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Abstract

The design of numerical tools to model the behavior of building materials is a challenging task. The
crucial point is to save computational cost and maintain high accuracy of predictions. There are two
main limitations on the time scale choice, which put an obstacle to solve the above issues. First one is
the numerical restriction. A number of research is dedicated to overcome this limitation and it is shown
that it can be relaxed with innovative numerical schemes. The second one is the physical restriction. It
is imposed by properties of a material, phenomena itself and corresponding boundary conditions. This
work is focused on the study of a methodology that enables to overcome the physical restriction on
the time grid. So-called Average Reduced Model (ARM) is suggested. It is based on smoothing the
time-dependent boundary conditions. Besides, the approximate solution is decomposed into average and
fluctuating components. The primer is obtained by integrating the equations over time, whereas the latter
is an user-defined empirical model. The methodology is investigated for both heat diffusion and coupled
heat and mass transfer. It is demonstrated that the signal core of the boundary conditions is preserved
and the physical restriction can be relaxed. The model proved to be reliable, accurate and efficient also
in comparison with the experimental data of two years. The implementation of the scarce time-step of 1 h
is justified. It is shown, that by maintaining the tolerable error it is possible to cut computational effort
up to almost four times in comparison with the complete model with the same time grid.

keywords: thermal performance; heat and mass transfer; numerical simulation; long-term simulation;
porous material

1 Introduction
Thermal performance of building materials is studied for more than half a century and still remains an

actual topic. Apart from experimental approaches, which are costly and never at the full scale, another
method to estimate such parameters is numerical simulations. Existing numerical tools are collected into
various Building Performance Simulation (BPS) programs and the development of innovative programs is
an ongoing process with constant improvements and alterations. Numerous studies are concentrated on
evolution, moderation and replacement of classical numerical approaches [Gasparin et al., 2019, Mendes
et al., 2017]. The fidelity and the efficiency of a numerical method is crucial for a long-term modeling
[Clark and Kavetski, 2010, Kavetski and Clark, 2010]. In the recent review of state–of–the–art [Clarke,
2015, Hong et al., 2018, Sasic Kalagasidis, 2014] it was indicated that despite wide range of programs,
there are still some drawbacks in terms of accuracy, ease-of-use and the high computational cost.

Building simulation programs are mostly based on several mathematical models. Among others, the
heat and mass transfer in building porous materials is one of the most relevant to estimate the thermal
performance [Hagentoft et al., 2004, Woloszyn and Rode, 2008]. In this model based on diffusion processes,
the Fourier number is of major importance. It characterizes the influence of a (heat or mass) diffusion
transfer through the material. It is a key parameter in the numerical model.

First of all, it is directly related to the stability of a numerical scheme when an explicit approach is
implemented. Thereby, the numerical model based on a conditionally stable time scheme is restricted to
a very fine time grid. The latter is defined by time instant where the solution requires to be computed
to reach a defined accuracy and consistency. An illustration of its importance is provided in [dos Santos
and Mendes, 2004] for the model of interests. Nevertheless, it is possible to overcome this numerical
restriction. A wide variety of methods have been proposed in the field, such as the basic Euler implicit
[Steeman et al., 2009], the DuFort–Frankel [Gasparin et al., 2018a,b] and the Super–Time–Stepping
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(STS) [Abdykarim et al., 2019b, Alexiades et al., 1996, Meyer et al., 2014] for recent examples. Note
that implicit scheme do not have stability restrictions. However, due to the high nonlinearities of the
problem and the requirement of sub-iterations to treat them, the computational costs is similar to explicit
approaches.

Secondly, the Fourier number is also related to the characteristic time of the problem. It corresponds
to the ratio between the characteristic time of the physical phenomena (of heat or mass transfer in the
material) and the characteristic time of the investigations. The primer depends on the length of the
material and its properties. The latter is set up by the user according to the horizon of simulation and the
time scales of the boundary conditions. In building physics, the characteristic time of the investigations
generally equals to one hour since the boundary climate variations are given for such time step. Therefore,
to produce accurate predictions, the numerical time-step size of the simulation cannot be higher than one
hour too. As demonstrated in [Gasparin et al., 2018b], if this physical restriction is not respected, the
predictions of the physical phenomena are not reliable.

Thus, as it is possible to overcome the numerical restriction by employing innovative methods, it
remains a so-called physical restriction on the computational time grid. To overcome this restriction, the
application of an Averaged Reduced Model (ARM) is investigated in the given article. The method is
novel to the field and adopted from modelling in fluid dynamics. It is assumed that the ARM shall permit
to implement the time grid bigger than the one imposed by the physical phenomena. In addition to that,
it can save considerable amount of numerical effort to estimate parameters such as heat flux, conduction
loads and thermal resistance.

A design of the model consists of three important stages. First, the boundary conditions are filtered
and smoothed using a certain time-averaging period. In this way, it is assumed that the signal core will be
preserved and the restriction on the characteristic time will be relaxed. Secondly, the approximate solution
of the physical problem is decomposed in two parts with the average and fluctuating components. The
averaging part is obtained by integrating the equations over the time period, whereas the fluctuating one
is defined with an empirical model. The last stage consists in defining the empirical model. Candidates
model are proposed which coefficient are determined through an identification procedure.

The article is organized as follows. The ARM first tested and implemented to heat diffusion equation
in Section 2. The detailed description of the methodology is given in Section 2.2. After briefly presenting
the numerical method and error metrics in Section 2.3, the ARM is applied to the heat transfer case study
in Section 2.4. Thereafter, the methodology is tested on the coupled heat and mass transfer, described
in Section 3. Following the extensions of both average reduced and numerical models in Sections 3.2
and 3.3, the case study is presented in Section 3.4. Both offline and online procedures are discussed
in details in Sections 3.4.2 and 3.4.3. The ARM is further compared to experimental data, applied to
predict the physical properties and advantages of the methodology is presented. The summary is made
in Conclusion 4.

2 Heat transfer
This section deals with effectiveness studies of the proposed methodology in the case of a heat transfer.

First, a simple diffusion equation is described in a physical and then in a dimensionless forms. Obtained
dimensionless mathematical model shall be called complete model. Afterwards, the average reduced model
is described.

2.1 Complete Model
Initial-boundary value problem, namely simple diffusion equation, in one dimension is considered. The

equation is defined by the spacial Ω x = [ 0, ` ] and time Ω t = [ 0, T ] domains, where `
[

m
]
is the

thickness of a material and T
[

h
]
is the final time.

cT ·
∂ T

∂ t
= ∂

∂ x

(
kT ·

∂ T

∂ x

)
, (1)

where kT
[

W.m−1.K−1 ] is the thermal conductivity, which is taken as the temperature dependent first
order polynomial with constant coefficients k 0 and k 1:

kT : T 7→ k 0 + k 1 · T ,
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and cT
[

J.m−3.K−1 ] is the volumetric thermal capacity, which is also first order temperature dependent:

cT : T 7→ c 0 + c 1 · T ,

with constant coefficients c 0 and c 1. The initial condition is T
(
x, t = 0

)
= T 0 (x ). The Robin–type

boundary conditions are given for x = 0 as:

kT ·
∂ T

∂ x
= hLT ·

(
T − T L

∞

)
− α · g L∞ ,

and for x = ` as
kT ·

∂ T

∂ x
= −hRT ·

(
T − T R

∞

)
,

where hL,RT

[
W.m−2.K−1 ] is the surface heat transfer coefficient, α · g L∞

[
W.m−2 ] is the absorbed

short-wave radiation, T L
∞
[ ◦C ] is the outside air temperature and T R

∞
[ ◦C ] is the inside air temperature,

given with periodic function in the range between [ 18− 23 ◦ C ]:

T L
∞ : t 7→ T L

∞ ( t ) , T R
∞ : t 7→ T R

∞ ( t ) , g L∞ : t 7→ g L∞ ( t ) .

In addition to the above, following two interesting outputs of the building physics framework are
considered. The first one is the sensible heat flux J q

[
W.m−2 ], which is defined as:

J q
def:= − kT ·

∂ T

∂ x

∣∣∣
x = L

. (2)

The second one is the conduction loads E
[

J.m−2 ], which represents the sum of the heat fluxes at a
building envelope internal surface and, in terms of the energy density, it can be evaluated as:

E
def:=

∫ t 2

t 1

J q d t , (3)

where ( t 2 − t 1 ) is equal to one month.
The governing equation (1) together with boundary conditions is solved numerically in a dimensionless

form. The solution in the dimensionless formulation has advantages such as the application to a class of
problems sharing the same scaling parameters (e.g. Fourier and Biot numbers) [Berger et al., 2017,
Trabelsi et al., 2018], simplification of a problem using asymptotic methods [Nayfeh, 2008] and restriction
of round-off errors. For these purposes, the following dimensionless quantities are defined:

u
def:= T

T ◦
, u∞

def:= T∞
T ◦

, g ?∞
def:= ` · g∞

T ◦ · k ◦T
,

where the superscripts ◦ and ? represent a characteristic value of a dimensionless variable. Dimensionless
quantities of the space and time domains are:

x ?
def:= x

`
, t ?

def:= t

t ◦
.

Material properties can be written in the dimensionless form as follows:

c ?T
def:= cT

c ◦T
, k ?T

def:= kT
k ◦T

.

The Fourier number is defined as:
FoT

def:= t ◦ · k ◦T
`2 · c ◦T

.

The Biot numbers can be expressed as:

BiL,RT

def:= ` · hL,RT

k ◦T
.

As a result, the model (1) can be written in the dimensionless form for x ? ∈
[

0 , 1
]
and t ? ∈

[
0 , T

]
:

c ?T ·
∂ u

∂ t ?
= FoT ·

∂

∂ x

(
k ?T ·

∂ u

∂ x ?

)
, (4)
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together with the initial condition u
(
x ?, 0

)
= u 0 (x ? ) and the following boundary conditions:

k ?T ·
∂ u

∂ x ?
= BiLT ·

(
u − uL∞

)
− α · g ?∞ , (5a)

k ?T ·
∂ u

∂ x ?
= −BiRT ·

(
u − uR∞

)
. (5b)

In the next section the average reduced model is discussed. It starts with the general methodology followed
by the derivation of a model itself and the description of an empirical model.

2.2 Average Reduced Model
Average Reduced Model (ARM) is an a posteriori method based on a preliminary learning procedure.

The latter is carried on for given time-averaging periods τ , and is denoted as offline. This stage is
performed for a representative time period T 1 in order to cut a computational effort and to obtain
parameters P ? of an Empirical Model (EM). Later, those parameters P ? are used for a full scale numerical
investigations in an online procedure for a wider time horizon T 2. It should be noted that T 1 � T 2 is
necessary to attain efficiency of the method. The scheme of the methodology is presented on Figure 1.

OFFLINE

De ne period 

Propose EM

Compose ARM

Optimize

Compute

ONLINE

Compose ARM

Compose 

Figure 1. Schematic representation of offline and online procedures to build the ARM noting that T 1 � T 2.

2.2.1 Obtaining an ARM
The idea is to relax the physical restriction on a time scale imposed by an hourly climatic data. For this

purpose, the solution u (x, t ) of the complete model (CM), given in Eq. (4) is taken to be approximately
equal to ũ (x, t ) in a following average reduced form:

u ' ũ = u + u′ , (6)

where u (x, t ) is the time-averaged mean value and u′ (x, t ) is the fluctuating (high frequency) value
[Argyropoulos and Markatos, 2015]. The chosen averaging method takes the mean values at a fixed place
in space and averaged over a time span, that is large enough for the mean values to be independent of it:

u
def:= 1

τ

τ∫
0

u (x, t ) d t ,

where ( · ) is the time-averaging operator and τ is the chosen time interval or period. The shape of
fluctuating values u′ is discussed later. At this stage, it should be noted that the time-averaged values of
u′ are defined to be zero:

u′
def:= 0 . (7)
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The CM, given in Eq. (4) for u is averaged as a reduced model for ũ in the following way with Eq. (6):

c ? (u + u′ ) · ∂ (u + u′ )
∂ t ?

= Fo · ∂
∂ x

(
k ? (u + u′ ) · ∂ (u + u′ )

∂ x ?

)
. (8)

The dimensionless material properties c ? (u ) and k ? (u ) are the temperature dependent first order
polynomials:

c ? : u 7→ c ?0 + c ?1 · u , k ? : u 7→ k ?0 + k ?1 · u ,

where c ?0, c ?1, k ?0 and k ?1 ∈ R. By taking into account rules of time-averaging [Monin and Yaglom, 1971,
Reynolds, 1895], the above reduced model, given in Eq. (6) is transformed as shown below. Firstly, one
can transform the left-hand-side of Eq. (6):

c ? (u + u′ ) · ∂ (u + u′ )
∂ t ?

= ( 1 + c ?1 · u + c ?1 · u′ ) ·
(
∂ u

∂ t ?
+ ∂ u′

∂ t ?

)
,

= c ? (u ) · ∂ u
∂ t ?

+ c ?1 · u′ ·
∂ u′

∂ t ?
.

Likewise, the right-hand-side can be transformed into the following form:

Fo · ∂
∂ x

(
k ? (u + u′ ) · ∂ (u + u′ )

∂ x ?

)
= Fo · ∂

∂ x

(
k ? (u ) · ∂ u

∂ x ?

)
+ Fo · ∂

∂ x

(
k ?1 · u′ ·

∂ u′

∂ x ?

)
.

Hence, in general, the reduced model, given in Eq. (8) can be written as:

c ? (u ) · ∂ u
∂ t ?

= Fo · ∂
∂ x

(
k ? (u ) · ∂ u

∂ x ?

)
+ S (x, t ) ,

where

S (x, t ) def:= − c ?1 · u′ ·
∂ u′

∂ t ?
+ Fo · ∂

∂ x

(
k ?1 · u′ ·

∂ u′

∂ x ?

)
(9)

= 1
τ

τ∫
0

(
− c ?1 · u′ ·

∂ u′

∂ t ?
+ Fo · ∂

∂ x

(
k ?1 · u′ ·

∂ u′

∂ x ?

))
d t ? .

The boundary conditions can be written in the reduced form too:

k ? (u ) · ∂ u
∂ x ?

= BiLT ·
(
u − uL∞

)
− α · g ?∞ − S k (x, t ) ,

k ? (u ) · ∂ u
∂ x ?

= −BiRT ·
(
u − uR∞

)
− S k (x, t ) ,

where
S k (x, t ) def:= k ?1 · u′ ·

∂ u′

∂ x ?
. (11)

Now, the average reduced model is written and the next step is to propose a formulation of an empirical
model for the fluctuating values u′, which are unknown for the given case.

2.2.2 Empirical Model for fluctuating values
This section presents fluctuating values in a form of a mathematical model in a general form as:

u ′ : ( P, x, t ) 7→ f ( P, x, t ) , (12)

where P is a set of parameters. The function f ( · ) should be designed in such a way, that the averaging
of it should be in accordance with Eq. (7):

f ( · ) = 0 .
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Optimization of coefficients. The goal is to solve the minimization problem P ? = min
P

ε 2, where

ε 2
def:=

∣∣∣∣ u ref (x, t ) − ũ (x, t )
∣∣∣∣

2 is the error between simulation results u (x, t ) of complete model
and ũ (x, t ) of average reduced model. The optimization is carried out for coefficients P of an empirical
model. As presented in Mohebbi et al. [2017], several approaches can be used to solve this inverse
problem and retrieve the unknown coefficients of the empirical model. As starting investigations, the
Levenberg–Marquardt method is used as nonlinear least-squares algorithms. The optimized values
ensure the lowest error possible for the given empirical model and time-averaging period. Based on the
assumption that the high frequency fluctuating values u′ have a periodic nature, the optimization can be
made for a certain part of the simulation only. This is also done in order to avoid an extra computational
time effort. One can then assume that the optimized parameters enable to obtain the results which are
true for the whole time horizon.

2.3 Numerical Methods
The space and time domain are discretized in the following way. A uniform discretization of the space

interval Ω x  Ωh is written as:

Ωh =
N x⋃
j = 1

[ x j , x j + 1 ], x j + 1 − x j ≡ ∆x, ∀ j ∈ { 1, . . . , N x } .

Time layers are spaced uniformly as well tn = n∆ t, ∆ t = const > 0, ∀n ∈ { 0, . . . , N t } . The values
of the solution function u (x, t ) are defined at discrete nodes and denoted by unj := u (x j , tn ).

2.3.1 The Super–Time–Stepping Method
In this article, only one Super–Time–Stepping (STS) approach is considered based on results of previ-

ous works [Abdykarim et al., 2019a,b]. The method is based on a family of orthogonal shifted Legendre
polynomials of the first order [Meyer et al., 2014]. One can express discretization of Eq. (4) in the following
way for n = 0 , 1 , . . . NSTS :

un+1 =
(

PN

(
∆ t S ,A

))
· un , (13)

where PN S is the stability polynomial, N STS
def:= τ

∆ t S
is the number of approximate solutions and ma-

trix A is constructed according to the chosen explicit space discretization. The solutions are found with
the scheme involving a so-called super-time-step ∆ t S, which should satisfy Legendre stability polyno-
mial. Time-step ∆ t S is chosen according to the number of super-time-steps N S and explicit time-step
∆ t exp

def:= 2
λmax

, where λmax = 4 · FoT
∆x 2 [Alexiades et al., 1996].

Thereby for STS Runge–Kutta–Legendre (RKL) method of the first order the super-time-step
should satisfy following condition:

∆ t S 6
N 2

S + N S

2 ·∆ t exp .

It can be seen that it is now possible to implement the time-step at least O (N 2
S ) bigger than a time-step

required by the explicit Euler scheme due to Courant–Friedrichs–Lewy (CFL) [Courant et al.,
1967] stability condition. This "widening" technique allows to perform much faster calculations and more
details can be found in the previous works [Abdykarim et al., 2019a,b].

2.3.2 Error metrics
One wants to examine the maximum of the root-mean-square error to quantify the discrepancies

between two solutions. The L 2 error between a solution ũ (x, t ) with average reduced model and a
reference solution u ref (x, t ) with complete model (or experimental data):

ε 2 (x ) def:=

√√√√ 1
N t
·
N t∑
j= 1

(
u j, ref (x , t j ) − ũ j (x , t j )

) 2
,
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where N t is the total number of temporal steps. The global uniform error L∞ is defined as:

ε∞
def:= max

x∈
[

0, `
] ε 2 (x ) .

The relative error η 2 [∅ ] is used to compare the discrepancies of a result from a reference value, and
defined as follows:

η 2 (x ) =

√√√√√ 1
N t
·
N t∑
j= 1

(
u j, ref (x , t j ) − ũ j (x , t j )

) 2

∆u j, ref (x , t j ) ,

where ∆u ref is taken as the difference between the maximum and minimum values to avoid division by
zero for some cases:

∆u ref (x , t ) def:= max {u ref (x , t ) } − min {u ref (x , t ) } .

The global relative error η∞ [ % ] is defined as:

η∞
def:= max

x∈
[

0, `
] η 2 (x ) .

In this article also the attention is paid to the difference in the computational (CPU) run time of numerical
simulations. The ratio, %CPU

[
%
]
, shows how computational cost can be shortened compared to the

complete model (CM):

%CPU
def:= tARM

CPU
tCMCPU

· 100 % ,

where tARM
CPU

[
s
]
and tCMCPU

[
s
]
are computational times required by the ARM and by the CM respectively.

In order to evaluate how many seconds are required to perform the simulation for one astronomical day,
the computational time ratio per day is computed as follows:

% day
CPU

def:= t scheme
CPU

τ d

[
s/d
]
. (14)

The CPU is measured on a computer with Intel Core i7 and 16 GB of RAM, and the numerical models
are run on the MatlabTM environment.

2.4 Case study
The case study below is for the heat transfer described in the Section 2. It should be taken into

account that this study is preliminary case before the heat and mass transfer study, which is discussed
later in the Section 3.

2.4.1 Presentation of the case study
All necessary dimensionless parameters of the mathematical model are presented below. Fourier

number is equal to FoT = 5.1 · 10−2. Dimensionless material properties are taken as follows:

c ?T (u ) = 0.2 + 0.1 · u , k ?T (u ) = 0.051 + 0.01 · u.

Biot numbers are expressed as parameters for the boundary conditions and are taken to be equal to:

x = 0 : BiT, LT = 2.65 , x = 1 : BiT,RT = 1.42 .

Additional flux parameter is taken as α = 0. The left boundary data uL∞ is taken from the weather
records. Variation of the right boundary signal is set to obey the following periodic function:

x = 1 : uR∞ ( t ? ) = 1 + 1.4 · 10−2 · sin
(

2π · t ?

1.92 · 10 4

)
.

The initial temperature is taken as a linear function over the material and its dimensionless formulation
is given by:

u 0 (x ? ) = 0.95 + 4.5 · 10−2 · x ? .
The reference width of the material is ` ◦ = 20 cm. Other reference parameters are T ◦ = 293.15 K,
t ◦ = 3600 s, c ◦T = 2× 10 6 J.m−3.K−1, k ◦T = 1.13 W.m−1.K−1. The space discretization parameter
is ∆x ? = 10−2 for all cases.
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Figure 2. Boundary conditions for external and internal surfaces.

2.4.2 Candidates for an Empirical Model, offline procedure
Following the methodology presented in the Section 2.2.2, two models are proposed below. Both of

them are potentially good fits for the fluctuating values. The first model, called as Model I, is defined as:

u′ : (x, t ) 7→ u o ·

(
1 − x

` o

)
· sin

(
2π
τ
· t

)
, (15)

where u o, ` o ∈ R are some coefficients to be estimated for each time-averaging period τ . Another
possible way to model the fluctuating values u′ is written as follows and dedicated as Model II:

u′ : (x, t ) 7→ e
−

(
x − x o

)
` o · sin

(
2π
τ
· t

)
, (16)

where parameter x o ∈ R is also optimized according to the period τ . Given the empirical model, one can
find values for the source terms S (x, t ), given in Eq. (9) and S k (x, t ), given in Eq. (11) by substituting
u′ (x, t ) with the functions given in Eqs. (15) or (16).

Before evaluating the reliability of the average reduced model (ARM), it is important to choose the
empirical model (EM) first. By following the logic proposed in the methodology of the ARM, one starts
with the offline procedure to determine the parameters to an optimal EM. The choice of EM can be
made by comparing simulation results. As a reference solution one can take the results, obtained with the
complete model (CM) and compare them to the two results of the average reduced model with different
empirical models for fluctuating values u ′ (x, t ). The optimization processes have been carried out for
the simulation time T = 120 h. For the sake of clarity, the parameters of both models are optimized
for the time-averaging periods τ = [ 6, 12, 24, 48 ] h only. The evolutions of the temperature for the
representative simulation time with both CM and ARM with different empirical models are shown in
Figure 3. It can be seen that the results of ARM are closer for a smaller time-averaging period. Indeed,
it is consistent since lim

τ→ 0
ũ = u. It can also be noted that for τ � 1 the model is out of the reality.

The error and the optimized parameters for Model I and Model II are collected in Table 1. The obtained
coefficients are then implied to empirical models and subsequently to the average reduced model.

2.4.3 Results and discussion for online procedure
After collecting all necessary parameters in offline procedure, the study now can be expanded for

bigger simulation time in online procedure. It is decided, that first of all it is necessary to choose one
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Figure 3. Time evolutions of the temperature with complete and average reduced models, results of which are
obtained with empirical models I and II for u ′ for the simulation time T = 120 h.

τ = 6 h τ = 12 h τ = 24 h τ = 48 h

x o 1.9 × 10−4 1.7 × 10−3 −5.4 × 10−3 7.4 × 10−5

Model I ` o 7.4 × 10−7 5.6 × 10−3 −1.2 × 10−2 −5.5 × 10−3

ε 2 6.87 × 10−1 1.47 2.03 2.97

x o −9.5 × 10−1 −3.7 × 10−1 −3.7 × 10−1 −8.8 × 10−1

Model II ` o 1.7 × 10 2 1.5 × 10 1.5 × 10 2 4.8 × 10

ε 2 6.90 × 10−1 1.46 2.67 3.12

Table 1. Parameters of Model I, given in Eq. (15) and Model II, given in Eq. (16) in relation to time-averaging
periods τ and ε 2 error between simulation results u (x, t ) of complete model and ũ (x, t ) of average reduced model.

empirical model. For this purpose, a comparison between two models is carried out for the time-averaging
period τ = 12 h. The choice is simply based on the lower error and medium coefficients. The results of
simulations for the T = 1 year can be seen in Figure 4 . By comparing the temperature evolutions, the
sensible heat fluxes J q

[
W.m−2 ] and the conduction loads E

[
J.m−2 ] it can be noticed that Model II

is closer to the reference solution and more accurately presents the long term phenomena in comparison
to the Model I. Thereby, Model II is chosen for further studies of the benefits of proposed average reduced
model. The climatic boundary conditions, implemented in the case study, are provided as an hourly data.
To see the influence of the time-averaging to the boundary conditions the Figure 5 is plotted. It can be
seen that the signal becomes smoother as the time-averaging period increases, while the nature of the
signal is preserved. Moreover, from the Figure 5 (d) it can be seen that the error between the full and
time-averaged boundary conditions is in the tolerable range. With τ = 24 h the error is approximately
η∞ ≈ 2 × 10−2 on the signal of the boundary condition only. Later, it can be seen in Figure 6 (a) that
the ARM τ = 24 h enables computations with η∞ ≈ 4× 10−2. The mathematical model of ARM does
not increase the error from the smoothed signal. Thereby, it can be concluded that the restriction to a
very fine time grid can be relaxed.

Now, since the EM is chosen, the parametric study can be conducted for the important parameters of
model. The reliability and efficiency of the average reduced model are evaluated with STS RKL scheme.
The total simulation time for the first part of the study is taken as T = 100 days. The results are
compared for four τ = [ 6, 12, 24, 48 ] h averaging periods and different ∆ t time-step sizes. The Figure 6
illustrates the evolution of the global relative error and computational time. It can be seen that the
optimal time-step is ∆ t = 1 h, where the errors for both temperature and the heat flux are stable.
When time-step is more than 5 h, the error grows sharply. In terms of τ the time-averaging period size, it
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Figure 4. ARM results obtained with empirical models I and II for u ′. Comparison of the temperature evolutions is
plotted for two weeks in the summer period (a) and at the end of the simulation time (b). The heat flux ( c) and the
conduction loads (d) computed with the ARM are presented with the complete model results as a reference solution.
Time-averaging period is τ = 12 h.

can be noticed that the error of the ARM for temperature, displayed in Figure 6 (a), is close to the error
of time-averaging the signal for ∆ t = 1 h (see Figure 5 (d)) . Hence, the error does not increase because
of ARM formulation. This point proves the reliability of the ARM, whereas the origin of the error might
arise both from time-averaging period and bigger time steps. It can be also noticed, that the lowest error
is reachable with the τ = 6 h as the boundary conditions (see Figure 5 (a)) are less smoothed and hence
the difference between complete and average reduced models is minimal.

However good results might look at a first glance, one should keep in mind the purpose of study. The
error for the temperature is out of tolerance level, while for the heat flux it is still tolerable. This type
of technique might be useful to make fast and efficient computations to evaluate the energy consumption
problems. One of the main values, conduction loads E

[
J.m−2 ], can be calculated for the whole year,

i.e. the total simulation time is T = 365 days, to see the impact of time-step and time-averaging sizes.
Figure 7 shows the example of such calculations. As can be seen, the size of the time-step ∆ t is more
important for more accurate results than the time-averaging size τ . Even with τ = 48 h and ∆ t = 1 h
one can get very close results to the reference. While, with τ = 12 h and ∆ t = 25 h the discrepancy is
obviously large. This can also be explained with higher errors of heat flux for bigger time-steps. Therefore,
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Figure 5. Full (a) and time-averaged boundary conditions (b, c), where τ is the time-averaging period and the error
η∞ between them (d).

as a result of this study, it can be concluded that for fast and accurate simulations the most tolerable
time-step size is ∆ t = 1 h and time-averaging period τ = 12 h.

The comparison of complete and average reduced models results are displayed in Table 2. Following

CM: ∆ t = 1 h ARM: ∆ t = 1 h and τ = 12 h

η T∞
[

%
]

2.1 × 10−2 1.8 × 10−2

η J∞
[

%
]

1.85 4.25

%CPU
[

%
]

51.7

Table 2. The comparison of complete and average reduced model results.

the above conclusion, average reduced model results are shown only for ∆ t = 1 h and τ = 12 h. It
can be seen that the reduction of the computational time is almost 50 % for the same level of error. The
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Figure 6. ARM: η∞ errors of temperature (a) and heat flux (b). CPU time to solve average reduced heat equation
( c).

next step is to study the application of the average reduced model to the problem of the heat and mass
transfer.

3 Heat and mass transfer
This section of the article is dedicated to study the reliability and efficiency of the ARM approach to

model the coupled heat and mass transfer. The section follows the same structure as the previous one.

3.1 Complete Model
The mathematical model can be expressed by the system of two coupled partial differential equations

with respect to two unknowns T
[

K
]
and θ

[
∅
]
[Mendes et al., 2002]. The equations are defined by the

spacial Ω x = [ 0, ` ] and time Ω t = [ 0, T ] domains, where `
[

m
]
is the thickness of a material and
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Figure 7. Conduction loads E
[

J/m2 ] calculated for the whole year with the time-step ∆ t = 1 h (a) and with the
time-averaging period τ = 12 h (b).

T
[

h
]
is the final time:

ρ 2 ·
∂θ

∂t
= ∂

∂x

(
D θ ·

∂θ

∂x
+ DT ·

∂T

∂x

)
, (17a)

cT ·
∂T

∂t
= ∂

∂x

(
kT ·

∂T

∂x

)
+ L ◦12 ·

∂

∂x

(
kTM ·

∂θ

∂x

)
, (17b)

where ρ 2
[

kg.m−3 ] is the specific mass of liquid water, D θ ( θ )
[

m 2. s−1 ] is the diffusion coefficient
under the moisture gradient, DT

[
m 2. s−1.K−1 ] is the diffusion coefficient under the temperature

gradient, cT
[

J.m−3.K−1 ] is the heat storage coefficient, kT
[

W.m−1.K−1 ] is the thermal conductivity
of the material, L ◦12

[
J. kg−1 ] is the latent heat of vaporization, and kTM

[
kg.m−1. s−1 ] is the vapor

transfer coefficient under the moisture gradient. The temperature of a material at surfaces is measured
during the experiment. Therefore, a Dirichlet–type of boundary conditions are imposed for temperature
and moisture content:

T (x = { 0, ` } , t ) = T L,R
∞ ( t ) , θ (x = { 0, ` } , t ) = θL,R∞ ( t ) ,

where ` [m] is the thickness of the wall and superscripts L and R correspond to the external (x = 0)
and internal (x = `) boundary conditions, respectively. For the initial conditions, the moisture level and
temperature within the material are considered to be uniform. As it was done for the heat transfer, it is
interesting to observe the total output flux, which can be defined as follows:

J qm
def:= J q + Jm . (18)

where J q is given in Eq. (2) and

Jm
def:= − L 1 2 · kTM ·

∂θ

∂x

∣∣∣
x = `

.

Another important result to observe is the conduction loads E
[

J.m−2 ]:
E =

∫ t 2

t 1

J qm d t , (19)

where ( t 2 − t 1 ) is equal to one month. In addition to those values, also the standard thermal resistance
of the material, denoted as R o, is computed:

R o
def:= `

kT ( θ = 0 ) .
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It is compared to the effective averaged thermal resistance with the total output flux :

R
def:=

∫ t 2

t 1

∣∣∣∣∣ T (x = `, t )− T (x = 0, t )
J qm

∣∣∣∣∣d t , (20)

where ( t 2 − t 1 ) is equal to one day.
The model (17) is solved in its dimensionless form and is written for moisture content – v and temperature
– u as:

∂v

∂t ?
= FoM ·

∂

∂x ?

(
D ?
θ ( v ) · ∂v

∂x ?
+ γ ·D ?

T ·
∂u

∂x ?

)
, (21a)

c ?T ( v ) · ∂u
∂t ?

= FoT ·
(

∂

∂x ?

(
k ?T ( v ) · ∂u

∂x ?

)
+ δ · ∂

∂x ?

(
k ?TM ·

∂v

∂x ?

))
, (21b)

where the superscript ? represents a dimensionless value of a variable.
The dimensionless material properties D ?

θ ( v ), c ?T ( v ) and k ?T ( v ) are taken as the moisture content
dependent first order polynomials:

D ?
θ : v 7→ d 1 + d 0 · ( v − v 0 ) , c ?T : v 7→ c 1 + c 0 · v , k ?T : v 7→ k 1 + k 0 · v ,

where d 0, d 1, v 0, c 0, c 1, k 0 and k 1 ∈ R. Dimensionless D ?
T and k ?TM are taken as constant values, i.e.

independent from temperature or moisture content. The initial conditions at t ? = 0 are u 0 = v 0 = 1
for ∀x ? ∈

[
0 , 1

]
. The boundary conditions at the surfaces x ? = { 0, 1 } are defined as:

u (x = { 0, 1 } , t ? ) = uL,R∞ ( t ? ) , v (x = { 0, 1 } , t ? ) = v L,R∞ ( t ? ) .

More information about formulation of the dimensionless model can be found in the previous work [Ab-
dykarim et al., 2019b].

3.2 Average Reduced Model
Following the same methodology, presented in the Section 2.2, this section demonstrates the derivation

of the ARM for heat and mass transfer. The only added difference is the pair of empirical models for
u′ ( P u, x, t ) and v′ ( P v, x, t ). In the following, the methodology of the Section 2.2.1 is extended and
applied to the model (21).

3.2.1 Obtaining an ARM
Solutions for the temperature and moisture content equations are taken as a sum of the time-averaged

and fluctuating values:

∂ ( v + v′ )
∂t ?

= FoM ·
∂

∂x ?

(
D ?
θ ( v + v′ ) · ∂ ( v + v′ )

∂x ?
+ γ ·D ?

T ·
∂ (u + u′ )

∂x ?

)
,

(22a)

c ?T ( v + v′ ) · ∂ (u + u′ )
∂t ?

= FoT ·
(

∂

∂x ?

(
k ?T ( v + v′ ) · ∂ (u + u′ )

∂x ?

)
+ δ · ∂

∂x ?

(
k ?TM ·

∂ ( v + v′ )
∂x ?

))
.

(22b)

One can consider each equation separately. The Eq. (22a) is averaged as a reduced model in the following
way:

∂ v

∂t ?
+ ∂ v′

∂t ?
= FoM ·

∂

∂x ?

((
d 1 + d 0 · ( v + v′ − v 0 )

)
·
(
∂ v

∂x ?
+ ∂ v′

∂x ?

)
+ γ ·D ?

T ·
(
∂ u

∂x ?
+ ∂ u′

∂x ?

))
,

= FoM ·
∂

∂x ?

(
d 1 ·

∂ v

∂x ?

)
+ FoM ·

∂

∂x ?

(
d 0 · v ·

∂ v

∂x ?

)
+ FoM ·

∂

∂x ?

(
d 0 · v′ ·

∂ v

∂x ?

)

− FoM ·
∂

∂x ?

(
d 0 · v 0 ·

∂ v

∂x ?

)
+ FoM ·

∂

∂x ?

(
d 1 ·

∂ v′

∂x ?

)
+ + FoM ·

∂

∂x ?

(
d 0 · v ·

∂ v′

∂x ?

)
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+ FoM ·
∂

∂x ?

(
d 0 · v′ ·

∂ v′

∂x ?

)
− FoM ·

∂

∂x ?

(
d 0 · v 0 ·

∂ v′

∂x ?

)

+ FoM ·
∂

∂x ?

(
γ ·D ?

T ·
(
∂ u

∂x ?
+ ∂ u′

∂x ?

))
,

after applying the averaging rules one obtains next results:

∂ v

∂t ?
= FoM ·

∂

∂x ?

(
D ?
θ ( v ) · ∂ v

∂x ?
+ γ ·D ?

T ·
∂ u

∂x ?

)
+ S v (x, t ) ,

where
S v (x, t ) def:= FoM ·

∂

∂x ?

(
d 0 · v′ ·

∂ v′

∂x ?

)
. (23)

After almost same manipulations, the Eq. (22b) is written as:

c ?T ( v ) · ∂ (u )
∂t ?

= FoT ·
(

∂

∂x ?

(
k ?T ( v ) · ∂ u

∂x ?

)
+ δ · ∂

∂x ?

(
k ?TM ·

∂ v

∂x ?

))
+ Su (x, t ) ,

where
Su (x, t ) def:= FoT ·

∂

∂x ?

(
k 0 · v′ ·

∂ u′

∂x ?

)
− c 0 · v′ ·

∂ u′

∂t ?
. (24)

The boundary conditions are averaged as follows:

u (x = { 0, 1 } , t ? ) = u∞
L,R ( t ? ) , v (x = { 0, 1 } , t ? ) = v∞

L,R ( t ? ) .

As can be seen, the system to be solved has the same shape with added source terms, given in Eqs. (23)
and (24), which are dependent only on space x and time t variables.

3.2.2 Empirical Model of high frequency values
Empirical models for the heat and mass transfer are chosen following the same methodology, described

in the Section 2.2.2. One presents fluctuating values for temperature and moisture content in general
mathematical models in forms as:

u ′ : ( P u, x, t ) 7→ f ( P u, x, t ) , v ′ : ( P v, x, t ) 7→ g ( P v, x, t ) , (25)

where P u and P v are sets of parameters. The functions f ( · ) and g ( · ) should be designed in such a
way, that the averaging of them should be in accordance with Eq. (7):

f ( · ) = 0 , g ( · ) = 0 .

It should be noted that the offline procedure is performed to the both values simultaneously. The calcu-
lation of an error εuv2 , which needs to be optimized, is adapted as:

εuv2 (x ) def:= ωu · εu2 + ω v · ε v2 , (26)

where

εu2 (x ) def:=
∣∣∣∣ u ref (x, t ) − ũ (x, t )

∣∣∣∣
2 , ε v2 (x ) def:=

∣∣∣∣ v ref (x, t ) − ṽ (x, t )
∣∣∣∣

2 ,

are errors of each transfer and

ωu
def:= 1

max {u ref (x , t ) } − min {u ref (x , t ) } , ω v
def:= 1

max { v ref (x , t ) } − min { v ref (x , t ) } ,

are weights for each error in order to eliminate the scaling differences.
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3.3 Extension of the STS method to a coupled system of nonlinear equations
In order to discretize the system of equations (21) the STS RKL method is written in the same way

as Eq. (13) but with vector notation:

u k+1 = PN S

(
∆ t S, A

)
· u k , (27)

where u def:=
(
u 1, u 2, . . . , un

)
is the vector, which includes all n variables, A is the discretization matrix

and ∆ t S is the super-time-step. The value for the ∆ t S should be found with corresponding ∆ t ?exp the
time-step for the Euler explicit scheme, which must satisfy the CFL stability condition of the whole
system of equations. More details on how to obtain the super-time-step can be found in previous works
[Abdykarim et al., 2019a,b].

3.4 Case study
This section is aimed to analyze the reliability and fidelity [Clark and Kavetski, 2010, Kavetski and

Clark, 2010] of the ARM for heat and moisture transfer. For this purpose, one needs to follow the
methodology starting with the offline procedure. The latter provides parameters for empirical model
candidates. Based on observations of an error and a computational time, the most suitable empirical
model shall be chosen. After that, the online procedure is carried out for a longer simulation time. A
parametric study, in comparison with the complete model, helps to identify the optimal pair of time-
averaging period and time-step sizes. Later, those parameters are implemented into the ARM to perform
comparison with the experimental observations. The data is obtained in investigations for drying of a
rammed earth wall [Chabriac, 2014, Soudani et al., 2016, 2017] and the period of two years is observed.
When fidelity of the model is proved, the ARM is used to predict the physical performance of the studied
wall.

3.4.1 Presentation of the case study
The drying of a rammed earth wall during its first year after installation is simulated. The experimental

data is obtained from the observations of a house located in Saint-Antoine-l′Abbaye, in Isère, South-
Eastern France [Soudani et al., 2017]. In this house, several walls are built with the rammed earth (RE)
material, and for the sake of clarity only the South wall data is taken in this study. One-dimensional

(a)
(b)

Figure 8. House in Saint-Antoine-l’Abbaye (a) and sensors’ locations in the wall (b) [Soudani et al., 2017].

simulations are executed for the RE wall `RE = 0.3 m in width. The study is focused on the phenomena
inside the material. It should be noted that the variations of the temperature and moisture content
are measured at 10 cm from the inside and outside surfaces of the wall (see Figure 8 (b)). Therefore,
the boundary conditions are taken as Dirichlet–type for the shorter width of a wall ( 0.3 m instead of
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0.5 m ). This also permits to avoid additional uncertainties in the physical model on the surface transfer
coefficients appearing in Robin–type boundary conditions. Total simulation time is τ = 730 d , i.e.
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Figure 9. External and internal boundary conditions together with the experimental data for the middle of
the material during two years after installation.

the two years after installation of the wall (starts from July). The material properties for the RE are
obtained in the previous works [Soudani et al., 2014, 2016, 2017]. The specific heat capacity and dry
mass are equal to c 0 = 648

[
J. kg−1.K−1 ] and ρ 0 = 1730

[
kg.m−3 ] respectively. The diffusion

coefficients under temperature and moisture gradient are equal to DT = 10−10 [
m 2. s−1.K−1 ] and

D θ ( θ ) = 10−7 + 2.4 · 10−9 · ( θ − 0.1 )
[

m 2. s−1 ]. The function of the thermal conductivity kT as
a function of θ is expressed as kT ( θ ) = 0.6 + 5 · θ

[
W.m−1.K−1 ]. The value of the vapor transfer

coefficient under a moisture gradient is equal to kTM = 4 · 10−18 [
kg.m−1. s−1 ]. The values of the

thermo-physical constants are as follows: c 2 = 4185.5
[

J.m−3.K−1 ], L ◦12 = 2.5 · 10 6 [
J. kg−1 ],

ρ 2 = 10 3 [
kg.m−3 ], R 1 = 2 · 10−3 [

J. kg−1.K−1 ]. The initial conditions are θ i = 0.53
[
∅
]
and

T i = 300.15
[

K
]
.

3.4.2 Offline procedure: candidates for empirical models
The empirical models (EM) to describe the fluctuating values for heat and mass transfer are inspired

from the study in the Section 2 and an analytical solution of diffusion equation [Ozisik, 2002]. The
proposal is made for three EMs. As boundary conditions (see Figure 9) for the moisture content are much
less fluctuated, the EM of the mass transfer is based on analytical solution and is the same for all three
models. Let us define the EM of the mass transfer as:

v ′ : (x, t ) 7→
(
v 0 + v 1 · cos

(
x

x v

)
+ v 2 · sin

(
x

x v

))
· sin

(
2π
τ
· t

)
, (28)

where ( v 0, v 1, v 2, x v ) ∈ R 4 are parameters to be estimated and optimized for each time-averaging
period τ in offline procedure. In order to model the fluctuated values of the heat transfer three different
EMs is proposed. The first candidate to model the temperature fluctuating values is based on analytical
solution too:

u ′ : (x, t ) 7→
(
u 0 + u 1 · cos

(
x

xu

)
+ u 2 · sin

(
x

xu

))
· sin

(
2π
τ
· t

)
, (29)

where (u 0, u 1, u 2, xu ) ∈ R 4 are parameters to be optimized. So, the Model I is a set of Eq. (28) and
Eq. (29). The second model for the temperature is based on the study in Section 2.4.2:

u′ : (x, t ) 7→ e
−

(
x − x o

)
` o · sin

(
2π
τ
· t

)
, (30)
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where the parameters (x o, ` o ) ∈ R 2 are also optimized according to the period τ . The Model II is a
pair of Eq. (28) and Eq. (30). The third candidate for u′ is taken as the sum of two exponentials:

u′ : (x, t ) 7→
(
u 1 · e

−

(
x − x a

)
` a + u 2 · e

−

(
x − x b

)
` b

)
· sin

(
2π
τ
· t

)
, (31)

where the parameters (u 1, x a, ` a, u 2, x b, ` b ) ∈ R 6 are optimized and thus, the Model III is a combi-
nation of Eq. (28) end Eq. (31). By following the same methodology as in the Sections 2.4.2 and 3.2.2,

Table 3. Parameters of empirical model pairs in relation to time-averaging periods τ = [ 6, 12, 24, 48 ] h.

M I v ′ u ′

τ v 0 v 1 v 2 x v u 0 u 1 u 2 xu

6 8.2 × 10−3 −8.3 × 10−3 2.6 × 10−4 2.9 × 10−2 6.4 × 10−3 −4.7 × 10−3 −5.8 × 10−3 1.6

12 1.1 × 10−2 −1.1 × 10−2 −5.7 × 10−2 −1.3 × 10−2 6.6 × 10−4 5.6 × 10−3 −3.1 × 10−3 10

24 −1.9 × 10−2 1.9 × 10−2 4.9 × 10−3 5.8 × 10−1 −4.3 × 10−3 8.1 × 10−3 −2.7 × 10−3 6.2 × 10−2

48 2.5 × 10−2 −2.3 × 10−2 −1.5 × 10−1 3 × 10−2 −2.1 × 10−2 1.6 × 10−2 1.9 × 10−2 2.1

M II v ′ u ′

τ a 0 a 1 b 1 w x o ` o

6 4.2 × 10−3 −4.6 × 10−3 2.4 × 10−2 4.6 × 10−2 0.9 −11.2

12 2 × 10−4 7.6 × 10−5 −3.7 × 10−1 2.6 × 10−3 1.16 −12.3

24 5.1 × 10−4 4.9 × 10−4 −4.1 × 10−1 4.9 × 10−3 0.45 −12.1

48 1.1 × 10−3 1.1 × 10−3 −3.5 × 10−1 1.3 × 10−2 1.48 −12.8

M III v ′ u ′

τ a 0 a 1 b 1 x v u 1 ` a u 2 ` b

6 −7.1 × 10−4 −4.3 × 10−5 7.1 × 10−4 3.1 −3.3 × 10−3 −9.5 × 10−1 2.5 × 10−3 1.1 × 10−3

12 1.6 × 10−2 −1.4 × 10−2 −8.3 × 10−3 −6.7 × 10−3 −9.3 × 10−1 −10 9.2 × 10−1 −8.4

24 1.2 × 10−2 −1.1 × 10−2 −1.6 × 10−3 6.8 × 10−1 −8.1 × 10−3 −2.7 × 10−1 9.2 × 10−3 5.6 × 10−1

48 3.2 × 10−3 −9.5 × 10−4 −4.5 × 10−1 1 × 10−2 4.2 × 10−3 −2.6 × 10−1 −2.4 × 10−3 1.2

the optimization process is carried out for all three EM candidates. The simulation time is chosen as
T = 240 h. It should be noted that the offline procedures are run for each pair of models separately,
thereby the coefficients for v ′ (x, t ) in model (28) are different for each case. The parameters x a and x b
of the Model III are taken to be equal to zero. All optimized parameters of empirical models are collected
in the Table 3.

The Table 4 displays the errors ε 2 computed for the heat and moisture transfers separately as well as
the total error as in Eq. (26). In addition to that, % day

CPU the computational time ratio per day required by
each of the simulations is calculated as in Eq. (14). It can be clearly seen that the Model II is the fastest
performing candidate, while the error varies according to the time-averaging size τ . By comparing the
errors and computational time it can be concluded that the Model II presents the best compromise than
any other candidate.

3.4.3 Results and discussion for online procedure
On the importance of period τ and time-step size ∆ t. The chosen empirical Model II is now
implemented into online procedure. The next validation step is to discover the influence of important
parameters. For this purpose both complete and average reduced models are run for the simulation time
T = 150 d. The Figure 10 presents the η∞ errors and the computational time of ARM with different
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Table 4. Computational time and the errors ε 2 between simulation results of the dimensionless complete model and
average reduced models.

Model ε v2 [∅ ] εu2 [∅ ] εuv2 [∅ ] % day
CPU

τ = 6

M I 2.9 × 10−2 2 × 10−1 29.78 3.48

M II 8.2 × 10−2 2 × 10−1 30.55 3.04

M III 7.8 × 10−1 2 × 10−1 30.51 3.37

τ = 12

M I 9.6 × 10−2 1.01 148.06 3.17

M II 9 × 10−2 1.01 147.36 2.33

M III 5.4 × 10−1 1.43 215.91 2.59

Model ε v2 [∅ ] εu2 [∅ ] εuv2 [∅ ] % day
CPU

τ = 24

M I 1.4 × 10−1 7.9 × 10−1 117.47 2.26

M II 1.5 × 10−1 7.9 × 10−1 117.95 2.18

M III 1.5 × 10−1 8 × 10−1 118.37 2.37

τ = 48

M I 3.1 × 10−1 1.18 176.01 2.01

M II 2.7 × 10−1 1.18 175.61 1.95

M III 2.6 × 10−1 1.19 176.47 2.27

time-averaging periods. The errors are computed not only for various τ but also for the time-step ∆ t.
It can be seen that even with the time-step ∆ t = 5 h the global relative errors for temperature and
the moisture content remain in the tolerable range below 2 %. The simulations themselves take only few
minutes and the CPU time can be reduced for almost 100 times as the size of the time-step increases.
One can further observe the η∞ error of the output flux in Figure 10 (c). It can be seen that for the time-
step sizes ∆ t ∈ [ 1; 5 ] h the error is tolerable. Moreover, it can be observed that the most trustworthy
time-averaging period is still τ = 6 h as for the heat transfer case in the Section 2.4.3.

Comparison with experimental data. Based on the above study, as the next step, the performance
of the ARM is evaluated in comparison with the experimental data of two years [Soudani et al., 2017]. It
should be noted that the experimental data, used in the study, has not been compared to the numerical
results in its original publications. Therefore, it is important to determine the uncertainties of experimen-
tal measurements before starting any comparison with numerical simulations. The formula to compute
the uncertainty of a measurement is given below as [Taylor, 1997]:(

σ T, θm

) 2 =
(
σ T, θS

) 2
+
(
σ T, θP

) 2
, (32)

where σ T, θS are the accuracy of sensors used for the experiments and σ T, θP are the positioning sensitivities,
evaluated numerically. The former is relative to an absolute standard, so the values are calculated with
the characteristics of the sensor to measure water content Campbell CS616, with the accuracy of σ ? θS =
± 2.5 % of volumetric water content, and temperature sensors Campbell CS215, the accuracy of which is
σ ? TS = ± 1.5 % of temperature in ◦C:

σ θS = σ ? θS · θm , σ TS = σ ? TS · Tm , (33)

where θm and Tm are the data obtained from monitoring changes in the middle of a material. The latter
depends on the accuracy of a placement which can be taken as ∆xP = 0.5 cm and consequently the
uncertainty can be evaluated in the following way:

σ θP = ∂θ

∂x
· ∆xP , σ TS = ∂T

∂x
· ∆xP . (34)

Thereafter, corresponding uncertainty of measurement values for the water content and temperature are
determined with the following equalities:

θ±m = θm ± σ θm , T ±m = Tm ± σ Tm . (35)

The final simulation time is set as T = 730 days, i.e. two years. The fidelity of the ARM is now
evaluated by setting up the time-averaging period as τ = 6 h. The time-step size is ∆ t = 1 h for both
complete and average reduced models.
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Figure 10. Average reduced model in comparison with the complete model: η∞ errors of temperature (a), moisture
content (b) and total output flux ( c). CPU time to solve average reduced heat equation (d).

In Figures 11 (a) and (b) one can observe time evolutions of the temperature and moisture content
together with the uncertainty of measurements. The plots are given only for the last month of the period T
in order to show the graph in more details. It can be seen that the phenomena are modeled in accordance
with the general behavior. Moderate errors can be due to the lack of information about material properties
or other unnoticed phenomena, which are not included into the physical model. Nonetheless, the difference
in prediction of the moisture content is tolerable in a given configuration and scale of study. Further,
one can observe the Figures 11 (c) and (d). The distribution function f permits to determine whether
numerical results over or under predict the experimental data. It can be seen that the numerical models
slightly overestimate the experimental results for both phenomena. The discrepancy of function f for
temperature evolution computed with CM and ARM is due to averaging.

At this point, it is worth recalling the purpose of the given study. The above accuracy is obtained,
first of all, thanks to the Super–Time–Stepping (STS) numerical method, whose reliability is proved in
the previous works [Abdykarim et al., 2019b, Meyer et al., 2014] and can be seen in Figures 10 (a - b).
It can be observed, that the enlarged time-step sizes do not disturb the stability of results. So, the STS
method permits to overcome numerical restriction of the stability condition, while the physical restriction
to the time grid is relaxed with the ARM. The combination of those two methods allows to justify the
implementation of big time-steps as ∆ t = 1 h.

In order to further evaluate the efficiency of the ARM in relation to the complete model, the Table 5
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Figure 11. Uncertainty of measurements and time evolutions for the last month of the two years’ period of the
temperature (a) and mass content (b) in the middle of the wall in comparison with the experimental data with the
complete and average reduced models results with ∆ t = 1 h and τ = 6 h. The distribution functions f are
computed for the temperature ( c) and mass content (d).

is presented. The global relative error is in the same range for both CM and ARM with the time-step size
∆ t = 1 h. It can be seen that the predictions are more accurate for the heat transfer, the error being
smaller for CM. In terms of the CPU time, it is shown, that by maintaining the same order of the error, it
is possible to cut the computational effort by almost 74 %. Here it can be mentioned that initially the STS
numerical method itself allows to cut the computational effort in comparison to standard Euler explicit

scheme. The ratio %CPU = tRKL1
CPU
tEulerCPU

· 100 % = 34.8 %, i.e. saving of 65 %, according to previous work

dedicated to a study of the fidelity of the STS methods in application to heat and mass transfer phenomena
[Abdykarim et al., 2019b]. So, in addition to the advantages of the numerical method in comparison to
standard approaches, with the ARM it is possible to reach even faster computational efficiency. This
conclusion is supported with the ratio % day

CPU, which shows that simulation for one astronomical day can be
performed almost four times faster with the ARM being 1.4 [ s/d ] in contrast to 5.5 [ s/d ] of the complete
model.

Since fidelity of the numerical model is proved, it can be used in order to compute the physical values
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CM: ∆ t = 1 h ARM: ∆ t = 1 h and τ = 6 h

η T∞
[

%
]

7.2 × 10−3 7.9 × 10−3

η θ∞
[

%
]

4.8 × 10−2 4.8 × 10−2

% day
CPU [ s/d ] 5.5 1.4

%CPU
[

%
]

26.2

Table 5. The comparison of complete and average reduced model results.

such as conductions loads, given in Eq. (19) and thermal resistance, given in Eq. (20). These computations
are necessary for several reasons, including observations about the influence of the mass transfer on the
energy efficiency. Moreover, simulations can be performed efficiently and considerably fast as was shown
above. From the Figure 12 (a) one can observe that both complete and average reduced models can
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Figure 12. Conduction loads E
[

J/m2 ] (a) and the distribution functions f of the effective averaged thermal
resistance R (b) calculated for two years with the complete and average reduced models with ∆ t = 1 h and τ = 6 h.

predict the conductions loads E of the wall throughout two years. The predictions are accurate even with
the time step size ∆ t = 1 h for both models. The ARM is time-averaged with τ = 6 h as was discussed
earlier. Instead of plotting the time evolution of the thermal resistance, the distribution functions f of
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the effective averaged thermal resistance R in comparison with the standard thermal resistance of the
material R o is presented. One of the purposes of such comparison lies in the fact, that the value of R o is
used in regulatory standards. As the R o is usually evaluated based on constant material properties, there
might be some overestimations. The latter can lead to misinterpretations of the general behavior of the
wall and cause any further related difficulties. Moreover, the given case study concerns the rammed earth
wall which passes through the drying process at the beginning of installation. Therefore, the thermal
resistance needs to be compared for each year separately. From the Figures 12 (b - c) it can be seen that,
in general, the overestimation of the phenomenon is observed. These results coincide with the previous
observations for heat and mass content. Additionally, the discrepancy with the standard value is less for
the second year. This can be explained with the more stable conditions of the wall itself. To sum up,
this study has shown that the time-averaging methodology is relevant and applicable to perform efficient
studies of complex physical phenomena.

4 Conclusion
Various simulation tools are widely used to predict the behavior of building components. However,

the classical numerical approaches have certain limitations mainly based on the choice of a computational
time grid. One can distinguish two types of restrictions as a numerical and physical. The former one
can be relaxed with innovative numerical methods, one of them being the Super–Time–Stepping (STS)
[Abdykarim et al., 2019b, Alexiades et al., 1996, Meyer et al., 2014]. The design of the method permits to
attain explicit formulation while overcoming stability restriction of standard ones. In this way, a tolerable
accuracy can be reached with a relatively scarce time grid. Nonetheless, the physical restriction limits
the choice of a big time-step size. This article proposes the methodology to overcome it.

The general idea is to relax the physical restriction on a time scale imposed by a characteristic time
of boundary conditions. The signal is time-averaged with certain periods and further implemented into
simulations. Application of an averaged signal allows to overcome the requirement of a fine time grid to
model the highly fluctuating boundary conditions. The solution itself is decomposed as a sum of averaged
values and high frequency fluctuating values. Such methodology is called as Average Reduced Model
(ARM).

ARM is tested and studied for a heat diffusion equation and for a coupled heat and mass transfer.
Each of the phenomena is discussed separately in the Sections 2 and 3, which follow the similar structure.
After describing the complete mathematical model in both physical and dimensionless formulations, the
methodology of the ARM is presented. The latter is given in more details for the case of the heat diffusion
equation. The numerical method, implemented in this article, is the STS Runge–Kutta–Legendre
method of the first order [Abdykarim et al., 2019b, Meyer et al., 2012]. Case studies are divided into
offline and online procedure parts, that enables to understand the advantages of the ARM.

The results of the case studies, presented in the Sections 2.4 and 3.4, show benefits of the ARM.
First of all, it is proved that the methodology is accurate and reliable to model both simple and coupled
phenomena. In addition to that, the physical phenomena such as heat flux, conduction loads and thermal
resistance can be predicted accurately for long-term studies. Secondly, the computational effort can be
cut considerably. It is worth mentioning that the numerical scheme itself permits to save almost 65 % of
the CPU time in comparison to standard explicit scheme [Abdykarim et al., 2019b]. In this article, it is
shown that the ARM permits to obtain additional CPU time savings, summing to 50 % for heat transfer
and almost 74 % for heat and mass transfer. The efficiency of the ARM to model complex phenomena is
proved by its ability to preserve the tolerable rate of error in a much shorter computational time. Lastly,
the time-averaging of boundary conditions and their consequent implementation into the numerical model
with the time-step size ∆ t = 1 h justifies the initial purpose of the methodology. It can be clearly seen,
that it is possible to overcome the restriction on the time-step size not only numerically and also physically
without losing important information.

To sum up, the article proposes substantial study of an innovative methodology which confirms the
possibility to implement scarce time grids into numerical models of heat and mass transfer in building
porous material without breaking the physical reality of the phenomena. Further studies should be carried
out in higher dimensions, for different materials and boundary conditions.
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