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OBJECTIVES
We present a new convex formulation for the pro-
blem of recovering lines in degraded images. Follo-
wing the recent paradigm of super-resolution, we
formulate a dedicated atomic norm penalty and
solve this optimization problem by a primal–dual
algorithm. Then, a spectral estimation method re-
covers the line parameters, with subpixel accuracy.

ATOMIC NORM FRAMEWORK

Let z ∈ CN be a vector represented as a linear po-
sitive finite combinaison of sampled complex expo-
nentials [a(f, φ)]i = e j(2πfi+φ), that is

z =
K∑
k=1

cka(fk, φk),

whose parameters fk and φk are continuously in-
dexed in a dictionary of atoms:

A = {a(f, φ) ∈ CN , f ∈ [0, 1], φ ∈ [0, 2π)}.

The atomic norm, which enforces sparsity with res-
pect to the set A, is defined as

‖z‖A = inf
c′k>0,f ′k,φ

′
k

{∑
k

c′k : z =
∑
k

c′ka(f ′k, φ
′
k)

}
.

Theorem 1 [Caratheodory]. Let z = (zn)N−1n=−N+1 be
a vector with Hermitian symmetry z−n = z∗n. z is
a positive combination of K 6 N atoms a(fk, 0)
if and only if TN (z+) < 0 and of rank K, where
z+ = (z0, . . . , zN−1) and TN is the Toeplitz operator

TN (z+) =


z0 z∗1 · · · z∗N−1
z1 z0 · · · z∗N−2
...

...
. . .

...
zN−1 zN−2 · · · z0

 .

Moreover, this decomposition is unique, if K < N .

Proposition 1. The atomic norm ‖z‖A can be cha-
racterized by this semidefinite program SDP(z):

‖z‖A = min
q∈CN

{
q0 : T′N (z, q) =

(
TN (q) z
z∗ q0

)
< 0

}
.

PRIMAL-DUAL ALGORITHM

Let τ > 0 and σ > 0 such that 1
τ − σ‖L‖2 > β

2 .

Input: The blurred and noisy data image y
Output: x̃ solution of the optimization problem (1)

1: Initialize all primal and dual variables to zero
2: for n = 1 to Number of iterations do
3: Xn+1 = proxτG(Xn− τ∇F (Xn)− τ

∑Q
i=1 L

∗
i ξi,n)

4: for i = 0 to Q− 1 do
5: ξi,n+1 = proxσH∗i (ξi,n + σLi(2Xn+1 −Xn))
6: end for
7: end for

SUPER-RESOLUTION AND REGULARIZATION OF LINES

The Model. A sum of K perfect lines of infinite
length, with angle θk ∈ (−π/2, π/2], amplitude αk >
0 and offset ηk ∈ R, is defined as the distribution

x](t1, t2) =

K∑
k=1

αkδ
(
cos θk (t1 − ηk) + sin θk t2

)
.

The blurred image b] of size W ×H is obtained by
the convolution of x] with a separated blur function
φ, following by a sampling with unit step ∆:

b][n1, n2] = (x] ∗ φ)(n1, n2).

We denote by x̂] = F1x
] (resp. b̂]) the horizontal

Fourier transform of x] (resp. b]), whose expression

after sampling is the following Hermitian matrix:

x̂][m,n2] =
K∑
k=1

αk
cos θk

e j2π(tan θk n2−ηk)m/W ,

form = −M, . . . ,M , n2 = 0, . . . ,H ,M = (W −1)/2.
In the discrete paradigm, the blur function φ with
suitable assumptions corresponds in Fourier to a li-
near operator A, leading to the inverse problem:

Ax̂] = b̂].

The observed image y is possibly affected by an in-
painting mask M and some white noise ε, that is

y = MF−11 Ax̂] + ε = Hx̂] + ε.

c1a(fn2,1)

c1a(fm,1, φm,1)

x̃

x̃ ∈ arg min
x̂,q∈X×Q

1

2
‖Hx̂− y‖2F

∀n2 = 0, ...,H − 1
∀m = 0, ...,M
x̂[0, n2] = x̂[0, 0] 6 c

q[m, 0] 6 c

T′HS (x̂[m, :],q[m, :]) < 0

TM+1(x̂[:, n2]) < 0

t2

t1

η

θ α

t2

t1

n2
n1

F
1

+
∆

F
−
1

1

+
ε

∗ φ

+∆

M

A D

x] b] b] + mask

x̂] Ax̂] y

• l]n2
= x̂][:, n2] =

∑K
k=1 cka(fn2,k)

ck =
αk

cos θk
, fn2,k =

tan θk n2 − ηk
W

.

• t]m = x̂][m, :] =
∑K
k=1 cka(fm,k, φm,k)T

fm,k =
tan θkm

W
, φm,k = −2πηkm

W
, dm,k = ckφm,k.

Lines regularization. Minimizing these atomic
norms simultaneously enables to enforce sparsity
decomposition on rows and columns of the solution:
• ‖l]n2

‖A =
∑K
k=1 ck = x̂][0, n2] (Theorem 1)

• ‖t]m‖A = SDP(t]m) 6
∑K
k=1 ck (Proposition 1)

Resolution. The optimization problem is rewritten:

X̃ = arg min
X∈H

{
F (X)+G(X)+

Q−1∑
i=0

Hi ◦ Li(X)

}
, (1)

with F (X) = 1
2‖Hx̂ − y‖2F, X = (x̂,q), ∇F a β–

Lipschitz gradient, a proximable indicator G = ιB
where B are the two first boundary constraints, and
Q = M + 1 +H linear composite terms, where Hi =
ιC with C the cone of semidefinite positive matrices
and Li ∈ {L(1)

m ,L
(2)
n2 }, L

(1)
m (X) = T′HS (x̂[m, :],q[m, :])

and L
(2)
n2 (X) = TM+1(x̂[:, n2]). L denotes the conca-

tenation of the Li operators in the next algorithm.
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SPECTRAL ESTIMATION BY A PRONY-LIKE METHOD

Let be dk ∈ C, fk ∈ [−1/2, 1/2), ζk = e j2πfk and

zi =

K∑
k=1

dk
(
e j2πfk

)i
, ∀i = 0, . . . , N − 1.

The annihilating polynomial filter is defined by:
H(ζ) =

∏K
l=1(ζ − ζl) =

∑K
l=0 hlζ

K−l with h0 = 1,

K∑
l=0

hlzr−l =

K∑
k=1

dkζk
r−K

(
K∑
l=0

hlζk
K−l

)
︸ ︷︷ ︸

H(ζk)=0

= 0.

PK(z)h =

 zK · · · z0
...

. . .
...

zN−1 · · · zN−K−1


h0

...
hK

 =

0
...
0


¶ From PK(z), compute h by a SVD. Form H

whose roots give access to the frequencies fk.
· Since z = Ud with U = (a(f1), · · · ,a(fK)),

find amplitudes by LS: d = (UHU)−1UHz.

Procedure for retrieving the line parameters

¶ For each column x̃[m, :] compute {f̃m,k}k by ¶

· For each column x̃[m, :] compute {d̃m,k}k by ·

¸ {fm,k}m = { tan θkmW }m lin. regression→ {θ̃k}
¹ α̃m,k = |d̃m,k| cos(θ̃k)→ {α̃k}k = E[{α̃m,k}m]

º dm,k/|dm,k| = (e−j2π
ηk
W )m → {η̃k}k by ¶

This procedure enables to super-resolve the line pa-
rameters from the solution x̃ of the problem (1).


