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In this paper, we consider the extension of three classical ODE's estimation techniques (Richardson extrapolation, Zadunaisky's technique and Solving for the Correction) to DAE's. Their convergence analysis is carried out for semi-explicit index 1 DAE's solved by a wide set of Runge-Kutta methods. Experimentation of the estimation techniques with RADAU5 is also presented: their behaviour for index 1 and 2 problems, and for variable step size integration is investigated.

Introduction

Several techniques for estimating the global error in the numerical solution of ODE's y 0 = f(y); y(0) = y 0 ;

(1) are described in 13]. Stetter's method 15] was extended to sti problems in 12] and to index 1 and 2 DAE's in 1]. It consists in building speci c Runge-Kutta methods with built-in global error estimation. In this paper, we look into techniques of a di erent type, based on a second integration rather than on the construction of speci c methods. Three classical techniques experimented for ODE's in 2] are considered: Richardson extrapolation, Zadunaisky's technique and Solving for the Correction. To our knowledge, they were never extended to DAE's solved by Runge-Kutta methods. Zadunaisky's technique was only considered in 14] for DAE's solved by the linearly implicit Euler method. We give convergence results for the three estimates applied to index 1 problems y 0 = f(y; z); y(0) = y 0 ; 0 = g(y; z); z(0) = z 0 ;

(2) with g z non singular, solved by Implicit Runge-Kutta methods: their extensions are presented in section 2 and convergence results for Zadunaisky's technique and Solving for the Correction are proved in section 3. Among the solvers for initial value problems in DAE's 4,8], we concentrate on RADAU5 9], based on the 3 stage RADAU IIA method. The three estimation techniques have been implemented in RADAU5: the outcome of our numerical experimentation is described in section 4. We compare the performances of the estimates and give an insight into their behaviour for index 2 problems.

Global error estimation for semi-explicit index 1 DAE's

In this section, Richardson extrapolation, Zadunaisky's and Solving for the Correction techniques are rst presented for (1) and extended to (2). Let y be the exact solution of (1) and fy n g be its numerical approximation on a constant step size grid ft n = nhg by a Runge-Kutta method of order p 1 . The global error E n = y n y(t n ) is well known to have an asymptotic h-expansion 10] y n y(t n ) = h p a p (t n ) + : : : + h N a N (t n ) + O(h N+1 ) [START_REF] Levacher | Numerical investigations on global error estimation for ordinary di erential equations[END_REF] with smooth a k 's. An estimate b E n of E n is said to be consistent of relative order s > 0 when b E n = E n + O(h p+s ):

The three estimation techniques under consideration are based on this special form of the h-expansion [START_REF] Levacher | Numerical investigations on global error estimation for ordinary di erential equations[END_REF], where the coe cients are functions of time only. A similar property is needed for (2).

For the numerical solution of (2), we restrict our attention to Runge-Kutta methods applied with the so-called direct approach, i.e.

y n+1 = y n + h s X i=1 b i Y 0 ni ; z n+1 = z n + h s X i=1 b i Z 0 ni ; Y ni = y n + h s X j=1 a ij Y 0 nj ; Z ni = z n + h s X j=1 a ij Z 0 nj ; Y 0 ni = f(t n + c i h; Y ni ; Z ni ); 0 = g(t n + c i h; Y ni ; Z ni );
and consistent initial conditions. With the usual settings 9], we also assume that Assumption 1. The implicit Runge-Kutta method is of classical order p, satis es C(q) with p q + 1, has an invertible coe cient matrix A and a stability function R satisfying jR(1)j < 1.

When (2) is solved by such a Runge-Kutta method with constant step size h, the global errors in y and z are also proved to have asymptotic h-expansions [START_REF] Hairer | Solving Ordinary Di erential Equations II -Second revised edition[END_REF], p. 27). However, their valuations may be di erent (p for the y-component and r p for the z-component), and the h-expansion in z may include perturbations.

However, for all methods with jR(1)j < 1, Theorem 3.2 in 9] states that the perturbations vanish or exponentially decay as n tends to in nity so that the following lemma is a trivial consequence.

Lemma 2. Suppose that (2) is solved on a grid ft n = nhg by a Runge-Kutta method satisfying Assumption 1. For any integer N, there exists such that, for t n > , the asymptotic h-expansions of the global errors in y and z are both of type [START_REF] Levacher | Numerical investigations on global error estimation for ordinary di erential equations[END_REF], that is to say unperturbed up to order N.

In practice, this boundary layer only a ects the rst few steps so that it is numerically unsigni cant. The above de nition for the consistency order of a global error estimate is also valid for the y and z components of (2): an estimate is of relative order s if it coincides with the rst s terms in the h-expansion of type [START_REF] Levacher | Numerical investigations on global error estimation for ordinary di erential equations[END_REF]. These terms can be derived by perturbing either the step size (Richardson extrapolation) or the problem (Zadunaisky's technique and Solving for the Correction).

Richardson extrapolation (RS)

This technique consists in carrying out two parallel integrations with step sizes h and h=2 leading respectively to the numerical values y n and y 2n at time t n . From (3), it is straightforward that the estimate

E RS n = y n y 2n 1 2 p (4)
coincides with the global error up to order p+1. Hence, it is a (relative) rst order error estimate for (1). The extension to (2) is straightforward since, according to lemma 2, the rst terms in the asymptotic h-expansions are unperturbed for n su ciently large. Hence, formula (4) with convenient p (IRK convergence order for the variable under consideration) still provides rst order estimates of the global errors in y and z, for n su ciently large.

Zadunaisky's technique (ZD)

The idea is to build a regularly perturbed problem b y 0 = f(b y) + d h (t); b y(0) = y 0 [START_REF] Brenan | Numerical Solution of Initial-Value Problems in Di erential-Algebraic Equations[END_REF] whose solution is known and whose perturbation d h (t) is small so that the global errors in solving (1) and ( 5) are close. Zadunaisky 17] proposed to consider P h de ned by P h (t) = P j (t) for t 2 t (j 1)m ; t jm ] with P j the Lagrange interpolation polynomial of degree m 1 of the numerical values fy n ; n = (j 1)m : : :jmg. In other words, P h is a pieciewise polynomial interpolating the numerical solution fy n g up to order m. Then, setting d h (t) = P h 0 (t) f(P h (t)), the solution of (6) Zadunaisky's technique can naturally be extended to (2) considering again the piecewise interpolation polynomials P h and Q h of the numerical solutions fy n g and fz n g up to order m. Then, the associated perturbed problem is b y 0 = f(b y; b z) + P h 0 (t) f(P h (t); Q h (t)); b y(0) = y 0 ; 0 = g(b y; b z) g(P h (t); Q h (t)); b z(0) = z 0 ; [START_REF] Dormand | Global error estimation with Runge-Kutta methods[END_REF] and denoting by fb y n g and fb z n g its numerical solution with the same Runge-Kutta method, Zadunaisky's estimates are (Ey

) ZD n = b y n P h (t n ) = b y n y n ; (Ez) ZD n = b z n Q h (t n ) = b z n z n : (8)
Consistency orders of ( 6) and ( 8) are given in table 1 and proved in section 3.

Solving for the Correction (SC)

This technique from 13] is based on the same interpolation polynomial P h as in the previous section. Now, we consider the function " h = P h y coinciding with the global error up to order m. This quantity can be computed by solving the di erential equation " h 0 = P h 0 (t) f(P h (t) " h ); " h (0) = 0: [START_REF] Hairer | Solving Ordinary Di erential Equations II -Second revised edition[END_REF] Its numerical solution f" n g with the same Runge-Kutta method provides a consistent estimate of the global error E SC n = " n :

(10) The extension to semi-explicit index 1 DAE's is again straightforward. We keep " h = P h y and introduce h = Q h z, so that the correction problem associated with (2) is

" h 0 = P h 0 (t) f(P h (t) " h ; Q h (t) h ); " h (0) = 0; 0 = g(P h (t) " h ; Q h (t) h ); h (0) = 0; (11) 
and the global error estimates become (Ey) SC n = " n ; (Ez) SC n = n :

(12) Convergence orders of ( 10) and ( 12) are given in table 1 and proved in section 3.

Convergence of ZD and SC for semi-explicit index 1 DAE's

After some preliminary results, we prove the consistency orders shown in table 1 for Zadunaisky's technique and Solving for the Correction applied to (2). Defect correction of type [START_REF] Dormand | Global error estimation with Runge-Kutta methods[END_REF] based on the linearly implicit Euler method is studied in 14]: the convergence analysis is carried out directly on (2). For Runge-Kutta methods, it is usual to consider the ODE equivalent to (2), i.e. y 0 = f(y; G(y)); with G de ned by g(y; G(y)) = 0; [START_REF] Scholz | On implicit Runge-Kutta methods with a global error estimation for sti differential equations[END_REF] because the y-component of the numerical solution of (2) can be interpreted as the numerical result for ( 13) by the same method (see 9], p. 25). Hence, in order to study Zadunaisky's technique and Solving for the Correction for the y-component, we will consider the ODE's equivalent to problems [START_REF] Dormand | Global error estimation with Runge-Kutta methods[END_REF] and [START_REF] Hairer | Solving Ordinary Di erential Equations I. Nonsti Problems[END_REF], and compare them to [START_REF] Scholz | On implicit Runge-Kutta methods with a global error estimation for sti differential equations[END_REF]. This leads to a higher consistency order for Solving for the Correction than for Zadunaisky's technique. Results for the z-component will then be derived from those of the y-component and are identical for both techniques.

Preliminary results

The following result 3,6,7] for ODE's was rst proven in 7]. Theorem 3. Let y(t) and b y(t) be the respective solutions of (1) and ( 5), and y n and b y n be their respective numerical solutions by a Runge-Kutta method of order p 1. Assume that the perturbation d h satis es for m r 0, 8k 0 d h (k) (t) = O(h max(0;min(r;m k)) ); [START_REF] Skeel | Thirteen ways to estimate global error[END_REF] for all t 0. Then, the global errors E n = y n y(t n ) and b

E n = b y n b y(t n ) satisfy, for all n, b E n E n = O(h min(m;p+r) ):
Remark 4. As a consequence, the order of Zadunaisky's technique for ODE's is

given by E ZD n E n = O(h min(m;2p) ) because the defect d h (t) = P 0 h (t) f(P h (t)) satis es ( 14) with r = p (see 6]). Similar considerations 6] also lead to E SC n E n = O(h min(m;2p) ).

For the sequel, we need an extension to regularly perturbed problems of type b y 0 = f(b y) + d h (t; b y); b y(0) = y 0 : [START_REF] Somali | Iterated defect correction methods for di erential-algebraic equations[END_REF] Theorem 5. Let y(t) and b y(t) be the respective solutions of (1) and ( 15), and y n and b y n be their respective numerical solutions by a Runge-Kutta method with order p 1. Assume that the perturbation d h satis es, for some real and m r 0, 8k; l 0 @ k+l d h @t k @y l (t; y) = O(h max(0;min(r;m k)) ) [START_REF] Stetter | Local estimation of the global discretisation error[END_REF] for t > and any y. Then, the global errors E n = y n y(t n ) and b

E n = b y n b y(t n ) satisfy, for t n > , b E n E n = O(h min(m;p+r) ):
The proof is detailed in 16] and follows the line of that for Theorem 3 3,7]. The key point is to check that the elementary di erentials associated to problems (1) and ( 15) are close up to a convenient order in h. We will also need the following lemma in the sequel Lemma 6. Let x 1 ; x 2 ; b x 1 ; b

x 2 be some reals and F; b F be some smooth functions

satisfying b F (k) (b x 1 ) F (k) (x 1 ) = O(h r ); 8k 0. One has b F F = O( b x x) + O(h r x) with F = F(x 2 ) F(x 1 ), b F = b F(b x 2 ) b F (b x 1 ) and x = x 2 x 1 , b x = b x 2 b x 1 .
This lemma comes from a basic argument on Taylor expansions 16]. The idea is to prove that d h satis es property [START_REF] Stetter | Local estimation of the global discretisation error[END_REF] for su ciently large t, so that Theorem 5 leads to the desired result for the y-component. This can be done by the following rather technical analysis.

Properties of Lagrange interpolation ensure that for t > , P (k) h (t) y (k) (t) = O(h max(0;min(p;m+1 k) );

(20a)

Q (k) h (t) z (k) (t) = O(h max(0;min(r;m+1 k) ): (20b) 
Let h (t) = P h 0 (t) f(P h (t); Q h (t)), and h (t) = g(P h (t); Q h (t)) be the two components of the defect in [START_REF] Dormand | Global error estimation with Runge-Kutta methods[END_REF]. A similar analysis to that in 7] leads to (k) h (t) = O(h max(0;min(r;m k)) ); and (k) h (t) = O(h max(0;min(r;m+1 k)) ): (21)

Now, let us expand d h in terms of h and h . Denoting G(t; y) = b G(t; y) G(y), the expansion of (19) in terms of G(t; y) reads d h (t; y) = h (t)+d 1 (y) G(t; y)+d 2 (y) G 2 (t; y)+: : :+O( G N (t; y)); ( 22) with smooth d i 's. By de nition, g(y; G(y)) = 0 and g(y; b G(t; y)) + h (t) = 0 so that h (t) = g(y; G(y)) g(y; b G(t; y)). Hence, we also get an expansion For sti y accurate methods, the algebraic order is r = p and constraints are preserved, so that z n = G(y n ), b z n = b G(t n ; b y n ). One can check @ k b G @y k (t n ; P h (t n )) @ k G @y k (y(t n )) = O(h p ); 8k 0 so that (17b) is a direct consequence of (17a) and Lemma 6.

For other methods with jR(1)j < 1, the algebraic order is r = q + 1 (see 9]), and a further analysis, involving the intermediate RK stages, must be carried out. It involves three main stages: As the assumption C(q) holds, one has 

Y ni = (Ey) n + h s X j=1 a ij F(Y nj ) F(Y j (t n ))]
F(t n + c j h; b Y nj ) b F(t n + c j h; b Y j (t n )) i 1 X k=q+1 D ki h k P h (k) (t n );
with b F (t; y) = F(y) + d h (t; y) and d h de ned in (19). Moreover, as a consequence of property ( 16), one has @ b F @y k (t n ; P h (t n )) @F @y k (y(t n )) = O(h r ); 8k 0 so that Lemma 6 leads to h b

F(t n + c j h; b Y nj ) b F(t n + c j h; b Y j (t n )) i F(Y nj ) F(Y j (t n ))] = O( b Y nj Y nj ) + O(h r Y nj )
Relation (20a) also proves

1 X k=q+1 D k h k P (k) h (t) 1 X k=q+1 D k h k y (k) (t) = O(h min(m+1;p+q+1) ) = O(h min(m;2r) ) (r p) Hence, we have b Y n Y n = h (Ey) ZD n (Ey) n i 1I + O(h( b Y n Y n ))
+O(h r+1 Y n ) + O(h min(m;2r) ): Finally, Y n = O(h q+1 ) = O(h r ) and (17a) give the desired result (25).

Then, derive b Z n Z n = O(h min(m;2r) );

(26) with Z(t n ) = z(t n + c 1 h); : : :; z(t n + c s h)] T ;

Z n = Z n Z(t n ); b Z(t n ) = Q h (t n + c 1 h); : : :; Q h (t n + c s h)] T ; b Z n = b Z n b Z(t n ): One has Z n = G(Y n ), b Z n = b G(t n ; b Y n )
and @ b G @y k (t n ; P h (t n )) @G @y k (y(t n )) = O(h r ); 8k 0 so that relation ( 26) is a direct consequence of (25) by Lemma 6 (same argument as above for sti y accurate methods). Now, prove (17b). As the method is of order p and C(q) holds, one has 9]

(Ez) n+1 = R(1)(Ez) n + b T A 1 Z n 1 X k=p+1 d k h k z (k) (t n ) + 1 X k=q+1 b T A 1 D k h k z (k) (t n )
with d k some reals involving the Runge-Kutta coe cients. And, similarly for the perturbed problem,

(Ez) ZD n+1 = R(1)(Ez) ZD n + b T A 1 b Z n 1 X k=p+1 d k h k Q h (k) (t n ) + 1 X k=q+1 b T A 1 D k h k Q h (k) (t n )
With the same technique as above for the Taylor expansions, and using (26), one gets (Ez) ZD n+1 (Ez) n+1 = R(1) h (Ez) ZD n (Ez) n i + O(h min(m;2r) ) Since jR(1)j < 1, this leads to the desired result (17b). which is exactly Zadunaisky's problem for [START_REF] Scholz | On implicit Runge-Kutta methods with a global error estimation for sti differential equations[END_REF]. Hence, for this class of DAE's, (17a) becomes (Ey) ZD n (Ey) n = O(h min(m;2p) ) (ODE's convergence order).

However, (17b) remains unchanged. This class obviously includes linear DAE's. (a) The ODE equivalent to [START_REF] Hairer | Solving Ordinary Di erential Equations I. Nonsti Problems[END_REF] is " 0 h = P h 0 (t) f(P h (t) " h ; G(P h (t) " h )) ( 28) with G de ned by f(y; G(y)) = 0, so that it is exactly the correction problem associated to [START_REF] Scholz | On implicit Runge-Kutta methods with a global error estimation for sti differential equations[END_REF]. Hence, the convergence result for the y-component is the same as for ODE's (see Remark 4). 

Example

Let us illustrate the theoretical results with the nonlinear index 1 system y 0 = (z + e t ) 2 + y; y(0) = 2; 0 = y z e t ; z(0) = 1; solved by the two stages RADAU IA method (p = 3, r = 2) with m = 6. This system is nonlinear but simple enough to allow us to carry out the integration and the global error estimation with Maple, keeping h as a formal parameter. This leads to the following h-expansions after twelve steps (n = 12), (Ey) ZD These are precisely the results predicted by Theorems 7 and 9: the order of SC is higher than those of ZD for the di erential variable. For a sti y accurate method, p = r, so that ZD and SC would lead to the same convergence order for both components.

Numerical experiments with RADAU5

In this section, the results of our numerical experimentation of RS, ZD and SC with the code RADAU5 are presented. Among the variety of problems tested, we consider the following set of index 1 and 2 test problems.

P1 Classical index 1 Pendulum [START_REF] Hairer | Solving Ordinary Di erential Equations II -Second revised edition[END_REF], p. 9): dimension 5 system with four di erential variables p; q; u; v and one algebraic variable .

TTA Two Transistor Ampli er [START_REF] Hairer | Solving Ordinary Di erential Equations II -Second revised edition[END_REF], p. 108): index 1 problem of dimension 8.

We focus on the algebraic variable U 8 .

NL 8 < : _ x = xy=z x(0) = 1 _ y = 2z y(0) = 1 0 = y x 2 z(0) = 1 MK 8 > < > : _ x = 102x + 100y 2 x(0) = 1 _ y = e 1 z 2 y(0) = 1 0 = x y(1 + y) + x y z(0) = 1
P2 Stabilized index 2 Pendulum ( 9], p. 9): dimension 6 system with four di erential variables p; q; u; v and two algebraic variables ; . DPC Discharge Pressure Control ( 9], p. 116): index 2 problem of dimension 7.

We focus on the algebraic variable m.

RM Ring Modulator ( 9], p. 112, C S = 0): index 2 system of dimension 15.

We focus on the algebraic variable U 3 .

The basic Nonlinear system NL and the Modi ed Kaps problem 5] MK are two nonlinear index 2 problems: x; y are the di erential variables and z is the algebraic variable. The solution of NL is (e t ; e 2t ; e 2t ), and the solution of MK is (e 2t ; e t ; p 1 + t). The selected problems are mainly index 2 because we want to give an insight into the behaviour of the estimation techniques for index 2 problems. In this paper, convergence results are only given for index 1 problems of type (2), but the situation is also promising for semi-explicit index 2 problems since even then, perturbed asymptotic expansions are proved to exist 9]. Moreover, most of our numerical observations were common to index 1 and 2 problems so that our set of test problems is representative. The implementation of the three usual estimates is quickly described in section 4.1. All numerical experiments were carried out with double precision on a Sun SPARK station. In order to measure the e ciency of an estimate b E n of the global error E n , we use the criterion

E = Log b E n E n E n ;
that quanti es the number of correct digits in the estimation. For most examples under consideration, no analytic solution is available, so a reference solution is computed with very stringent tolerance. In the sequel, we shall also call average e ciency the average of the e ciencies over a wide set of grid points. The three estimation techniques e ciencies are investigated with constant step size in section 4.2 and with variable step size in section 4.3.

Implementation in RADAU5

The code RADAU5 is designed for problems up to index 3 of type By 0 = f(t; y); y(t 0 ) = y 0 ;

(29

)
where B is a constant, possibly singular square matrix. The index 1 problem

(2) is already in this particular form. In the sequel, the estimation techniques are also experimented when the index of ( 29) is 2. The following implementation covers both cases.

(RS) For index 1 problems, formula ( 4) is used with p = 5 (convergence order of RADAU5) for all variables. For index 2 problems, it is natural to set p = 3 (convergence order of RADAU5) for the algebraic variables.

(ZD) We consider the usual piecewise interpolation polynomial P h of the numerical solution fy n g of ( 29), and solve the perturbed problem Bb y 0 = f(t; b y) + BP 0 h (t) f(t; P h (t)); b y(t 0 ) = y 0 ;

(30) For problem (2), the perturbed problem (30) coincides with [START_REF] Dormand | Global error estimation with Runge-Kutta methods[END_REF].

(SC) We solve the correction problem B" h 0 = BP h 0 (t) f(t; P h (t) " h ); " h (t 0 ) = 0:

(31) For problem (2), problem (31) also coincides with [START_REF] Hairer | Solving Ordinary Di erential Equations I. Nonsti Problems[END_REF].

Experiments with constant step size

Experiments related in this subsection were carried out forcing constant step size in RADAU5. Our aim is to emphasise that ZD and SC are still experimentally consistent for index 2 problems and to compare their e ciencies with those of RS with respect to step size.

Test 1. The index 1 and 2 test problems are integrated on convenient intervals: average (and min-max) e ciencies of ZD and SC are given in table 2. 1 The variables under consideration are algebraic (z for NL and MK, for P1 and P2, U 8 for TTA, m for DPC, and U 3 for RM). One can check that, in most cases, ZD and SC provide good estimations for index 1 and 2 problems. Results are similar for other variables. Typically, an implicit code like RADAU5 is designed for variable step size integration. The extension of constant stepsize proofs to variable stepsize is closely related to the regularity of the stepsize selection function 11,3]. Here, we only compare experimentally the performances of RS, ZD and SC with variable step size. Test 4. Integrations of Test 1 are carried out with variable step size: the average (and min-max) e ciencies of RS, ZD and SC are given in table 3 and are to be compared to those of table 2. It turns out that the high order estimates ZD and SC are not reliable with variable step size: for some problems, the e ciency is often negative, which means that no digit is correctly estimated. A further analysis of MTTA, DPC and other problems shows that this is due to two main points. First, the step size varies a lot during the integration so that it a ects the accuracy of the interpolation process in ZD and SC. Second, when the step size is large, ZD and SC are not reliable anymore, as emphasised in Test 3. On the other hand, RS still provides consistent estimations for all examples (one to three digits). Finally, the outcome of our variable step size experimentation is that, since the steps are often large, ZD and SC are not reliable, but RS still produces reliable results. 

Conclusions

Richardson extrapolation, Zadunaisky's technique and Solving for the Correction were proved to be consistent estimation techniques for semi explicit index 1 DAE's. While Richardson extrapolation provides a rst order estimation for all variables, Zadunaisky's technique and Solving for the Correction are higher order estimates. For sti y accurate Runge-Kutta methods, they both have relative order p (classical order of the Runge-Kutta method) for all variables. For non sti y accurate methods, Solving for the Correction is proved to have higher order than Zadunaisky's technique for the di erential component. From a practical point of view, the three estimation techniques turned out to still give consistent results for index 2 problems. We also emphasized that in practice, RADAU5 takes large variable steps so that Richardson extrapolation is the only reliable strategy.

  h (t) = g z (y; G(y)) G(t; y)+ e 2 (y) G 2 (t; y) + : : : + O( G N (t; y));(23) with smooth e i 's and g z invertible. Inverting (23) and inserting it into (22) then leads to d h (t; y) = h (t) + f 1 (y) h (t) + f 2 (y) 2 h (t) + : : : + O( N h (t));(24) with smooth f i 's. Finally, considering (24) and its partial derivatives together with (21) proves that d h satis es property (16) for t > . (b) The result for the z-component is derived from that for the y-component, following the proof of Theorem 3.1 in 9].

  n = O(h min(m;2r) ); (25) with Y (t n ) = y(t n + c 1 h); : : :; y(t n + c s h)] T ; Y n = Y n Y (t n ); b Y (t n ) = P h (t n + c 1 h); : : :; P h (t n + c s h)]

  k y (k) (t n ); with F(y) = f(y; G(y)) and D k = D k1 ; ; D ks ] T a vector of reals depending on the Runge-Kutta coe cients. Similarly, for the perturbed problem, b Y ni = (Ey) ZD n + h

Remark 8 .

 8 Consider the special class of DAE's with f and g de ned by f(y; z) = F(y) + z and g(y; z) = G(y) z. Equation (18) then reads b y 0 = F(b y) + G(b y) F(P h ) G(P h );

3. 3 .

 3 Solving for the Correction Theorem 9. Under the assumptions of Theorem 7, Solving for the Correction, as described in section 2.2 with deg(P h ) = deg(Q h ) = m r 0, satis es for su ciently large n, (Ey) SC n (Ey) n = O(h min(m;2p) ) with (Ey) n = y n y(t n ); (27a) (Ez) SC n (Ez) n = O(h min(m;2r) ) with (Ez) n = z n z(t n ): (27b) Proof. y and z are considered respectively in parts (a) and (b).

  (b) The convergence results for the z-component can be derived from those of the y-component with the same technique as for (b) of Theorem 7. The proof is detailed in 16].

Table 2 E

 2 ciencies of ZD and SC with constant step size h The e ciencies of ZD and SC with respect to step size are investigated for two index 2 problems: results are given in gure 1, together with those of the index 1 pendulum P1, for reference. One can check the consistency of ZD and SC for both algebraic and di erential variables: e ciencies signi cantly increase with step size for both index 1 and 2 problems. Figure 1. E ciencies of ZD and SC with respect to step size Test 3. The e ciencies of ZD and SC are compared to those of RS with respect to step size: results are given in gure 2 for six index 1 and 2 problems. As expected, the convergence of ZD and SC is much faster than for RS. However, we emphasize that for most problems, when the step size is large, ZD and SC provide bad estimations and RS is better.

	ZD	SC

Table 3 E

 3 ciency of RS, ZD and SC with variable step size for six problems

			RS	ZD	SC
	Pb	Tol	Eav Emin; Emax ]	Eav Emin; Emax ]	Eav Emin; Emax ]
	P1 10 6 3.08 1:90; 3:77] TTA 10 6 0.93 0:74; 1:09 ] -0.73 3:49; 1:24 ] -0.73 3:49; 1:21 ] 1.48 0:41; 2:33] 2.60 1:98; 2:83] NL 10 5 2.41 1:23; 2:72 ] 2.19 0:54; 2:91 ] 4.54 2:34; 5:79 ] MK 10 6 1.67 0:72; 3:06 ] 0.87 0:61; 2:42 ] 2.51 0:46; 5:72 ] P2 10 6 1.73 1:19; 2:55 ] 0.95 0:15; 1:92 ] 2.38 0:42; 4:08 ] DPC 10 4 1.26 0:93; 2:11 ] -0.26 6:07; 2:04 ] -0.09 6:07; 2:2 ]

For problem TTA, the global error presents a series of peaks and in-between zones where the global error is much smaller. In table

2, e ciencies for TTA are considered over zones where the global error is greater than 10 11 .
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