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Abstract
The in situ estimation of the thermal properties of existing building wall materials is a

computationally expensive procedure. Its cost is highly proportional to the duration of mea-
surements. To decrease the computational cost a methodology using a D-optimum criterion to
select an optimal experiment duration is proposed. This criterion allows to accurately estimate
the thermal properties of the wall using a reduced measurement plan. The methodology is
applied to estimate the thermal conductivity of the three-layer wall of a historical building in
France. Three different experiment sequences (one, three and seven days) and three spatial
distributions of the thermal conductivity are investigated. Then using the optimal duration
of observations the thermal conductivity is estimated using the hybrid optimization method.
Results show a significant reduction of computational time; and reliable simulation of physical
phenomena using the estimated values.

Key words: heat transfer; optimal experiment design; real climate conditions;
parameter estimation problem ; hybrid optimization method.

1 Introduction
Recently, reducing carbon emissions has become one of the most important tasks worldwide. The
building sector is responsible for approximately one-third of global energy-related carbon emis-
sions [1]. Implementation of energy-efficient policies can significantly decrease these emissions.
Policies should focus on minimizing energy demand for heating and cooling through the retrofitting
of the existing building stock. The success of the retrofitting strategies highly depends on accu-
rate predictions of the building’s energy performance. Building simulation programs play the main
role in the efficiency evaluation of energy-saving policies. However, to obtain reliable prediction
simulation software requires accurate values of the building material properties. As recent studies
show, there is a gap between calculated and actual energy consumption [2, 3]. Specifically, this
discrepancy comes from the uncertainty of the thermophysical characteristics of the building wall.
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Thermal conductivity and heat capacity can be inferred through the solution of the so-called inverse
problem. The latter corresponds to an optimization problem, which aims to minimize a difference
between direct model outputs and experimental observations.
The acquisition of experimental data in existing buildings faces several constraints. First, dealing
with existing buildings should consider their residents, and not interfere in occupants’ everyday life.
The next factor is the cost of experimental design. For instance, the quality of the experiment can be
improved by installing more sensors, which would increase the cost of the experiment. Finally, the
duration of an experiment should be questioned. On the one hand, longer experiments guarantee
better accuracy of estimated parameters. But on the other hand, the computational cost of the
parameter estimation problem is highly proportional to the duration of the observations. Therefore,
it is important to address this issue and find an optimum between the "richness" of the experimental
data and the computational cost of the inverse problem.
Several studies that deal with this dilemma can be found in the literature. The first approach
presents an error measurement of thermal conductivity and heat capacity calculated over a different
number of days, from one up to twenty [4]. Through a comparison of the relative errors and
parameters dispersion for each period, the optimal number of days is chosen. However, this approach
is not reliable for a longer experiment duration, for instance several months, due to computational
cost. Another drawback is a lack of reliable criteria, so the choice is made based on a personal
perspective. A second practice is maximizing the so-called D-optimum criterion, the determinant of
the sensitivity matrix and its transpose, which minimizes the confidence regions of the parameters.
Several articles apply this criterion on mass transfer in a porous building material [5, 6]. Studies of
optimal experiment design of heat transfer have been performed in controlled laboratory conditions.
For instance, in [7], the optimal heating period and the duration of the experiment were investigated
for a three-layer experimental set-up, where a thin heater is placed between two identical samples.
Unfortunately, the aforementioned articles do not apply the optimal experiment design in real
climate conditions.
This article presents a real case study of the wall of a historical building in France. Temperature
measurements were taken over one year both on the wall surfaces and within the wall using five
different sensors. The wall consists of three layers. Previously, the thermal conductivity of the wall
were identified by implementing the Bayesian approach [8]. However, an order of 10 5 direct model
computations were required to solve the estimation problem using the whole set of observations.
Therefore, it is crucial to decrease the measurement period and to preserve the accuracy of the
estimated parameters at the same time.
The aim of the article is to propose a methodology to choose the optimal experiment duration for
the estimation of thermal conductivity. By using the D-optimum criterion [9] and the advantages of
the Dufort–Frankel numerical scheme, this approach can be used to choose the best period of
the experiment efficiently. Additionally, thermal conductivity is estimated over the chosen period
using the hybrid optimization method. Hybrid optimization methods combine gradient and heuristic
optimization strategies to find rapidly global extremum.
The article is organized as follows: Section 2 presents the mathematical and numerical models
together with the methodology to solve the parameter estimation problem. Section 3 introduces
a case study of a multi-layer wall. The estimation of the thermal conductivity of each layer of
the wall requires several steps. First, the identifiability of the parameters is demonstrated. Next,
the optimal duration of the experiment is chosen. Then, the results of the parameter estimation
problem are given. Finally, the reliability of a whole approach is discussed.
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2 Methodology

2.1 Physical Model

Figure 1. Illustration of the wall construction.

The physical problem considers one–dimensional heat conduction transfer through a building wall.
The wall is composed of N layers, each layer differs from the other by its thermal properties
and thickness, as shown in Figure 1. The temperature in the wall is defined on the domains
Ωx : x ∈ [ 0 , L ] and Ω t : t ∈ [ 0 , τmax ] , where L [ m ] is the length of the wall and τmax [ s ] is the
duration of the experiment:

T : [ 0 , L ] × [ 0 , τmax ] −→ R .

The mathematical formulation of the heat transfer process is given below:

c
∂T

∂t
= ∂

∂x

(
k
∂T

∂x

)
, (1)

where c [ J · K−1 ·m−3 ] is the volumetric heat capacity, or c = ρ · c p , corresponding to the
product between the material density ρ [ kg ·m−3 ] and the specific heat c p [ J · kg−1 · K−1 ], and
k [ W ·m−1 · K−1 ] is the thermal conductivity. Both properties depend on the space coordinate.
The inside and outside surface temperatures of the wall are set as boundary conditions:

T = T L
∞

(
t
)
, x = 0 , (2)

T = T R
∞

(
t
)
, x = L . (3)

The initial condition of the problem is defined as a solution of the steady state problem:

T = T 0
(
x
)
, t = 0 . (4)

The contact between layers is assumed to be perfect, thereby imposing continuity on the temperature
and the heat flux [10, 11].

[
T
(
x , t

) ]
x = x int

i

= 0 ,
[
k
∂T

(
x , t

)
∂x

]
x = x int

i

= 0 . (5)
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2.2 Modelling the thermophysical properties
This section outlines a mathematical model to represent space dependant thermal conductivity k
and volumetric heat capacity c. Generally, the spatial distribution of the thermophysical properties
is defined as a piecewise function. The expression for thermal conductivity k is formulated as:

k (x ) =
N∑
i=1

k i ϕ i (x ) , (6)

while volumetric heat capacity c is defined as:

c (x ) =
N∑
i=1

c i ϕ i (x ) , (7)

where
{
ϕ i (x )

}
i = 1 ,... ,N

are piecewise functions and can be written as:

ϕ i (x ) =


1 , x int

i−1 6 x 6 x int
i , i = 1 , . . . , N ,

0 , otherwise ,
(8)

where x int
i−1 and x int

i are the left and right interfaces of the layer i, respectively.
This article focuses solely on the estimation of the thermal conductivity of the wall. Therefore,
the piecewise parameterization is used to characterize the variation of the volumetric heat capacity.
However, thermal conductivity may depend on moisture content in a wall that changes spatially
due to daily cycles of temperature and relative humidity [12], therefore there are several options to
define the spatial variation of the thermal conductivity. It can be presented as a linear combination
of basis functions:

k (x ) =
M∑
i=1

β i Y i (x ) , (9)

where M is number of the chosen basis functions {Y i (x ) }.
This article deals with three different types of the properties parameterization : the standard–
case scenario as piecewise functions, the polynomial interpolation, the spline interpolation. The
first is defined above. The next parameterization is found through a polynomial interpolation.
Thermal conductivity is formulated by standard series of the polynomial basis functions, and it
yields to:

k (x ) = k 0 + β 1 x + β 2 x
2 + . . . + βM xM , 0 6 x 6 L . (10)

Finally, thermal conductivity is presented using a piecewise polynomial interpolation. There-
fore,

k (x ) = Y i (x ) , x int
i−1 6 x 6 x int

i , (11)
where Y i (x ) is polynomial with a different degree for each wall layer, or

Y i (x ) =
G∑
r=0

β r x
r , (12)

where G is the chosen polynomial order.
The further choice of a parameterization will depend on the structural identifiability of unknown
parameters since it varies due to number of available measurements.
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2.3 Dimensionless equation
This section introduces the dimensionless model equations.
Let us define the following dimensionless variables:

x ? = x

L
, u = T − T ref

∆T ref
, t ? = t

t ref
, (13)

k ? = k

k ref
, c ? = c

c ref
, Fo = t ref · k ref

L 2 · c ref
,

where subscripts ref relate to a characteristic reference value, and superscript ? for dimensionless
parameters. Thus, equation (1) becomes:

c ? (x ? ) ∂u
∂t ?

= Fo ∂

∂x ?

(
k ? (x ? ) ∂u

∂x ?

)
. (14)

Dirichlet–type boundary conditions are converted to:

u = uL ( t ? ) , x ? = 0 , where uL = T L
∞ − T ref

∆T ref
, (15)

u = uR ( t ? ) , x ? = 1 , where uR = T R
∞ − T ref

∆T ref
. (16)

The initial condition is transformed to:

u = u 0 (x ? ) , where u 0 = T 0 − T ref

∆T ref
. (17)

2.4 Numerical Model
After defining the governing equation, this section details the construction of the numerical model.
Let us discretize uniformly the space and time intervals, with the parameters ∆x? and ∆t?, re-
spectively. The discrete values of function u (x? , t? ) are defined as unj

def:= u (x?j , t?n ) , where
j ∈ { 1, . . . , Nx } and n ∈ { 1, . . . , Nt }. The solution u (x? , t? ) is obtained using the Dufort-
Frankel numerical scheme. This numerical model is chosen due to its explicit formulation without
loss of accuracy or reliability [13–15].
For the non-linear case, the solution is calculated with the following expression:

un+1
j = ν 1 · unj+1 + ν 2 · unj−1 + ν 3 · un−1

j , (18)
where

ν 1 = λ 1

λ 0 + λ 3
, ν 2 = λ 2

λ 0 + λ 3
, ν 3 = λ 0 − λ 3

λ 0 + λ 3
, (19)

and

λ 0
def:= 1 , λ 3

def:= ∆t?
∆x? 2

Fo
c?j

(
k?j + 1

2
+ k?j − 1

2

)
(20)

λ 1
def:= 2 ∆t?

∆x? 2
Fo
c?j
k?j + 1

2
, λ 2

def:= 2 ∆t?
∆x? 2

Fo
c?j
k?j − 1

2
. (21)

The nonlinear coefficients are approximated by:

k?j± 1
2

= k?
(
x?j + x?j± 1

2

)
. (22)
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2.5 Parameter Estimation Problem
The next section presents different steps required to solve the parameter estimation problem. The
issue is to determine the thermal conductivity within each layer of the wall. Each case of the ther-
mal conductivity parameterization holds its own set P of unknown dimensionless parameters.
The parameter set of the piecewise representation directly corresponds to the thermal conduc-
tivity values of wall layers:

P = { k ?1 , k ?2 , . . . , k ?N } . (23)

The set of the polynomial parameterization consists of polynomial coefficients, and its number
depends on the chosen order of the series:

P = { k ?0 , β 1 , β 2 , . . . , βM } . (24)

Unlike the polynomial representation, the number of the coefficients of the spline interpolation
differs depending on the layer. Therefore, its parameters set is expressed as:

P =
N⋃

i = 1
{ β 0

i , β
1
i , . . . , β

G
i } . (25)

We define the component of the parameter set P as Pm ∈ P with m ∈ { 1, . . . , N p } , where N p

is the total number of unknown parameters and varies depending of chosen parameterization. In
case of piecewise it equals to the number of all wall’s layers, or N p = N ; for polynomial and spline
interpolations N p = M and N p = G × N respectively. Therefore, the aim is to estimate these
parameters Pm.
The recovery of the parameters P is based on the minimization of a difference between the computed
temperature distribution u (x , t ) and the given temperature measurements u obs. The cost of this
minimization procedure is highly proportional to the number of parameters and the length of the
observations. Thus, it is important to check whether all parameters can be identified, and if the
estimation process requires all the measurement data. The next sections introduce a methodology
on how to answer these questions.

2.5.1 Structural Identifiability

Initially, it is of capital importance to check whether the parameters can be identified independently
from the measurements. One may introduce the formal identifiability of the unknown parameters
as follows. We assume here u (x , t ) is the only observable field.
A parameter Pm ∈ P is Structurally Globally Identifiable (SGI) if the following condition is
satisfied [16]:

∀t , u ( P ) = u ( P ′ ) ⇒ Pm = P ′

m . (26)

This property should be demonstrated for each type of parametrization.

2.5.2 Practical Identifiability

Before performing the parameter identification process we need to study whether the parameters can
be estimated regarding the given experimental design. These results are obtained using practical
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identifiability by calculating the sensitivity coefficients. The sensitivity coefficient is defined as the
first derivative of the (numerical) observations with respect to an unknown parameter [17, 18]:

XP m = ∂u
∂Pm

. (27)

The function XP m measures the sensitivity of the estimated field u with respect to changes in the
parameter Pm. If the value of XP m is small it can be concluded that that the parameter Pm does
not influence the output u and cannot be identified with accuracy. Moreover, the inverse problem
is also ill–conditioned. If the sensitivity coefficients are linearly dependent, the inverse problem
becomes ill–posed. Therefore, to get the best estimation of parameters P, it is necessary to have
linearly–independent sensitivity functions XP m with large magnitudes for all the parameters Pm.
The sensitivity coefficients are computed by direct differentiation of the governing equation (14)
with respect to an unknown parameter. Each parameter set implies a different set of sensitivity
equations. For instance, if the thermal conductivity is formulated as a piecewise function, the
sensitivity coefficient of the unknown parameter k ?i is given by the following differential equation:

∂X k ?
i

∂t ?
= Fo
c ?

∂

∂x ?

(
∂k ?

∂k ?i

∂u

∂x ?
+ k ?

∂X k ?
i

∂x ?

)
, (28)

where X k ?
i

= ∂u

∂k ?i
, and the derivative of the thermal conductivity yields to:

∂k ?

∂k ?i
=


1 , x int

i−1 6 x 6 x int
i ,

0 , otherwise .
(29)

Similarly, sensitivity equations for coefficients of the polynomial and spline representations are
retrieved. The difference lies in the calculation of the thermal conductivity derivative. In case of
polynomial parameterization, the derivative is computed as:

∂k ?

∂k ?0
= 1 , or ∂k ?

∂β i
= x i−1 . (30)

An analogous expression is obtained for the spline parameterization:

∂k ?

∂β r
= x r , r = { 0 , . . . , G } , x int

i−1 6 x 6 x int
i . (31)

2.5.3 The Optimal Experiment Design

Finally, to improve the precision of the estimated results, it is crucial to find an optimal experiment
design (OED). Under the optimal experiment, we mean measurement conditions that maximize the
estimated parameter accuracy. The purpose of this study is to determine the optimum duration of
experiment δ τ , to retrieve which period of observations provide us with maximum accuracy. To
search for this optimal experiment design, we introduce the following measurement plan:

π = { δ τ } . (32)
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The choice of the experimental design relies on the maximization of certain quality indicators [19],
thus the objective of OED is to find a measurement plan π̂ that maximizes a chosen function Ψ:

π̂ = argmax
π

Ψ . (33)

Several objective functions Ψ can be applied, in this article a measurement plan is analyzed using
a D–optimum criterion:

Ψ = det F̃ (π ) , (34)

where F̃ (π ) is the modified Fisher matrix. The elements of the matrix represent the average value
of the parameters sensitivity during the measurement plan π and are defined according to [9]:

F̃ (π ) =
[

F̃ ij

]
, ∀

(
i, j

)
∈ { 1, ..., Np } , (35)

F̃ ij = 1
σ 2

Nm∑
q = 1

1
δτ

∫ t ini + δτ

t ini
XP i

XP j
dt , (36)

where XP i
is the sensitivity coefficient of the solution related to the parameter P i, σ is the measure-

ment uncertainty, N p is the number of parameters, and Nm is the total number of measurements,
and δ τ is the duration of experiment, which should be investigated. Additionally, the initial time of
measurements t ini ∈ [ 0 , τmax ] and the total number of periods N δ τ in the whole interval [ 0 , τmax ]
are defined.
For example, to find an optimal week during one year of observations fifty two Fisher matrices
should be investigated, therefore, in this case δ τ = 7 [ days ], t ini shifts every seven days from the
first observation day and N δ τ = 52 .
Thus, from a numerical point of view, to detect the optimal period of measurements one should
choose the duration of the experiment, calculate the modified Fisher matrix for the chosen mea-
surement plan and then find an optimal sequence that maximizes the D–optimum criterion.

2.5.4 Cost function minimization

After finding the optimal sequence, the parameter estimation problem is solved by minimizing the
following cost function by the optimization method:

J
(

P
)

=
M∑

i = 1
ω i

∣∣∣∣∣∣
∣∣∣∣∣∣unum

(
x ? = x ?i , P

)
− u obs

i

∣∣∣∣∣∣
∣∣∣∣∣∣

2

(37)

The value of unum results from the solution of the direct problem (14) for a given set of parameters
P. The values of u obs

i are given by the measurements at the points x ? = x ?i respectively, M is
the total number of sensors. It is assumed that measurement errors are additive with zero mean,
constant variance, uncorrelated and normal distribution. The weights are calculated as ω i = 1

σ 2
i

,

where σ i is a standard deviation of the measurement u obs
i of the i−th sensor [11]. The norm is

calculated according to: ∣∣∣∣∣∣∣∣ y ∣∣∣∣∣∣∣∣
2

=
∫ tmax

0

(
y ( t )

) 2
dt (38)
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A priori parameters values, denoted as P ◦, are used in the minimization process and to compute
the sensitivity coefficients. The results of the parameter estimation problem are written as P est.
The optimization of cost function is performed through the OPTRAN package [20, 21]. It includes
a hybrid optimizer, combining gradient and global optimization methods to achieve the global
extremum of the function. It had the following six constituent optimization modules: Davidon–
Fletcher–Powell(DFP) gradient–based algorithm [22, 23], Genetic Algorithm (GA) [24], Nelder–
Mead (NM) simplex algorithm [25], Differential Evolution (DE) algorithm [26], Sequential Quadratic
Programming (SQP) [27] and quasi-Newton algorithm of Pshenichny–Danilin (LM) [28]. Thus, this
hybrid optimizer had three gradient–based and three non–gradient–based constituent optimization
algorithms that are automatically switching back–and–forth.
The optimization problem is completed when one of several stopping criterion is met: (1) the
maximum number of iterations or objective function evaluations are exceeded, or (2) the best
design in the population was equivalent to a target design, or (3) the optimization program tried
all four algorithms but failed to produce a non-negligible decrease in the objective function.

2.6 Metrics of efficiency and reliability of the model
The reliability of the model is assessed by comparing the numerical results with experimental
observations. The residual for temperature is computed according to:

ε (χ ?i ) def:=
∣∣∣∣unum

(
x ? = χ ?i

)
− u obs

i

(
x ? = χ ?i

) ∣∣∣∣ (39)

where χ ?i is the sensor location, the super script "num" defined the output field computed with the
model and "obs" stands for the experimental observation of the field.
Meanwhile, the efficiency of a numerical model can be measured by its computational (CPU) run
time required to compute the solution. It is measured using the MatlabTM environment with a
computer equipped with Intel i7 CPU and 16 GB of RAM.

3 Case study

3.1 Presentation
The issue is to estimate the thermophysical properties of the wall of a historical building. The house,
built in the XIX century, is located in Bayonne, France. The West oriented wall of the living room
was considered for the study. The wall is composed of three materials: lime coater, rubble stone and
dressed stone. The wall was monitored by sensors which were placed on both sides of the wall surface
and three were installed within the wall. The set–up is illustrated in Figure 2a where {χ 1 , χ 2 , χ 3}
are the locations of the three sensors. The exact position is reported in Table 1. T out ( t ) and
T ins ( t ) are outdoor and indoor temperatures. Their time variation is shown in Figure 2b. The
thermal properties of the wall are given in Table 2, obtained from the French standards [29]. The
data acquisition took almost one year starting from the middle of December with a time step of 1
h. Complementary information on the experimental design can be found in [8].
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Figure 2. Illustration of the real case study (a) with the boundary conditions (b).

Table 1. Sensors and layers positions within the wall.

Sensors
χ 1 [ m ] χ 2 [ m ] χ 3 [ m ] Layers

Interface
x 1 [ m ] x 2 [ m ]

0.05 0.23 0.42 0.2 0.48

3.2 Experimental observations
The total uncertainty on the observations are evaluated through the propagation of the uncertainties.
For the temperature, the total uncertainty is computed according to:

σ =
√
σ 2
T + σ 2

x (40)

where σT = 0.5 ◦C is the measurement sensor uncertainty, σx is the uncertainty due to the sensor
location. The latter is given by following formula:

σx = ∂T

∂x

∣∣∣∣
x = χ i

· δx , (41)

where ∂T
∂x

is calculated at the location of the sensors using the numerical model and the a priori val-
ues of the parameters. The term δx varies according the location, it is 1 cm when x ∈ {χ 1 , χ 2 , χ 3 },
and δx = 1.5 cm if x ∈ { 0 , L }.
Several figures present the calculated total uncertainty. Figures 6, 5, 7 display the uncertainty in
the gray shadow.
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Table 2. Thermal properties of each layer.

Material of layer Index
Thermal conductivity
k ◦i [ W · K ·m−1 ]

Heat capacity
c ◦i [ J · K−1 ·m−3 ] Thickness δ i [ m ]

Dressed Stone i = 1 1.75 1.6 · 10 6 0.2

Rubble Stone i = 2 2.3 2.8 · 10 6 0.28

Lime Coater i = 3 0.8 2.2 · 10 6 0.02

4 Results of the Parameter Estimation Problem

4.1 Structural Identifiability of the Parameters
The purpose of this section is to demonstrate the theoretical identifiability of the unknown parame-
ters. Moreover, the number of unknown parameters is determined, since it depends on the number
of the points of observations and the spatial distribution of thermal conductivity. The evaluation
of each case is discussed below.

The piecewise function parameterization

The first demonstration is carried out when thermal conductivity is presented as a piecewise func-
tion:

k ? (x ? ) =


k ?1 , 0 6 x ? < x ?1 ,

k ?2 , x ?1 6 x ? < x ?2 ,

k ?3 , x ? > x ?2 .

(42)

First, the parameter k ?1 is considered. Observations u
(
x ? = x ?1 , t

?
)

are obtained with the
parameter k ?1. Another set of observations u ′

(
x ? = x ?1 , t

?
)

is gathered with k ? ′
1 . At the point

of observation x ? = x ?1 the governing equation (14) is as follows:

c ?1
∂u

∂t ?
= Fo ∂

∂x

(
k ?1

∂u

∂x ?

)
. (43)

One may formulate the following equation for the second set:

c ?1
∂u

′

∂t ?
= Fo ∂

∂x

(
k ?

′

1
∂u

′

∂x ?

)
. (44)

In the case of our model, if u (x ? , t ? ) ≡ u
′ (x ? , t ? ), then ∂u

∂t ?
≡ ∂u

′

∂t ?
and ∂u

∂x ?
≡ ∂u

′

∂x ?
. By

subtracting equation (44) from equation (43), one may obtain:(
k ?

′

1 − k ?1

)
∂u

∂x ?
= 0 (45)

11



Therefore, it can be concluded that k ?1 ≡ k ?
′

1 . Similar demonstrations can be carried out to prove
that the parameter k ?2 is SGI by using the observations at x ? = x ?2 or x ? = x ?3. However,
based on the argumentation above, the parameter k ?3 is not SGI since there are no observations
in the third layer. Therefore, in this particular case only parameters k ?1 and k ?2 can be identified
theoretically.

Representation through the spline interpolation

The next parameterization assumes that thermal conductivity is given by constant values on the
first and third layers while changing linearly on the second wall layer. We denote this representation
as a linear parameterization. Therefore, the following expression is used:

k ? (x ? ) =


k ?1 , 0 6 x ? < x ?1 ,

k?20 + β 21 x
? , x ?1 6 x ? < x ?2 ,

k ?3 , x ? > x ?2 .

(46)

Using the same steps from the previous case, one may conclude that parameters k ?1 and { k ?20 , β 21 }
are SGI; the parameter k ?3 cannot be identified theoretically. Indeed, there is only one linear
formulation of k ? (x ? ) for the second layer. The two observations at points {x ?2 , x ?3 } uniquely
identify the coefficients k?20 and β 21.

Representation through the polynomial function

Another hypothesis implies that thermal conductivity is presented as a second–order polynomial
according to the space variable. Therefore,

k ? (x ? ) = k ?00 + β 10 x
? + β 20 x

? 2 , ∀ x ? ∈ [ 0 , 1 ] . (47)

The theoretical identifiability of k ? (x ? ) is proven below. Using this function k ? (x ? ) we observe
field u (x ? , t ? ) :

c ? (x ? ) ∂u
∂t ?

= ∂

∂x ?

(
k ? (x ? ) ∂u

∂x ?

)
(48)

Let us suppose that there is another polynomial k̂ ? (x ? ), and corresponding variable û (x ? , t ? ) :

c ? (x ? ) ∂û
∂t ?

= ∂

∂x ?

(
k̂ ? (x ? ) ∂û

∂x ?

)
. (49)

Subtracting one equation from another, and using that u (x ? , t ? ) ≡ û (x ? , t ? ), one may obtain:

∂

∂x ?

(k ? (x ? ) − k̂ ? (x ? )
)
∂u

∂x ?

 = 0 , or (50)
 ∂k ? (x ? )

∂x ?
− ∂k̂ ? (x ? )

∂x ?

 ∂u

∂x ?
+
(
k (x ? ) − k̂ ? (x ? )

)
∂ 2 u

∂ x ? 2 = 0 . (51)
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The terms
{
∂u

∂x ?
,
∂ 2 u

∂ x ? 2

}
are linearly independent. The polynomial k (x ) − k̂ ? (x ? ) has at most a

second order degree. However, it has 3 zero values, the number of observable fields. Therefore, it can
be concluded that the polynomial k ? (x ? ) − k̂ ? (x ? ) is a zero polynomial, and k ? (x ? ) ≡ k̂ ? (x ? ) .
So all three parameters { k ?00 , β 10 , β 20 } are SGI.

The choice of the thermal conductivity spatial distribution can be questioned. The answer lies in the
number of available sensors. In this particular case, at most three parameters can be theoretically
identified. In order to use more complex formulations of the thermal conductivity parameterization,
the experimental design should provide more observable fields. For example, to increase an order
of the polynomial parameterization and use a cubic polynomial, one has to put one more sensor
inside the wall. With the given theoretical identifiablity, one may search the Optimal Experiment
Design to ensure a high quality parameter estimation.

4.2 Results of the Optimal Experiment Design
Aim of this section is to demonstrate how to select an optimal measurement plan, which allows us to
estimate the thermal conductivity accurately and efficiently. Furthermore, it can be remarked that
the search of the OED requires only the knowledge of wall boundary conditions. So the methodology
is reproducible and does not need measurements inside the wall.
The three different measurement plans are investigated:

t ini ∈ [ 0 , 360 ] [ day(s) ] , (52)
δ τ = 1 , δ τ = 3 , δ τ = 7 ,
N δ τ = 360 , N δ τ = 120 , N δ τ = 52 .

To calculate the modified Fisher matrix using Eq. (35) the sensitivity coefficients of the par-
ticular parameters are required. Thus, for each measurement plan, three thermal conductivity
parametrizations are studied. The sensitivity equations of the piecewise, linear and polynomial
(quadratic) representation are solved with the Dufort–Frankel numerical scheme. For the OED
investigation the a priori parameter values used are reported in Table 2. The results are summa-
rized in Table 3 and Figure 3. Table 3 presents the starting dates, from which the D–optimum
criterion reached its maximum and minimum values depending on the duration of the experiment
and the parameterization. Table 3 shows that to obtain the best accuracy of estimated parameters
the observations in January should be chosen. This is valid for each thermal conductivity repre-
sentation and each duration of the measurement plan. However, the observations in the summer
period generally give a lower accuracy of estimated parameters.
Figure 3 displays values of the relative D–optimum criterion depending on the selection of the
measurement plan. Figure 3b demonstrates how the relative criterion composed of 120 values varies
during the whole year of the experimental campaign. It can be noted that the high values of the
criterion occurred in the cold season, providing a better accuracy for the parameter estimation
problem, while the lower values occurred during the summer. Moreover, the D–optimality criterion
of the three thermal conductivity parametrizations can be compared. Figure 3c displays that the
piecewise representation had the highest values of the criterion, showing that piecewise parameters
are more sensitive than the others.
Furthermore, a difference between the highest values of the criterion for three chosen sequences
can be discussed. Table 4 provides an information how the criterion varies depending on the
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Table 3. The values of initial day t ini, starting from which the minimum and maximum of Ψ are achieved.

Type of
parametrization

δ τ = 1 [ day ] δ τ = 3 [ days ] δ τ = 7 [ days ]
max Ψ min Ψ max Ψ min Ψ max Ψ min Ψ

Piecewise January, 16th August, 18th January, 18th July, 14th January, 21st August, 5th

Linear January, 19th August, 18th January, 18th July, 14th January, 21st August, 8th

Polynomial January, 19th September, 2nd January, 18th June, 23rd January, 21st September, 2nd

Table 4. The D-criterion highest values of the piecewise parametrization.

δ τ = 1 [ day ] δ τ = 3 [ days ] δ τ = 7 [ days ]

max Ψ 6.7 × O (−13 ) 3.9 × O (−11 ) 3.2 × O (−10 )

measurement plan using the piecewise representation. It can be seen that 7 [ days ] of observation
provide more information than the others since it provides the highest value of the objective function
Ψ.
The decision on the duration of the experiments is a difficult compromise. A week of observations
might be chosen since it ensures maximum accuracy, when solving the inverse problem, compare to
one-day duration. However, the cost of the inverse problem increases exponentially with the duration
of the experiment. Thus, a duration of 3 [ days ] for the experiments seems a good compromise as a
measurement plan. Moreover, since we are dealing with an occupied building, the experiment should
not disturb the occupants. The next step is to study the practical identifiability of parameters.

4.3 Results of Practical Identifiability
The issue now is to demonstrate the practical identifiability of the parameters for the selected three
days of observations, t ini = 18/01 , δ τ = 3 . For the sake of compactness, the sensitivity
coefficients are presented only for the piecewise thermal conductivity. Furthermore, as discussed in
Section 4.2, the piecewise parameters are more sensitive. Section 4.1 shows that the two parameters
k ?1 and k ?2 are theoretically identifiable for piecewise representation. Therefore, only two sensitivity
functions were computed. The calculation was performed for the whole year. Next, considering the
different periods of the year, reported in Table 3, the variation over the time of the variables X k ?

1
and X k ?

2
is shown in Figure 4. Figures 4a and 4c display the variation of the sensitivity coefficients

during three days in January for the first two sensors. In addition, Figures 4b and 4d present the
same information during a three day period in July corresponding to the period of the experimental
design with the lowest values of D–criterion. Several conclusions can be drawn.
First, it can be remarked that, in general, the amplitudes of the sensitivity coefficients during the
winter period were higher than in the summer. As a result, the model is more sensitive to the
parameters during the chosen period in January. This is consistent with the fact that the D–
optimum criterion achieved its highest value in January. Secondly, the sensitivity coefficients are
linearly independent within the first and second layers. Therefore, the thermal conductivity of the
first and second layers are practically identifiable. As shown in Figures 4a and 4c, the sensitivity of
the parameter k ?1 is higher for the sensor located in the first layer. Additionally, Figures 4a and 4c
show the sensitivity function of parameter k ?2 increases for the sensor position in the second layer.
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Figure 3. Variation of the criteria Ψ according to the length of observation period δ τ = 1 days (a),
δ τ = 3 days (b) and δ τ = 7 days (c).

Moreover, the total sensitivity was calculated during the best period of observations between the
two parameters in all sensor locations. The following expression can be used:

F
(
k ?1 , k

?
2

)
=

3∑
q = 1

1
σ 2

∫
δτ
X k ?

1

(
χ q , t

)
X k ?

2

(
χ q , t

)
dt . (53)

For this particular case this value is −0.0029, which proves the sensitivity coefficients are not
correlated. It can be concluded that the unknown parameters k ?1 and k ?2 are identifiable from the
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practical aspect, and should be estimated during the winter season.

F lin =


k ?1 k ?20 β 21

k ?1 1 −0.0028 −0.0022
k ?20 − 1 0.0014
β 21 − − 1

 , F quad =


k ?1 β 10 β 20

k ?1 1 0.0020 0.0046
β 10 − 1 0.0020
β 20 − − 1

 . (54)
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Figure 4. Variation of the sensitivity coefficients at the sensors location during 3 days in January and
July.

Similarly, the total sensitivity can be computed for linear and polynomial thermal conductivity
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Table 5. The a priori and estimated parameter values of the thermal conductivity representations.

Parameter A priori value Estimated value

Piecewise
k? ◦

1 1.0 0.75

k? ◦
2 1.3 1.01

Linear
k?

1 1.0 0.8336

k?
20 0.6195 −0.714

β 21 0.8271 2.639

Quadratic
k?

00 0.89 1.3952

β 10 2.397 −3.8249

β 20 −2.655 4.4296

representation. The results are reported in matrices ( 54). The matrices values do not equal to the
zero value, so, the parameters can be estimated practically.

4.4 Results of the Parameter Estimation Problem
The parameter estimation problem is solved using the optimization procedure described in Sec-
tion 2.5.4 and the direct numerical model detailed in Section 2.4. The space and time discretization
are ∆x ? = 10−2 and ∆t ? = 10−2 corresponding, from a physical point of view, to ∆x = 5 · 10−3 m
and ∆t = 3.6 s. The direct problem is solved for three days in January, t ini = 18/01 , δ τ = 3
as justified in Section 4.2. The three separate cases of thermal conductivity parameterization are
analyzed.
First, the piecewise representation of the thermal conductivity was studied. As a result of the
theoretical identifiability, only 2 parameters k? ◦1 and k? ◦2 were identified. The initial guess and the
estimated results are reported in Table 5. Then the direct problem was solved with the estimated
parameter values and compared to the observations. The calculated temperature values and the
respective measurements with uncertainty boundaries in three sensors locations are presented in
Figure 5. The estimation was in good agreement for the first two sensors. However, in the third
sensor location, the computed temperature values were out of the observation uncertainty bound.
This discrepancy may arise due to the modeling of the second layer material properties. As rubble
stone is not a homogeneous material, and it is irregular in shape and structure. Figure 5d displays
the estimated variation of thermal conductivity according to the space coordinate and the standard
values of the thermal conductivity.
In the second case, the parameters of the linear representation were identified. The parameter scope
includes the thermal conductivity of the first layer k?1 and the coefficients { k?20 , β 21 } of the linear
function for the second layer. The initial guess and the estimated results are reported in Table 5.
Figure 6 illustrates the difference between observations and the computed temperature values in
different sensor locations. Similar to the previous case, the calculated temperature values are closer
to the measurements in the first two sensors. However, a comparison of Figure 6c and Figure 5c
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Figure 5. Variation of the computed temperature and the experimental observations for (a) first ,(b)
second and (c) third sensor locations; and (d) the estimated thermal conductivity representation.

shows that the gap between the experimental and the calculated data was smaller for the linear
representation. Although, the computed values were not in the measurement uncertainty bounds.
Figure 6d presents the variation of the estimated thermal conductivity according to the location
in the wall and a comparison with the standard values of the thermal conductivity. It can be seen
that the thermal conductivity of the second layer was higher closer to the end of the wall.
Finally, the parameter estimation problem was solved for the quadratic representation of thermal
conductivity. The results of three coefficients identification are given in Table 5. Figure 7 shows
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Figure 6. Variation of the computed temperature and the experimental observations for (a) first ,(b)
second and (c) third sensor locations; and (d) the estimated thermal conductivity representation.

a comparison between the experimental observations and the numerical results; there was a satis-
factory agreement for all points of observations. The computed temperature values were inside the
uncertainty boundaries. Figure 7d illustrates how the thermal conductivity changed according to
wall depth and the standard values of the thermal conductivity. The thermal property reached its
higher values closer to the wall borders. As mentioned in Section 2.2, the profile of the thermal
conductivity in Figure 7d can be justified by the so-called moisture buffering effect [30]. Indeed, due
to the climatic and indoor variations of temperature and relative humidity, heat and mass transfer
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occurs in the porous wall. The water migration goes from the borders, where the forcing conditions
occur, to the centre of the wall. The wall being very thick, the moisture content penetrates only
the first centimetres. It is probably higher on the wall borders and lower in its centre. Since the
thermal conductivity has a linear relation with the water content in the wall, the profile of thermal
conductivity should be similar to the variation of water content in the wall.
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Figure 7. Variation of the computed temperature and the experimental observations for (a) first ,(b)
second and (c) third sensor locations; and (d) the estimated thermal conductivity representation.

The residuals for each thermal conductivity representation during the studied period t ini =
18/01 , δ τ = 3 can be compared. As shown in Figure 8 the residuals were not correlated regardless
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of the parameterization, although an error was higher for the piecewise and linear interpolation on
the third sensor location. The application of the quadratic interpolation helped to significantly
reduce this error. It can be concluded that the quadratic representation of thermal conductivity
gave better results than the other two.
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Figure 8. Variation of the error ε of the (a) piecewise, (b) linear, and (c) quadratic representation.
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4.5 Convergence of the optimization process
Figure 9 displays the relative variation of cost function according to iterations from the initial point
until the convergence criteria. The process starts with the Differential Evolution (DE) algorithm,
and around the hundredth iteration a change of the optimization algorithms occurred, it successively
changed from quasi-Newton algorithm of Pshenichny–Danilin (LM) to Nelder–Mead (NM) simplex
algorithm, after it shifted to Genetic Algorithm (GA) to Davidon–Fletcher–Powell(DFP) gradient–
based algorithm and Sequential Quadratic Programming (SQP).
The benefit of the reduced measurement plan can be calculated. To obtain an accurate parameter
estimation 150 iterations were required. In addition, the computational time of the numerical model
for three days was 4 seconds, therefore, the overall estimation lasted 10 minutes. Similarly, as the
computational time for one month was 40 seconds, at least 100 minutes are necessary to obtain the
estimated values. Finally, whole year simulation requires 400 seconds, and the parameter estimation
problem is solved in 17 hours.
These evaluations assume that the convergence criteria of the optimization algorithm does not
change with the length of observation sequence. Nevertheless, it underlines the advantage of the
approach in terms of CPU time.
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Figure 9. Convergence of the optimization process: evolution of the cost function and switch between the
methods of the hybrid optimizer.

4.6 Evaluating the reliability of the mathematical model.
The aim of this section is to investigate the prediction of the model with the experimental data
during the whole observation period. This issue is important since the parameter estimation problem
has been solved for a reduced measurement plan of three days. Thus, its reliability needs to be
evaluated. The numerical model was calculated for one year of observations using the estimated
parameters. Figure 10 displays the probability density function of the residual for each thermal
conductivity representation. In addition, the observation uncertainties for the sensor locations are
represented. It can be noted that the mean values of the residuals lay between 0.0 ◦ C and 0.5 ◦ C.
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Moreover, the computed residuals mean values are smaller than the observations mean values,
indicating the satisfactory reliability of the numerical model.
Furthermore, one may conclude that during the one year observations the quadratic representation
gave better results on the second and third sensor locations. However, the piecewise and the linear
interpolations have better results for the first sensor location.
Finally, the temperature distribution in the wall was computed during the last three days of the
experimental campaign. The calculation was performed using the estimated parameters of the
quadratic representation. Figure 11 shows how the predicted temperature varies according to time
inside the three sensor locations. A good agreement was obtained between the estimated values
and the experimental data; the observations were inside the uncertainty bound of the calculated
temperature. Furthermore, the a priori information was not reliable for the model prediction.
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Figure 10. Normalized probability density function of the error distribution for the piecewise (a), linear
(b), and quadratic (c) representations compared to the distribution of the measurement uncertainty σ
values during one year for each sensor location.

5 Conclusion
In the context of identification of thermophysical parameters of a building wall, the length of
observations plays an important role. The accuracy of estimated parameters proportionally depends
on the quantity of observations points, however, a long experiment is a computationally expensive
task. To find a balance between these two opposite conditions a methodology for determining the
optimal duration of the experiment was investigated. The concept of the optimal experiment design
(OED) was explored to decrease the duration of an experiment since this approach provides the best
accuracy of estimated parameters. The search of the OED was done using the Fisher information
matrix, quantifying the amount of information contained in the observations.
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Figure 11. Variation of the a priori temperature, the computed temperature, and the experimental
observations during the last three days of observations for (a) first ,(b) second, and (c) third sensor
locations.

This article studies the wall of a historical building composed of three layers. It was monitored
during one year by five sensors: two were placed on the wall’s surfaces, while three others within
the wall. The estimation of the thermal conductivity of the wall took several steps. First, different
spatial parametrizations were proposed to reproduce the variation of thermal conductivity according
to the length of the wall. However, only three parametrizations (piecewise, linear and quadratic)
were structurally identifiable. Then, the sensitivity coefficients were computed and the practical
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identifiability of the parameters was discussed. Next, in order to increase the accuracy of the
estimation of unknown parameters the D-optimum criterion was analyzed for three measurement
plans: one, three and seven days. It can be noticed that the criterion reaches the maximum value in
January, while the minimum is in the summer period. Then, the three days in January were chosen
as an optimal measurement plan as a compromise between the accuracy of the identification method
and overall experiment cost. Third, the estimation of thermal conductivity using measurements
during these three days was performed by the hybrid optimization method. Results have shown
that the implementation of the quadratic representation of thermal conductivity’s spatial variation
has the best agreement with observations among others two. It can be remarked that a large
computation gain is achieved by decreasing the length of observations from one year to three days.
Last, the reliability of the model is evaluated by comparing the numerical prediction using the
estimated parameters values to the whole year of observations. A very satisfactory agreement is
observed highlighting the good reliability of the proposed approach. It indicates that the estimated
parameters values using the obtained optimal sequence of three days can be applied to accurately
predict a physical phenomenon.
This study shows that the substantial reduction of the length of observations using OED, neverthe-
less, provides sufficient information to accurately simulate physical processes. Moreover, the OED
approach can be applied for in situ measurements only and is not depending on the number of
sensors inside the wall. However, it requires a priori information of parameters values and depends
on a chosen physical model. Further works should focus on the extension of the methodology for
more complex mathematical models including for instance coupled heat and mass transfer in porous
materials.
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Nomenclature
Latin letters

c material volumetric heat capacity [ J ·m−3 · K−1 ]
E thermal loads [ W · s ·m−2 ]
h convective heat transfer coefficient [ W ·m−2 · K−1 ]
j heat flux [ W ·m−2 ]
k thermal conductivity [ W ·m−1 · K−1 ]
L wall length [ m ]
q∞ total incident radiation [ W ·m−2 ]
T temperature [ K ]
t time [ s ]
t ini starting date [ day(s) ]
τmax ending date [ day(s) ]
δ τ measurement plan [ day(s) ]
x thickness coordinate direction [ m ]

Dimensionless values
F Fisher matrix [− ]
Fo Fourier number [− ]
π measurement plan [− ]
Ψ objective function [− ]
u temperature field [− ]

Subscripts and superscripts
L Left boundary x = 0
R Right boundary x = L

? dimensionless parameter
◦ a priori parameter value

est estimated parameter value
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