - NTTH. (62)
Yyt =z

Otherwise, if E? = 1 and E” = 1 there exists i € {1,...,n} such that NzTi —NfFl > 1landVj #1,
NI' = NI = 0and 3m’ € {1,...,n} such that . NI — NI" ™" > NI — NT" 7
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Tm T’rn,—l ™ T‘rn,—l . .
and Vm 7é~m', Doyar=a Ny — Ny < N; —N, . So we have necessarily m’ = ¢ and, on
(B =1, By =1}

LT =N - NI 4 N NI NI <2 Y NI NI (63)
Yyt =z Yy =
gn is increasing so (62) and (63) give, when E? € {0,1} and E” € {0,1}
F) <D e RWNT NS )+ a2 Y NS NS )
i=1 i=1 yiyr=z
From this inequality, it follows that E€ [gn (.Z )]1 (B, Bne {071}}} is smaller than

nEg[gn@Nge)]-l-nEg[gn(Q Z NTS):I 1 b (nb)Eg[Nge]l{NzeZ[nb/ZW}]

Yyt =x

T.q
+n! L D DI P S
yiyr=w
We used that for all 1 < i < n, NI' — NT"""(resp. DD NyTi - NyTifl) is distributed as NZe
(resp. D2y ey NJ) under P¢ and the fact that the application ¢ € [1,00) + ¢(t)/t is deacresing.
Then, by Lemma 3.1

7V(:1:)

1 \[n"/21-1
T.q b
ES (NI Lwres o) < 1 (1- E) (n + H,)
and
V=) g 1 nb/2]1-1
& Te € T .
E |: Z Ny ]]-{Zuy*:TNTe>"nb/2‘|}:| < Hw 1+ﬁ (1 1+H ) ( +1+H )
Yy =z r z

which ends the proof. 0

Lemma 3.6. Let b € [0,1). For n large enough
E[f%l,n + V‘%,n + f%},n] S 2(]~Og n)2u2,n'

where we recall ug p, = >4, (TF (™ B+ ok (fm k]l]Rk\Jfk: )Jr\Iln VAV k)‘l’E[W\Iﬂ;’)\%/W(‘f”’k)]),
with X\, = n®(logn)=2 and W = 2lz=1€ -V,

Proof. We start with the easiest part that is the expression of E[.27 ,]. Thanks to hypothesis (1)

E[Z1,,] = [ P L)<un}( @ peV® 3" 67V1(y)>fn’|ml(vm)}

€0, Yy =x
= 2E{ Z ]l{V(r)<vn}e_V(w)fn7lw‘(Vm)} = QZ\IIZ(f"’k]le\%U;;).
€0, k>1
Introduce
. b/9] —1 4C o lpn?
A= 2IE g = o
log gn, Zk21 \Pn,nb (fn )
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We now move to E[253 ,,], for that we decompose 25, into two parts according to the value of H,:

Vi(z) 1y [n*/21-1
Lom < Z L ciy + Lpmonny) — (1) (n® + H,) f1(v,)
b
< Coo(nb+5\n) (1 _ ~i)[nb/ﬂ—l Z e—V(z) + (1 + ~7) Z e—V(z)fn,\z|(‘/w).
)\n €0, >\n xeﬁn,;n

By definition of A, and ¢, (see above), (1 — l/j\n)["b/ﬂ_1 < 1/¢,. Moreover, by Remark 2,
E[erﬁn e”V@] < ¢, and E[Zk21 \I/fl b (f"k)] < COOE[erﬁn e~ V@] < Cot,, so for n large

enough (g, > 4n® implying A, < n’), we obtain
b
n, n n
B[] < 3 3 WE L (F) + 1+ 5) 205, ()
2= nog>1

For E[Z3 ], we decompose £73 ,, into two parts according to the value of H,: A3 5 is smaller than

e V@ [ 1 [n/21-1
Z (]1{1+H <A }+1{1+H >A }) = (1 - = )
= v San ==t Hy 1+ H, 1+ H,

~ 1 \[nt/21-1 (x -
gCoo(nb+>\n)(1—— Y e V@ g ( ”7 DDA PRI

z€l0, " zel,
« Z e~ Ve prolel (v,

Yy =z

(n® + 1+ H,) f*(v,)

- ~ /91—
Then as above Cu(n® 4+ A,) (1 — 1/)\H)T /A=t o > k1 nnb(f" *)/2, also recall that H, =
Hy) s e~V=() 5o by conditional independence of I Va(¥) together with the fact that

this random variable has the same law as W = Zm:l e V@),

E{Z VO a3 e Oy, ] ZE[W\Pk - /W(f”’“)}

€0, Yy =x k>1

Hence

E[23,] < - Z\If o (") + (1+~ ) D E[WER 5w ()]

k>1 An” 31
Finally, by assumtpion (A1), ¢, < 4Cl,n'*? so for all b € (0,1) and n large enough Ap —1 >
n®(logn)~2 = ), . Hence, for all b € [0,1) and n large enough (1 4+ n®/)\,) < 2(logn)? and
\I/:,(S\n—l)/W(fn,k) (resp. \Ifk (f" k)) is smaller than W* AL /W(f" k) (resp. \I/n AL (f™F)) so we
obtain the result. O

We are now ready to prove the upper bound in Proposition 1. Recall (58), and let € > 0

%Tn (gn, fn) h e%Tn (gn, fn) h
Pl ——F— Ein ) < Pl ———-F 2 Ehn o, 1-DP(a,).
(nl_b@(nb)uQn - € ) - (nl—bgo(nb)uz n > ) + (n)
where us, = Y0y (5 o (f%) + W (F  Lamy sy ) + U5 (fF) + E[W ‘I’IZ,A;L/W(fn’k)])' By

Lemma 3.5 with u,, = efh 1= bgo(nb)uQ,n and Lemma 3.6, for n large enough

Rrn (g, £ 2¢—¢chn
P(% > efhw,ﬂn> < € E(Z1n+ Zop + Z3n] < 4(1ogn)2e_5h",
n QD(TL )u2,n ’11,21”
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and then for n large enough

%T" (gnv f’n) hn 2 —chn
Finally, observe (see (12) for the definition of h,) that (logn)? = o(e"*) and we complete the
proof of the upper bound recalling (see below (58)) that 1 — P(4,) = o(1).

4. Technical estimates for one-dimensional random walk

In this section we prove some technical expressions involving sums of i.i.d. random variables, the
ones introduced via the many-to-one Lemma at the beginning of Section 2. Recall that (S; —
Si—1,%© > 1) is a sequence of i.i.d. random variables such that E(S;) = 0, there exists n > 0 for
which E(e”91) < +o00. Also we denote 02 = 1" (1) = E(S?). We use the following notations : for
any a, 7, := inf{k >0, Sy > a}, 7, :=inf{k >0, Sy <a} and 777° :=inf{k > 0,5 — Sk > a}
J_ eSS,

i=1

with S}, := maxi<m<k Sm and H; :=

4.1. Two Laplace transforms

In this section we deal with Laplace transforms which appear when we study the range of high
potential with the underlying constraint of the reflecting barrier and also when a penalization via
cumulative downfalls of V' is introduced.

Lemma 4.1. Let r := r(€) such that limy_, o 7(£)/¢ = +00, then for any e >0

T,,.S‘rf_s

e~ (1HVE—p(@)5(+e) < | [e—ﬁnﬂ } < e~ (HvEp(e)F(-e)

with p(c) = N 0+°o 6*632“f(u)du, and f(u) = ul—Q/Z]P’(ﬁl > 1/Vuo?) — %f;oo ﬁ]?(ﬁl >

1/4/yo?)dy. Note that p can be explicitly calculated : for any ¢ > 0

p(c) = M(W) —3(Velog((e + 1)/2).

Proof. We start with the upper bound.
Let us introduce the usual strict ladder epoch sequence (T := inf{i > T),_1,S; > S1,_, }, k;
To = 0). Then for any k
00'2
E [eiW”]l

} <E [e*%nls%qﬂ } +P(Sq, > )

<y 0 <y 0

0(72 k:
< (]E {e*mwwﬁ[]) +P(Sp, > 1), (64)
where the last equality comes from the strong Markov property and equality T} = 7o := inf{m >
602
0,S,, > 0}. From here we need the asymptotic in ¢ of E[67W70170<T_e]. First we use following

identity

E [e—ﬁmn —E[e 2™ —P(rp > 7-,) + E ((1 - e%m)ﬂmu) : (65)

TOST:I{
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and then give an upper bound for each of the term appearing, first Lemma 2.2 in [Aid10] gives for
m large enough

P(ro >77,) = E(i“) +o0 (2) , (66)

Both of the other terms can be obtained with a Tauberian theorem, we give here some details
for the third one which is more delicate. Let dH,(u) the measure defined by P(rg > 2% 79 >

= foo dHy(u), integration by part gives E ((1 - e%TO)]lTDT:Z) = O+Oo(1 — e M) dHy(u) =
A f CP(ry > wl? T > 7_,)du. So we need an asymptotic in £ of the tail probabililty
P(r9 > u£ ,T0 > T_,). Let us decompose this probability as follows

P(7o > 202 19 < 7)) =P(ro>71-,> ZEQ) + P(1p > zﬂQ,T:Z < 20%)
=P(1y > 10> 20%) +P(19 > 2%, 7y < 20%) =: P, + P,. (67)

where 75 :=inf{k > 0, Sj < 0} with for any k, S = —S) and similarly 7, := inf{k > 0, S > ¢}.
For Py, we just use Donsker’s theorem for conditioned random walk to remain positive obtain in
[Bol76] which gives lim—, o P(1¢ < 202|719 > 20?) = P(m; > 1/0+/2), where m is the Brownian
meander and M; = sup,.; m;. Also we know from Feller [Fel68] (see the first equivalence page 514
of Caravenna [Car05] for the expression we use here) that for any z > 0 :

Jim P(ro > 20%) = i%}%‘i (68)
SO
Jim (P, = 213*1) (1 > 1/ov/3). (69)

For P; we use a similar strategy, for any A > z, € > 0 and ¢ large enough

P < ]P)(ZZQ <7 < A£2, T0 > T[) +P(T0 > A£2)

Ae?
< 3" P(Sio1 < 4,8k > €] 7o > K)P(mo > k) + P(m > Af?)
k=242
3E(S,,) 44 ¢ C

k=242

where we have used (68) for the last inequality and C > 0 is a constant. Also functional limit the-
orem [Bol76] implies that lim,_, 4 Zk 2 P(Sp—1 < ¢, 8, >/ = — 11/2 dP(m; >
1/4/yc?). We deduce from that, taking limits A — 400 and € — 0,

{— 00

2E(S., oo q _
< /= ( 0)/Z yl/QdIP’(m1>1/\/y02)

™ g

2 E(S, 1 1 [t 1
_\/; ( 0)(21/2P(m1>1/\/202)2/z 7 P(m, > 1/v/yo?) dy)

g
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Note that just by noticing that P; > IP’(ZE2 <7 < AP, T > T¢), above expression is also a lower
bound for lim,, . ¢ * P;. Considering this, (69) and (67), we obtain

eli)rgo (P(ro > 20,79 >77,) = \/ZE(STO)JC(Z) (70)

g

where f is the function given in the statement of the Lemma. Note that this convergence is uniform
on any compact set in (0,00) by monotonicity of z — (P(ry > 2¢%,79 < 7_,), continuity of the
limit and Dini’s theorem. From here we follow the same lines of the proof of a Tauberian theorem
(Feller [Fel68]) for completion we recall the main lines for our particular case. For any £ > 0, by
the uniform convergence we have talked about just above,

1/e 2E 1/e
lim ¢ e MP(ro > wl? 7o > 77,)du = 7@/ e M f (u)du.

£—+00 c ™ o

By (68), we also have for any £ and z > 0, P(1g > 202, 79 > T,) < gfﬂ‘}t and as f0+°o e My 24y <
+00, we get lim. g limg 4 o0 fOE e MUP(1 /0% > u) = 0.
Similarly lim._, limg— 4o fl—;:o e_MEIP’(TO/EQ > u,m9 > 7_,)du = 0. Finally
+o0o N
lim ¢ [ (1-e)dHy(u) = lim (E ((1 - eﬁm)nwu)

{—+00 0 £—+00

- A\/?E(im) /(:Oo e~ f (u)du. (71)

Note also that just by using (68) we also have lim,_, o /E[1 — 67%27-0] = V2XE(S;,)o~!. Then
collecting (65), (66) and (71) and taking A = co?/2 we obtain for ¢ large enough

+o00o 2

_q_ ElSn) (1 +Ve— 2 e “’z“f(u)du> + 0(1). (72)

o2
2o,
e 2¢ To<T_, V4 o 0 V4

To obtain an explicit expression for the above integral, we integrate by parts

/0 = e M f (u)du

+oo —Au +oo
_ ¢ = BNy L Lo ovuyprm 2
_ 2/0 B > 1V du = o [ e B > 1/ Ve du

then using the expression of P(M; > u) := -2, _, (—1)* exp(—(ku)?/2), Yu > 0, and a little of
computations gives :

T T e~V2A/o o221 (V2) o
/0 e fu)du = 2\/:(sinh(\}ﬁ/0) - sinh(\/ﬁ/o)> - )\2 ( j)\ —log((eV?M7 + 1)/2))
(73)

Now we deal with the probability P(Sz, > r) in the same way as [HS16a]. As T}, can be written
as a sum of i.i.d random variables with common law given by 79, exponential Markov property
gives for any > a > 0, P(Sg, > 7) < e " (E(e"970))k. Taking k = (1 — &)r/E(S,,) we can find
constants ¢ and ¢” such that P(Sg, > r) < ¢e¢" for any r > 1. So replacing this and (72) in
(64), we finally get for any m large enough

CUQ CU‘2 k:
Ele 571, _ss] < (B g, ,]) +P(ST, 2 7)
Tr<T, =

+oo o2

2

!/ —
+ce ¢,

) (1_5)7"/]E(S7'0)
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which gives the upper bound.
For the lower bound the very beginning starts with the same spirit as the proof of Lemma A.2 in
[HS16a] : let rp, = axk for 0 <k < N := L and a > 0 (chosen later) then

AN o{inf{i > 70, S5 > g1} < inf{i > 7, 85 < — £}} C {7 < 7575,

then, strong Markov property gives
E [e*%ﬁ "1, ems] 2 TR <e—ﬁ’22 Tran ] . )
7'7‘37'15 = k=0"Tk Tri41 <T"'k*£
=TI E (6‘3‘?22 Tk ] - )
k=0 Trip1 - <T—¢

0(12 N+1
- (E (G_WTQ]ITa<T:z)> '

So we only need a lower bound for Laplace transform of the form E(e‘hTa]lTa <T:{), with h =

h(£) — 0. From here we follow the same lines as for the upper bound with following differences, 7
(resp. 75 ) is replaced by 7, (resp. by 77,), also estimation (68) should be replaced by following
one that can be found in [AS14] : there exists 0 < § < +oo such that uniformly in a € [0, a¢] with
ag = o(¢/?)

for large ¢, where R is the usual renewal function (see (2.3) in [AS14]) with following property (see
(2.6) together with Lemma 2.1 in [AS14])

lim R(a)/a = - (2)1/2. (74)

a—00 0 \ o2

Now considering (67), with the change we have just talked above, as for any a > 0, limy_, 4 o P(7¢ <
202|T=, > 20%) =P(my > 1/0+/2), we obtain

OR(a)

lim (P, = lim (P(1°, > 20*, 7 < 20%) = —=~
£— 00 z

m— o0

P(f; > 1/0v/7),

similarly for P; = P(7, > 7y > 2£?), for £ large enough and then taking the limit A — +o0

Ar?
OR(a — Y4
P> (-0 S BE <0805 7 > k)
k=242

a) [T
> (1f25)9R£( )/ y%dﬂ)(ﬁl > 1/+/yo?).

We then obtain the equivalent of (70), that is limy_o (P(7, > 202,74, > 77,) = OR(a)f(z) from
which we deduce following lower bound for associated Laplace transform :

N +oo
lim mE ((1 - 6727“)]17&>T_e> = )\GR(a)/O e M f (u)du.

£—+4o00

in the same spirit limy_, ;oo (E[1 — e_e%h"'] = VAmOR(a), also first Lemma 2.2 in [Aid10] gives for
any a > 0 and any / large P(7_q > 7_,) = P_,(70 > 7_,_,) ~ E(=S-_,)/¢. So finally collecting
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these estimates and taking A\ = 02¢/2, for any £ > 0 and / large enough

E[e 5771
2¢ g
€ r<ry T8

. (1_ (E(—jf_a) N GRE(a) (\/Z"ﬁ‘ Ca;/;oo ew;Uf(u)du)>(1+5))

Now recall that N = r/a, so let us take a large enough in such a way that (using (74)) R(a)/a <

3 (#)1/2 (1 + ¢) also for large a, E(—S,_,)/a < (1 + €) (this can be seen easily, noticing that
undershoot S;_, — a has a second moment). This finish the proof. O

N+1

Lemma 4.2. For any e >0, 8 > 0, any r large enough uniformly in t = t(r) with lim, oo r —t =
+00,

E (6_ maxi<;<r._, 57'—5']') < 6—2\/@(1—5).

Proof. Like in the proof of Lemma 4.1 we use strict ladder epoch sequence (T} := inf{s >

Ti—1,Ss > St,_, },k;Tp = 0), also let us introduce random variable Y := maxy, <<, S; —5;
for any k£ > 1. Let m a positive integer to be chosen later, by strong Markov property

m
— max Y -Y;
E(e 1shsm k) = E E(e k]lYk>maXi§k—1 Yi, YkZman+1gingz‘)
k=1

<mE(e™2(1 - P(Y; > Ya|Y2))™ ™ h).

At this point we need an asymptotic in y of M(y) := P(Y1 > y) = P(maxo<s<, Ss < —y) =
P(1p > 7_,), for that we use following equality (see for example [Aid10] Lemma 2.2) : for large y,
P(ro > 7—y) = E(S+,)/y + 0o(1/y). So for any large A, and £ > 0

e (1 - P(Y1 > Ya|Vp))" !
= "2(1 = P(Y] > Ya|V2)) ™ My,oa + e 2(1 = P(Y > Ya|Y2))" My,<a
<e™ (1= E(S7,) (1= &) (Ya) )™ ypoa + (1= P(Yy > A)™ Y,

For the second term above we can find constant ¢ = ¢(A) such that (1 —P(Y; > A))m~! < e~o™.
For the first term , let us introduce measure dM defined as M (x) = f:oo dM (z)dz, then integrating
by parts

B (1 B(S)(1- 05ty = - [ e (12 EERIIEIN T g

A x
< G*A (1 — ]E(S‘Fo)/gl — 5))m_1 _ /A+00 e’ (1 — E(STO);l — 5))m_1 R(x)dI
—(m—1)S,(1—¢) /A+OO ex_; (1 — E(’S’T")x(l_g)>m2 R(z)dx

< 6—2(1—45)./1@(570)771,

last inequality is definitely not optimal but enough for what we need, we can obtain it eas-
ily decomposing the interval (A4, +o00) on the intervals (A4, \/E(S;,)m(1 — €)), (v/E(S;)m(1l —
), VE(Sr,)m(1l + ¢)) and (1/E(Sr,)m(1l + €),4+00). Collecting the above inequalities, we obtain
that for any € > 0 and m large enough

E (67 maxij<k<m Yk) < 2m72(174s),/]]§(5'7.0)m'
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To finish the proof we follow the same lines as the end of the proof of Lemma 4.1 (below (73)),
that is saying that E (ei B S”’*S") < E (e_ max) <k <m Yk) + P(Sy, > r —t) then taking
E=0—¢)(r—1t)/E(Sy). O

4.2. Additional technical estimates

Following Lemma and more especially inequality (76) below is used when we ask for the behavior
of heavy range together with high potential.

Lemma 4.3. Let (ty) a positive increasing sequence such that tel=1/2 5 400 but tel~t — 0. For
any B > 0 and ¢ large enough

— t
]P’(T;;/_zs VT g >1,) 2> e~ vzlto) (75)
Let A >0 large, d € (0,1/2), a>0,0<b<1, g€ b1], ap:=a2ly>p — 1) and ¢ >0

ST B(S; 2ty sup HE < enVEmmt! VI < S < WV g s gy > omavi T (7g)
m<j

jA?
Proof. The proof of (75) follows the same lines as the proof of Lemma A.2 in [HS16a]. For (76), as
§ < A3/2 for any (d,e) and any m < j, Al*/?exp(S,, — Sm) < edVi+el" implies HS < edVEtet!
then

v [Sj > 1y, V0 < HE < VI sup HS < etV 5> }
m<j

>P {sj >t bVE<S; —S; <+t sup Sy, — Sy < gVl —a't?,S; > —B}

m<j

with ¢/ = ¢/2 and @’ = ap + 1. To obtain a lower bound for the above probability, the idea is to say
that maximum of S is obtained at a certain instant £ < j and that this maximum is larger than
ty + bVl + 0% 4 1 for a certain r > 0 to be chosen latter, then above probability is larger than :

Z]P’(gkq < Sk, Sk >t + VI 7 sup S,y — Sy < VE— a4, S, > —B;S; — Sk >ty — Sk,

K<) m=k
WE< Sy —S; <OVE+ 4 Ym > k41,8, < Sk, Sk — Sm < VI —d't% S, — S, > —B— Sy).

Now, the events {S,, — S > —B — z}, as well as {S; — Sy > t; — x} increases in = and as
Sy > te 4+ bVl + 4% + 1 so we can replace, in the two events of the above probability, ”—S” by
—(te + bW+ 0 + r). This makes appear two independent events, so above probability is larger
than

P(Sk-1 < Sk, Sk > te+ bVl + 0+ 7, sup Sy — Sy < VE—d19,S), > —B)x

m<k
P(S; — Sk > —bVil — it —r 0V < Sy — S; <OVI+ 0 Ym > k41,
—B—ty—bVl4 =1 < Sy — S, <0,5, — Sk > —VEl+adt?) = pi (k) *pa(k,j).  (77)

Probability ps can be easily simplified, indeed as limy_, 4o tg/\/z = 400 and ¢ large, —B — t; —
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bWl + 0% — r < —/C and by taking r = /€%, p, is smaller than

P(—bVl — td < S; — S, < —bVEYm >k +1, Vi +d't4 < S, — S, <0)
P(Vm < j—k,—Vl+d't? <8, <0,—bVI -1 <8 ) < —bV7)
=P(Ym < j—k, S <VE—dl4S;_; >0,8; 1 € bV, bV + ])x
P(S; ) > 0,81 € bV, + 1)),

with S,, = —85,, for any m. For the conditional probability we can use a similar result proved by
Caravenna and Chaumont [CC13] telling that the distribution P,(:|¥m < n, S, > 0,S, € [0,h))
converges. Note that they need in their workr additional hypothesis on the distribution of S; (more
especially absolute continuity of the distribution of S7) which is not necessary here as the size of
intervall [bv/Z, bVl + /€% equals ¢/¢¢ — +oo0, in particular as a’¢? = o(v/)

lim P(Ym <{,8,, <cVl—dtiS,>0,8; € [bVe, Vi + ¢t9)) = Cte > 0.

£—+00

Moreover another work of Caravenna ([Car05] Theorem 1) gives for large ¢, P(S, > 0,S; €
[V, bV + ¢ 4?) > b/¢. So finally when j — k is of the order of ¢, there exists a constante Cte > 0
such that po(k,j) > Cte * £=1. Turning back to (77) and summing over k and j, we obtain

> pilk)pa(k, )

]§A£3/2 k<j

= Z Zpgk‘] >Zp1 Z p2(k, j)

k<Ag3/2 ji>k Jij—k~t

> % Z P(Si—1 < Sk, Sk > te+b(1 + 20V, sup Sy, — Sy < VI, S, > —B)

k< AL3/2 m<k
Cte \/’
> S (PESIVI g > T o) = D P(sup S = S < 0)
k>Ae3/2 ™
Now we can check that above sum ), _ 4/3/2 - - - as a negligible contribution, indeed the probability

P(sup,<f Sm — Sm < V) is smaller, thanks to Proposition 3.1 in [FHS11], to e~ o%3/4E this
implies that Y, 45/ P(Sup,,<j, Sm — Sm < Vi) < e~ " AL?/2 Now if we apply (75) to the first
probability above as bv/f + ¢/#¢ = o(t), this finishes the proof. O
Lemma below is a simple extension of FKG inequality.

In the following, a function F' : R¥ — R is said to be increasing if: for all s = (s1,...,5;) € R¥
and t = (tl,...,tk) € RF, s <; t implies F(s) < F(t) where s <, t if and only if s; < ¢; for all
je{l,... .k}

Lemma 4.4. Letr > 0, k € N*, f1, fo : R — R*. For any i € {1,2}, introduce fz(ul7 ceU) =
filur,ur +ug,y ... ug +ug + ...+ ug). If f1 and fo are increasing then

E[fl(sl,sg,...,Sk)fg(sl,sg,...,sk)] > E[f1(S1,52, .., )| E[f2(S1, Sz, - ., Sk)].-

Proof. When R¥ is a totally order set, the first inequality above is the well known regular FKG
inequality. Here, we can easly extend it to the partial order <. Indeed, since f; is increasing for
any ¢ € {1,2}, we have, by independence of increments of S

I Elfi(S1.82....80)] = [ E[fi(S1.82 = S1,.... 8k — Sk1)] = E[F1(S1)|E[F2(S1)],

ie{1,2} ie{1,2}
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with F;(uq) := E[ﬁ(ul, So—S1,...,5k fSk_l)} for any ¢ € {1,2}. Since f; is increasing, F; is also
increasing so thanks to the regular FKG inequality, E[F;(S1)]E[F2(S1)] < E[F1F2(S1)]. Again,
using independence and stationarity of increments of S and the result follows by induction. O

Lemma 4.5. Let (t¢) a sequence of positive numbers such that ty/¢ — 0. For all d € (0,1/2] such
that tg /0% — 400 and all e, B >0, a >0 and 0 < d' < d < 1/2 for n large enough
Z P(S, > te,mg}chf < gt —at Sy >—B,S=5;) > e (1+e),
<

k<e2

Proof. Recall that 7, = inf{i > 1; S; > r}. First, observe that for all j < k < (2, HJS < (255
S0

Z P(Sy > tf’f}?gHJ—S <el'e" 8, > -BS, = Sk)

k<e2
> ;;ezp(k = Ttl,%i(?j —8; < —at? —2l0gt, S, > —B),

which is equal to P(Sp2 > t,,Vj < 1, : S; — S; < % — at? — 2log¢, S; > —B).
Now let k, = |(et¢)?| + ¢2. First note that, since £2 < kg, we have, on {Sy2 > t/}, 7, = Ttkf with
Ttlzz = ke ANnf{i < kg; S; >t} so

P(Sp > t0,Vj <7, :8; — 85 <4 —at? —2logl,S; > —B)

=P(Sp > te,Vj <778~ 8; < —at? —2logl,S; > —B).
For any k € N* and r > 0, let t = (¢1,...,t;) € R* and define the t-version 75* of 7% that is

tht =k ainf {i <k; t; > 1},
with the usual convention inf @ = +o0o0. Then
P(Sp > tn,Vj <78 :8; — 8 < 04— at? —2logt,S; > —B) = E[f1f2(S1,Sa, ..., 5k,)],
with for all ¢ € {1,2}, f; := 1 4¢, f1f2(u) = fi(u)f2(u) and
Al = {u=(u,... ug,) ERM; 35 < 2y >t}
and
Ag = {u = (uy,...,uk,) € RFe: v j < Ti""t,Vi <jrug—up > —0h 4 e +2log ¥, u; > fB}.

Then, it’s easy to see that for all ¢ € {1, 2}, fi (see Lemma 4.4 for the definition) is increasing accord-
ing to the partial order <, defined above on R¥** and thanks to Lemma 4.4, E[f fo(S1, Sa, - - - , Sk, )]
is larger than

> P((S1,S2,-..,5k,) € AD)P((S1, Sa,...,Sk,) € AS)

> P(Spe > t)P(Vj <7 : S5 — S5 < 4 —at? —2logt,S; > —B,m, < ki)

Again, on {r, < k¢}, Ttkf = 7;, and thanks to [Koz76] (Theorem A), there exists Cx > 0 such that
for ¢ large enough

P(Vj <7 :5; -8 <t —at? —2logl,S; > —B, 7, < ki)

>P(Vj<m,:8; -8 <tl—at? —2logtl,S; > —B) —P(ry, > k)
>P(Vj<m,:5; -8 < —at? —2logl,S; > —B) — Cge™*
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Moreover, tg/¢ — 0 so P(S,2 > t;) — 1. Finally, by (75) together with the fact that 04~ pd —
al® —2log ! (as d > d') for ¢ large enough ]P’(Vj <7, 08— 8; <t —abt —2logt, S; > —B) >
210" (142) and since ¢4, /04 = o(f), Cxe~! < et "(142) 50 we obtain the result. O

Lemma 4.6. Let o € (1,2) and g, € [0, — 1) and intruduce Ly := Lxél“'%aj, x > 0. For alle > 0,
¢ large enough and any k € {Ly, ..., 0%}
S o V) « o~k (1_c
P(r]néa]i( HY <eVf) <e ™% (1=e) (78)

and for any a,d,c >0, b € (0,1), € large enough and any k € {Ly, ..., ¢*}

P(max HY < /70" VP < g < Ve 5, > 0) > o~ k5 (1) (79)
1=

Proof. Let us start with the upper bound. Thanks to Markov property, for any k € N, kK > L,
§ < eVt S B E
P(max HY < ¢") <P(max 5~ 5 < VI) < P(max 55 - 8 < VO) 7

w2021

and thanks to [FHS11], for £ large enough P(max;<g, S;—S; < V/¥) <e st (173) 50 for any
e, ¢ large enough and any k > Ly

_ ey 72021
]P’(malz( S;—5; < \/Z) < e~ (17%) -

Jj<

202
8¢ LLLEJ < 67(175)”826 .

For the lower bound, observe that for any k < (2, P(max;<y HJS < eVi-at! Vi HP <
eb‘/z"’dd,ﬁk > 0) is larger than P(max;<; S;—S; < N, bVl < Sp—Sk < bVil4ct?—logl?, S, > 0),
where Xj, := VI — al? —log 2. As %Zd > log¢? (d > 0), the previous probability is larger than
]P’(maxjgk §j -5 <Ay, bWl < S, — Sk < bVl + %Ed,ﬁk > 0). We need independence to compute
this probability so for all k € N*, L, < k < 0%, we say that Sy = S,_, > A, which gives that for all
k-1 < j < k, Sj < Sk_g and then, maXxXg —¢<j<k Sk_g — Sj < A/Z implies that Sj > Sk_[ — A% > 0
for all k — ¢ < 5 < k. Hence

P(max S, — 5 < X, bWE <8y — S, <bVI+ gzd, S, > 0) > P(Ae N Biy) = P(Ag 0)P(Bry),
with
A= {jrélgfe S; =8 < ALSk_y=0,8k—¢ =Skt >N},
and
Brei= {Vk—€<j <k Si—e— 8 S NS < Sets WE< S = S S bVI+ 7.
Let S := —S. P(By,¢) is nothing but
P(S, < X, 8, > 0,8, € (bWWE, VI + ged}) =P(S, > 0)P(S, € (b7, bVl + gzd} 1S, > 0)

x P(S, < A)|S, > 0,8, € (WE I+ ged]),
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which is larger than C/¢ for ¢ large enough (see Lemma 4.3).
We then deal with P(Af ¢). Thanks to Lemma 4.4, this probability is larger than

P max, 5; = 85 < A)P(Skr 2 N)P(Sy— > 0)°,

and again, using [Koz76] together with the fact that P(Sr, > Aj) — 1, there exists C > 0 such
that for £ large enough and any k € {Ly,...,¢*},

— — C

B(Ste = VOP(S, ¢ 2 0) 2 P(Sz, = VOP(S2 20)° = 5.

We now turn to the most important part: IE"(maXJ<;c ¢ § -5; < /\Z) We follow the same lines

as the proof of (78): for any k € {Ly, .. 2}, k—€> Ly —{ somaxj<r,—¢ S; —S; < Xj together

with SLE,Q: Sp,—¢ <S5 and maxy,—r<i<; Si — 5 Sﬁ)\[ forall Ly — 4 < j<k—/ implies that

maxj<p—¢ S; —S; < Ay It follows that ]P’(maxjgk,g S;—85; < )\2) is larger than

P(jénli)il S S < )\[,SL[ ¢ = SL[ g,L[IHEEL}?Sj Si — Sj § )‘27Sj Z SL[—Z VL@ -l < j S k 76)
= (yg}'ixf Sj—=8; <X Spp—0 = Sp,—0)P( gk}?:a()iwl) S;—8; < )‘Zvﬁk—e—(m—a >0).

Moreover, by Lemma 4.4, P(max;<y_¢—(r,—¢) Sj — S; < A Syt (L—t) = 0) is larger than

P(max;j<g—¢—(L,—e) S5—5j < ANIP(Sy_4—(r,—¢ > 0). By induction, we get that P(max;<ip—¢ Sj—

S; < )\2) is larger than

]P’(]g}%xe S;—8; <X, Sp,—¢ = Sp,— e)Le(k) H P(Sk—¢—i(L,—r) = 0)
i<Lo(k)

with Le(k) := [(k — £)/(L¢ — £)]. Again, by Lemma 4.4, P(maxj<p,—¢ S; —S; < A, Sp,—¢
SL@*@) Z ]P)(InanSLefe SJ_S] S A%)P(ﬁL[—Z Z 0) and as k S 62, P(ﬁk—ﬁ—l(Lg—e) Z O) 2 ]P)(ﬁk
0) > ]P’(ﬁp > 0). Hence, by [Koz76]

IV 1l

P S-S5, <) > ¢ 5, -8, <\, Lot
(e, § <) (Z\HT (jmex, i< X))

for some C' > 0. Then, thanks to [FHS11], for all ¢ > 0 and ¢ large enough P(maxj<r,_¢ S; —S5; <

71_20_2 ) I o
A)) > e~ (D) =20 2 g6 for ¢ large enough and any k € {Ly,...,¢?}, P(maxj<x—y S; —
S; < X)) is larger than

7202(Ly—¢) 7252(Ly—0)
( ¢ 0+s )W)Le(k) S s )WLM) S k0043 )Smrz
0/Ly— ¢ - -
B 2 2(‘[’[ 2)
where we have used for the first inequality that e s09? s smaller than tz% for any n,n' > 0.

Collecting previous inequalities, we obtain

c o003 )W
Z 3¢

Finally, observe that A} ~ v/¢ and then for any k € {Ly,...,(?}

P(Ak,e) >

P(Ars) > = (14

which completes the proof. O
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