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Abstract

Within the framework of building energy assessment, this article proposes to use a derivative
based sensitivity analysis of heat transfer models in a building envelope. Two, global and local,
estimators are obtained at low computational cost, to evaluate the influence of the parameters
on the model outputs. Ranking of these estimators values allows to reduce the number of model
unknown parameters by excluding non-significant parameters. A comparison with variance and
regression-based methods is carried out and the results highlight the satisfactory accuracy of
the continuous-based approach. Moreover, for the carried investigations the approach is 100
times faster compared to the variance-based methods. A case study applies the method to a
real-world building wall. The sensitivity of the thermal loads to local or global variations of
the wall thermal is investigated. Additionally, a case study of wall with window is analyzed.

Key words: heat transfer; sensitivity analysis; continuous derivative based approach;
parameter estimation problem ; Dufort–Frankel numerical scheme; sensitivity coefficients

1 Introduction
Within the context of environmental sustainability, retrofit solutions help to decrease the heating
and cooling demand of building stocks. In order to evaluate the efficiency of retrofit actions, engi-
neers usually conduct energy audits of buildings. Numerical simulations are often used to analyze
the energy performance of buildings according to the retrofit scenarios. However, despite the recent
advances in building energy simulation programs, the gap between the actual and the predicted
energy consumption still remains a challenging issue. In existing buildings, this discrepancy may
arise from uncertainties in the thermophysical properties of building materials [1]. The properties
change due to (i) time degradation, (ii) exposure to weather conditions, and (iii) traditional pro-
cesses of construction. Therefore, the estimation of the actual material properties will improve the
accuracy and reliability of building simulation software.
It is essential to have models that evaluate the impact of input parameters variability on the phys-
ical phenomena predictions. It enables to assess the sensitivity of the important fields such as
the temperature, the heat flux or the thermal conduction loads according to uncertain material
properties. This is particularly relevant in the context of inverse problems and the objective of
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retrieving the unknown parameters. The number of parameters to be estimated using in-situ mea-
surement can be reduced by focusing on the most influencing ones. Besides, it reduces significantly
the computational requirements of the inverse problems [2].
The use of sensitivity analysis is an attractive approach to highlight the main parameters and
their impact on the interesting model outputs. In the literature, there are several studies that
applied sensitivity analysis methods for building energy simulation. An extensive overview is given
in [3]. Among others, uncertainty analysis is carried out in [4] to assess the influence of brick
material properties on the cooling energy demand of a building. In [5] the design variables that have
the most impact on the building energy performance of a typical office building are determined.
Sensitivity analysis for an office building in Denmark is conducted in [6] to identify the most
important design parameters for heating, cooling, and total building energy demand. Multiple
building parameters are selected to examine their impact on annual building energy consumption,
peak design loads, and building load profiles of office buildings in Hong Kong in [7]. An airflow
network model [8] is characterized through the combination of the Morris method and the Sobol
method: this approach reduced the dimensionality of the model in a more informative way than the
standard methods. Uncertainty propagation from over 1000 parameters is studied by simulation–
based sensitivity analysis in [9] to identify the most influential parameters using support vector
regression.
One may note that variance–based sensitivity analysis methods are the most popular choice quan-
tifying the influence of a parameter, while the Sobol sensitivity indices are often used as reference
values [10]. However, the variance–based methods require a high number of model evaluations. To
calculate sensitivity indicators of M parameters through variance decomposition, one may need to
make O ( 100 · M ) model evaluations [11]. It can be remarked that a promising method, called the
derivative based approach, has not been investigated yet for building energy simulation [12–15]. It
is based on the computation of the so-called sensitivity coefficients obtained from direct differenti-
ation of the governing equations according to the input parameters. A global estimator has been
proposed and linked to the total Sobol indices by Kucherenko and Sobol in [12]. Several
studies [16–18] across different disciplines suggest the efficiency of such approach. Thus, this article
aims at investigating the derivative based approach to carry out sensitivity analysis of the heat
transfer models in buildings components based on the variability of several input parameters. Its
efficiency in terms of accuracy and computational cost is assessed through a comparison to standard
methods.
The article is organized as follows. Section 2 presents the governing equations and the methodology
for computing the sensitivity coefficients using the continuous approach. The discrete differential
approach from the literature is also referred to. In Section 3, a case is considered to validate the
approach using a reference solution. Last, in Section 4, a detailed case study of a wall is analyzed.
The issue is to determine the influence of the thermal conductivity or volumetric capacity of each
layer of the wall on the thermal loads. Additionally, in Section 4.3, an envelope composed of a
single glazed window and a wall, is considered, and influence of wall and window properties on the
overall energy performance is studied.
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Figure 1. Illustration of the wall construction.

2 Methodology

2.1 Physical model
The physical problem considers one–dimensional heat conduction transfer through a building wall.
The wall is composed of N layers, and each layer differs from the other by its thermal properties
and thickness, as shown in Figure 1. The temperature in the wall is defined on the domains
Ωx : x ∈ [ 0 , L ] and Ω t : t ∈ [ 0 , τmax ] , where L [ m ] is the length of the wall and τmax [ s ] is the
duration of the simulation:

T : [ 0 , L ] × [ 0 , τmax ] −→ R .

The mathematical formulation of the heat transfer process is given as:

c · ∂T
∂t

= ∂

∂x

 k · ∂T
∂x

 , (1)

where c [ J/(m3 · K) ] is the volumetric heat capacity, or c = ρ · c p , corresponding to the product
between the material density ρ [ kg/m3 ] and the specific heat c p [ J/(kg · K) ], which varies depending
on space:

c : x 7−→
N∑
i=1

c i · ϕ i (x ) ,

where
{
ϕ i (x )

}
i = 1 ,... ,N

are piecewise functions and can be written as:

ϕ i (x ) =


1 , x i−1 6 x 6 x i , i = 1 , . . . , N ,

0 , otherwise ,

where x i−1 and x i are the left and right interfaces of layer i, respectively. A similar definition is
assumed for the thermal conductivity k [ W/(m · K) ]:

k : x 7−→
N∑
i=1

k i · ϕ i (x ) .
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Therefore, equation (1) becomes:

N∑
i=1

c i · ϕ i (x ) · ∂T
∂t

= ∂

∂x

 N∑
i=1

k i · ϕ i (x ) · ∂T
∂x

 . (2)

The heat balance on the exterior wall includes the convective exchange between the air outside and
the wall surface, as well as the absorbed radiation. It can be written as:

k · ∂T
∂x

= hL ·
(
T − T L

∞ ( t )
)
− α · q L∞ ( t ) , x = 0 , (3)

where T L
∞ [ K ] is the temperature of the outside air that varies over time, hL [ W/(m2 · K) ] is the

exterior convective heat transfer coefficient, and q∞ [ W/m2 ] is the total incident radiation, which
includes the direct, diffuse, and reflexive radiations, and α is the surface absorptivity. The infrared
radiation and solar radiation passing through the windows are not considered. The interior heat
balance consists of the convective exchange between the air inside T R

∞ [ K ] and the wall surface, and
is given by the following expression:

k · ∂T
∂x

= − hR ·
(
T − T R

∞ ( t )
)
, x = L , (4)

where hR [ W/(m2 · K) ] is the convective heat transfer coefficient on the inside boundary. The initial
temperature in the wall is given according to:

T = T 0 (x ) , t = 0 , (5)

where the initial temperature distribution will be set in case studies. The outputs of the given
physical model are twofold. First, the heat flux j [ W/m2 ] is computed according to:

j = −

 k · ∂T
∂x

 ∣∣∣∣∣∣
x = L

. (6)

In addition, the thermal loads E [ W · s/m2 ] are computed by integrating the heat flux at the inner
surface over the chosen time interval [19, 20]:

E =
∫ t + δ t

t
j( τ ) dτ , (7)

where δ t is a time interval such as day, week, or month.
The dimensionless presentation of these equations is illustrated in Appendix A. All methodology,
described in further sections, is presented using dimensionless variables. They are indicated by a
superscript ?.

2.2 Sensitivity analysis
The aim of this section is to describe the methods that identify how the variation in the model
parameters affects the variation in the model output. In case of the model describing the heat
conduction transfer in the building wall, several outputs can be assessed. The temperature field T
is obtained directly from the model. Other variables of interest can be computed using T , such as

4 / 44



An efficient sensitivity analysis for energy performance of a building envelope: a continuous derivative
based approach

the heat flux j and the thermal loads E. Further, let us operate with the dimensionless temperature
u. In the framework of sensitivity analysis, the variable u is declared as a function of spatial and
time coordinates

(
x ? , t ?

)
as well as the parameter p ? . In our case, the parameter belongs to

the set of sensitive parameters
{
k ?i , c

?
i

}
i = 1 ,... ,N

. Thus, one may formulate the temperature as
follows:

u : Ωx × Ω t × Ω p −→ R(
x ? , t ? , p ?

)
7−→ u

(
x ? , t ? , p ?

)
.

The sensitivity of the temperature to an individual parameter p is defined as the partial derivative
of the model output and called the sensitivity coefficient X p ? [21]:

X p ? :
(
x ? , t ? , p ?

)
7−→ ∂u

∂p ?
.

High values of X p ? indicate that u is more sensitive to p ? , i.e., small changes in p ? cause large
changes in the model output.
The key to estimate X p ? is the calculation of partial derivatives. The partial derivative ∂u

∂p ?
can be

found either through discrete approximation or through the direct differentiation of model–governing
equations. These procedures are described in the following parts.
In addition, to explore the parameter domain, its discretization is proposed. Let us discretize
uniformly the interval on which parameter p ? is defined. Thus, one may obtain the following
definition:

Ω p =
{
p ?r : p ?r − p ?r−1 = δp ?

}
r = 1 ,... ,N p

,

where δp ? is a discretization step and N p is the number of parameters in the set.

2.2.1 Discrete approach

The partial derivative ∂u

∂p ?
can be expressed through the forward difference approximation:

X p ? = u ( p ? + ∆p ? ) − u ( p ? )
∆p ? + O

(
∆p ?

)
, (8)

or through the backward difference approximation:

X p ? = u ( p ? ) − u ( p ? − ∆p ?)
∆p ? + O

(
∆p ?

)
, (9)

where ∆p ? is a small change in parameter p ?. These approximations require only two model
evaluations for the different values of the parameter. However, the use of a discrete approach
involves the step–size dilemma, as use of the small step size ∆p ? may increase the round-off error
while decreasing the truncation error [22]. Therefore, the value of ∆p ? should be carefully chosen.
The formulation of an importance parameter factor based on the discrete partial derivative can be
found in [23].
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The aforementioned partial derivative estimators have a first–order accuracy. One may also compute
the sensitivity coefficients with higher–order accuracy, which may demand more model output
evaluations. The second- and higher–order discrete approximations are presented in Appendix B.
The discrete approximation of the partial derivative ∂u

∂p ?
has several advantages such as an easy

implementation and a low computational cost. To compute all first–order sensitivity coefficients
for N parameters, only N + 1 model output evaluations are required using the classic forward and
backward approaches. However, an inappropriate choice of the step size value ∆p ? may yield inac-
curate results and lead to wrong conclusions about parameter importance. To avoid this problem,
a continuous approach is suggested.

2.2.2 Continuous approach using the sensitivity equations

The continuous approach to estimate the partial derivative ∂u

∂p ?
assumes a direct differentiation of

model–governing equations [24]. Thus, sensitivity coefficients X p ? are obtained as a solution of a
differential equation also called a sensitivity equation, which is a result of partial differentiation of
a model equation. To illustrate this technique on the heat transfer model, let us find the sensitivity
equations for the parameters

{
k ?1 , c

?
1

}
. The following new variables are presented:

X k ?
1

:
(
x ? , t ? , k ?1

)
7−→ ∂u

∂k ?1
,

X c ?
1

:
(
x ? , t ? , c ?1

)
7−→ ∂u

∂c ?1
.

The differentiation of Eq. (30) with respect to parameter k ?1 provides the following differential
equation for X k ?

1
:

∂X k ?
1

∂t ?
= Fo
c ?
· ∂

∂x ?

(
∂k ?

∂k ?1
· ∂u
∂x ?

+ k ? ·
∂X k ?

1

∂x ?

)
, (10)

where

∂k ?

∂k ?1
=


1 , 0 6 x < x 1 ,

0 , otherwise .

Similarly, the following sensitivity equation is obtained for X c ?
1
:

∂X c ?
1

∂t ?
=− Fo

c? 2 ·
∂c ?

∂c ?1
· ∂

∂x ?

k ? · ∂u
∂x ?

 + Fo
c ?
· ∂

∂x ?

k ? · ∂X c ?
1

∂x

 , (11)

where

∂c ?

∂c ?1
=


1 , 0 6 x < x 1 ,

0 , otherwise .
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For the sake of compactness, the equations of the second–order sensitivity coefficients are demon-
strated in Appendix C. These sensitivity coefficients can also be used to measure how the variation
of the model parameters will impact other model outputs such as the heat flux and the thermal
loads. Let us provide the sensitivity equations of the heat flux sensitivity coefficients:

∂j ?
∂k ?1

= −

 ∂k ?

∂k ?1
· ∂u
∂x ?

+ k ? ·
∂X k ?

1

∂x ?

 ∣∣∣∣∣∣
x ? = x ?

s

, (12)

∂j ?
∂c ?1

= −

 k ? · ∂X c ?
1

∂x ?

 ∣∣∣∣∣∣
x ? = x ?

s

, (13)

∂2j ?

∂k ?1
2 = −

 ∂ 2 k ?

∂ k ? 2
1
· ∂u
∂x ?

+ 2 · ∂k
?

∂k ?1
·
∂X k ?

1

∂x ?
+ k ? ·

∂X k ?
1 k

?
1

∂x ?

 ∣∣∣∣∣∣
x ? = x ?

s

, (14)

∂2j ?
∂c ? 2

1
= −

 k ? · ∂X c ?
1 c

?
1

∂x ?

 ∣∣∣∣∣∣
x ? = x ?

s

, (15)

∂2j ?
∂k ?1 ∂c

?
1

= −

 ∂k ?

∂k ?1
·
∂X c ?

1

∂x ?
+ k ? ·

∂X k ?
1 c

?
1

∂x ?

 ∣∣∣∣∣∣
x ? = x ?

s

, x ?s ∈ { 0 , 1 } . (16)

Finally, the integration of the heat flux sensitivity coefficients during a time period will provide
expressions to calculate the sensitivity coefficients for the thermal loads E ?.
The magnitudes of the sensitivity coefficients reflect how a parameter influences the chosen model
output. Low–magnitude values mean that a parameter does not have a strong impact on the output.
However, it is difficult to compare a parameter effect by considering only the sensitivity coefficients
values. It is important to define a variable importance measure, which quantifies a parameter effect
relative to others. The next section introduces various metrics that are used in the article.

2.2.3 Sensitivity coefficient metrics

To evaluate how a change in a parameter value contributes to the change in a model output, several
estimators of the individual parameter importance may be used. They include local and global
approaches. The local one, from a mathematical point of view, is defined as:

η p i

def:=

∫
Ω x

∫
Ω t

(
X p i

(χ , τ ) dτ
) 2

dχ
M∑

j = 1

∫
Ω x

∫
Ω t

(
X p j

(χ , τ ) dτ
) 2

dχ
, (17)

where X p i
is the sensitivity coefficient of the parameter p i obtained through the solution of the

corresponding sensitivity equation, and M is the number of input parameters, which influence the
output of the model. A large value of this metric means a significant influence on the output, while
a small value indicates the nonsensitive parameters. However, this quantity does not include a
variation over the parameter domain, therefore the metric η p i

can be used as the local estimator
only. It is defined as local since the parameter of interest p i remains constant.
Another important estimator, used for the derivative based approach, is the following:

ν p i

def:=
∫

Ωp

∫
Ω x

∫
Ω t

(
X p i

(χ , τ ) dτ
) 2

dχ dp .
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According to the results of Sobol in [12], this quantity verifies:

D tot
p i

6
1
π 2 ν p i

(18)

where D tot
p i

is the total partial variance. Additionally, the following approximation is also retrieved
from [12]:

D tot
p i
≈ 1

12 ν p i
. (19)

Last, we define the global metric:

γ p i

def:= ν p i

M∑
j = 1

ν p j

(20)

This metric is global since it examines the solution variations over an interval of variation of pa-
rameter p i .
Two properties of the global metric can be noted [25]. First, the following inequality is observed:

0 < γ p i
< 1 .

Then, the sum of the global metrics of each parameter is equal to unity:
M∑

j = 1
γ p j

= 1 .

2.2.4 Primary Identifiability for parameter estimation problem

The aforementioned metrics and sensitivity coefficients values are very efficient in the procedure of
the parameter estimation problem. Since it is a difficult optimization problem, whose computational
cost depends on the number of unknown parameters in a direct model. For example, in a wall
composed of four layers, to identify the thermal conductivity and the volumetric heat capacity
of each layer, theoretically, at least eight parameters should be estimated. Thus, it is of crucial
importance to decrease the number of uncertain model parameters. However, the parameters might
not be theoretically identifiable, lacking the uniqueness of the parameter set that may have produced
the measurements. Therefore, it is futile to try to estimate such parameters.
The use of sensitivity analysis is an attractive approach to address this issue. It highlights the main
parameters impacting on the output of interest of the model. Thus, the number of parameters to be
estimated can be reduced to a few numbers, and the computational cost of solving the parameter
estimation problem can be reduced. The sensitivity analysis also is a useful tool to arrange an
experimental set–up since measurements focus only on significant material properties. This no-
tion of primary identifiability is illustrated in Figure 2. The primary identifiability is a proposed
empirical concept that indicates which parameters are more valuable and have more influence on
the model output based on their sensitivity coefficients, and it comes before the theoretical and
practical identifiability analysis [26, 27]. It can be noted that the computation of the aforemen-
tioned metrics is directly included in the practical identifiability analysis in the framework of the
parameter estimation problem.
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Direct Problem

Figure 2. Scheme of the methodology of primary identifiability.

2.3 Taylor series expansion
Knowledge of the partial derivatives facilitates the approximation of the model output by utilizing
the Taylor series. Indeed, since we are in the context of the parameter estimation problem, the
model output can be represented in the neighborhood of the a priori values of parameters with
high accuracy. The Taylor approximation investigates how the respective model output changes
according to the variation in model parameters and analyzes the influence of the parameters. The
Taylor series expansion is used to predict how the temperature, the heat flux, and the thermal
loads vary according to the changes in the parameters (namely, the thermal conductivity or the
heat capacity). For the sake of compactness, expressions of the Taylor series expansion for the
temperature, the interior heat flux and the thermal loads are presented in Appendix D.

2.4 Numerical solution
After defining the governing and sensitivity equations, this section details the construction of the
numerical model. The latter aims at computing the solution and its variation through the sensitivity
coefficients. Let us discretize uniformly space and time intervals, with the parameters ∆x? and ∆t?,
respectively. The discrete values of the function u (x? , t? ) are defined as unj

def:= u (x?j , t?n ) , where
j ∈ { 1, . . . , N } and n ∈ { 1, . . . , Nt }. The solution u (x? , t? ) is obtained using the Dufort–
Frankel numerical scheme [28–30]. It is an explicit numerical scheme with a relaxed stability
condition. First, the numerical solution of the temperature is obtained. Next, in order to calculate
sensitivity coefficients efficiently, the direct differentiation of the discrete numerical solution is used.
Equations are differentiated according to the required parameter. In the end, the numerical model
is composed of six algebraic equations to be solved.
For the sake of compactness, the equations of the temperature and the sensitivity coefficients are
demonstrated in Appendix E.

2.5 Standards for evaluating the efficiency of the method
The efficiency of the method to compute the solution and its sensitivity to input parameters can
be evaluated using different metrics. It is important to distinguish the various approximations
of the solution that can be computed. The numerical solution, obtained with the Dufort–
Frankel scheme, is denoted using the superscript "num." Then, the approximation of the solution
using the Taylor expansion is written with the superscript "tay."
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In order to validate the numerical model, the error between the solution unum(x, t) and a reference
uref(x, t) is evaluated as a function of x according to the formula:

ε2(x?) def:=

√√√√√ 1
Nt

·
Nt∑
j=1

unum
(
x? , t?j

)
− u ref

(
x? , t?j

)2

, (21)

where N t is the number of temporal steps. In this work, the reference solution uref is given by the
numerical solution of the differential equation based on the Chebyshev polynomial and adaptive
spectral methods. It is obtained using the function pde23t from the MatlabTM [31] open source
package Chebfun [32].
To validate the Taylor series expansion for each model output, another error εtay quantity is
suggested. It evaluates the difference between two solutions. The first solution is obtained with
the Taylor series formula for variables k ?1 ∈ [k ?min

1 , k ?max
1 ] , c?1 ∈ [c?min

1 , c?max
1 ] . The second is

a reference solution retrieved from the direct computation of the governing model equation with
parameter values k ?1 and c ?1. For the model output u , the error is computed according to:

ε tay
[
u
] def:=

√√√√√ 1
N

1
Nt

·
N∑
i=1

Nt∑
j=1

u tay
(
k ?1 , c

?
1

)
− u ref

(
k ?1 , c

?
1

)2

. (22)

Similar formulas can be defined for other model outputs such as j and E .
Last, the efficiency of a numerical model can be measured by its computational (CPU) run time
required to compute the solution. It is measured using the MatlabTM environment with a computer
equipped with Intel i7 CPU and 16 GB of RAM.

3 Validation of the continuous approach for the sensitivity
analysis

First, a simple case study is considered to validate the proposed continuous approach for the sensitiv-
ity analysis of the heat transfer process. The study considers a heat transfer through a two-layered
wall with the following Robin-type boundary conditions:

uL
∞ ( t ) = 0.8 · sin

(
π · t

3

)
, g L

∞ ( t ) = 0.6 · sin 2
(
π · t

5

)
, (23)

uR
∞ ( t ) = 0.5 ·

 1 − cos
(
π · t

4

) .
The Biot numbers equal Bi L = 0.1 and Bi R = 0.2 . A simple uniform initial condition is set as
u 0 = 0 to illustrate the approach. The Fourier number, the thermal conductivity, and the heat
capacity are given as:

Fo = 0.02 , k ? =


k? ◦1 , x ? < 0.6

k? ◦2 , x ? > 0.6
, c ? =


c? ◦1 , x ? < 0.6

c? ◦2 , x ? > 0.6
,
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where k? ◦1 = 0.1 , k? ◦2 = 0.3 , c? ◦1 = 0.2 , and c? ◦2 = 0.5 . The time domain is defined as
t ? ∈ [ 0 , 30 ] . The problem is solved by implementing the Dufort–Frankel numerical scheme.
The space discretization parameter is set to ∆x ? = 10−2 and, time discretization parameter to
∆ t ? = 10−3 .

3.1 Validation of the numerical model
Figure 3 displays the variations of the solution u as a function of space and time. It demonstrates
a good agreement between the Dufort–Frankel numerical solution and the reference solution.
The reference solution is obtained through the Chebyshev polynomial interpolation, as mentioned
in Section 2.5. Owing to time–dependent Robin boundary conditions on both wall surfaces com-
bined with spatially dependent material properties, obtaining an analytical solution is difficult.
Figures 4, 5 show how second–order sensitivity coefficients of the first material vary over space and
time. One may note that values of sensitivity coefficients for thermal conductivity are higher than
for heat capacity, which means that the former has a greater influence on the temperature field.
Figure 6 shows the error for different quantities. The numerical solution for the temperature field
has an error at the order of 10−3. Error orders for heat capacity sensitivity coefficients are below
10−2. A very satisfactory agreement is observed between the numerical and the reference solutions
for variables X k ?

1
and X k ?

1 c
?
1
. It can be noted that the error is higher, but still acceptable, for

the coefficients X k ?
1 k

?
1
due to the important magnitudes of variation. These results validate the

implementation of the numerical model to compute the solution and its sensitivity coefficients.

x
⋆

0 0.2 0.4 0.6 0.8 1

u

0

0.2

0.4

0.6

0.8

1

1.2

Material 1 Material 2

t
⋆ = 1.5

t
⋆ = 5

t
⋆ = 10

t
⋆ = 25

DF

Ref

(a)
t
⋆

0 5 10 15 20 25 30

u

0

0.2

0.4

0.6

0.8

1

1.2

x
⋆ = 0.1

x
⋆ = 0.3

x
⋆ = 0.5

x
⋆ = 0.7

DF

Ref

(b)

Figure 3. Variation of the field u as a function of (a) space x ? and (b) and time t ? .

In addition, it is important to compare results given by the continuous approach with those obtained
with discrete. Although discrete approximations are neither particularly accurate nor efficient, this
approach is commonly used to approximate sensitivity coefficients thanks to its easy implementa-
tion. By solving only the governing problem equations one may obtain the sensitivity coefficient
values. However, as mentioned before, its accuracy strongly depends on the choice of the parameter
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discretization step and the order of accuracy of the approximation. Figures 7(a) and 7(b) illustrate
how the error between several discrete approximations for sensitivity coefficient X k ?

1
and the ref-

erence solution changes according to the choice of discretiziation parameter ∆k ?1. Space and time
discretization steps remain the same and equal ∆x ? = 10−2 and ∆ t ? = 10−3 , respectively.
One may note that forward and backward approximations cannot achieve the accuracy of the con-
tinuous approach even when ∆k ?1 is 10−3 . Nevertheless, the central and three–points formulations
have the same order of error as the continuous approach. To compute sensitivity values of X k ?

1
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Figure 6. Error ε 2 for sensitivity coefficients as a function of space.

using the continuous approach 40 s is required, which is almost 1.5 times greater than computation
using central approximation. The CPU time to calculate central and three–points approximations
corresponds to 27 s and 40 s , respectively.
Computation of the second–order sensitivity coefficients X k ?

1 k
?
1
and X k ?

1 c
?
1
yields similar results. As

shown in Figures 8 and 9 only second–order approximations give the same accuracy as a continuous
approach when the discretization step for parameters k ?1 and c ?1 is 10−3 . On the other hand, the
efficiency of computation using the discrete approach is greater than with the continuous approach.
The CPU time spent to obtain the discrete second–order sensitivity coefficients is 41 s , while the
continuous approach requires 85 s. However, the continuous approach allows us to obtain both first–
and second–order sensitivity coefficients.
The results from the comparison between discrete and continuous approaches prove that the latter
is more accurate and time–efficient for computing the sensitivity coefficients.

3.2 Validation of Taylor series expansion
The issue is now to evaluate the use of the coefficients, computed with the continuous approach, for
the sensitivity analysis of the model outputs. To this end, the Taylor expansion is used to analyze
how the model outputs vary according to changes in the model input parameters. The study is
carried out for the second material. A variation of the thermal conductivity and heat capacity by
± 90 % of their a priori values is made. Thus, the intervals of variation of the two parameters are
Ω k 2 = k? ◦2 ·

[
0.1 , 1.9

]
and Ω c 2 = c? ◦2 ·

[
0.1 , 1.9

]
, respectively. A total of 21 discrete values of

each parameter k ?2 and c ?2 in these intervals of variation are taken, or N k2 = 21 and N c2 = 21.
Then, for each value of the parameters, the corresponding Taylor series value is computed. In
parallel, the direct problem is solved with the corresponding parameter value, using Chebyshev
polynomial interpolation. This solution is used as a reference to compute the error ε tay according
to Eq. (22). Calculated error values ε tay validate the high–quality approximation of the model
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outputs.
Figure 10(a) shows the error for the temperature field according to the variation of both parame-
ters k ?2 and c ?2. Since the computed error is of the second order, the variation of the temperature
field according to the variation of the parameters can be obtained through Taylor approximation.
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Figure 10(b) depicts how the interior temperature field varies, while the thermal conductivity value
changes. One may note the temperature is strongly influenced as the value of the thermal conduc-
tivity decreases. Figure 11 displays the variation in the error according to each parameter k ?2 or c ?2 ,
while the other is fixed to the a priori value. The error of the model expansion is acceptable until
an order of O

(
10−2

)
. It corresponds to intervals of variation k? ◦2 ·

[
0.2 , 1.9

]
and c? ◦2 ·

[
0.35 , 1.9

]
for parameters k ?2 and c ?2 , respectively. The error is proportional to O

( (
k ?2 − k? ◦2

) 3
)

and

O
( (

c ?2 − c? ◦2
) 3
)
as expected from the theoretical results. Figure 12(a) shows how thermal flux

changes with the variation of both parameters. While parameters k ?2 and c ?2 vary in the range
k? ◦2 ·

[
0.2 , 1.9

]
and c? ◦2 ·

[
0.2 , 1.9

]
, the Taylor expansion of the heat flux is satisfactory as the

accuracy order equals O
(

10−2
)
. Similar conclusions are made for the thermal loads as a model

output. When comparing the order of the error values between the heat flux and the thermal loads,
we obtain higher error values for the thermal loads owing to the integration of the heat flux.
The results of this study support the fact that the Taylor expansion can be used to predict how
a model output varies according to changes in parameter values, using the continuous approach to
compute the sensitivity coefficients. Information of the model output and its sensitivity coefficients
provides an accurate approximation of the model output with parameter variation.

3.3 Comparison with approaches from the literature
In the two previous subsections, the use of the sensitivity coefficients and the Taylor expansion
to approximate the variation of the output model were validated. Thus, the following section
describes the comparison between the continuous approach and three other approaches widely
used in the literature for sensitivity analysis: (i) the Standardized Regression Coefficients (SRC)
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Figure 11. Error ε tay of the temperature field u (a) as a function of variation k ?2 and (b) as a function of
variation c ?2 .

method [21, 33], (ii) the Sobol method [34, 35], and the Fourier Amplitude Sensitivity Test
(FAST) [36]. The Latin Hypercube Sampling [37] and the Sobol Sequence set [38] were used to
calculate the Sobol indices in order to cover the parameter ranges Ω k 2 and Ω c 2 effectively. The
number of samples N s is mentioned below. The interval of variation of the parameters is still set
to Ω k 2 = k? ◦2 ·

[
0.1 , 1.9

]
for k?2 and Ω c 2 = c? ◦2 ·

[
0.1 , 1.9

]
for c?2 . The thermal loads are chosen

as a model output. The time domain is decreased to t ? ∈ [ 0 , 5 ] to accelerate the calculation

16 / 44



An efficient sensitivity analysis for energy performance of a building envelope: a continuous derivative
based approach

0.1k⋆ ◦2

c2 = c⋆ ◦2

k
⋆ ◦
2

1.9k⋆ ◦21.9c⋆ ◦2

k2 = k⋆ ◦2

c
⋆ ◦
2

0.1c⋆ ◦2

0.03

0.02

0.01

0

ε
ta
y
[j
⋆
]

(a)

0.1k⋆ ◦2

c2 = c⋆ ◦2

k
⋆ ◦
2

1.9k⋆ ◦21.9c⋆ ◦2

k2 = k⋆ ◦2

c
⋆ ◦
2

0.1c⋆ ◦2

0.02

0

0.06

0.04

ε
ta
y
[E

⋆
]

(b)

Figure 12. (a) Error ε tay of the thermal flux j ? as a function of variation k ?2 and c ?2 , (b) Error ε tay of
the thermal loads E ? as a function of variation k ?2 and c ?2 .

of the sensitivity indices. The space and time discretization steps are set to ∆x ? = 10−2 and
∆ t ? = 10−3 , respectively.
Figure 13 displays how the thermal loads change over the parameter intervals Ω k 2 and Ω c 2 . This
variation is obtained through the Taylor expansion series. One may conclude that the thermal
conductivity k ?2 has a greater influence on the output than the volumetric heat capacity c ?2 . The
subsequent results of the sensitivity indices reinforce this conclusion.
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Figure 13. Thermal loads variation over the changes in k ?2 and c ?2 parameters, obtained with the Taylor
expansion and the sensitivity coefficients computed with the continuous approach.

First, the SRC method is applied to measure the impact of the second–layer parameters on the
model output. To determine the SRC coefficients, the Latin Hypercube Samplings on the domains
Ω k 2 and Ω c 2 are taken with a different number of samplingsN s. Then, the direct computation of the
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annual thermal loads is performed and through the Lasso optimization technique their corresponding
standardized regression coefficients are evaluated. The regression coefficient of parameter pi is
denoted as βSRC [ pi ]. Since β 2

SRC [ pi ] represents the share of variance [11], results are normalized
according to the formula:

S SRC [ pi ] = β 2
SRC [ pi ]

M∑
j = 1

β 2
SRC [ pj ]

, (24)

which allows us to compare SRC results with metrics, defined in Section 2.2.3. Similarly, the SRRC
results were normalized. The results are reported in Table 1 and Table 2. It can be noted that at
least 150 samples are required to obtain relevant results of the SRC and SRRC indices. The CPU
time to calculate the thermal loads 150 times is equal to 240 s. Additionally, it can be noted that
SRRC coefficient values are greater than SRC indices, indicating that there is an interaction effect
between parameters. The values of the regression coefficients metric demonstrate that parameter
k ?2 has a greater impact on the thermal loads than parameter c ?2 .
Next, Sobol indices were calculated. The first–order sensitivity indices and total–effect indices
were estimated for both second layer parameters. Results for a different number of model outputs
are presented in Table 3, where S 1

SOB [ p i ] is the first–order sensitivity index for parameter p i, and
S tot

SOB [ p i ] is the total–effect sensitivity index for parameter p i. It can be seen from the data in
Table 3 that acceptable index values start from the number of output samples equal to or greater
than 1024. Indeed, the total index values are greater than the first ones. The computation of Sobol
indices is a very expensive procedure. The whole estimation process for 4096 model outputs takes
almost 3 h. One may conclude that the thermal loads are more sensitive to the thermal conductivity
parameter k ?2 .
The third step is to calculate the sensitivity indices using the FAST approach with a Random
Balance Design [39]. The RBD–FAST approach calculates the first–order sensitivity indices with
a reduced computational cost compared to the Sobol approach. As shown in Table 4, samples of
500 model outputs provide satisfactory results for this method, for which the computational time
amounts to 17 min. One may note that sample sizes of 100 and 200 [39, 40] are not sufficient to
analyze the sensitivity indices. The results are in agreement with the Sobol indices, supporting
the fact that the volumetric heat capacity parameter c ?2 has a smaller impact on the thermal loads.
Finally, the sensitivity coefficient metrics, introduced in Section 2.2.3, were computed. The local
metric η of a parameter p considers the variation of output computed with fixed value of the
parameter p, in this case, a priori parameter value, while the global metric ν additionally explores
the variation of the parameter p and its influence on the output. The local metric values for thermal
conductivity and volumetric heat capacity are η k ?

2
= 0.86 and η c ?

2
= 0.14, respectively. The

duration of the calculation is 12 s.
On the other hand, the accuracy of the global metrics depends on the discretization of the parameter
domains Ω k 2 and Ω c 2 . Using a first–order Taylor expansion (42) of the thermal loads, the order
of accuracy are O

(
max

(
∆ 2

k2 ? , ∆ 2
c2 ?

))
. Thus, if the discretization steps ∆ k2 ? and ∆ c2 ? are

of the order O ( 10−2 ), then the order of accuracy is equal to O ( 10−4 ). Using these assumptions
N k2 = 20 and N c2 = 20 discrete parameter values ensure O ( 10−4 ) order of accuracy. And values
of N k2 = 5 and N c2 = 5 maintain error at the O ( 10−2 ) order. The global sensitivity metrics
for both discretization cases are given in Table 5. Both metrics show that thermal conductivity has
a greater influence on the thermal loads.
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Table 1. Results of the SRC and SRRC indices.

Number of model samples N s 20 50 100 150 200

SRC [ k ?
2 ] −0.65 −0.77 −0.75 −0.7 −0.7

SRC [ c ?
2 ] −0.45 −0.49 −0.49 −0.46 −0.46

SRRC [ k ?
2 ] −0.66 -0.85 −0.82 −0.78 −0.75

SRRC [ c ?
2 ] −0.57 −0.5 −0.51 −0.52 −0.54

Table 2. Results of the normalized SRC and SRRC indices.

Number of model samples N s 20 50 100 150 200

S SRC [ k ?
2 ] 0.67 0.71 0.7 0.69 0.69

S SRC [ c ?
2 ] 0.33 0.29 0.3 0.31 0.31

S SRRC [ k ?
2 ] 0.58 0.75 0.72 0.69 0.67

S SRRC [ c ?
2 ] 0.42 0.25 0.28 0.31 0.33

Additionally, the interaction between parameters was computed, it corresponds to the variable
∂ 2E

∂k ?2 ∂c
?
2
, if the thermal loads are selected as model output. The crossed-based sensitivity measure

is defined as follows:

ν k2 , c2 =
∫

Ω k 2

∫
Ω c 2

∂ 2E

∂k ?2 ∂c
?
2

d k ?2 d c ?2 .

As demonstrated in [41] ν k2 , c2 provides maximal bound for the total Sobol indices of an interaction
between two inputs, and if it is equal to 0, there is no interaction between parameters. In this
validation case study, value of ν k2 , c2 is at order O ( 10−2 ). It corresponds to the fact, that there
is a small interaction between parameters. It is also consistent with the fact that there is almost
no differences between the first and total-order Sobol indices. However, the computational cost
increases, since this metric requires variation of both parameters simultaneously. In this particular
case, it requires N k2 × N c2 model evaluations, or 400 samples. This number is still smaller than
the number of samples necessary for Sobol total-order indices.
Additional verification is carried out by comparing the global metrics in Table 5 with the Sobol
total variance D tot. One may note that the results verify inequality (18) for both cases. The
global metrics provide a maximal bound for the Sobol total variance D tot. When N p = 20 for
the parameter c ?2 even approximation (19) is true. One may note that global estimators provide
an upper boundary for the total variance, thus, it can be used as quantitative measure to select
significant parameters. This is consistent with the results from [12].
Table 6 lists the sensitivity index values for each approach and compares the computational time.
One may conclude that the results are similar to each other in a qualitative way. Specifically, the
thermal conductivity parameter k ?2 has a greater effect on the thermal loads. Quantitatively, the
metrics of the continuous approach are validated thanks to the accuracy of the Taylor expansion
and the consistency with the theoretical results from [12]. This approach also provides sensitivity
information faster than the RBD–FAST or Sobol methods. Indeed, these two methods require
a high number of samples to provide accurate results, increasing the computational time 85- and
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Table 3. First and total Sobol indices.

Number of model samples N s 128 256 512 1024 2048 4096

S 1
SOB [ k ?

2 ] 1 0.69 0.68 0.66 0.66 0.66

S 1
SOB [ c ?

2 ] 0 0.37 0.34 0.33 0.33 0.33

S tot
SOB [ k ?

2 ] 1 0.63 0.65 0.67 0.67 0.67

S tot
SOB [ c ?

2 ] 0 0.31 0.32 0.34 0.34 0.34

D tot
k 2

0.0015 4.9 · 10−4 4.45 · 10−4 4.22 · 10 −4 4.14 · 10−4 4.08 · 10−4

D tot
c 2

0.0015 9.1 · 10−4 8.69 · 10−4 8.46 · 10 −4 8.37 · 10−4 8.31 · 10−4

Table 4. First–order sensitivity indices using RBD–FAST.

Number of model samples N s 100 ∗ 200 ∗ 300 400 500 1000 1500 2000 3000

S 1
FAST [ k ?

2 ] 0.76 0.76 0.69 0.69 0.66 0.68 0.65 0.66 0.66

S 1
FAST [ c ?

2 ] 0.5 0.49 0.34 0.32 0.32 0.37 0.30 0.33 0.32

Table 5. Global sensitivity coefficient metrics.

Cardinal of the intervals Ω k 2 and Ω c 2 N k2 = N c2 = 5 N k2 = N c2 = 20 D tot
p i

Global metric γ k 2 0.8 0.77

Global metric γ c 2 0.2 0.23

Global estimator ν k 2 / π
2 101 · 10−4 25 · 10 −4 4.22 · 10−4

Global estimator ν c 2 / π
2 34 · 10−4 10 · 10 −4 8.46 · 10−4

Global estimator ν k 2 / 12 83 · 10−4 21 · 10−4 4.22 · 10−4

Global estimator ν c 2 / 12 28 · 10−4 8.5 · 10−4 8.46 · 10−4
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Table 6. Summary of the sensitivity coefficients and CPU time for each approach.

Method Sensitivity for k ?
2 Sensitivity for c ?

2 CPU time [ min ] CPU time [ ø ] Number of model samples N s

Continuous, local metric 0.86 0.14 0.2 t 0 1

Continuous, global metric 0.77 0.23 5 25 · t 0 20

SRRC 0.67 0.33 4 20 · t 0 150

Sobol 0.66 0.31 180 900 · t 0 4096

RBD–FAST 0.66 0.32 17 85 · t 0 500

900-fold, respectively. Additionally, the computational time of the computation of the global metric
can be decreased. The value presented in Table 6 refers to the number of parameter samples equal
to N p = 20, while a smaller number of parameter samples give results faster at the cost of losing
accuracy.
From a theoretical point of view, the computational time is proportional to the number of output
evaluations. For derivative based sensitivity analysis the computational cost is evaluated at order
O (N p × N∆ p ), where N p is the number of parameters, and N∆ p is the number of discretizations
in the parameter space. The appropriate number of discretizations can be calculated using first-
order Taylor series expansion. If the discretization step ∆ p of the parameter space is at order
O ( 10−2 ), then the approximation has error at order O ( 10−4 ).
In practice, an acceptable error’s order is O ( 10−2 ), thus, ∆ p is assumed to be at order O ( 10−1 ).
This corresponds to N∆ p between 10 and 20, mostly, for all dimensionless parameters. Thus, the
number of output evaluations is proportional to O (N p × 10 ).
This evaluation can be compared to the other approaches from literature [11]. For example, the
regression-based methods have the same order of output computation. However, FAST methods
require at least O (N p × 10 2 ), which is 10 times greater than derivative based approach. Addition-
ally, it has at least 100 times smaller computational cost compare to the variance-based methods,
since Sobol approach requires O (N p × 10 3 ) number of model evaluations.

3.4 Summary of the results for the validation case
On the basis of the present results, one may conclude the following:

• the comparison between the numerical and reference solution validates the implementation of
the numerical model and its sensitivity coefficients;

• the discrete partial derivatives lack accuracy and efficiency to compute sensitivity metrics;
however, the continuous partial derivatives enable us to overcome these drawbacks;

• the Taylor series expansion is a useful tool to evaluate continuously how the model output
varies with the parameter variation using the sensitivity coefficients;

• the partial derivatives can be used as global sensitivity indices, as demonstrated in previous
works [12];

• the derivative based approach has a similar evaluation of the parameter influence to the results,
obtained using the SRC, the Sobol, and the RBD–FAST methods;
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Table 7. A priori thermal properties of each layer.

Layer material Thermal conductivity k ◦i [ W/m/K ] Heat capacity c ◦i [ J/m3/K ] Thickness [ m ]

Dressed Stone (i = 1) 1.75 1.6 × 10 6 0.2

Rubble Stone (i = 2) 2.3 2.8 × 10 6 0.28

Lime Coater (i = 3) 0.8 2.2 × 10 6 0.02

• the derivative based approach has the lowest computational cost among the sensitivity meth-
ods presented.

4 Real–world case study

4.1 Presentation of the Case Study
To illustrate the application of the continuous approach, a real–world case study of a historical
building is considered. The house, built in the nineteenth century, is located in Bayonne, France.
The west–facing wall of the living room is considered for the study. The wall is composed of three
materials: lime coater, rubble stone, and dressed stone, as illustrated in Figure 14(a). To facilitate
the thermal comfort of the inhabitants and improve the energy efficiency, it is important to provide
an optimal retrofitting solution. For this, the designers and engineers need to perform sensitivity
analysis, at a reduced computational cost, to identify the influential parameters on the thermal
loads.
The thermal properties of the wall are given in Table 7, obtained from the French standards [42].
The wall is monitored by sensors, which are placed on both sides of the wall surface and three
are installed through the wall. Additionally, the exterior and interior conditions are observed.
Data acquisition took almost 1 year with a time step of 1 h. Supplementary information on the
experimental design can be found in [43]. In this article, only measurements of the inside and
outside air temperature are used. Their variation over time is shown in Figure 14(b).
The convective heat transfer coefficients are set to hL = 15 W/m2 · K and hR = 8 W/m2 · K for the
external and internal surfaces, respectively. The heat flux radiation on the external wall is acquired
using weather data. It is the total incident radiation, which includes the direct, diffuse, and reflective
radiations. Its variation over time is presented in Figure 15(a). The initial condition of the problem
is calculated as a linear interpolation between the temperatures on the wall surfaces. Figure 15(b)
displays a variation of the initial temperature. The whole simulation is performed for 1 year. The
temperature and its partial derivatives are calculated using the Dufort–Frankel explicit scheme.
The following reference values are used for the computations: L = 0.5 m , t ref = 3600 s , and
T ref = 293.15 K . The values of the thermal conductivity and the heat capacity of the first layer
(dressed stone) are applied as reference values k ref and c ref , respectively. The space and time
discretization are ∆x ? = 10−2 and ∆t ? = 10−2, corresponding, from a physical point of view, to
∆x = 5 · 10−3 m and ∆t = 3.6 s ,respectively.

22 / 44



An efficient sensitivity analysis for energy performance of a building envelope: a continuous derivative
based approach

(a)

t [h ]
0 2000 4000 6000 8000

T
[C

◦
]

-10

0

10

20

30

40

50

Tout(t)
Tins(t)

(b)

Figure 14. Illustration of the real–world case study (a) with the boundary conditions (b).
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Figure 15. Illustration of the heat flux radiation on the exterior wall surface (a) and the initial condition
(b).

4.2 Results and discussion
The aim of this section is to determine a thermophysical property that has greater impact on the
model outputs, and to predict how the outputs vary according to this significant parameter. First,
the error between the computed surface temperature values and the measurements is calculated.
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Figure 16. Normalized density function of the error between measurements and the calculated data on the
exterior (a) and the interior wall surfaces (b).

Figure 16 shows the normalized density function of this error on the exterior and the interior wall
surfaces. One may note that the mean values of the error are comparatively small. Therefore, the
numerical model can be used for further investigation. The impact of the thermal conductivity and
heat capacity of each layer on the model outputs is then discussed. Table 8 presents the values of
importance local metric η k i

and η c i
for sensitivity of the temperature field and the annual thermal

loads E computed at the inner surface. It can be noted that thermal conductivity has more impact
on these two outputs. Therefore, the heat capacity can be excluded from the scope of the thermal
properties to estimate in the framework of a building assessment.
The global metrics ν k i

and ν c i
can now be computed. These values highlight the sensitivity of the

annual thermal loads E computed at the inner surface by taking into account uncertainty in the
parameters k i and c i . A variation of±50% of the a priori values of both thermal parameters for each
layer is assumed. The±50% variation value is chosen to impose larger variations of the outputs. The
same results are obtained with a ±20% variation value. Thus, Ω k 1 =

[
0.875 , 2.625

]
W/(m · K)

and Ω c 1 =
[

0.8 , 2.4
]
· 10 6 J/m3/K. Next, Ω k 2 =

[
1.15 , 3.45

]
W/(m · K) and Ω c 2 =

[
1.4 , 4.2

]
·

10 6 J/m3/K. Finally, Ω k 3 =
[

0.4 , 1.2
]

W/(m · K) and Ω c 3 =
[

1.1 , 3.3
]
· 10 6 J/m3/K. To

ensure an accuracy equal to O ( 10−2 ), a step corresponding to O ( 10−1 ) is used to discretize the
domains Ω k 2 and Ω c 2 . Thus, each layer has a different number of discrete parameters: (layer 1)
N k1 = N c1 = 5; (layer 2) N k2 = N c2 = 7; (layer 3) N k3 = N c3 = 5. According to the
results from Table 8, one may also conclude that the influence of the heat capacity on the thermal
loads can be ignored.
The next step presents how the annual thermal loads differ according to the variation of the thermal
conductivity and the volumetric heat capacity. Without losing the generality, all further computa-
tions are performed within the second layer. Both thermal parameters still vary by ± 50% of their
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Table 8. Sensitivity coefficients on the model outputs.

Lime coater Rubble stone Dressed stone
layer i =

{
1 , 2 , 3

}
1 2 3

Temperature

Local metric η k i 0.9999 0.9992 1

Local metric η c i O ( 10−5 ) O ( 10−4 ) O ( 10−6 )

Thermal loads

Local metric η k i 0.9999 0.9996 1

Local metric η c i 5e-5 4.2e-4 2.18e-08

Global metric γ k i 0.96 0.75 0.98

Global metric γ c i 0.04 0.25 0.02

a priori values. Subsequently, the annual thermal loads on the interior surface are approximated
through the Taylor series expansion using the sensitivity coefficients. The results of the approxi-
mation are displayed in Figure 17(a). It can be seen that the variation of the annual thermal loads
is not linear relative to the thermal conductivity k 2 .
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Figure 17. Variation of the annual thermal loads according to changes in the thermal properties of the
second layer using (a) Taylor expansion and (b) SRC approximation.

According to the previous results, the SRC requires less computational effort compared with Sobol
or RBD–FAST. Thus, it is applied to compare its results with the sensitivity coefficients obtained
through the continuous approach. To determine the SRC coefficients, the Latin Hypercube Sam-
plings on the domains Ω k 2 and Ω c 2 are taken with a different number of samplings N s. Then,
the normalized SRC indices using expression (24) are calculated. Table 9 summarizes the results
for every value of sampling number and its respective sensitivity index for each parameter. The
reported values are about of the same order, which validates the convergence of the approach. One
may note that there are similarities between values from Table 8 and Table 9. Furthermore, the
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linear approximation of the annual thermal loads is shown in Figure 17(b). The SRC approach
assumes a linear variation of E , which is not the case as when comparing Figures 17(a) and 17(b).
This assumption is no longer valid when the nonlinear behavior increases. For instance, the daily
thermal loads could not be approximated using the SRC method owing to a nonlinear relationship
to parameters k 2 and c 2, as seen in Figure 18.

Table 9. The sensitivity indices, using SRC coefficients.

Number of model samples Ns 5 10 20 50

S SRC [ k 2 ] 0.9995 0.9998 0.9999 0.9999

S SRC [ c 2 ] 5.0 · 10−4 2.3 · 10−4 9.9 · 10−5 9.8 · 10−5
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Figure 18. Variation of the daily thermal loads according to changes of the thermal properties of the
second layer k 2 and c 2 using (a) Taylor expansion and (b) SRC approximation.

Figure 17(a) demonstrates that the thermal loads do not vary while the volumetric heat capacity
differs. For this reason, the influence of thermal conductivity represents the main interest. Fur-
thermore, the monthly thermal loads values are computed according to the variation range of this
parameter. The variations are computed using the Taylor expansion considering the same param-
eter domain Ω k 2 =

[
1.15 , 3.45

]
W/(m · K). The results are shown in Figure 19. It appears that

the thermal loads are positive only for 3 months, and, generally, the wall loses energy. One may
note how the thermal conductivity strongly affects the thermal loads during the winter season.
One of the main merits of the continuous approach is that it can be used to explore the sensitivity
of continuous model output due to changes in the parameters. Thus, it is possible to examine how
the time variation in the heat flux differs according to the thermal conductivity of the dressed and
rubble stone layers. As mentioned before, the influence of the volumetric heat capacity is negligible.
Thus, only parameters k 1 and k 2 are altered by ± 50% of their a priori values. Figure 20 shows
the variation in the heat flux on the interior wall surface during the last week of the year. One may
assess how the heat flux is affected by the thermal conductivity parameter.
Now the remaining question is the computational effort of the continuous approach for the real–
world case study. The results are summarized in Table 10. The computations are performed using
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Figure 19. The monthly thermal loads and its variation due to k 2 .
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Figure 20. Variation in heat flux according to the thermal conductivity of the first and second layers using
Taylor series expansion.

the MatlabTM environment with a computer equipped with Intel i7 CPU and 16 GB of RAM.
According to the values in Table 10 1 year simulation for the whole wall, composed of three layers,
takes 2.5 h for the first–order sensitivities, and 7.5 h for the second–order sensitivities. One may note
that the computation of the local metric does not require the model output variation. However,
calculation of the global metrics for all three layers involves at least 30 output evaluations as noted
in Table 10. By contrast, standard global sensitivity analysis methods require a greater number of
output samples.
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Table 10. CPU time to perform sensitivity analysis with the continuous approach (t 0 = 12 min) for one
layer.

Method CPU time [ ø ] Number of model samples Ns

Dufort–Frankel only one output t 0 1

Continuous, local metric first order 4 · t 0 2

Continuous, local metric second order 12.5 · t 0 1

Continuous, global metric 20 · t 0 10

4.3 Impact of window properties on the energy performance of a build-
ing envelope

A building envelope composed of wall of historical building, described in Section 4, and a single-
glazed window is considered. The purpose is to investigate the sensitivity of the thermal loads of
the envelope regarding glass reflectivity, transmissivity and wall thermal properties. To define the
thermal loads of the glass, one may study heat transfer through the window. The physical problem
considers one–dimensional heat conduction transfer through a building window. The window is a
single glazed. The temperature in the window is defined on the domains Ωx : x ∈ [ 0 , Lw ] and
Ω t : t ∈ [ 0 , τmax ] , where Lw [ m ] is the length of the window and τmax [ s ] is the duration of the
simulation.
In the window, the heat transfer is governed by diffusion and radiation mechanisms [44, 45], which
can be written as follows:

ρw · c p ·
∂T

∂t
= ∂

∂x

 kw · ∂T
∂x

 + S , (25)

where ρw [ kg/m3 ] is the material density, c p [ J/(kg · K) ] is the material specific heat, kw [ W/(m · K) ]
is the material thermal conductivity, S [ W/m3 ] is an internal source term for the absorbed short-
wave radiation part:

S = A · q sw · x

Lw

,

in which A is the fraction of absorbed heat. This source term is valid only for glass materials. The
fraction of absorbed energy in a single glazing glass is written according to [44, 45]:

A = ( 1 − τ ) ( 1 − ρ )
( 1 − ρ τ ) ,

where ρ [− ] is the glass reflectivity and τ [− ] the glass transmissivity. Glass properties are defined
in Table 11.
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Table 11. Glass properties.

Property Value

Density ρw [ kg/m3 ] 2200
Specific heat capacity c p [ J/m3/K ] 835
Thermal conductivity kw [ W/m/K ] 1

Reflectivity ρ [− ] 0.15
Transmissivity τ [− ] 0.26

Glass thickness Lw [ m ] 0.006

The heat balance on the exterior window surface includes the convective exchange between the
air outside and the window surface, as well as the absorbed radiation. The effect of radiation is
included as a source term in the governing equation (25), thus, it can be omitted. The exterior
boundary condition can be written as:

kw ·
∂T

∂x
= hL ·

(
T − T L

∞ ( t )
)
, x = 0 , (26)

where T L
∞ [ K ] is the temperature of the outside air that varies over time, hL [ W/(m2 · K) ] is the

exterior convective heat transfer coefficient. The interior heat balance consists of the convective
exchange between the air inside T R

∞ [ K ] and the window surface, and is given by the following
expression:

kw ·
∂T

∂x
= − hR ·

(
T − T R

∞ ( t )
)
, x = Lw , (27)

where hR [ W/(m2 · K) ] is the convective heat transfer coefficient on the inside boundary.
In addition, the thermal loads of the glass E glass [ W · s/m2 ] are computed by integrating the heat
flux at the inner surface over the chosen time interval [19, 20]:

E glass =
∫ t + δ t

t

 − kw ·
∂T

∂x

 ∣∣∣∣∣∣
x = Lw

dτ , (28)

where δ t is a time interval such as day, week, or month.
Furthermore, the overall thermal loads is defined as sum of the thermal loads of the wall and the
glass respectively, and is expressed as follows:

Ê = E glass + Ewall , (29)

where Ê is overall energy performance of the envelope, Ewall is the wall thermal loads, obtained
using (7).
According to the previous results the wall thermal loads mostly depend on the thermal conductivities
of the first and second layers of the wall. Thus, the overall thermal loads can be written as:

Ê = Ê
(
k ◦1 , k

◦
2 , τ , ρ

)
.
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Similarly, the sensitivity functions of the glass properties, such as reflectivity and transmissivity,
were calculated as direct differentiation of the governing equation (25). Next, their impact on the
overall building energy performance compared with wall thermal properties was analyzed. Results
are shown in Table 12. Influence of wall thermal conductivities and glass properties on the thermal
loads during one year was studied. It can be noted that glass properties do not have a large impact
on the thermal loads, while the thermal conductivity of each wall’s layer have a similar effect, which
is several times greater compared to the glass properties. This effect is probably due to the bad
efficiency of the wall materials from the thermal point of view.

Table 12. Sensitivity coefficients metric on the thermal loads Ê during one year.

Layer Lime coater Rubble stone Glass Glass

Parameter k ◦1 k ◦2 τ ρ

Thermal loads

Global metric γ p 0.53 0.46 O ( 10−2 ) O ( 10−4 )

Using Taylor series expansion, one may calculate the impact on the monthly thermal loads accord-
ing to variation in the selected parameter. The relative difference in the thermal loads is expressed
as follows:

ε r ( p ) =

∣∣∣∣∣∣ Ê ( p + δ p ) − Ê ( p )
Ê ( p )

∣∣∣∣∣∣ ,
where δ p is the variation of selected parameter. Furthermore, the aforementioned measure is
calculated for each property of the wall and glass, which was varied by ± 50 % of the parameter’s
value. Results are presented in Figures 21(a), 21(b). It can be noted that window properties have
influence on the overall thermal loads around 1 % during summer period, and during other three
seasons its effect can be neglected, since it is varies between 0.1 % and 1 %. Results demonstrate
that glass reflectivity has the smallest impact on the overall thermal loads. Wall thermal properties
have a great effect on the energy performance of the envelope, and their impact are 10 % to the
overall thermal loads.

4.4 Summary of results for the real–world case study
The demonstration of the derivative -based sensitivity analysis is carried out on the wall of a
historical building situated in France. The sensitivity coefficients are calculated using continuous
partial derivatives. The influence of the wall thermal properties, such as thermal conductivity and
volumetric heat capacity, on the wall temperature, the interior heat flux, and the thermal loads are
computed. The results are summarized as follows:

• in this case study, the thermal conductivity has a greater impact on the aforementioned model
outputs;

• as the heat capacity has a comparatively smaller impact on the temperature and the thermal
loads, it can be neglected in a future parameter estimation problem;

30 / 44



An efficient sensitivity analysis for energy performance of a building envelope: a continuous derivative
based approach

(a)

(b)

Figure 21. Monthly variation of the relative difference in the thermal loads according to (a) increased and
(b) decreased values of the selected parameters.

• the derivative -based approach has similar metric values of the parameter influence to the
SRC method. However, the linear approximation of the thermal loads retrieved by the SRC
method is not valid, for example, to simulate the daily thermal loads;

• the time–varying model output variation according to the changes in parameters is assessed
using the Taylor series expansion. As an example, the heat flux variation according to the
variation of the thermal conductivity is presented;

• the derivative -based approach has the lowest computational cost among the sensitivity meth-
ods presented;

• the proposed approach can be extended to additional components of building envelopes, as
demonstrated by carrying out a sensitivity analysis for the wall together with a single glazed
window.
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5 Conclusion
Estimation of the properties of wall material plays an important role in assessment of building en-
ergy performance. To reduce computational cost, the concept of primary identifiability is proposed
to rank the unknown parameters and only estimate a few numbers. The parameters are selected
by analyzing their impact on the model output. In other words, a sensitivity analysis is performed
to eliminate the non-significant unknown parameters. However, the calculation of sensitivity coef-
ficients requires a high computational effort since the methods usually employed in the literature
involve a large number of model evaluations. Thus, the originality of this work lies in the computa-
tion of sensitivity coefficients through a continuous derivative -based approach. Incorporated in a
reliable and efficient Dufort–Frankel numerical model, the direct differentiation of the governing
model equation provides accurate results with a reduced computational time.
Initially, the results of first- and second-order sensitivity coefficients are compared with a reference
solution and various discrete approximations. Although the discrete approach is faster, its accuracy
depends greatly on the discretization step value. Then, Taylor series expansion is discussed.
The sensitivity coefficients are used to explore how model outputs vary according to changes in
parameters. Variations for the temperature field, the heat flux, and the thermal loads relative to
modification of the thermal parameters are assessed with very satisfactory accuracy. Finally, the
comparison with variance and regression–based methods is conducted. Similar qualitative results
highlight the reliability of the derivative -based approach. Additionally, the global metrics of the
continuous approach comply with the Sobol total indices. Another advantage is CPU time. RBD–
FAST and Sobol methods require at least 100 times higher computational time.
Since the validation case provides good results in terms of accuracy and computational time, the
proposed method is used to determine the parameters that have the most influence on the energy
performance of a real building wall, situated in France. The results of the local and global metrics
show that the thermal conductivity has a greater impact on the thermal loads for this case study.
One may also analyze how the thermal loads vary during the day, month, or year or how the
heat flux varies according to the changes in the thermal conductivity. In terms of computational
time global metric values were obtained with fewer output evaluations using the derivative -based
approach. One may note that this approach can be employed together with the finite-difference
approximations of sensitivity coefficients using the building simulation programs. Additionally, an
envelope, composed of a historical building wall and a single-glazed window, was studied. The
influence of glass and wall thermal properties on the overall energy performance was calculated to
illustrate that the methodology can be extended to the other components of building envelope.
In brief, the derivative -based sensitivity analysis uses partial derivatives as global sensitivity co-
efficient estimators. Calculation of the partial derivatives through the direct differentiation of the
model–governing equation provides continuous and time-varying sensitivity coefficients. The Tay-
lor approximation allows us to explore model output variation according to changes in the input
parameters. The proposed approach accurately finds the most influential parameters on any chosen
model output with small computational effort. Therefore, it can be used as a preliminary step for
the parameter estimation problem. However, these advantages, such as accuracy and computa-
tional cost, do not apply in general. They should be further investigated for other case studies and
wall configurations. Further works should focus on extending the methodology for more complex
mathematical models including, for instance, coupled heat and mass transfer in porous materials.
Another possible extension is to widen the scope of the parameters scope by considering not only
wall material properties but also the heat convection coefficients.
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Nomenclature
Latin letters

c material volumetric heat capacity [ J/(m3 · K) ]
cp material specific heat capacity [ J/(kg · K) ]
E thermal loads [ W · s/m2 ]
h convective heat transfer coefficient [ W/(m2 · K) ]
j heat flux [ W/m2 ]
k thermal conductivity [ W/(m · K) ]
L wall length [ m ]
Lw glass thickness [ m ]
q∞ total incident radiation [ W/m2 ]
T temperature [ K ]
t time [ s ]
x thickness coordinate direction [ m ]

Greek letters
α surface absorptivity
ρw material density [ kg/m3 ]
Ω variable domain
ρ glass reflectivity [− ]
τ glass transmissivity [− ]

Dimensionless values
A fraction of absorbed heat [− ]
Bi Biot number [− ]
Fo Fourier number [− ]
g∞ total incident radiation [− ]
u temperature field [− ]

Subscripts and superscripts
L Left boundary x = 0
R Right boundary x = L

? dimensionless parameter
◦ a priori parameter value

tay Taylor series expansion
num numerical solution
w window
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Abbreviations
SRC Standardized Regression Coefficients
SRRC Standardized Rank Regression Coefficients
FAST Fourier Amplitude Sensitivity Test
RBD Random Balance Design
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A Dimensionless equation
This section introduces the dimensionless model equations. The dimensionless formulation has
several advantages. First, once we operate the numbers of the same magnitude, we minimize the
rounding numerical errors [46]. Second, it enables a general investigation of the model behaviour
regardless of the unit used to measure variable [47, 48]. Finally, it simplifies equations by reducing
the number of variables.
Let us define the following dimensionless variables:

x ?
def:= x

L
, u

def:= T

T ref
, t ?

def:= t

t ref
,

k ?
def:= k

k ref
, c ?

def:= c

c ref
, Fo def:= t ref · k ref

L 2 · c ref
,

where subscripts ref relate for a characteristic reference value, and superscript ? for dimensionless
parameters. Thus, equation (1) becomes:

c ? · ∂u
∂t ?

= Fo · ∂

∂x ?

(
k ? · ∂u

∂x ?

)
. (30)

Robin–type boundary conditions are converted to:

k ? · ∂u
∂x ?

= Bi L ·
(
u − uL

∞

)
− α · g L

∞ , x ? = 0 (31)

k ? · ∂u
∂x ?

= − Bi R ·
(
u − uR

∞

)
, x ? = 1 , (32)

with dimensionless quantities:

Bi L
def:= h L · L

k ref
, Bi R

def:= h R · L
k ref

,

uL
∞

def:= T L
∞

T ref
, uR

∞
def:= T R

∞
T ref

, g L
∞

def:= q L
∞ · L

T ref · k ref
.

The initial condition is transformed to

u = u 0 , where u 0
def:= T 0

T ref
.

The dimensionless heat flux j ? is expressed as:

j ? : t ? 7−→ j
j ref

, where j ref
def:= T ref · k ref

L
.

The dimensionless thermal loads E ? are calculated as:

E ? : δ t ? 7−→ E
E ref

, where E ref
def:= T ref · k ref · t ref

L
.

Next section presents how to quantify the change of the model output value according to the change
of one or set of input parameters.
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B Dicrete function derivatives
The Central difference approximation with the second–order accuracy can be defined as follows:

X p ? = u ( p ? + ∆p ? ) − u ( p ? − ∆p ?)
2 · ∆p ? + O

(
∆p ? 2

)
. (33)

By adding another term to the backward difference approach, the second–order accuracy is achieved.
The three points approximation can be expressed by the following formulation:

X p ? = 3 · u ( p ? ) − 4 · u ( p ? − ∆p ?) + u ( p ? − 2 · ∆p ?)
2 · ∆p ? + O

(
∆p ? 2

)
. (34)

Similarly, one may estimate the higher order sensitivity coefficients. The second–order derivatives
can be approximated by the forward difference approximation:

X p ? p ? = u ( p ? + 2 · ∆p ? ) − 2 · u ( p ? + ∆p ?) + u ( p ? )
∆p ? 2 + O

(
∆p ?

)
(35)

or the central difference approximation:

X p? p ? = u ( p ? + ∆p ? ) − 2 · u ( p ? ) + u ( p ? − ∆p ? )
∆p ? 2 + O

(
∆p ? 2

)
. (36)

Joint effect of the two parameters p ?i and p ?j on the model output can be presented as mixed
derivative with the following approximation:

X p ?
i p

?
j

= 1
4 · ∆p ?i · ∆p ?j

u ( p ?i + ∆p ?i , p ?j + ∆p ?j ) − u ( p ?i + ∆p ?i , p ?r − ∆p ?j ) (37)

− u ( p ?i − ∆p ?i , p ?j + ∆p ?j ) + u ( p ?i − ∆p ?i , p ?j − ∆p ?j )
 + O

(
∆p ? 2

i · ∆p ? 2
j

)
.
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C Continuous function derivatives
he second order partial differentiation of Eq. (30) gives us the second–order sensitivity coefficients:

X k ?
1 k

?
1

:
(
x ? , t ? , k ?1

)
7−→ ∂2u

∂k ?1
2 ,

X c ?
1 c

?
1

:
(
x ? , t ? , c ?1

)
7−→ ∂2u

∂c ?1
2 ,

X k ?
1 c

?
1

:
(
x ? , t ? , k ?1 , c

?
1

)
7−→ ∂2u

∂k ?1 ∂c
?
1
.

Thus, the sensitivity equations to calculate the quantities X k ?
1 k

?
1
and X c ?

1 c
?
1
are:

∂X k ?
1 k

?
1

∂t ?
= Fo
c ?
· ∂

∂x ?

(
∂ 2 k ?

∂ k ? 2
1
· ∂u
∂x ?

+ 2 · ∂k
?

∂k ?1
·
∂X k ?

1

∂x ?
+ k ? ·

∂X k ?
1 k

?
1

∂x ?

)
. (38)

∂X c ?
1 c

?
1

∂t ?
= 2 · Fo

c ? 3 ·

 ∂c ?

∂c ?1

 2

· ∂

∂x ?

 k ? · ∂u
∂x ?

 − Fo
c ? 2 ·

∂ 2 c ?

∂ c ? 2
1
· ∂

∂x ?

 k ? · ∂u
∂x ?

 − (39)

2 · Fo
c ? 2 · ∂c

?

∂c ?1
· ∂

∂x ?

 k ? · ∂X c ?
1

∂x ?

 + Fo
c ?
· ∂

∂x ?

 k ? · ∂X c ?
1 c

?
1

∂x ?

 .
The coefficient X k ?

1 c
?
1
measures the impact of the two parameters k ?1 and c ?1 on the model output,

which is computed as a solution of the following equation:

∂X k ?
1 c

?
1

∂t
=− Fo

c? 2
∂c ?

∂c ?1

∂

∂x ?

(
∂k ?

∂k ?1

∂u

∂x ?
+ k ?

∂X k ?
1

∂x ?

)
+ Fo

c ?
∂

∂x ?

(
∂k ?

∂k ?1

∂X c ?
1

∂x ?
+ k ?

∂X k ?
1 c

?
1

∂x ?

)
.

(40)
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D Taylor series expansion of model outputs
The following expression describes the estimation of the function u (x? , t? ) at every point of the
parameters { k?1 , c?1 } around the { k? ◦1 , c? ◦1 }, which are the a priori parameter values.

u (x? , t? , k?1 , c?1 ) = u (x? , t? , k? ◦1 , c? ◦1 ) + ∂u

∂k?1

∣∣∣∣∣∣
k?

1=k? ◦
1

(
k?1 − k? ◦1

)
+

∂u

∂c?1

∣∣∣∣∣∣
c?

1=c? ◦
1

(
c?1 − c? ◦1

)
+ 1

2
∂2u

∂k? 2
1

∣∣∣∣∣∣
k?

1=k? ◦
1

(
k?1 − k? ◦1

)2

+

1
2
∂2u

∂c? 2
1

∣∣∣∣∣∣
c?

1=c? ◦
1

(
c?1 − c? ◦1

)2

+ 1
2

∂2u

∂k?1 ∂c
?
1

∣∣∣∣∣∣ k?
1=k? ◦

1
c?

1=c? ◦
1

(
k?1 − k? ◦1

)(
c?1 − c? ◦1

)
+

O

max
{(

k?1 − k? ◦1

)3

,

(
c?1 − c? ◦1

)3 } .
The Taylor expansion for heat flux is given by:

j? ( t? , k?1 , c?1 ) = j? ( t? , k? ◦1 , c? ◦1 ) + ∂j?

∂k?1

∣∣∣∣∣∣
k?

1=k? ◦
1

(
k?1 − k? ◦1

)
+ (41)

∂j?

∂c?1

∣∣∣∣∣∣
c?

1=c? ◦
1

(
c?1 − c? ◦1

)
+ 1

2
∂2j?

∂k? 2
1

∣∣∣∣∣∣
k?

1=k? ◦
1

(
k?1 − k? ◦1

)2

+

1
2
∂2j?

∂c? 2
1

∣∣∣∣∣∣
c?

1=c? ◦
1

(
c?1 − c? ◦1

)2

+ 1
2

∂2j?

∂k?1 ∂c
?
1

∣∣∣∣∣∣ k?
1=k? ◦

1
c?

1=c? ◦
1

(
k?1 − k? ◦1

)(
c?1 − c? ◦1

)

O

max
{(

k?1 − k? ◦1

)3

,

(
c?1 − c? ◦1

)3 } .
Last, the thermal loads value can also be approximated through a second order Taylor series
expansion as:

E? ( k?1 , c?1 ) = E? ( k? ◦1 , c? ◦1 ) + ∂E?

∂k?1

∣∣∣∣∣∣
k?

1=k? ◦
1

(
k?1 − k? ◦1

)
+ (42)

∂E?

∂c?1

∣∣∣∣∣∣
c?

1=c? ◦
1

(
c?1 − c? ◦1

)
+ 1

2
∂2E?

∂k? 2
1

∣∣∣∣∣∣
k?

1=k? ◦
1

(
k?1 − k? ◦1

)2

+

1
2
∂2E?

∂c? 2
1

∣∣∣∣∣∣
c?

1=c? ◦
1

(
c?1 − c? ◦1

)2

+ 1
2

∂2E?

∂k?1 ∂c
?
1

∣∣∣∣∣∣ k?
1=k? ◦

1
c?

1=c? ◦
1

(
k?1 − k? ◦1

)(
c?1 − c? ◦1

)
+

O

max
{(

k?1 − k? ◦1

)3

,

(
c?1 − c? ◦1

)3 } .
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E Numerical model equations of the temperature and sen-
sitivity coefficients.

For the nonlinear case, the solution is calculated with the following expression:

un+1
j = ν 1 · unj+1 + ν 2 · unj−1 + ν 3 · un−1

j , (43)

where

ν 1 = λ 1

λ 0 + λ 3
, ν 2 = λ 2

λ 0 + λ 3
, ν 3 = λ 0 − λ 3

λ 0 + λ 3
,

and

λ 0
def:= 1 , λ 3

def:= ∆t?
∆x? 2

Fo
c?j

(
k?j + 1

2
+ k?j − 1

2

)
λ 1

def:= 2 ∆t?
∆x? 2

Fo
c?j
k?j + 1

2
, λ 2

def:= 2 ∆t?
∆x? 2

Fo
c?j
k?j − 1

2
.

The nonlinear coefficients are approximated by:

k?j± 1
2

= k?
(
x?j + x?j± 1

2

)
. (44)

One may obtain the numerical scheme for computing sensitivity coefficient X k?
1
of the model output

u (x? , t? ) with respect to parameter k?1, by partially differentiating each term of Eq. (43):

X n+1
k?

1 j

= ν 1 ·X n
k?

1 j+1
+ ν 2 ·X n

k?
1 j−1

+ ν 3 ·X n−1
k?

1 j

+ (45)

∂ν 1

∂k?1
· unj+1 + ∂ν 2

∂k?1
· unj−1 + ∂ν 3

∂k?1
· un−1

j .

Similarly,the expression for sensitivity coefficient X c?
1
is as follows:

X n+1
c?

1 j

= ν 1 ·X n
c?

1 j+1
+ ν 2 ·X n

c?
1 j−1

+ ν 3 ·X n−1
c?

1 j

+ (46)

∂ν 1

∂c?1
· unj+1 + ∂ν 2

∂c?1
· unj−1 + ∂ν 3

∂c?1
· un−1

j .

Second order partial differentiation of Eq. (43) with respect to a parameter k?1 results as the nu-
merical scheme for X k?

1 k
?
1
:

X n+1
k?

1 k
?
1 j

= ν 1 ·X n
k?

1 k
?
1 j+1

+ ν 2 ·X n
k?

1 k
?
1 j−1

+ ν 3 ·X n−1
k?

1 k
?
1 j

+ (47)

2 · ∂ν 1

∂k?1
·X n

k?
1 j+1

+ 2 · ∂ν 2

∂k?1
·X n

k?
1 j−1

+ 2 · ∂ν 3

∂k?1
·X n−1

k?
1 j

+

∂2ν 1

∂k? 2
1
· unj+1 + ∂2ν 2

∂k? 2
1
· unj−1 + ∂2ν 3

∂k? 2
1
· un−1

j .
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For the sensitivity coefficient X c?
1 c

?
1
, we have:

X n+1
c?

1 c
?
1 j

= ν 1 ·X n
c?

1 c
?
1 j+1

+ ν 2 ·X n
c?

1 c
?
1 j−1

+ ν 3 ·X n−1
c?

1 c
?
1 j

+ (48)

2 · ∂ν 1

∂c?1
·X n

c?
1 j+1

+ 2 · ∂ν 2

∂c?1
·X n

c?
1 j−1

+ 2 · ∂ν 3

∂c?1
·X n−1

c?
1 j

+

∂2ν 1

∂c? 2
1
· unj+1 + ∂2ν 2

∂c? 2
1
· unj−1 + ∂2ν 3

∂c? 2
1
· un−1

j .

The coupled effects between parameters k?1 and c?1 is given through the numerical scheme for X k?
1 c

?
1

and demonstrated below:

X n+1
k?

1 c
?
1 j

= ν 1 ·X n
k?

1 c
?
1 j+1

+ ν 2 ·X n
k?

1 c
?
1 j−1

+ ν 3 ·X n−1
k?

1 c
?
1 j

+ (49)

∂ν 1

∂c?1
·X n

k?
1 j+1

+ ∂ν 2

∂c?1
·X n

k?
1 j−1

+ ∂ν 3

∂k?1
·X n−1

k?
1 j

+

∂ν 1

∂k?1
·X n

c?
1 j+1

+ ∂ν 2

∂k?1
·X n

c?
1 j−1

+ ∂ν 3

∂k?1
·X n−1

c?
1 j

+

∂2ν 1

∂k?1 · ∂c?1
· unj+1 + ∂2ν 2

∂k?1 · ∂c?1
· unj−1 + ∂2ν 3

∂k?1 · ∂c?1
· un−1

j .
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