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ENERGY DECAY FOR A SYSTEM OF SCHRÖDINGER
EQUATIONS IN A WAVE GUIDE

RADHIA AYECHI, ILHEM BOUKHRIS AND JULIEN ROYER

Abstract. We prove exponential decay for a system of two Schrödinger equa-
tions in a wave guide, with coupling and damping at the boundary. This relies
on the spectral analysis of the corresponding coupled Schrödinger operator on
the one-dimensional cross section. We show in particular that we have a spectral
gap and that the corresponding generalized eigenfunctions form a Riesz basis.

1. Introduction

Let d ě 2, ` ą 0 and Ω “ Rd´1ˆs0, `r. All along the paper, a generic point in
Ω is denoted by px, yq with x P Rd´1 and y Ps0, `r. We consider on Ω a system of
Schrödinger equations

#

iBtu`∆u “ 0,

iBtv `∆v “ 0,
on R` ˆ Ω. (1.1)

Given a ą 0 and b P R˚, damping and coupling are given by the boundary
conditions

$

’

&

’

%

Bνupt;x, 0q “ iaupt;x, 0q ` ibvpt;x, 0q,

Bνvpt;x, 0q “ ´ibupt;x, 0q,

Bνupt;x, `q “ Bνvpt;x, `q “ 0,

@t ą 0, @x P Rd´1. (1.2)

We could similarly consider the problem with damping and/or coupling on both
sides of the boundary. This problem is completed with the initial conditions

u|t“0 “ u0, v|t“0 “ v0, (1.3)

where u0, v0 P L
2pΩq.

We will check that the problem (1.1)-(1.3) is well posed. If U “ pu, vq is a
solution, then for t ě 0 we consider the energy

Ept;Uq “ }uptq}2L2pΩq ` }vptq}
2
L2pΩq .

A straightforward computation shows that E is a non-increasing function of time:

d

dt
Ept;Uq “ ´2a

ż

Rd´1

|upt;x, 0q|2 dx ď 0.

In this paper we are interested in the decay of this energy when the time t goes
to `8.
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There is already a large litterature about the energy decay for the Schrödinger
equation or for the closely related damped wave equation, on compact or non-
compact domains, with damping in the domain or at the boundary.

For the damped wave equation on a compact domain, it is known that as soon
as we have effective damping in an open subset of the domain or of its boundary,
then the energy goes to 0 [Har85, Leb96]. The decay is uniform with respect to
the initial condition (and hence exponential) if and only if all the trajectories of
the corresponding classical problem (the rays of light) go through the damping
region (see [RT74] for the damping in the domain and [BLR89] for the damping
at the boundary). Otherwise we have at least logarithmic decay with a loss of
regularity [Leb96, LR97]. There are intermediate rates of decay when the set of
undamped classical trajectories is small and the classical flow is unstable near
these trajectories (see for instance [BH07, AL14]).

Similar results have been proved for the (undamped) Schrödinger and wave
equations in unbounded domains. In this case we look at the energy on a compact
subset. It goes to zero if the energy escapes to infinity. The contribution of
high frequencies behaves as above. The local energy always goes to 0, at least
with logarithmic decay and loss of regularity, and uniformly with decay faster
than any negative power of t if and only if all the classical trajectories go to
infinity. On the other hand the local energy of the contribution of low frequencies
always decays uniformly, with a polynomial rate of decay. We refer for instance
to [LP67, Ral69, Bur98, Bou11, BH12].

We can also consider the damped Schrödinger or wave equation in an unbounded
domain. If we are interested in the local energy decay, then the geometric condition
for high frequencies is that all classical trajectories should go either to infinity or
through the damping region. The contribution of low frequencies behaves as in
the undamped case if the damping is localized (see for instance [AK02, AK07,
AK10, BR14, Roy18]), while it behaves like the solution of some heat equation
if the damping is effective at infinity (see [Mat76, MR18, JR18] and references
therein).

Here we are interested in the global energy for damped Schrödinger equations on
a wave guide with damping at infinity. The case of a single Schrödinger equation
was discussed in [Roy15]. In that case it was already remarkable that the energy
decays exponentially without the geometric control condition for the contribution
of high frequencies. Here we have two equations, and only the first is damped (and
again, the classical trajectories parallel to the boundary never see the damping).
Moreover, the coupling itself is supported by the boundary and does not satisfy
the geometric control condition. However, we observe that the energy of both
components u and v goes to 0, and furthermore the decay is uniform and hence
exponential. Our main result in this paper is the following.

Theorem 1.1. Let a ą 0 and b P R˚. There exist γ ą 0 and C ą 0 such that for
pu0, v0q P L

2pΩq ˆ L2pΩq and t ą 0 we have

}uptq}L2pΩq ` }vptq}L2pΩq ď Ce´γt
`

}u0}L2pΩq ` }v0}L2pΩq

˘

,

where pu, vq is the solution of (1.1)-(1.3).

The proof of Theorem 1.1 is based on the spectral properties of the corre-
sponding coupled Schrödinger operator. For a, b P R we consider on H “
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L2pΩq ˆ L2pΩq » L2pΩ,C2q the operator

Pa,b “
ˆ

´∆ 0
0 ´∆

˙

, (1.4)

defined on the subspace DompPa,bq of functions U “ pu, vq in H2pΩ;C2q such that,
for all x P Rd´1,

$

’

&

’

%

Bνupx, 0q “ iaupx, 0q ` ibvpx, 0q,

Bνvpx, 0q “ ´ibupx, 0q,

Bνupx, `q “ Bνvpx, `q “ 0.

(1.5)

We will check in Section 2 that if a ě 0 then Pa,b is a maximal dissipative operator
on H , so by the usual Lummer-Phillips Theorem it generates a contractions
semigroup pe´itPa,bqtě0 on H . Then, given U0 “ pu0, v0q P DompPa,bq, we see that
U “ pu, vq satisfies (1.1)-(1.3) if and only if

#

iBtU ´ Pa,bU “ 0,

U |t“0 “ U0.
(1.6)

Moreover, if H is endowed with the natural norm, Theorem 1.1 is equivalent to
the uniform exponential decay in LpH q of the propagator e´itPa,b when tÑ `8.

Theorem 1.2. Let a ą 0 and b P R˚. There exist γ ą 0 and C ą 0 such that for
t ą 0 we have

›

›e´itPa,b
›

›

LpH q
ď Ce´γt.

By the Gearhart-Prüss Theorem (see for instance Theorem V.1.11 in [EN00]),
we get uniform exponential decay for e´itPa,b if we can prove that the resolvent
of Pa,b is well defined and uniformly bounded in an open upper half-plane which
contains the real axis. Thus, Theorem 1.2 can be deduced from the following
spectral result.

We denote by ρpPa,bq and σpPa,bq the resolvent set and the spectrum of Pa,b,
respectively.

Theorem 1.3. Let a ą 0 and b P R˚.
(i) There exists γ1 ą 0 such that any z P C with Impzq ą ´γ1 belongs to ρpPa,bq.

(ii) There exist m P N˚ and C1 ą 0 such that for z P ρpPa,bq we have

›

›pPa,b ´ zq´1
›

›

LpH q
ď

C1

distpz, σpPa,bqqrms
,

where for s ą 0 we have set srms “ minps, smq.

As usual in a wave guide, we use separation of variables and deduce the spec-
tral properties of Pa,b on Ω from the analogous properties for the corresponding
operators on Rd´1 and on the cross section s0, `r. We will split the Laplacian Pa,b
on Ω as the sum of the usual Laplace operator on the first pd ´ 1q variables, and
a Laplacian with boundary conditions on s0, `r.

The damping and the coupling are encoded in the domain of the transverse
operator. For a, b P R we consider on S “ L2p0, `;C2q the operator

Ta,b “
ˆ

´B2 0
0 ´B2

˙

, (1.7)
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defined on the domain

DompTa,bq “
 

U P H2
p0, `;C2

q : U 1p0q ` iMa,bUp0q “ 0, U 1p`q “ 0
(

, (1.8)

where we have set

Ma,b “

ˆ

a b
´b 0

˙

. (1.9)

Theorem 1.4. Let a ą 0 and b P R˚. The spectrum of Ta,b consists of a sequence
pλkqkPN˚ of eigenvalues. Moreover,

(i) there exists m P N˚ such that all the eigenvalues have algebraic multplicity
smaller than or equal to m,

(ii) there exists γ1 ą 0 such that Impλkq ď ´γ1 for all k P N,
(iii) there exists a Riesz basis of S which consists of generalized eigenfunctions

of Ta,b.
Here we are mostly interested in the dissipative case, but we will see in Section

2 that the adjoint of Ta,b is T´a,b, so Ta,b is selfadjoint if a “ 0 (then the eigenvalues
are real and there exists an orthonormal basis of eigenfunctions), and for a ă 0
the properties are the same as for a ą 0, except that the eigenvalues have positive
imaginary parts. To be complete we will also include in the intermediate results
the already understood case a ą 0, b “ 0. This corresponds to two independant
equations, one with Neumann boundary conditions and one with damping at the
boundary (see [Roy15]).

Theorem 1.4 is what we need on the transverse operator to prove Theorem 1.3,
but we can give more precise spectral properties for Ta,b. For example, we will see
that Ta,b satisfies a Weyl Law. If P0 is the usual Dirichlet Laplacian on a bounded
domain Ω0 of Rd, then the standard Weyl Law says that the number N0prq of
eigenvalues of P0 (counted with multiplicities) not greater than r satisfies

N0prq „
rÑ`8

r
d
2ωd |Ω0|

p2πqd
,

where ωd is the volume of the unit ball in Rd and |Ω0| is the volume of the domain
Ω0. This result has been improved and extended in many directions.

When a “ b “ 0 we have two decoupled Schrödinger equations with Neumann
boundary conditions, so the eigenvalues of T0 “ T0,0 are the n2π2{`2, n P N, and
these eigenvalues have multiplicity 2. It is easy to deduce that the number of
eigenvalues of T0 (counted with multiplicities) smaller than r ą 0 is of the form
2`
?
r{π `Op1q.

For r ą 0 we denote by Na,bprq the number of eigenvalues of Ta,b (counted with
multiplicities) with real part smaller than r.

Theorem 1.5 (Weyl Law). Let a, b P R. We have

Na,bprq “
2`
?
r

π
` O

rÑ`8
p1q.

In Theorem 1.4 we have said that the sequence of multiplicities of the eigen-
values of Ta,b is bounded. In fact, the maximum multiplicity m given there is the
parameter m which appears in Theorem 1.3. We can be more precise about these
multiplicities.
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Proposition 1.6. Let a, b P R.

(i) All the eigenvalues of T0,0 have geometric and algebraic multiplicities 2.
(ii) If pa, bq ‰ p0, 0q then all the eigenvalues of Ta,b are geometrically simple.

(iii) If a2 ą 4b2 then all the eigenvalues of Ta,b are algebraically simple.
(iv) If a2 “ 4b2 ‰ 0 then all the eigenvalues of Ta,b have algebraic multiplicity 2.
(v) If a2 ă 4b2 then the eigenvalues of Ta,b can have algebraic multiplicity 1 or 2.

More precisely, there exists a countably infinite subset Θ in R2 such that all
the eigenvalues of Ta,b are simple if and only if pa, bq R Θ. If pa, bq P Ωztp0, 0qu
then Ta,b has one eigenvalue of algebraic multiplicity 2, and all the others are
simple.

In particular, in Theorem 1.3 we can choose m “ 1 if a2 ą 4b2 or a2 ă b2 and
pa, bq R Θ, and m “ 2 otherwise.

Finally, we notice that we can see our system of two equations on a line seg-
ment as a problem on a graph with two edges and non-standard non-selfadjoint
conditions at the common vertex (if we have coupling at both ends, then this gives
a graph with two edges which have the same ends). Little is known for general
non-selfadjoint quantum graphs (see [Hus14, HKS15] for general properties of non-
selfadjoint quantum graphs). We also refer to [RR20] for a non-selfadjoint Robin
Laplacian on a star-shapped graph. In terms of non-selfadjoint quantum graphs,
our analysis concerns a very particular example but provides much more precise
spectral properties.

Organization of the paper. After this introduction, we give in Section 2 the
basic properties for the operator Pa,b on Ω and for the transverse operator Ta,b on
s0, `r. We discuss in Section 3 the localization of the large eigenvalues of Ta,b. This
will give in particular the first two statements of Theorem 1.4, Theorem 1.5 and
Proposition 1.6 for large eigenvalues. In Section 4 we finish the proof of Theorem
1.4 by proving the Riesz basis property and, in Section 5, we prove Theorem 1.3
from which Theorem 1.2 and hence Theorem 1.1 follow. Finally, we give in Section
6 more results about the eigenvalues of the transverse operator, in particular about
low frequencies.

2. General properties of the coupled Schrödinger operators

In this section we give the basic properties of the operators Pa,b and Ta,b defined
by (1.4)-(1.5) and (1.7)-(1.8), respectively. We will use the following version of
the Trace Theorem.

Lemma 2.1. Let ε ą 0. There exists C ą 0 such that for all u P H1p0, `q we have

}u}2L8p0,`q ď ε }u1}
2
L2p0,`q ` C }u}

2
L2p0,`q .

Proof. Let u P H1p0, `q and let x0 P r0, `s be such that min |u| “ |upx0q|. For any
x P r0, `s we have

|upxq|2 ď |upx0q|
2
`

ˇ

ˇ

ˇ

ˇ

ż x

x0

2upsqu1psq ds

ˇ

ˇ

ˇ

ˇ

ď |upx0q|
2
` ε }u1}

2
L2p0,`q `

}u}2L2p0,`q

ε
.

Since ` |upx0q|
2
ď }u}2L2p0,`q, the conclusion follows. �

We recall that an operator A on a Hilbert space H is said to be sectorial if
there exist γ0 P R and θ P

“

0, π
2

“

such that 〈Aϕ,ϕ〉H belongs to the sector Σγ0,θ “
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tζ P C, |argpζ ´ γ0q| ď θu for all ϕ P DompAq with }ϕ}H “ 1. Then it is said to
be maximal sectorial if some (and hence any) ζ P CzΣγ0,θ belongs to the resolvent
set of A. We similarly define dissipative and maximal dissipative operators by
replacing the sector Σγ0,θ by the half-space tζ P C, Impζq ď 0u.

Proposition 2.2. Let a, b P R.

(i) The operator Pa,b is maximal sectorial.
(ii) If a ě 0 then Pa,b is maximal dissipative.

(iii) The adjoint of Pa,b is P´a,b.

Proof. ‚ For U “ pu, vq P DompPa,bq we have

〈Pa,bU,U〉H “ 〈´∆u, u〉L2pΩq ` 〈´∆v, v〉L2pΩq

“ }∇u}2L2pΩq ` }∇v}
2
L2pΩq ´ ia }up¨, 0q}

2
L2pRd´1q

´ 2bIm 〈up¨, 0q, vp¨, 0q〉L2pRd´1q
.

In particular, if a ě 0 we have

Im 〈Pa,bU,U〉H “ ´a }up¨, 0q}2L2pRd´1q
ď 0, (2.1)

so Pa,b is dissipative. In general, with C given by Lemma 2.1 applied with ε “
1

2p1`|a|`|b|q
we have

Re 〈Pa,bU,U〉H
ě }∇u}2L2pΩq ` }∇v}

2
L2pΩq ´ |b|

`

}up¨, 0q}2L2pRd´1q
` }vp¨, 0q}2L2pRd´1q

˘

ě
1

2
}∇u}2L2pΩq `

1

2
}∇v}2L2pΩq ´ C |b|

`

}u}2L2pΩq ` }v}
2
L2pΩq

˘

.

and
ˇ

ˇIm 〈Pa,bU,U〉H
ˇ

ˇ ď
1

2
}∇u}2L2pΩq ` C |a| }u}

2
L2pΩq ,

so

Re
〈`
Pa,b ` Cp|a| ` |b|q

˘

U,U
〉

H
ě
ˇ

ˇIm
〈`
Pa,b ` Cp|a| ` |b|q

˘

U,U
〉

H

ˇ

ˇ .

This proves that Pa,b is sectorial with γ0 “ ´Cp|a| ` |b|q and θ “ π
4
.

‚ Let λ ă γ0. For U P DompPa,bq we have

}pPa,b ´ λqU}2H
“ }pPa,b ´ γ0qU}

2
H ` pγ0 ´ λq

2
}U}2H ` 2pγ0 ´ λqRe 〈pPa,b ´ γ0qU,U〉H

ě pγ0 ´ λq
2
}U}2H . (2.2)

In particular, pPa,b ´ λq is injective. Now let F “ pf, gq P H . For U “ pu, vq and
Φ “ pϕ, ψq in H1pΩ;C2q we set

QpU,Φq “ 〈∇U,∇Φ〉H ´ λ 〈U,Φ〉H ´ i 〈Ma,bUp¨, 0q,Φp¨, 0q〉L2pRd´1;C2q
.

This defines a sesquilinear form on H1pΩ;C2q. The computation above ensures
that it is coercive. By Lemma 2.1, it is also continuous. Then, by the Lax-Milgram
Theorem, there exists U P H1pΩ;C2q such that

@Φ P H1
pΩ;C2

q, QpU,Φq “ 〈F,Φ〉H . (2.3)

Applied with Φ in C80 pΩ;C2q, this shows that U belongs toH2pΩ;C2q and p´∆´ λqU “
F in the sense of distributions. Then, after an integration by parts,

@Φ P H1
pΩ;C2

q, 〈BνUp¨, 0q ´ iMa,bUp¨, 0q,Φp¨, 0q〉L2pRd´1,Cq “ 0.
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This implies that U belongs to DompPa,bq, so pPa,b ´ λqU “ F and pPa,b ´ λq is
surjective. With (2.2) we see that pPa,b ´ λq´1 is bounded on H , so λ belongs to
the resolvent set of Pa,b. This proves that Pa,b is maximal sectorial, and maximal
dissipative if a ě 0.
‚ By direct computation we see that for U P DompPa,bq and U˚ P DompP´a,bq we
have

〈Pa,bU,U˚〉H “ 〈U,P´a,bU˚〉H ,

so DompP´a,bq Ă DompP˚a,bq and P˚a,b coincides with P´a,b on DompP´a,bq. On the
other hand, with the same kind of argument as above, we check that if for some
U˚ P H there exists F P H such that

@U P DompPa,bq, 〈Pa,bU,U˚〉H “ 〈U, F 〉H ,

then U˚ belongs to DompP´a,bq. This proves that DompP˚a,bq Ă DompP´a,bq. Fi-
nally we have proved that P˚a,b “ P´a,b and the proof of the proposition is com-
plete. �

We also need similar properties for the transverse operator Ta,b.

Proposition 2.3. For a, b P R the operator Ta,b is maximal sectorial on S, its
spectrum consists of a sequence of isolated eigenvalues with finite multiplicities
and T ˚a,b “ T´a,b. If a ě 0 then Ta,b is also maximal dissipative. If a ą 0 and
b ‰ 0, then all the eigenvalues have negative imaginary parts.

Proof. The facts that Ta,b is maximal sectorial, maximal dissipative if a ě 0, and
that T ˚a,b “ T´a,b are proved as for Pa,b in Proposition 2.2. Since Ta,b is maximal sec-
torial, its resolvent set is not empty. And since DompTa,bq is compactly embedded
in S , its spectrum consists of isolated eigenvalues with finite multiplicities.

Now assume that a ą 0 and b ‰ 0. By dissipativeness, the eigenvalues of Ta,b
have non-positive imaginary parts. Now assume that λ P R and U “ pu, vq P
DompTa,bq are such that Ta,bU “ λU . In particular, as in (2.1) we have

0 “ Im 〈Ta,bU,U〉S “ ´a |up0q|2 .

This gives up0q “ 0 and hence v1p0q “ 0. We have ´v2 “ λv on r0, `s and
v1p0q “ v1p`q “ 0, so there exists n P N such that λ “ n2π2{`2. Then we have
´u2 “ pn2π2{`2qu, u1p`q “ 0 and up0q “ 0. This implies that u “ 0. Then
u1p0q “ 0, so vp0q “ 0, which implies that v “ 0. Thus, λ is not an eigenvalue of
Ta,b. �

3. Transverse eigenvalues

Let a, b P R. In this section, we give more precise properties about the localiza-
tion and the multiplicities of the eigenvalues of Ta,b. When there is no ambiguity
we omit the subscripts a, b of all the involved quantities.

As usual in this kind of context, it is easier to discuss the square roots of these
eigenvalues. We set

Z “ Za,b “
 

z P C : z2 is an eigenvalue of Ta,b
(

. (3.1)

Let
ν “

π

`
.

As said in introduction, when a “ b “ 0 we have two decoupled Schrödinger
equations with Neumann boundary conditions, so Z0,0 “ νZ, and for all n P N
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the eigenvalue ν2n2 has multiplicity 2. An orthonormal basis of eigenfunctions is
given by

ˆ

1
?

2`
Ajenν

˙

nPN,jPt1,2u
,

where pA1, A2q is any orthonormal basis of C2 and enνpxq “ 2 cospnνxq for all
n P N and x P r0, `s.

Let

µ˘ “ µ˘,a,b “
a˘ δ

2
, where δ “

#?
a2 ´ 4b2 if a2 ě 4b2,

i
?

4b2 ´ a2 if a2 ď 4b2.

For z P C and x P r0, `s we set

ezpxq “ eizx ` e2iz`e´izx (3.2)

and

ẽzpxq “
1

2iz
p`´ xq

`

eizx ´ e2iz`e´izx
˘

. (3.3)

We have

´ e2z ´ z
2ez “ 0 and ´ ẽ2z ´ z

2ẽz “ ez. (3.4)

Notice that 0 is an eigenvalue of T if and only if b “ 0. In the following
proposition we give a characterization of non-zero eigenvalues.

Proposition 3.1. Let a, b P R and z P C˚.
(i) z2 is an eigenvalue of T if and only if

φ´pzqφ`pzq “ 0, (3.5)

where we have set

φ˘pzq “ φ˘,a,bpzq “ pz ´ µ˘qe
2iz`
´ pz ` µ˘q

“ zpe2iz`
´ 1q ´ µ˘pe

2iz`
` 1q.

(3.6)

Moreover, if a2 ‰ 4b2 the functions φ´ and φ` have no common zero.
(ii) If φ˘pzq “ 0 we have

kerpT ´ z2
q “ tA1ez, A1 P kerpM ´ µ˘qu (3.7)

and

ker
`

pT ´ z2
q
2
˘

“ tA2ez ` A1ẽz, A1 P kerpM ´ µ˘q and pM ´ µ˘qA2 “ η˘pzqA1u , (3.8)

where

η˘pzq “ η˘,a,bpzq “
µ˘ ` i`pz

2 ´ µ2
˘q

2z2
. (3.9)

Proof. ‚ Let z P C˚ and U P H2ps0, `r,C2q. Then we have ´U2 “ z2U if and
only if there exist A, Ã P C2 such that

@x Ps0, `r, Upxq “ Aeizx ` Ãe´izx. (3.10)

Then U P DompT q if and only if Ã “ e2iz`A and
`

p1` e2iz`
qM ` p1´ e2iz`

qz
˘

A “ 0. (3.11)
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There exists a non trivial solution A of (3.11) if and only if

z2
p1´ e2iz`

q
2
` azp1´ e2iz`

qp1` e2iz`
q ` b2

p1` e2iz`
q
2

“ det
`

p1` e2iz`
qM ` p1´ e2iz`

qz
˘

“ 0. (3.12)

Assume that b ‰ 0. We have e2iz` ‰ 1 if z is a solution of (3.12). Then (3.12)
can be seen as a second order equation in z with z-dependant coefficients. The
solutions are given by

z˘ “ µ˘
e2iz` ` 1

e2iz` ´ 1
, (3.13)

and (3.5) follows. We conclude similarly when b “ 0. Moreover, since e2iz``1 ‰ 0,
we see that if φ´pzq “ 0 “ φ`pzq we have µ` “ µ´ and hence a2 “ 4b2.
‚ If b ‰ 0 we have z˘ ‰ µ˘ by (3.13). Then we can write

p1´ e2iz˘`q “ ´
2µ˘

z˘ ´ µ˘
and p1` e2iz˘`q “

2z˘
z˘ ´ µ˘

,

so (3.11) with z˘ holds if and only if A P kerpM ´ µ˘q. This gives (3.7).
Let σ P t´,`u and U2 P kerppT ´ z2

σq
2q. Let U1 “ pT ´ z2

σqU2 P kerpT ´ z2
σq. By

(3.7) there exists A1 P kerpM ´ µσq such that U1 “ A1ezσ . Then, by (3.4) there
exist A2, Ã2 P C2 such that, for all x P r0, `s,

U2pxq “ A1ẽzσpxq ` A2e
izσx ` Ã2e

´izσx.

Since U 12p`q “ 0 we necessarily have Ã2 “ e2izσ`A2, so that

U2 “ A1ẽzσ ` A2ezσ . (3.14)

Finally the condition U 12p0q ` iMU2p0q “ 0 gives

pM ´ µσqA2 “ ησpzσqA1. (3.15)

Conversely, if U2 satisfies (3.14) and (3.15) then it belongs to kerppT ´ z2
σq

2q. The
proof is similar when b “ 0. �

Now we apply (3.5) to prove that the large eigenvalues of T “ Ta,b are close to
the eigenvalues of the Neumann decoupled operator T0 “ T0,0.

Proposition 3.2. Let a, b P R.

(i) Let ε ą 0. There exists Rε ą 0 such that for s P r0, 1s and z P Zsa,sb with
|z| ě Rε we have distpz, νZq ă ε. In particular there exists n0 P N˚ such that
for all s P r0, 1s we have

Zsa,sb Ă Dp0, Rq Y
ď

|n|ěn0

D
´

nν,
ν

6

¯

, where R “

ˆ

n0 ´
1

2

˙

ν.

(ii) For n ě n0 the functions φ´ and φ` have exactly one zero in the disk
D
`

nν, ν
6

˘

.

Proof. ‚ Assume by contradiction that the first statement does not hold. Then
there exist sequences psmqmPN in r0, 1s, pzmqmPN in C and pσmqmPN in t˘u such that
φσm,sma,smbpzmq “ 0, distpzm, νZq ě ε for all m P N and |zm| Ñ `8. In particular
zm R νZ so smb ‰ 0 and zm ‰ µm, where we have set µm “ µσm,sma,smb. Since
µm “ smµσm,a,b is bounded we have

e2izm` “
zm ` µm
zm ´ µm

ÝÝÝÝÑ
mÑ`8

1,
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so distpzm, νZq Ñ 0 and we get a contradiction. The second statement follows by
choosing ε “ ν

6
(we can take Rν{6 larger to ensure that it is of the required form).

‚ For z P C we set

φ0pzq “ φ˘,0,0pzq “ pe
2iz`
´ 1qz. (3.16)

Then, for all n P N˚, φ0 has one simple zero in the disk D
`

nν, ν
6

˘

and does not
vanish on its boundary. On the other hand φ˘ does not vanish on the circle
C
`

nν, ν
6

˘

for n large enough. Choosing n larger if necessary we also have on this
circle

|φ˘pzq ´ φ0pzq| “ |µ˘|
ˇ

ˇe2iz`
` 1

ˇ

ˇ ă |φ0pzq| .

By the Rouché Theorem, φ˘ has exactly one simple zero in D
`

nν, ν
6

˘

. �

For n ě n0 we denote by zn,˘ “ zn,˘,a,b the unique solution of φ˘pzq “ 0 in
D
`

nν, ν
6

˘

. If a2 “ 4b2 we can simply write zn instead of zn,` or zn,´.

The following proposition gives a rough localization of the high frequency eigen-
values and in particular the Weyl Law for T .

Proposition 3.3. Let a, b P R. Let n0 P N˚ be given by Proposition 3.2. The
spectrum of T is contained in

D “ Dp0, R2
q Y

ď

něn0

D

ˆ

n2ν2,
nν2

2

˙

.

The sum of the algebraic multiplicities of the eigenvalues of T in Dp0, R2q is 2n0

and, for n ě n0,

(i) if a2 ‰ 4b2, then T has exactly two distinct simple eigenvalues in D
´

n2ν2, nν
2

2

¯

,

given by z2
n,´ and z2

n,`,

(ii) if a2 “ 4b2, then T has a unique double eigenvalue in D
´

n2ν2, nν
2

2

¯

, given

by z2
n.

In particular, for r ą 0 we have

2
?
r

ν
´ 1 ď Nprq ď max

ˆ

2n0,
2
?
r

ν
` 3

˙

.

Proof. Let n ě n0. The operator Ts “ Tsa,sb is analytic with respect to the param-
eter s in the sense of Kato (family of type B, see [Kat80]). By Proposition 3.2, the

circle C
`

n2ν2, nν
2

2

˘

is included in the resolvent set of Ts for all s P r0, 1s, so the num-

ber of eigenvalues (counted with multiplicities) of Ts in the disk Dn “ D
`

n2ν2, nν
2

2

˘

is independant of s P r0, 1s. Since T0 has exactly one double eigenvalue in Dn, the
number of eigenvalues (counted with multiplicities) of T “ T1 in Dn is also equal
to 2.

If a2 ‰ 4b2, we already know that T has two distinct eigenvalues z2
n,´ and z2

n,`

in Dn. They are necessarily simple.
If a2 “ 4b2, then z2

n is the unique eigenvalue of T in Dn. It has algebraic
multiplicity 2 (we know from Proposition 3.1 that it is geometrically simple if
pa, bq ‰ p0, 0q).

Similarly, T has the same number of eigenvalues as T0 in Dp0, R2q, that is 2n0

(counted with multiplicities).
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Now let r ą 0. If r ď R2 “
`

n0 ´
1
2

˘2
ν2, then NpRq ď 2n0. Otherwise, there

exists n ě n0 such that r P
“`

n´ 1
2

˘2
ν2,

`

n` 1
2

˘2
ν2
‰

. Then we have

2
?
r

ν
´ 1 ď 2n ď Nprq ď 2n` 2 ď

2
?
r

ν
` 3,

which concludes the proof. �

We finish this section by an asymptotic expension for the large eigenvalues of
T . We already know that all the eigenvalues have negative imaginary parts when
a ą 0 and b ‰ 0, so this asymptotics gives in particular a spectral gap for T in
this case.

Proposition 3.4. Let a, b P R. We have

zn,˘ “ nν ´
iµ˘
nπ

` O
nÑ`8

pn´2
q,

and hence

z2
n,˘ “ n2ν2

´
2iµ˘
`

` O
nÑ`8

pn´1
q.

Proof. Let rn,˘ :“ zn,˘´nν. By Proposition 3.2, rn,˘ goes to 0 as nÑ `8. Then
we compute

0 “ φ˘pzn,˘q “ pnν ` rn,˘ ´ µ˘qe
2irn,˘` ´ pnν ` rn,˘ ` µ˘q

“ 2irn,˘nπ ´ 2µ˘ `Oprn,˘q `Opnr2
n,˘q.

This proves that

rn,˘ “ ´
iµ˘
nπ

`Opn´2
q,

and the conclusions follow. �

4. Riesz basis property

For b P R the operator T0,b is selfadjoint with compact resolvent, so there exists
an orthonormal basis of eigenfunctions for T0,b.

In this section we consider pa, bq P R˚ ˆ R and we prove that there exists a
Riesz basis of S made with generalized eigenfunctions of T “ Ta,b. Since T is not
selfadjoint, we do not necessarily have a Hilbert basis of eigenvectors. However,
we will prove that the generalized eigenvectors are not too far, in a suitable sense,
from being orthogonal. We have no control on these vectors for n small, but when
n is large we will see that they are in fact close to a family of eigenvectors of T0,0

which forms a Riesz basis.

We recall that a family pΨkqkPN˚ in S is a Riesz basis if the operator
"

`2pN˚q Ñ S
pukqkPN˚ ÞÑ

ř8

k“1 ukΨk

is well defined, bounded, bijective and boundedly invertible. Then for any U P S
there is a unique sequence pukqkPN˚ P `

2pN˚q such that U “
ř8

k“1 ukΨk and, for
some C ě 1 independant of U ,

C´1
8
ÿ

k“1

|uk|
2
ď }U}2S ď C

8
ÿ

k“1

|uk|
2 . (4.1)
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For general results about Riesz bases we refer for instance to [Agr94].

If a2 ‰ 4b2 then for all n ě n0 (n0 P N˚ given by Proposition 3.2) we set

Φ2n`1 “ A´ezn,´ and Φ2n`2 “ A`ezn,` , (4.2)

where

A˘ “

ˆ

µ˘
´b

˙

P kerpT ´ µ˘q (4.3)

(we omit the subscripts a, b). Then Φ2n`1,Φ2n`2 P DompT q, T Φ2n`1 “ z2
n,´Φ2n`1

and T Φ2n`2 “ z2
n,`Φ2n`2.

Similarly, if a2 “ 4b2 we set for n ě n0

Φ2n`1 “ A1ezn , Φ2n`2 “ A1ẽzn ` A2,nezn , (4.4)

where

A1 “

ˆ

a
2
´b

˙

and A2,n “

ˆ

ηpznq
0

˙

.

We recall that the parameter ηpznq is defined in (3.9) (µ` “ µ´ in this case). We
have

A2,n “ A2,8 `Opn´1
q, where A2,8 “

ˆ

i`
2
0

˙

. (4.5)

In particular, choosing n0 larger if necessary, we can assume that ηpznq ‰ 0 for
n ě n0. Then we have Φ2n`1,Φ2n`2 P DompT q, T Φ2n`1 “ z2

nΦ2n`1 and T Φ2n`2 “

z2
nΦ2n`2 ` Φ2n`1.

In both cases, we also consider a basis pΦkq1ďkď2n0 of generalized eigenfunctions
for the subspace of S spaned by the generalized eigenspaces corresponding to the
eigenvalues of T in Dp0, R2q (see Proposition 3.3).

All this defines a family pΦkqkPN˚ of generalized eigenfunctions for T . Our pur-
pose is to prove that this is a Riesz basis of S . Notice that we could normalize
these vectors, but this is not necessary ((4.10) below is enough).

We begin with the following computation.

Lemma 4.1. (i) We have

}ez}
2
L2p0,`q ÝÝÝÝÝÝÝÑ

|Repzq|Ñ`8
ImpzqÑ0

2`. (4.6)

(ii) There exists c ą 0 such that for z P C with |Impzq| ď 1 we have

}ẽz}L2p0,`q ď
c

|z|
. (4.7)

(iii) For z, ζ P C with z ‰ ˘ζ̄ we have

〈ez, eζ〉L2p0,`q “
e2ipz´ζ̄q` ´ 1

ipz ´ ζ̄q
`
e2iz` ´ e´2iζ̄`

ipz ` ζ̄q
. (4.8)

and

〈ez, ẽζ〉L2p0,`q “

´
`pe2ipz´ζ̄q` ` 1q

2ζ̄pz ´ ζ̄q
`
e2ipz´ζ̄q` ´ 1

2iζ̄pz ´ ζ̄q2
`
`pe2iz` ` e´2iζ̄`q

2ζ̄pz ` ζ̄q
´
e2iz` ´ e´2iζ̄`

2iζ̄pz ` ζ̄q2
. (4.9)
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Proof. We check (4.8) and (4.9) by direct computation. If z R R we can take ζ “ z
in (4.8). This gives

}ez}
2
L2p0,`q “ e´2Impzq`

˜

sinhp2Impzq`q

Impzq
`

sin
`

2Repzq`
˘

Repzq

¸

,

and (4.6) follows. We get the same conclusion if z P R. Finally, (4.7) is clear from
the definition of ẽz. �

We can first consider separately the vectors Φk for 1 ď k ď 2n0, and then the
vectors Φ2n`1 and Φ2n`2 for each n ě n0. It is obvious that a finite family of
linearly independant vectors is a Riesz basis of the finite dimensional subspace
that it spans. The interest of the following proposition is that we can take the
same constant for each of these finite subfamilies of eigenfunctions.

Proposition 4.2. There exists C ą 0 such that for all pukqkPN˚ P `
2pN˚q we have

C´1
2n0
ÿ

k“1

|uk|
2
ď }U0}

2
S ď C

2n0
ÿ

k“1

|uk|
2

and

C´1
`

|u2n`1|
2
` |u2n`2|

2
˘

ď }Un}
2
S ď C

`

|u2n`1|
2
` |u2n`2|

2
˘

,

where we have set U0 “
ř2n0

k“1 ukΦk and, for n ě n0, Un “ u2n`1Φ2n`1`u2n`2Φ2n`2.

Proof. ‚ The vectors pΦ1, . . . ,Φ2n0q are linearly independant by definition, and
we see directly that for n ě n0 the vectors Φ2n`1 and Φ2n`2 are not colinear. It
remains to check that we have the estimates with a constant independant of n.
‚ Assume that a2 ‰ 4b2. By Lemma 4.1 we have

}Φ2n`1}
2
S “ |A´|

2
C2

›

›ezn,´
›

›

2

L2p0,`q
ÝÝÝÝÑ
nÑ`8

2` |A´|
2
C2 ,

and similarly }Φ2n`2}
2
S goes to 2` |A`|

2
C2 . Thus there exists C1 ě 1 such that, for

all k P N˚,
C´1

1 ď }Φk}
2
S ď C1. (4.10)

In particular,

}Un}
2
S ď 2 |u2n`1|

2
}Φ2n`1}

2
S ` 2 |u2n`2|

2
}Φ2n`2}

2
S

ď 2C1

`

|u2n`1|
2
` |u2n`2|

2
˘

.
(4.11)

‚ Since A´ and A` are not colinear in C2 there exists ε ą 0 such that

|〈A´, A`〉C2 | ď p1´ εq |A´|C2 |A`|C2 .

Then

|〈Φ2n`1,Φ2n`2〉S | “ |〈A´, A`〉C2 |

ˇ

ˇ

ˇ

〈
ezn,´ , ezn,`

〉
L2p0,`q

ˇ

ˇ

ˇ

ď p1´ εq |A´|C2 |A`|C2

›

›ezn,´
›

›

L2p0,`q

›

›ezn,`
›

›

L2p0,`q

ď p1´ εq }Φ2n`1}S }Φ2n`2}S ,
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and hence

}Un}
2
S ě |u2n`1|

2
}Φ2n`1}

2
S ` |u2n`2|

2
}Φ2n`2}

2
S

´ 2 |u2n`1| |u2n`2| |〈Φ2n`1,Φ2n`2〉S |
ě ε

`

|u2n`1|
2
}Φ2n`1}

2
S ` |u2n`2|

2
}Φ2n`2}

2
S

˘

ě εC´1
1

`

|u2n`1|
2
` |u2n`2|

2
˘

.

The proof is complete if a2 ‰ 4b2.
‚ Now assume that a2 “ 4b2. By Lemma 4.1 and (4.5) we have

}Φ2n`1}
2
S ÝÝÝÝÑ

nÑ`8
2` |A1|

2
C2 , }Φ2n`2}

2
S ÝÝÝÝÑ

nÑ`8
2` |A2,8|

2
C2 .

Since A1 and A2,8 are not colinear, there exists ε ą 0 such that for n large enough
we have |〈A1, A2,8〉| ď p1 ´ εq |A1| |A2,8|. We can proceed as in the previous
case. �

Now we consider pairs of generalized eigenfunctions which are not associated to
the same subfamilies of eigenfunctions.

We set S0 “ spanpΦ1, . . . ,Φ2n0q and, for n ě n0, Sn “ spanpΦ2n`1,Φ2n`2q.

Proposition 4.3. There exists C ą 0 such that for n ě n0, m P N˚, Un P Sn and
Un`m P Sn`m we have

|〈Un, Un`m〉S | ď
C }Un}S }Un`m}S

nm
.

Proof. We begin with the case a2 ‰ 4b2. We apply (4.8) with z “ zn,´ and
ζ “ zn`m,´. With Proposition 3.4 we get

ˇ

ˇ

〈
Φ2n`1,Φ2pn`mq`1

〉ˇ
ˇ “ |A´|

2
ˇ

ˇ

ˇ

〈
ezn,´ , ezn`m,´

〉
L2p0,`q

ˇ

ˇ

ˇ
À

1

nm

and then
ˇ

ˇ

〈
u2n`1Φ2n`1, u2pn`mq`1Φ2pn`mq`1

〉ˇ
ˇ À

}Un}S }Un`m}S
nm

.

We estimate similarly |〈Φ2n`1,Φ2m`2〉|, |〈Φ2n`2,Φ2m`1〉| and |〈Φ2n`2,Φ2m`2〉|,
and the conclusion follows in this case. For the case a2 “ 4b2 we proceed similarly,
now using (4.8), (4.9) and the fact that by (4.7) we have

ˇ

ˇ

〈
ẽzn , ẽzn`m

〉ˇ
ˇ À

1

npn`mq
À

1

nm
. �

To prove that the family pΦkqkPN is a Riesz basis, we compare it with a family
of eigenfunctions for the model operator T0.

Assume that a2 ‰ 4b2. For n P N we set

Φ0
2n`1 “ A´enν and Φ0

2n`2 “ A`enν . (4.12)

Since pA´, A`q is a basis of C2, there exists C0 ě 1 such that for V P C2 and the
unique pv´, v`q P C2 such that V “ v´A´ ` v`A` we have

C´1
0

`

|v´|
1
` |v`|

2
˘

ď }V }2C2 ď C0

`

|v´|
1
` |v`|

2
˘

.

Let U P S . There exist u´, u` P L
2p0, `q unique such that for almost all y Ps0, `r

Upyq “ u´pyqA´ ` u`pyqA`.
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Since penνqnPN is an orthonormal basis of L2p0, `q, there exist unique sequences
pu´n qnPN and pu`n qnPN in `2pN˚q such that

Upyq “
ÿ

nPN

u´n enνpyqA´ `
ÿ

nPN

u`n enνpyqA`.

Moreover,

C´1
0

ÿ

nPN

`
ˇ

ˇu´n
ˇ

ˇ

2
`
ˇ

ˇu`n
ˇ

ˇ

2 ˘
ď }U}2S ď C0

ÿ

nPN

`
ˇ

ˇu´n
ˇ

ˇ

2
`
ˇ

ˇu`n
ˇ

ˇ

2 ˘
.

This means that the family pΦ0
kqkPN˚ is a Riesz basis of S . Now assume that

a2 “ 4b2. Then we get the same conclusion if we set

Φ0
2n`1 “ A1enν and Φ0

2n`2 “ A2,8enν . (4.13)

Proposition 4.4. The family pΦkqkPN˚ is a Riesz basis of S .

Proof. ‚ We consider the map

Θ :

"

`2pN˚q Ñ S
pukqkPN ÞÑ

ř`8

k“1 ukΦk

and we prove that Θ is well defined, continuous, bijective and has continuous
inverse.
‚ Let pUnqnPN be a sequence in S with Un P Sn for all n P N “ t0u Y tn0, n0 `

1, . . . u and
ř

nPN }Un}
2
S ă `8. For N ě n0 and p P N we have

›

›

›

›

›

N`p
ÿ

n“N

Un

›

›

›

›

›

2

S

´

N`p
ÿ

n“N

}Un}
2
S “

N`p
ÿ

n“N

N`p´n
ÿ

m“1

2Re 〈Un, Un`m〉S ,

so by Proposition 4.3
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

›

›

›

›

›

N`p
ÿ

n“N

Un

›

›

›

›

›

2

S

´

N`p
ÿ

n“N

}Un}
2
S

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

À

`8
ÿ

n“N

}Un}S
n

`8
ÿ

m“1

}Un`m}S
m

À

g

f

f

e

`8
ÿ

n“N

1

n2

`8
ÿ

n“N

}Un}
2
S .

(4.14)

This proves in particular that the series
ř

nPN Un converges in S and that there
exists C ą 0 independant of the sequence pUnq such that

›

›

›

›

›

ÿ

nPN
Un

›

›

›

›

›

2

S

ď C
ÿ

nPN
}Un}

2
S .

With Proposition 4.2, this proves that Θ is well defined and bounded.
‚ For n ě n0 we set

Πn “ ´
1

2iπ

ż

C
`

n2ν2,nν
2

2

˘

pT ´ ζq´1 dζ P LpS q.

Then Sn “ kerpΠn´ IdS q, and Sj Ă kerpΠnq for all j P N z tnu. Now assume that
the sequence u “ pukqkPN is such that Θpuq “ 0. For n P N we have u2n`1Φ2n`1 `

u2n`2Φ2n`2 “ ΠnpΘpuqq “ 0, so u2n`1 “ u2n`2 “ 0. Since this holds for all n ě n0

we have
ř2n0

k“1 ukΦk “ 0, and then u1 “ ¨ ¨ ¨ “ u2n0 “ 0. This proves that Θ is
injective.
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‚ By (4.14) there exists N ě n0 independant of U such that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

›

›

›

›

›

N`p
ÿ

n“N

Un

›

›

›

›

›

2

S

´

N`p
ÿ

n“N

}Un}
2
S

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

2

`8
ÿ

n“N

}Un}
2
S . (4.15)

Assume by contradiction that there exists a family pUp
nqpPN,nPN such that Up

n P Sn

for all p P N and n P N ,
ř

nPN }U
p
n}

2
S “ 1 for all p P N but

›

›

›

›

›

ÿ

nPN
Up
n

›

›

›

›

›

S

ÝÝÝÝÑ
pÑ`8

0.

For p P N we set

V p
1 “

ÿ

nPN ,năN

Up
n, V p

2 “
ÿ

něN

Up
n.

After extracting a subsequence if necessary, we can assume that V p
1 has a limit

V P spanpΦkqkď2N in S . Since V p
1 ` V p

2 goes to 0, V p
2 goes to ´V , so V also

belongs to spanpΦkqkě2N`1. By injectivity of Θ, this implies that V “ 0. Then Un
goes to 0 for all n ă N , and hence

`8
ÿ

n“N

}Un}
2
S ÝÝÝÝÑ

pÑ`8
1.

Since V p
2 Ñ 0, this gives a contradiction with (4.15). Thus there exists C ą 0

independant of the sequence pUnq such that
›

›

›

›

›

ÿ

nPN
Un

›

›

›

›

›

2

S

ě C´1
ÿ

nPN
}Un}

2
S .

With Proposition 4.2 we deduce that for u P `2pN˚q we have

}Θpuq}2S Á }u}2`2pN˚q .

‚ To prove that Θ is surjective we follow the proof of [Kat80, Theorem V.2.20],
except that the reference basis is not orthogonal. We denote by Θ0 the map defined
as Θ with the family pΦkqkPN˚ replaced by pΦ0

kqkPN˚ defined by (4.12) or (4.13).
Since we already know that the family pΦ0

kqkPN˚ is a Riesz basis, Θ0 is boundedly
invertible. Then ΘΘ´1

0 ´ IdS P LpS q is the map

ΘΘ´1
0 ´ IdS :

8
ÿ

k“1

ukΦ
0
k ÞÑ

8
ÿ

k“1

ukpΦk ´ Φ0
kq.

For u “ pukqkPN˚ P `
2pN˚q and N P N we have

›

›

›

›

›

8
ÿ

k“N`1

ukpΦk ´ Φ0
kq

›

›

›

›

›

2

S

ď }u}2`2pN˚q

8
ÿ

k“N`1

›

›Φk ´ Φ0
k

›

›

2

S
.

By Proposition 3.4, (4.5) and (4.7) we have
›

›Φk ´ Φ0
k

›

›

2

S
À

1

k2
,

so ΘΘ´1
0 ´ Id is the limit in LpS q of a family of finite rank operators, and hence

it is compact. This implies that ΘΘ´1
0 is a Fredholm operator. Since we already

know that it is injective, it is surjective. Then Θ is surjective and the proof is
complete. �
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5. Resolvent for the Schrödinger operator on the wave guide

In this section we prove Theorem 1.3 for a ą 0 and b P R˚. For this we deduce
spectral properties of P “ Pa,b on H from those of T “ Ta,b on S . The interme-
diate result (Proposition 5.1 below) is valid for any a, b P R with pa, bq ‰ p0, 0q (in
general we could proceed similarly, repeating the eigenvalues according to their
geometric multiplicities, but the model case a “ b “ 0 is already clear).

We denote by pλkqkPN˚ the sequence of (distinct) eigenvalues of T . These eigen-
values have finite algebraic multiplicities and we know that for k large enough the
multiplicity of λk is 1 if a2 ‰ 4b2 and 2 if a2 “ 4b2. In particular, if we denote by
mk P N˚ the multiplicity of the eigenvalue λk, we know that the sequence pmkqkPN
is bounded. We denote by m its maximum.

For u P L2pRd´1q and V P S we set u b V : px, yq P Ω ÞÑ upxqV pyq. Then, if
we denote by L the usual selfadjoint realization of the Laplacian on Rd´1, we have
P “ Lb IdL2pωq ` IdL2pRd´1q b T .

Since the spectrum of L is the half-line r0,`8r, it is known (see for instance
Section XIII.9 in [RS79]) that the spectrum of P is given by

Σ “ tλk ` r, k P N˚, r P r0,`8ru .

We can recover this fact directly in our context. Let k P N˚ and r ě 0. We
consider an eigenfunction Ψk P S corresponding to the eigenvalue λk of T , and
a sequence punqnPN in H2pRd´1q such that }un}L2pRd´1q

“ 1 for all n P N and

pL ´ rqun Ñ 0 in L2pRd´1q. Then for all n P N the function un b Ψk belongs to
DompPq and in H we have

`

P ´ pλk ` rq
˘

pun bΨkq “
`

pL´ rqun
˘

bΨk ÝÝÝÝÑ
nÑ`8

0.

This proves that λk ` r P σpPq, and hence Σ Ă σpPq. The converse inclusion will
be a part of Proposition 5.1 below.

Let k P N˚. By Proposition 3.1, λk is an eigenvalue of T of geometric multiplicity
1. There exist Ψk,1, . . . ,Ψk,mk such that pT ´λkqΨk,1 “ 0 and pT ´λkqΨk,j “ Ψk,j´1

for j P t2, . . . ,mku. By Proposition 4.4, we can choose these vectors in such a way
that pΨk,jqkPN˚,1ďjďmk is a Riesz basis of S .

Let F P H » L2pRd´1,S q. For almost all x P Rd´1 we have F px, ¨q P S , so
there exist fk,jpxq, k P N˚, 1 ď j ď mk, such that, in S ,

F px, ¨q “
ÿ

kPN˚

mk
ÿ

j“1

fk,jpxqΨk,j. (5.1)

Moreover, by the Riesz basis property, there exists C ě 1 independant of F such
that, for almost all x P Rd´1,

C´1
ÿ

kPN˚

mk
ÿ

j“1

|fk,jpxq|
2
ď }F px, ¨q}2S ď C

ÿ

kPN˚

mk
ÿ

j“1

|fk,jpxq|
2 .
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After integration over x P Rd´1 we get

C´1
ÿ

kPN˚

mk
ÿ

j“1

}fk,j}
2
L2pRd´1q

ď }F }2H ď C
ÿ

kPN˚

mk
ÿ

j“1

}fk,j}
2
L2pRd´1q

. (5.2)

With this notation we set, for ζ P CzΣ,

RpζqF “
`8
ÿ

k“1

mk
ÿ

j“1

mk´j
ÿ

p“0

p´1qp
`

pL´ pζ ´ λkqq
´1´pfk,j`p

˘

bΨk,j. (5.3)

Proposition 5.1. Let ζ P CzΣ. The series in the right-hand side of (5.3) con-
verges in H for all F P H . This defines a bounded operator Rpζq on H which is
an inverse for pP´ ζq : DompPq Ñ H . Moreover, there exists C ą 0 independant
of ζ such that

}Rpζq}LpH q
ď

C

distpζ,Σqrms
. (5.4)

Proof. Let F P H . We use notation (5.1).
‚ For k P N˚, j P t1, . . . ,mku and p P t0, . . . ,mk ´ ju we have by the spectral
theorem
›

›pL´ pζ ´ λqq´1´p
›

›

LpRd´1q
ď

1

distpζ ´ λ,R`q1`p
ď

1

distpζ,Σq1`p
ď

1

distpζ,Σqrmks
.

With (5.2) we deduce that for N,N1 P N˚ we have

›

›

›

›

›

N`N1
ÿ

k“N

mk
ÿ

j“1

mk´j
ÿ

p“0

p´1qp
`

pL´ pζ ´ λkqq
´1´pfk,j`p

˘

bΨk,j

›

›

›

›

›

2

H

ď
2mC

pdistpζ,Σqrmsq2

N`N1
ÿ

k“N

mk
ÿ

j“1

|fk,j|
2
ÝÝÝÝÑ
NÑ`8

0,

so RpζqF converges in H and, by (5.2) again,

}RpζqF }H À
}F }H

distpζ,Σqrms
.

This proves that Rpζq defines a bounded operator on H and (5.4) is satisfied.
‚ For N P N˚ we set

UN “
N
ÿ

k“1

mk
ÿ

j“1

mk´j
ÿ

p“0

p´1qp
`

pL´ pζ ´ λkqq
´1´pfk,j`p

˘

bΨk,j.

Then UN P DompPq, it goes to RpζqF in H and

pP ´ ζqUN “
N
ÿ

k“1

mk
ÿ

j“1

fk,j bΨk,j ÝÝÝÝÑ
NÑ`8

F.

Since P is closed, this proves that RpζqF P DompPq and pP ´ ζqRpζqF “ F . In
particular, for ζ0 P ρpPq we have

pP ´ ζ0q
´1
“ Rpζ0q. (5.5)

‚ It remains to prove that for ζ P CzΣ and U P DompPq we have

RpζqpP ´ ζqU “ U. (5.6)
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This will prove that ζ P ρpPq. Let ζ0 P ρpPq. We can check that for F P H we
have RpζqRpζ0qF “ Rpζ0qRpζqF . On the other hand we have

pP ´ ζ0q
`

RpζqF ´Rpζ0qF
˘

“ pζ ´ ζ0qRpζqF

so, by (5.5), R satisfies the resolvent identity

RpζqF ´Rpζ0qF “ pζ ´ ζ0qRpζ0qRpζqF “ pζ ´ ζ0qRpζqRpζ0qF.

Applied with F “ pP ´ ζ0q
´1U this gives

RpζqpP ´ ζqU “ RpζqF ´ pζ ´ ζ0qRpζqU “ U.

This proves (5.6) and completes the proof. �

6. More about the low frequency transverse eigenvalues

In Section 3 we did not say much about the low frequency eigenvalues of the
transverse operator T “ Ta,b. We were quite accurate with the large eigenvalues,
and then we said that the part of the spectrum in Dp0, R2q (see Proposition 3.3)
consists of a finite number of eigenvalues with finite multiplicities, and negative
imaginary parts if a ą 0 and b ‰ 0. That was enough to prove that there is a
spectral gap for P “ Pa,b and hence the local energy decay for (1.1). In this final
section we provide more information about these low frequency eigenvalues.

We consider a ě 0 and b P R such that pa, bq ‰ p0, 0q. Taking the adjoint, we
get similar results for the case a ă 0 (for the proofs the roles of φ´ and φ` are
reversed).

We recall from Proposition 3.1 that the eigenvalues of T are geometrically sim-
ple. In the following proposition we discuss their algebraic simplicity.

Proposition 6.1. Let a ě 0 and b P R such that pa, bq ‰ p0, 0q.

(i) If a2 “ 4b2 then the eigenvalues of T are not simple.
(ii) Assume that a2 ‰ 4b4. Let σ P t˘u and let z P C˚ be a zero of φσ. Then z2

is an algebraically simple eigenvalue of T if and only if z is a simple zero of
φσ.

(iii) All the zeros of φ` are simple. If a2 ą 4b2 then all the zeros of φ´ are simple.
There exists a countably infinite subset Θ` of

 

pa, bq P R˚` ˆ R|a2 ă 4b2
(

such
that φ´ has a multiple zero if and only if pa, bq P Θ`.

Proof. ‚ If a2 “ 4b2 then pM ´ µq2 “ 0 so, by (3.8), kerppT ´ z2q2q is at least of
dimension 2 for any z P Z.
‚ Now we assume that a2 ‰ 4b2. We consider z P Z and σ P t˘u such that
φσpzq “ 0. We have ker

`

pM ´ µσq
2
˘

“ kerpM ´ µσq so from (3.8) we see that

ker
`

pT ´ z2q2
˘

“ kerpT ´ z2q if and only if ησpzq ‰ 0. On the other hand we have

φ1˘pzq “ e2iz`
´ 1` 2i`pz ´ µσqe

2iz`.

Then we can check that ησpzq “ 0 if and only if φ1σpzq “ 0. This gives the second
statement.
‚ If φ`pzq “ 0 and a ą 0 we have

Re
`

µ` ` i`pz
2
´ µ2

`q
˘

“ Repµ`q ´ `Impz
2
q ` `Impµ2

`q ą 0, (6.1)
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so η`pzq ‰ 0 and the zeros of φ` are simple. If a2 ą 4b2 then µ´ is real positive
and we similarly see that the zeros of φ´ are simple. If a “ 0 we have z P R so

µ` ` i`pz
2
´ µ2

`q “ i |b| ` i`z2
` i`b2

‰ 0

and, again, the zeros of φ` are simple.
‚ Assume that there exists z P Z such that φ´pzq “ φ1´pzq “ 0. We assume for
instance that Repzq ě 0 and Impzq ď 0. We have e2iz` ` 1 ‰ 0,

µ´ “
e2iz` ´ 1

e2iz` ` 1
z (6.2)

and
sinp2z`q ` 2z` “ 0. (6.3)

This last equality implies in particular that z is not real or purely imaginary. We
write 2z` “ ξ ` iκ with ξ ą 0 and κ ă 0. Then (6.3) gives

#

coshpκq sinpξq ` ξ “ 0,

sinhpκq cospξq ` κ “ 0.
(6.4)

In particular cospξq ă 0 and sinpξq ă 0. Then

κ “ ´argch

ˆ

´
ξ

sinpξq

˙

(6.5)

and

cospξq

d

ξ2

sinpξq2
´ 1` argch

ˆ

´
ξ

sinpξq

˙

“ 0. (6.6)

‚ Let k P N. The left-hand side of (6.6) has a positive derivative in Ik “
‰

p2k ` 1qπ, p2k ` 3
2
qπ
‰

, it goes to ´8 at p2k ` 1qπ and is positive at p2k ` 3
2
qπ.

We denote by ξk the unique solution of (6.6) in Ik. Then we define κk by (6.5)
and we set

zk “
ξk ` iκk

2`
. (6.7)

We finally define µk by (6.2). Notice that if Repµkq ď 0 then there exist α ď 0
and β P R such that zk P Zα,β and µk “ µ`,α,β or µk “ µ´,α,β. Since Impz2

kq ă 0
this gives a contradiction and proves that Repµkq ą 0. Then we set

ak “ 2Repµkq ą 0 and bk “
1

2

b

a2
k ` Impµkq2 ą 0.

‚ If a ą 0 and b P R˚ are such that a2 ă 4b2 and Ta,b has an eigenvalue with
algebraic multiplicity greater than 1, then this eigenvalue is necessarily z2

k for some
k P N, we have µ´,a,b “ µk and, finally, a “ ak and |b| “ bk. Conversely, Tak,bk and
Tak,´bk have an eigenvalue z2

k of algebraic multiplicity greater than 1 for all k P N.
This proves that Ta,b has a non-simple eigenvalue if and only if pa, bq belongs to
Ť

kPNtpak, bkq, pak,´bkqu and concludes the proof. �

For a single equation with damping at the boundary, is is proved in [Roy15]
that for each n P N there is exaclty one square root of an eigenvalue with real part
in snν, pn ` 1qνr. This came from the continuity of the spectrum with respect to
the absorption index a and the fact that the square roots of the eigenvalues do
not have their real parts in νN. This ensured in particular that each eigenvalue
of the transverse operator is simple. Here we prove an analogous result, but the
situation is not as simple as it was for a single equation.
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Proposition 6.2. Let a ě 0 and b P R such that pa, bq ‰ p0, 0q. Let n P N˚.
(i) If φ`pzq “ 0 then Repzq ‰ nν.

(ii) If b “ 0 (and a ą 0) we have φ´pnνq “ 0 (this is a simple zero) and φ´ has
no other zero of real part equal to nν.

(iii) If b ‰ 0 then φ´ has a zero of real part nν if and only if 0 ă a2 ă 4b2,
a ă 2nν and

e2nπ
b

4b2

a2
´1
“

2nν ` a

2nν ´ a
. (6.8)

In this case z is unique and is given by

z “ nν ´ inν

c

4b2

a2
´ 1. (6.9)

This is a simple zero of φ´.

Proof. ‚ We easily see that nν belongs to Z if and only if b “ 0, and that in this
case it is a simple zero of φ´ and not a zero of φ`.
‚ Assume that z P Z satisfies Repzq “ nν ą 0 and Impzq ‰ 0. We necessarily
have a ą 0 and Impzq ă 0 so

e2iz`
“ e´2`Impzq

Ps1,`8r.

We set

κ “
e2iz` ` 1

e2iz` ´ 1
Ps1,`8r.

By (3.13) we have z “ κµ` or z “ κµ´. If a2 ě 4b2 then µ` and µ´ are real,
which gives a contradiction. Thus we have a2 ă 4b2. Since Impµ`q ą 0 we cannot
have z “ κµ`. Therefore z “ κµ´. Since Repµ´q “

a
2

we necessarily have

κ “
2nν

a
, (6.10)

which gives (6.9) and implies 2nν ą a. Then we can write

e2nπ
b

4b2

a2
´1
´

2nν ` a

2nν ´ a
“ e2iz`

´
κ` 1

κ´ 1
“ 0. (6.11)

Conversely, if (6.8) holds then with z defined by (6.9) we have z “ κµ´ with κ
given by (6.10), so the equality (6.11) now gives φ´pzq “ 0, and hence z P Z.

Finally, for z given by (6.9) we have

Im
`

φ1´pzq
˘

“ Im
`

e2iz`
´ 1` 2i`µ´pκ´ 1qe2iz`

˘

“ 2`pκ´ 1qe2iz`Repµ´q ‰ 0,

so φ1´pzq ‰ 0 and z is a simple zero of φ´ �

For n P N we set Cn “ tz P C : nν ă Repzq ă pn` 1qνu. We recall that if
a2 ‰ 4b2 then the functions φ´ and φ` have no common zeros.

Proposition 6.3. Let a ě 0 and b P R. Let n P N.

(i) If a ą 0 and b “ 0 then φ´pnνq “ 0 (this is a simple zero), φ´ has no zero
in Cn and φ` has a unique zero in Cn (which is also simple).

(ii) If a2 ą 4b2 ą 0 then φ˘ has a unique zero ζn,˘ in Cn (and this zero is simple).
(iii) If a2 “ 4b2 ą 0 then φ` “ φ´ has a unique zero ζn in Cn, and this zero is

simple (therefore it is a zero of order 2 for the product φ´φ`).
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(iv) If a2 ă 4b2 then the function φ` has a unique zero ζn,` in Cn (and this zero
is simple). There exists a unique θ P

‰

a
2ν
,`8

‰

such that

4b2
“ a2

`
a2

4θ2π2
ln

ˆ

2θν ` a

2θν ´ a

˙2

, (6.12)

and then the number of zeros of φ´ in Cn (counted with multiplicities) is
#

2 if n ă θ ă n` 1,

1 otherwise.

Proof. ‚ We begin with the case a2 ą 4b2 ą 0. By Proposition 3.2, Zsa,sb is
included in a horizontal strip of C which does not depend on s P r0, 1s. Moreover,
by Proposition 6.2, Zsa,sb does not intersect the vertical lines Repζq “ nν and
Repζq “ pn`1qν for s Ps0, 1s. Then, by the Rouché Theorem, the number of zeros
of φ˘,s “ φ˘,sa,sb in Cn is a continuous and hence constant function of s Ps0, 1s.

Assume that n ‰ 0. We know that nν is a simple zero of φ0 (see (3.16)). By
the implicit functions theorem there exist s0 Ps0, 1s, a neighborhood V of nν in
C and analytic functions ζn,˘ : r0, s0s Ñ U such that for s P r0, s0s and ζ P V we
have φ˘,spζq “ 0 if and only if ζ “ ζn,˘psq. We can compute

ζn,˘psq “ nν ´
iµ˘s

nπ
`
µ2
˘`s

2

n3π3
` O

sÑ0
ps3
q. (6.13)

In particular, for s ą 0 small enough we have ζn,˘psq P Cn. Moreover, by Proposi-
tion 6.1 applied to Ts “ Tsa,sb, the eigenvalues ζn,˘psq

2 of Ts are simple (we can also
abserve that n2ν2 has multiplicity 2 for T0 and splits into two distinct eigenvalues
zn,˘psq

2 of Ts, so each of these two eigenvalues is necessarily simple for s ą 0
small).

We proceed similarly around pn` 1qν, and we see that the zero pn` 1qν of φ˘,0
moves to Cn`1 for s ą 0 small. Finally, for s ą 0 small the functions φ˘,s have
exactly one simple zero in Cn. We recall that by Proposition 3.1 applied to Ts,
the zeros of φ`,s and φ´,s cannot meet. Then the functions φ˘,s have exactly one
simple zero in Cn for any s Ps0, 1s . All this holds in particular for s “ 1 and the
first statement is proved for n ‰ 0.

We proceed similarly for n “ 0. 0 is a zero of φ˘,0 of multiplicity 2, which splits
into two opposite simple zeros for s ą 0 small (once squared, they correspond
to the same eigenvalue of Ts). One of these two zeros is in C0, and we conclude
similarly.
‚ When a ą 0 and b “ 0 we know that nν is a zero of φ´,s for all s P r0, 1s and
the zero of φ`,s near nν behaves as in the previous case.
‚ We continue with the case a2 “ 4b2. We set φs “ φ˘,s. As above, if n ‰ 0
then nν is a simple zero of φ0, and for s ą 0 small there is a unique zero ζn of
φs near nν, and (6.13) holds for ζnpsq with µ˘ “

a
2
. Then for s ą 0 small the

function φs has a unique zero in Cn. Since this is a simple zero there is no splitting,
we have a unique simple zero in Cn for all s Ps0, 1s. Then, by continuity of the
spectrum of Ts with respect to s, the corresponding eigenvalue ζnpsq

2 of Ts has
algebraic multiplicity 2, as is the case for the eigenvalue n2ν2 of T0. As above we
deal similarly with the case n “ 0.
‚ We finish with the case a2 ă 4b2. The zeros of φs,` behave exactly as in the
first case: the asymptotic expansion (6.13) still holds and, since µ` has a positive
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imaginary part, we still have ζn P Cn for s ą 0 small. The same applies to the
zeros of φ´,s if a “ 0 and b ‰ 0.
‚ Things are different for the zeros of φs,´ in general, since by Proposition 6.2
they can go through the vertical lines Repzq P νN. Assume that a ą 0. For
s P r0, 1s we set

apsq “ sa, bpsq “
saεb

2

d

1`
1

4θ2π2
ln

ˆ

2θν ` sa

2θν ´ sa

˙2

,

where εb P t˘1u is the sign of b and θ is defined by (6.12). We also set µpsq “

µ´,apsq,bpsq and, for z P C, φ̃spzq “ φ´,apsq,bpsqpzq. We have

µpsq “
sa

2
´

is2a2

4θ2πν
`Ops3

q.

We set T̃s “ Tapsq,bpsq. Then we can proceed as above. If n ‰ 0, nν is a simple zero

of φ̃0. By the implicit function Theorem there exist s0 Ps0, 1s, a neighborhood V
of nν and an analytic function ζ̃n : r0, s0s Ñ V such that for s P r0, s0s and ζ P V
we have φ̃spζq “ 0 if and only if ζ “ ζ̃npsq. Moreover,

ζ̃npsq “ nν ´
isa

2nπ
`
s2a2pθ2 ´ n2q

4π2νn3θ2
` O

sÑ0
ps3
q.

We see that for s ą 0 small enough we have ζ̃npsq P Cn if θ ą n and ζ̃npsq P Cn´1

if θ ă n. If θ “ n, we necessarily have Repζ̃npsqq “ nν by Proposition 6.2.
We proceed similarly around pn ´ 1qν and pn ` 1qν, and we obtain that for

s ą 0 small the numbers of zeros of φ̃s with real part in spn ´ 1qν, nνr, tnνu and
snν, pn` 1qνr depend on the value of θ as follows.

Repζq P
spn´ 1qν, nνr tnνu snν, pn` 1qνr

θ ď n´ 1 1 0 1
n´ 1 ă θ ă n 2 0 1

θ “ n 1 1 1
n ă θ ă n` 1 1 0 2
θ ě n` 1 1 0 1

(6.14)

By continuity of the zeros of φ̃s, we can extend this observation for all s P r0, 1s.

If θ ‰ n, then the zeros of φ̃s cannot go through the line Repζq “ nν. If θ “ n,

there is always one zero of φ̃s on this line. Since this zero is always simple, the
zeros in Cn´1 or Cn cannot meet it. Since the same argument is valid for the
lines Repζq “ pn ´ 1qν and Repζq “ pn ` 1qν, we obtain that (6.14) holds for any
s Ps0, 1s. The only difference is that when we have two zeros (for instance in Cn

if θ Psnν, pn` 1qνr) then for s small we know that we have two simple zeros (one
close to nν and the other close to pn ` 1qν), while for large s they could meet
and produce a zero of multiplicity 2 (and this happens for some values of pa, bq by
Proposition 6.1). The discussion of the case n “ 0 is the same as above (in this
case we necessarily have θ ą n). �
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