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ENERGY DECAY FOR A SYSTEM OF SCHRODINGER
EQUATIONS IN A WAVE GUIDE

RADHIA AYECHI, ILHEM BOUKHRIS AND JULIEN ROYER

ABSTRACT. We prove exponential decay for a system of two Schrédinger equa-
tions in a wave guide, with coupling and damping at the boundary. This relies
on the spectral analysis of the corresponding coupled Schrodinger operator on
the one-dimensional cross section. We show in particular that we have a spectral
gap and that the corresponding generalized eigenfunctions form a Riesz basis.

1. INTRODUCTION

Let d =2, ¢ >0 and Q = R 1x]0,¢[. All along the paper, a generic point in
Q) is denoted by (z,y) with € R*! and y €]0,¢[. We consider on € a system of
Schrédinger equations

{z&tu +Au =0, on R, x Q. (1.1)

100 + Av = 0,

Given ¢ > 0 and b € R* damping and coupling are given by the boundary
conditions
oyu(t; x,0) = iau(t; x,0) + ibv(t; x,0),
Oyvu(t; x,0) = —ibu(t; x,0), vt > 0,Vr e R (1.2)
opu(t;x, 0) = ou(t;z, ) =0,
We could similarly consider the problem with damping and/or coupling on both
sides of the boundary. This problem is completed with the initial conditions

u’t:O = Uo, U|t:0 = o, (1-3)

where ug, vg € L*(Q).

We will check that the problem (1.1)-(1.3) is well posed. If U = (u,v) is a
solution, then for ¢ > 0 we consider the energy

2 2
Et;U) = [u(t) |72 + [v)] 720 -
A straightforward computation shows that F is a non-increasing function of time:

d
—EB(t:U) = —QaJ lu(t; z,0)* dz < 0.
dt Rd-1

In this paper we are interested in the decay of this energy when the time t goes
to +oo.
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There is already a large litterature about the energy decay for the Schrédinger
equation or for the closely related damped wave equation, on compact or non-
compact domains, with damping in the domain or at the boundary.

For the damped wave equation on a compact domain, it is known that as soon
as we have effective damping in an open subset of the domain or of its boundary,
then the energy goes to 0 [Har85, Leb96]. The decay is uniform with respect to
the initial condition (and hence exponential) if and only if all the trajectories of
the corresponding classical problem (the rays of light) go through the damping
region (see [RT74] for the damping in the domain and [BLR89] for the damping
at the boundary). Otherwise we have at least logarithmic decay with a loss of
regularity [Leb96, LRI7]. There are intermediate rates of decay when the set of
undamped classical trajectories is small and the classical flow is unstable near
these trajectories (see for instance [BH07, AL14]).

Similar results have been proved for the (undamped) Schrédinger and wave
equations in unbounded domains. In this case we look at the energy on a compact
subset. It goes to zero if the energy escapes to infinity. The contribution of
high frequencies behaves as above. The local energy always goes to 0, at least
with logarithmic decay and loss of regularity, and uniformly with decay faster
than any negative power of t if and only if all the classical trajectories go to
infinity. On the other hand the local energy of the contribution of low frequencies
always decays uniformly, with a polynomial rate of decay. We refer for instance
to [LP67, Ral69, Bur98, Boull, BH12].

We can also consider the damped Schrodinger or wave equation in an unbounded
domain. If we are interested in the local energy decay, then the geometric condition
for high frequencies is that all classical trajectories should go either to infinity or
through the damping region. The contribution of low frequencies behaves as in
the undamped case if the damping is localized (see for instance [AK02, AKO07,
AK10, BR14, Roy18]), while it behaves like the solution of some heat equation
if the damping is effective at infinity (see [Mat76, MR18, JR18] and references
therein).

Here we are interested in the global energy for damped Schrodinger equations on
a wave guide with damping at infinity. The case of a single Schrodinger equation
was discussed in [Roy15]. In that case it was already remarkable that the energy
decays exponentially without the geometric control condition for the contribution
of high frequencies. Here we have two equations, and only the first is damped (and
again, the classical trajectories parallel to the boundary never see the damping).
Moreover, the coupling itself is supported by the boundary and does not satisfy
the geometric control condition. However, we observe that the energy of both
components v and v goes to 0, and furthermore the decay is uniform and hence
exponential. Our main result in this paper is the following.

Theorem 1.1. Let a > 0 and b € R*. There exist v > 0 and C > 0 such that for
(ug, vo) € L*(Q) x L*(Q) and t > 0 we have

||U(t)HL2(Q) + HU(t)HH(Q) < Oe_vt( HUOHLz(Q) + HUOHL2(Q) ),
where (u,v) is the solution of (1.1)-(1.3).

The proof of Theorem 1.1 is based on the spectral properties of the corre-
sponding coupled Schrodinger operator. For a,b € R we consider on 57 =
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L3(Q2) x L*(Q) ~ L?(Q, C?) the operator

P (o ). (14

defined on the subspace Dom(P, ) of functions U = (u,v) in H?*({2; C?) such that,
for all z € R,
oyu(z,0) = iau(z,0) + ibv(zx, 0),
o,v(x,0) = —ibu(x,0), (1.5)
oyu(z, l) = o,v(x,l) = 0.
We will check in Section 2 that if @ > 0 then P, is a maximal dissipative operator
on 7, so by the usual Lummer-Phillips Theorem it generates a contractions

semigroup (e~"7at),25 on . Then, given Uy = (ug, vg) € Dom(P,), we see that
U = (u,v) satisfies (1.1)-(1.3) if and only if

0,U — U=0

10y Pa,b ) (16)
U|t:0 = Uo.

Moreover, if 7 is endowed with the natural norm, Theorem 1.1 is equivalent to

the uniform exponential decay in £(#) of the propagator e+t when t — +o0.

Theorem 1.2. Let a > 0 and b € R*. There exist v > 0 and C > 0 such that for

t > 0 we have
—it'Pa,b

He cor) S Ce™ M,

By the Gearhart-Priiss Theorem (see for instance Theorem V.1.11 in [EN00]),
we get uniform exponential decay for e=#Pet if we can prove that the resolvent
of P, is well defined and uniformly bounded in an open upper half-plane which
contains the real axis. Thus, Theorem 1.2 can be deduced from the following
spectral result.

We denote by p(P,p) and o(P,y) the resolvent set and the spectrum of P,
respectively.

Theorem 1.3. Let a > 0 and b € R*.

(i) There exists y1 > 0 such that any z € C with Im(z) > —~; belongs to p(Pap).
(ii) There exist m € N* and Cy > 0 such that for z € p(P,yp) we have

1 Cl
H(Pa,b - z) Hc(%”) s dist(z,0(Payp))md’

where for s > 0 we have set sI™ = min(s, s™).

As usual in a wave guide, we use separation of variables and deduce the spec-
tral properties of P,; on €2 from the analogous properties for the corresponding
operators on R~ and on the cross section |0, ¢[. We will split the Laplacian P,
on  as the sum of the usual Laplace operator on the first (d — 1) variables, and
a Laplacian with boundary conditions on |0, £.

The damping and the coupling are encoded in the domain of the transverse
operator. For a,b e R we consider on . = L?(0, ¢; C?) the operator

-2 0
7?1,b = < 0 a2> ) (17)
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defined on the domain
Dom(7,,) = {U € H*(0,4;,C?) : U'(0) +iM,,U(0) =0, U'(¢) =0}, (1.8)

where we have set ;
a
M= (% 0)- (19)

Theorem 1.4. Let a > 0 and b e R*. The spectrum of T, consists of a sequence
(k) ken* of eigenvalues. Moreover,

(i) there exists m € N* such that all the eigenvalues have algebraic multplicity
smaller than or equal to m,
(i) there exists y1 > 0 such that Im(\y) < —v; for all k € N,
(iii) there exists a Riesz basis of . which consists of generalized eigenfunctions

of 7:1,b'

Here we are mostly interested in the dissipative case, but we will see in Section
2 that the adjoint of T, is T_qp, S0 Tap is selfadjoint if @ = 0 (then the eigenvalues
are real and there exists an orthonormal basis of eigenfunctions), and for a < 0
the properties are the same as for a > 0, except that the eigenvalues have positive
imaginary parts. To be complete we will also include in the intermediate results
the already understood case a > 0, b = 0. This corresponds to two independant
equations, one with Neumann boundary conditions and one with damping at the
boundary (see [Roy15]).

Theorem 1.4 is what we need on the transverse operator to prove Theorem 1.3,
but we can give more precise spectral properties for 7, ;. For example, we will see
that 7, satisfies a Weyl Law. If F is the usual Dirichlet Laplacian on a bounded
domain €y of RY, then the standard Weyl Law says that the number Ny(r) of
eigenvalues of Py (counted with multiplicities) not greater than r satisfies

r%wd 1|
r—+00 (27T)d ’

where wy is the volume of the unit ball in R? and |€)| is the volume of the domain
Qo. This result has been improved and extended in many directions.

No(r)

When a = b = 0 we have two decoupled Schrodinger equations with Neumann
boundary conditions, so the eigenvalues of Ty = 7o are the n?7?/¢?, n € N, and
these eigenvalues have multiplicity 2. It is easy to deduce that the number of
eigenvalues of 7y (counted with multiplicities) smaller than r > 0 is of the form

2\/r/7 + O(1),

For r > 0 we denote by N,;(r) the number of eigenvalues of 7, (counted with
multiplicities) with real part smaller than r.

Theorem 1.5 (Weyl Law). Let a,be R. We have

N = 2874 o ),

™ r——+00

In Theorem 1.4 we have said that the sequence of multiplicities of the eigen-
values of 7, is bounded. In fact, the maximum multiplicity m given there is the
parameter m which appears in Theorem 1.3. We can be more precise about these
multiplicities.
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Proposition 1.6. Let a,b e R.

(i) All the eigenvalues of Too have geometric and algebraic multiplicities 2.

(i) If (a,b) # (0,0) then all the eigenvalues of T, are geometrically simple.

(iii) If a® > 4b? then all the eigenvalues of T,y are algebraically simple.

(iv) If a* = 4b* # 0 then all the eigenvalues of T,y have algebraic multiplicity 2.

(v) If a* < 4b* then the eigenvalues of Top can have algebraic multiplicity 1 or 2.
More precisely, there exists a countably infinite subset © in R? such that all
the eigenvalues of T, are simple if and only if (a,b) ¢ ©. If (a,b) € Q\{(0,0)}
then Tap has one eigenvalue of algebraic multiplicity 2, and all the others are
simple.

2

In particular, in Theorem 1.3 we can choose m = 1 if a®> > 4b* or a* < b* and

(a,b) ¢ ©, and m = 2 otherwise.

Finally, we notice that we can see our system of two equations on a line seg-
ment as a problem on a graph with two edges and non-standard non-selfadjoint
conditions at the common vertex (if we have coupling at both ends, then this gives
a graph with two edges which have the same ends). Little is known for general
non-selfadjoint quantum graphs (see [Hus14, HKS15] for general properties of non-
selfadjoint quantum graphs). We also refer to [RR20] for a non-selfadjoint Robin
Laplacian on a star-shapped graph. In terms of non-selfadjoint quantum graphs,
our analysis concerns a very particular example but provides much more precise
spectral properties.

Organization of the paper. After this introduction, we give in Section 2 the
basic properties for the operator P, on €2 and for the transverse operator 7,; on
10, ¢[. We discuss in Section 3 the localization of the large eigenvalues of 7T, . This
will give in particular the first two statements of Theorem 1.4, Theorem 1.5 and
Proposition 1.6 for large eigenvalues. In Section 4 we finish the proof of Theorem
1.4 by proving the Riesz basis property and, in Section 5, we prove Theorem 1.3
from which Theorem 1.2 and hence Theorem 1.1 follow. Finally, we give in Section
6 more results about the eigenvalues of the transverse operator, in particular about
low frequencies.

2. GENERAL PROPERTIES OF THE COUPLED SCHRODINGER OPERATORS

In this section we give the basic properties of the operators P, ; and 7, defined
by (1.4)-(1.5) and (1.7)-(1.8), respectively. We will use the following version of
the Trace Theorem.

Lemma 2.1. Let e > 0. There exists C > 0 such that for all u € H*(0,{) we have
2
HUHiw(o,z) < € Wllz2 + € HUH;(O,@ :
Proof. Let ue H(0,¢) and let xq € [0, £] be such that min |u| = |u(zg)|. For any

x € [0, /] we have

2
> 2 [wlZ20,0)
< |u(wo)|” + ¢ HUIHLQ(O,Z) L —

u(@)]* < u(zo)” + :

f " 2u(s)u (s) ds

o

Since £ |u(zo)|” < HuHig(O’@, the conclusion follows. O

We recall that an operator A on a Hilbert space H is said to be sectorial if
there exist 7o € R and 6 € [0, Z[ such that (A, ¢),, belongs to the sector X, 4 =
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{C e C,larg(¢ — )| < 0} for all ¢ € Dom(A) with ||p[,, = 1. Then it is said to
be maximal sectorial if some (and hence any) ¢ € C\X,, g belongs to the resolvent
set of A. We similarly define dissipative and maximal dissipative operators by
replacing the sector ¥, o by the half-space {¢ € C,Im({) < 0}.

Proposition 2.2. Let a,b e R.

(i) The operator P,y is mazimal sectorial.
(11) If a = 0 then P,y is maximal dissipative.
(111) The adjoint of Pap is P—ap-

Proof. ¢ For U = (u,v) € Dom(P,;) we have
<Pa,bU7 U)jf = <—AU,, u>L2(Q) + <_AU7U>L2(Q)
= [Vul2@) + [ V0l — ia [ul-, 0)[72gary — 26Im (u(:,0), v(, 0)) p2gga-1y -
In particular, if a = 0 we have
Im <Pa,bU7 U>%ﬂ = —a HU(, 0)”12(]1@*1) < 07 (21)

so P, is dissipative. In general, with C' given by Lemma 2.1 applied with ¢ =
1
St Tlalie) Ve have

Re (PuslU,U) ,,
> | Vullaiq) + V072 = B ([l 0)Z2gasy + [0(, 0)[2gary )

1 2 1 2 2 2
= ) HV“||L2(Q) + B HVUHLQ(Q) - C'[ol (||UHL2(Q) + HUHLQ(Q) )

and .
Im (PopU,U) | < B HVUH%?(Q) +Cldl HW\%?(Q) ;

SO

Re (P + C(lal + b)) U, U) ,, = [Im ((Puy + C(la| + [B)))U,U) |-
This proves that Pg is sectorial with 79 = —C/(|a| + [b|) and 6 = .
e Let A <. For U € Dom(P,;) we have

|(Pay — MU,
= [(Pap = 20U 5 + (o = N U5 + 2(70 — MRe ((Pup —70)U, U)
> (v = AU - (2.2)

In particular, (P,p — A) is injective. Now let ' = (f, g) € 5. For U = (u,v) and
® = (p,9) in H(Q; C?) we set

QU,®) = (VU,VP) ,, — AU, ®) ,p — i (MupU (-,0), B(-,0)) o a1 c2) -

This defines a sesquilinear form on H'(€;C?). The computation above ensures
that it is coercive. By Lemma 2.1, it is also continuous. Then, by the Lax-Milgram
Theorem, there exists U € H'(Q; C?) such that

Vb e HY(Q:C?), Q(U,®) = (F,d),,. (2.3)

Applied with ® in C§°(Q2; C?), this shows that U belongs to H*(Q; C?) and (—A — \)U =
Fin the sense of distributions. Then, after an integration by parts,

VP e H'(QC?),  (Q,U(-,0) —iMapU(-,0),®(-,0)) f2gar ¢y = 0.
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This implies that U belongs to Dom(P,;), 80 (Pap — AU = F and (Pap — A) is
surjective. With (2.2) we see that (P, — A)~! is bounded on J#, so A belongs to
the resolvent set of P, ;. This proves that P, is maximal sectorial, and maximal
dissipative if a > 0.
e By direct computation we see that for U € Dom(P,;) and U* € Dom(P_, ;) we
have

(PapU,U*) ,, = (U, P_apU") ,,,
so Dom(P_,) = Dom(P},) and Py, coincides with P_,;, on Dom(P_,4). On the
other hand, with the same kind of argument as above, we check that if for some
U* € 5 there exists F' € 5 such that

YU € Dom(Pay), (PuyU,U*) , = (U, F),,,

then U* belongs to Dom(P_,;). This proves that Dom(P},) = Dom(P_up). Fi-
nally we have proved that Py, = P, and the proof of the proposition is com-
plete. O

We also need similar properties for the transverse operator 7.

Proposition 2.3. For a,b € R the operator T, is mazimal sectorial on S, its
spectrum consists of a sequence of isolated eigenvalues with finite multiplicities
and Ty = Toap- If a = 0 then Top is also mazimal dissipative. If a > 0 and
b # 0, then all the eigenvalues have negative imaginary parts.

Proof. The facts that 7, is maximal sectorial, maximal dissipative if ¢ > 0, and
that 7% = T_op are proved as for P, in Proposition 2.2. Since 7, is maximal sec-
torial, its resolvent set is not empty. And since Dom(7,;) is compactly embedded
in ., its spectrum consists of isolated eigenvalues with finite multiplicities.

Now assume that a > 0 and b # 0. By dissipativeness, the eigenvalues of 7T,
have non-positive imaginary parts. Now assume that A € R and U = (u,v) €
Dom(7,s) are such that 7,,U = AU. In particular, as in (2.1) we have

0=1Im(T,U,U), = —a|u(0)].
This gives u(0) = 0 and hence v/(0) = 0. We have —v" = Av on [0,/] and
v'(0) = (E) 0, so there exists n € N such that A\ = n27r2/€2 Then we have
—u” = (n*7?/0?)u, v'(¢) = 0 and u(0) = 0. This implies that v = 0. Then
0

uw'(0) = 0, so v(0) = 0, which implies that v = 0. Thus, A is not an eigenvalue of
Tab- U

)

3. TRANSVERSE EIGENVALUES

Let a,b € R. In this section, we give more precise properties about the localiza-
tion and the multiplicities of the eigenvalues of 7,;. When there is no ambiguity
we omit the subscripts a, b of all the involved quantities.

As usual in this kind of context, it is easier to discuss the square roots of these
eigenvalues. We set

Z=2,,= {z e C : 2% is an eigenvalue of 7;,b} ) (3.1)
Let
vV = E
7

As said in introduction, when a = b = 0 we have two decoupled Schrodinger
equations with Neumann boundary conditions, so Zyy = vZ, and for all n € N
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the eigenvalue v?n? has multiplicity 2. An orthonormal basis of eigenfunctions is
given by

1
A '6m/> 3
(V 20" neN,je{1,2}

where (A;, Ay) is any orthonormal basis of C? and e,,(z) = 2cos(nvzx) for all
neNand z € [0,/].

Let
atd 0 5 a? — 4% if a® > 462,
=t qp = , where =< ,
fa = fiab = VA — a2 if a? < 4D,
For z € C and z € [0, /] we set
€Z<l’) _ eizm + 62iz€6—izw (32)
and )
~ izx 2izl —izx
é.(x) = %(f — ) (e — ¥ ). (3.3)
We have
—e!l — 2%, =0 and —¢& — 2%, =e.. (3.4)

Notice that 0 is an eigenvalue of 7 if and only if b = 0. In the following
proposition we give a characterization of non-zero eigenvalues.

Proposition 3.1. Let a,be R and z € C*.
(i) 22 is an eigenvalue of T if and only if
¢—(2)¢+(2) =0, (3.5)
where we have set
$+(2) = brap(2) = (2 — ps )€™ — (2 + pit)

. , 3.6
_ Z(e2zz€ o 1) . ’ui(emzl + 1) ( )
Moreover, if a® # 4b* the functions ¢_ and ¢, have no common zero.
(ii) If ¢+(2) = 0 we have
ker(T — 2%) = {Aje., Ay € ker(M — pi4)} (3.7)

and
ker (T — 2%)?)
= {Agez + Aléz,Al S ker(M — ,ui) and (M — /,Li)AQ = ni<Z>Al}7 (38)

where
_ pa +il(2 — pf)
222

Proof.  Let z € C* and U € H?(]0,([,C?). Then we have —U" = 2*U if and
only if there exist A, A € C? such that

Vo €]0,4[, U(z) = Ae™ + Ae™"*. (3.10)
Then U € Dom(T) if and only if A = ¢***A and
(1 + €)M+ (1—e**)2)A=0. (3.11)

N+(2) = Ntap(2) : (3.9)
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There exists a non trivial solution A of (3.11) if and only if
22(1 . e2iz€)2 + CLZ(l o 621'22)(1 + 621'7;2) + b2(1 + eZizé)Q
= det (1 + )M + (1 — **)2) = 0. (3.12)

Assume that b # 0. We have ¢** # 1 if 2 is a solution of (3.12). Then (3.12)
can be seen as a second order equation in z with z-dependant coefficients. The
solutions are given by
eQizE +1

2t = Mim7 (3.13)
and (3.5) follows. We conclude similarly when b = 0. Moreover, since e?*¢+1 # 0,
we see that if ¢_(2) = 0 = ¢, (2) we have pu, = p_ and hence a* = 4b%.
o If b+ 0 we have z4+ # py by (3.13). Then we can write

22’+

2 ,
s and (1 + ¥ = —,
“x T Mx cx T Hs

so (3.11) with 24 holds if and only if A € ker(M — p4). This gives (3.7).

Let 0 € {—, +} and Us € ker((T — 22)?). Let Uy = (T — 22)Us € ker(T — 22). By
(3.7) there exists A; € ker(M — p,) such that Uy = Aje,,. Then, by (3.4) there
exist Ay, Ay € C? such that, for all z € [0, /],

Us(z) = A, (z) + Aget® 4 1[126—1‘3095.

(1 _ eQiZiZ) -

Since Uj(¢) = 0 we necessarily have Ay = e?** A, so that

Uy = Aié., + Ase,.. (3.14)

Finally the condition U}(0) + iMU,(0) = 0 gives
(M — p15)As = 15 (25) Ay (3.15)
Conversely, if U, satisfies (3.14) and (3.15) then it belongs to ker((7 — z2)?). The
proof is similar when b = 0. U

Now we apply (3.5) to prove that the large eigenvalues of 7 = 7T, are close to
the eigenvalues of the Neumann decoupled operator Ty = 7.

Proposition 3.2. Let a,b e R.

(i) Let € > 0. There exists R. > 0 such that for s € [0,1] and z € Z4, 4 with
|z| = R. we have dist(z,vZ) < . In particular there exists ng € N* such that
for all s € [0,1] we have

v 1
Zsash < D(0,R) U U D <ny, 6) ,  where R = <n0 — 5) v.

[n|=no

(ii) For n = ng the functions ¢_ and ¢, have exactly one zero in the disk
D(nl/, %)
Proof. ¢ Assume by contradiction that the first statement does not hold. Then
there exist sequences (S, )men in [0, 1], (2m)men in C and (0, )men in {+} such that
Gorr smarsmb(Zm) = 0, dist(zm, vZ) = € for all m € N and |z,,| — +00. In particular
Zm ¢ VL 50 spb # 0 and z,, # [y, Where we have set [, = Lo, sma.smb- DINCE
tm = Smlo,.ap 15 bounded we have

o2zl _ Zm t [m

Zm — Wy mMF0

L,
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so dist(z,, ¥Z) — 0 and we get a contradiction. The second statement follows by

choosing € = § (we can take R, larger to ensure that it is of the required form).

e For 2z € C we set
Go(2) = ¢i,0,0(2) = (eQiz€ —1)z. (3.16)

Then, for all n € N*, ¢¢ has one simple zero in the disk D(ny, %) and does not
vanish on its boundary. On the other hand ¢4 does not vanish on the circle
C’(ny, %) for n large enough. Choosing n larger if necessary we also have on this

circle
|6+(2) = ¢o(2)] = |px| [ + 1] < |o(2)] -

By the Rouché Theorem, ¢4 has exactly one simple zero in D(m/, %) O

For n = ng we denote by z, 1+ = 2z, 1. the unique solution of ¢4 (z) = 0 in

D(nv, %) If a® = 4b* we can simply write z, instead of z, ; or z, .

The following proposition gives a rough localization of the high frequency eigen-
values and in particular the Weyl Law for T.

Proposition 3.3. Let a,b € R. Let ng € N* be given by Proposition 3.2. The
spectrum of T is contained in

D=D(0,R) v | J D(n*? -
= , v v = |-
nz=ngo
The sum of the algebraic multiplicities of the eigenvalues of T in D(0, R?) is 2ng
and, for n = ng,

2 nv?
72

N———

(i) if a® # 4b*, then T has exactly two distinct simple eigenvalues in D <n2v

- 2 2
gwen by z. _ and z;, |,

2 nv?

(ii) if a® = 4b%, then T has a unique double eigenvalue in D <n21/ ;s ), given
by 2.

In particular, for r > 0 we have
2 2
W <N(T)<max(2ng,£+3).
v v

Proof. Let n = ng. The operator T = T, s is analytic with respect to the param-
eter s in the sense of Kato (family of type B, see [Kat80]). By Proposition 3.2, the

circle C'(n?1?, ”—”2) is included in the resolvent set of 7T, for all s € [0, 1], so the num-

2
ber of eigenvalues (counted with multiplicities) of 7y in the disk D,, = D (n?v?, ”T”Q)
is independant of s € [0, 1]. Since 7y has exactly one double eigenvalue in D,,, the
number of eigenvalues (counted with multiplicities) of 7 = 77 in D,, is also equal
to 2.

If a® # 4b?, we already know that 7 has two distinct eigenvalues 212%_
in D,,. They are necessarily simple.

If a> = 4b% then 22 is the unique eigenvalue of 7 in D,. It has algebraic
multiplicity 2 (we know from Proposition 3.1 that it is geometrically simple if
(a,b) # (0,0)).

Similarly, 7 has the same number of eigenvalues as Ty in D(0, R?), that is 2ng
(counted with multiplicities).

2
and z; |
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Now let r > 0. If r < R? = (no — %)QVQ, then N(R) < 2ng. Otherwise, there

exists n > ng such that r € [(n — %)21/2, (n+ %)QVQ]. Then we have

2 2
2 <2n<N(r)<2n+2<£+3,
1% 1%

which concludes the proof. Il

We finish this section by an asymptotic expension for the large eigenvalues of
T. We already know that all the eigenvalues have negative imaginary parts when
a > 0 and b # 0, so this asymptotics gives in particular a spectral gap for 7 in
this case.

Proposition 3.4. Let a,be R. We have

Ly -2
Zny =nv——+ O (n°),
nm n—-+00
and hence 0
1+ _
2 _ 22 + 1
g =WV == O (n).
n—+0oo

Proof. Let 7y, + := 2z, + —nv. By Proposition 3.2, r,, 4+ goes to 0 as n — +00. Then
we compute

2irn sl (py 4 vy + )

0=4(2nz) = (W + g — pig)e
= 2iry gnm — 2py + O(ry ) + O(nrl ).

This proves that

and the conclusions follow. O

4. RIESZ BASIS PROPERTY

For b € R the operator 7y is selfadjoint with compact resolvent, so there exists
an orthonormal basis of eigenfunctions for 7.

In this section we consider (a,b) € R* x R and we prove that there exists a
Riesz basis of . made with generalized eigenfunctions of 7 = 7, ;. Since 7T is not
selfadjoint, we do not necessarily have a Hilbert basis of eigenvectors. However,
we will prove that the generalized eigenvectors are not too far, in a suitable sense,
from being orthogonal. We have no control on these vectors for n small, but when
n is large we will see that they are in fact close to a family of eigenvectors of 7
which forms a Riesz basis.

We recall that a family (Wy)ken+ in .7 is a Riesz basis if the operator
A(N*)  — S
(up)kens = D q ukUy
is well defined, bounded, bijective and boundedly invertible. Then for any U € .

there is a unique sequence (ug)ren+ € (2(N*) such that U = ;7 | u; V) and, for
some C' > 1 independant of U,

o0 o0
CT Y ul < U < C D . (4.1)
k=1 k=1
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For general results about Riesz bases we refer for instance to [Agro4].

If a? # 4b? then for all n > ng (ny € N* given by Proposition 3.2) we set
q)QnJrl = A,GZH’7 and (I)2n+2 = A+€Zn’+, (42)
where

A= (M) & erlT ) (43

(we omit the subscripts a,b). Then ®g,. 1, Po,0 € Dom(T), TPoy1 = ZZ,_®2n+1
and T ®gp 10 = 2’721,+<I>2n+2-
Similarly, if a® = 4b* we set for n > ng

Qopi1 = Ase,,, Popyo = Are,, + Aspe,, (4.4)

Ay = <_5b) and Ay, = (”%“) .

We recall that the parameter 7(z,) is defined in (3.9) (14 = p— in this case). We
have

where

0

In particular, choosing ng larger if necessary, we can assume that 7(z,) # 0 for
n = ng. Then we have @y, 1, Po,i0 € Dom(T), TPopy1 = 22P9, 11 and T Poy i =
2’721‘1)271+2 + Popgr.

In both cases, we also consider a basis (Pg)1<r<2n, Of generalized eigenfunctions
for the subspace of .¥ spaned by the generalized eigenspaces corresponding to the
eigenvalues of 7 in D(0, R?) (see Proposition 3.3).

All this defines a family (®g)ren+ of generalized eigenfunctions for 7. Our pur-
pose is to prove that this is a Riesz basis of .. Notice that we could normalize
these vectors, but this is not necessary ((4.10) below is enough).

it
Agp = Asy +O(n7Y), where Ay, = <2) . (4.5)

We begin with the following computation.
Lemma 4.1. (i) We have
2¢. (4.6)

2
ezl 220, [Re(2)|—+00

Im(2)—0

(ii) There exists ¢ > 0 such that for z € C with [Im(z)| < 1 we have
¢

lEzr200,0) < m (4.7)
(iii) For z,( € C with z # £ we have
ezz‘(z—é)e 1 e2izl _ 6—21@

<€zv €C>L2(O,Z) - Z(Z — 5) * Z(Z + 5)

and

(e, éc>L2(o,e) -
2i(z—C) 2i(z—C)0 __ 2izl —2iCL 2zl _ ,—2il¢
_K(e_ j—1)+e._ _21+€(e_—|-e_ )_el_ 6_2‘ (4.9)
2¢(z = Q) 2i¢(z = ¢) 2¢(z + Q) 2i¢(z + ¢)
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Proof. We check (4.8) and (4.9) by direct computation. If z ¢ R we can take ( = z
in (4.8). This gives

9 _2im(a) sinh(2lm(z)¢) sin(2Re(z)£)
le-lzz00 = € im(z)  Re(z) )’

and (4.6) follows. We get the same conclusion if z € R. Finally, (4.7) is clear from
the definition of é,. O

We can first consider separately the vectors ®, for 1 < k < 2ng, and then the
vectors ®9,,1 and Py, for each n = ny. It is obvious that a finite family of
linearly independant vectors is a Riesz basis of the finite dimensional subspace
that it spans. The interest of the following proposition is that we can take the
same constant for each of these finite subfamilies of eigenfunctions.

Proposition 4.2. There exists C > 0 such that for all (ug)ren+ € 2(N*) we have

2ng 2ng

C7 ) lul® < UG5 < C ) il
k=1 k=1

and
0_1( |Uzn+1|2 + |U2n+2\2) < HUnH?yf < C( |U2n+1|2 + |U2n+2’2 )7
where we have set Uy = Ziiol ur Py and, forn = ng, U, = uopni1Poni1+usnioPonia.

Proof. @ The vectors (®q,...,Py,,) are linearly independant by definition, and
we see directly that for n > ng the vectors ®9,,,1; and ®,,,o are not colinear. It
remains to check that we have the estimates with a constant independant of n.

e Assume that a? # 4b*. By Lemma 4.1 we have

2 2 2 2
Hq)2n+1‘|§ﬂ = |A_|C2 Hezn,,HLg(M) m 20 |A—|Cz s

and similarly | ®a, 2%, goes to 2¢|A,|%;. Thus there exists C; > 1 such that, for
all k e N*,

Crt < @3 < G (4.10)

In particular,

HUnH; <2 ’U2n+1|2 H‘I)2n+1H<2¢ + 2 ’U2n+2‘2 H‘I’2n+2H<2y

(4.11)
<204 ( |ugnia|? + ’U2n+2\2)-

e Since A_ and A, are not colinear in C? there exists ¢ > 0 such that
(A Al < (1 =€) [Afez [Arce -
Then

|<(I)2n+1’(1)2n+2>,_5ﬂ‘ = | A—)A+>(C2|

<

<62n,, 1y €z 4 >L2(07Z) ’

&) A ] [Avlce ez - ”L2(o,e) H62n,+HL2(0,£)

N

(1-
(1 =€) | ®ons1lly [ Pons2l s,
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and hence

2
5

HUnH; > ||’ ”(I)2n+1H; + Juzns2|* | P2nso
— 2 |ugny1] [uansal [(Pans1, Ponta) o
> e(Juzni1 [* | Pansl% + [uznsal® [Ponia]? )

> eCr( [uni1]? + |U2n+2|2)'

The proof is complete if a? # 4b°.
e Now assume that a? = 4b?>. By Lemma 4.1 and (4.5) we have

2 2 2 2
[P2nirly ——— 200 Aifca s [ Ponsally ——— 20| Az eo]ca -

Since A; and Aj 4, are not colinear, there exists € > 0 such that for n large enough
we have (A1, As )| < (1 —€)|A1||A2.0|. We can proceed as in the previous
case. O

Now we consider pairs of generalized eigenfunctions which are not associated to
the same subfamilies of eigenfunctions.

We set .7y = span(®q, ..., Dy,,) and, for n = ng, .7, = span(Pa, 11, Ponya).

Proposition 4.3. There exists C > 0 such that for n = ng, m e N*, U, € ., and
Upnim € Fnym we have

C HUnH 3 HUn+m”7
Un,Upsm) o < : <,
[(Un, Unim) | -

Proof. We begin with the case a* # 4b*. We apply (4.8) with z = z,_ and
¢ = Zp4m,—. With Proposition 3.4 we get
1
2
‘<¢2n+17®2(n+m)+1>‘ = [A_] ‘<€Zn,f7ezn+m,7>L2(O,Z)’ S -~

and then

|Unll o 1Untm &
nm ’

’<U2n+1‘1)2n+1, u2(n+m)+1q)2(n+m)+l>| <

We estimate similarly ’<(I)2n+17 (I)2m+2>’7 ‘<(I)2n+27 (I)2m+1>‘ and ‘<(I)2n+27 (I)2m+2>‘7
and the conclusion follows in this case. For the case a? = 4b? we proceed similarly,

now using (4.8), (4.9) and the fact that by (4.7) we have
1 1
[Cons o] S s < O
n(n+m) = nm

To prove that the family (®y)ren is a Riesz basis, we compare it with a family
of eigenfunctions for the model operator 7.
Assume that a? # 4b?. For n € N we set

D, =A e, and D) ., =Aen. (4.12)

Since (A_, A}) is a basis of C?, there exists Cy > 1 such that for V € C? and the
unique (v_,v,) € C? such that V =v_A_ + v, A, we have

Co ' (lo-I" + v+ [*) < Vg < Colfo-|" + vy [*).
Let U € .. There exist u_,u, € L?(0,¢) unique such that for almost all y €]0, ¢|
Uly) = u-(y)A- + uy(y)As.
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Since (eny)nen is an orthonormal basis of L%(0, /), there exist unique sequences
(U, Jnen and (w})pey in £2(N*) such that

Uly) = Z Uy, € (Y)A_ + Z ulen, (y)A

neN neN

Moreover,

0512({14;’24—‘1@{}2) < HU;éC’oZ(‘u;‘Q—I—|uZ’2).

neN neN

This means that the family (®9)ien+ is a Riesz basis of . Now assume that
a®? = 4b?. Then we get the same conclusion if we set

@gnﬂ = Aje,, and q)gn+2 = A - (4.13)
Proposition 4.4. The family (Py)ken+ is a Riesz basis of 7.

Proof. ¢ We consider the map
O - { gQ(N*) - S
| (uken 200wy,

and we prove that © is well defined, continuous, bijective and has continuous

inverse.
e Let (Up)nen be a sequence in . with U,, € ., for all n e N' = {0} U {ng, ng +
yand ) |Un Hy < 400. For N = ng and p € N we have

N+p N+p N+p N+p—n
Z U = 2 M0l = >, D) 2Re(Un,Unim) s,
s n=N n=N m=1
so by Proposition 4.3
N+p 2 N+p

>,
n=N

+oo
_ U, 2l < |Un HJ’ HUn+mH/
n;V |Unl EN Z

(4.14)

A

o
2 2 Il

This proves in particular that the series ), ..U, converges in . and that there
exists C' > 0 independant of the sequence (U,,) such that

2
Su <o S

neN R neN

With Proposition 4.2, this proves that © is well defined and bounded.
e For n = ng we set

1
m,= o (T—0de er(s).
2im C(nz,ﬁ M)
12
Then ., = ker(Il,, — Id.»), and .%%; < ker(I,,) for all j € N\ {n}. Now assume that
the sequence u = (uy)gen is such that O(u) = 0. For n € N we have ug,11Popi1 +
Uon2Ponro = I1,(O(u)) = 0, SO Ugps1 = Ugpi2 = 0. Since this holds for all n = ny
we have Ziiol up®r = 0, and then uy = --- = ug,, = 0. This proves that © is
injective.
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e By (4.14) there exists N = ng independant of U such that

N+p

2
2, Un
n=N

7

N+p

5 1 +00 )
= U] < 3 DU - (4.15)
n=N n=N

Assume by contradiction that there exists a family (UP) ey nen such that UP € .7,
forallpe Nandne N, Y .\ |U?|? =1 for all pe N but

2, Ur

— 0.

neN R P
For p e N we set
P _ P P _ p
V= )L UL W= Uk
neN ,n<N n=N

After extracting a subsequence if necessary, we can assume that V' has a limit
V' e span(®Py)r<on in . Since VI + V3 goes to 0, V3 goes to =V, so V also
belongs to span(®)r=2an+1. By injectivity of ©, this implies that V' = 0. Then U,
goes to 0 for all n < N, and hence

+00
Un|? L.
HZ;V| oy —

Since V3 — 0, this gives a contradiction with (4.15). Thus there exists C' > 0
independant of the sequence (U,,) such that

2
DI BETea A

neN % neN
With Proposition 4.2 we deduce that for u € £2(N*) we have

2 2
[©@w)]5 = |ul -

e To prove that O is surjective we follow the proof of [Kat80, Theorem V.2.20],
except that the reference basis is not orthogonal. We denote by ©y the map defined
as © with the family (®;)ren+ replaced by (®9)ien+ defined by (4.12) or (4.13).
Since we already know that the family (®9)gen+ is a Riesz basis, ©g is boundedly
invertible. Then ©0," —Id» € L(.#) is the map

0 0
k=1 k=1

For u = (ug)pen+ € (*(N*) and N € N we have

0 2

k=N+1
By Proposition 3.4, (4.5) and (4.7) we have

0

< \|UH§2(N*) Z H(I)k - @2“;
P k=N+1

1

ﬁa

so ©0;' — Id is the limit in £(.#) of a family of finite rank operators, and hence
it is compact. This implies that ©0;"' is a Fredholm operator. Since we already
know that it is injective, it is surjective. Then O is surjective and the proof is
complete. O

|2 — @7, <
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5. RESOLVENT FOR THE SCHRODINGER OPERATOR ON THE WAVE GUIDE

In this section we prove Theorem 1.3 for a > 0 and b € R*. For this we deduce
spectral properties of P = P,; on ¢ from those of 7 = T, on .. The interme-
diate result (Proposition 5.1 below) is valid for any a,b € R with (a,b) # (0,0) (in
general we could proceed similarly, repeating the eigenvalues according to their
geometric multiplicities, but the model case a = b = 0 is already clear).

We denote by (Ax)ren+ the sequence of (distinct) eigenvalues of 7. These eigen-
values have finite algebraic multiplicities and we know that for k large enough the
multiplicity of \; is 1 if a? # 4b? and 2 if a? = 4b. In particular, if we denote by
my € N* the multiplicity of the eigenvalue Ay, we know that the sequence (my)ren
is bounded. We denote by m its maximum.

For ue L2 (RY) and V e ¥ weset u®V : (z,y) € Q — u(x)V(y). Then, if
we denote by L the usual selfadjoint realization of the Laplacian on R?!, we have
P=L® |dL2(w) + IdLQ(Rd—l) XT.

Since the spectrum of L is the half-line [0, 4oo[, it is known (see for instance
Section XIIL.9 in [RS79]) that the spectrum of P is given by

={\+rkeN*" rel0,+[}.

We can recover this fact directly in our context. Let k € N* and r > 0. We
consider an eigenfunction ¥, € .# corresponding to the eigenvalue A\, of 7, and
a sequence (up)ney in H*(RY') such that [up[ 2.y = 1 for all n € N and
(L —r)u, — 0 in L?*(R%1). Then for all n € N the function u, ® ¥}, belongs to
Dom(P) and in .7 we have

(P — (i + 7)) (un ® W) = (L —7)u,) ® U, — 0.

n—+o0

This proves that A\, + 7 € 0(P), and hence X < o(P). The converse inclusion will
be a part of Proposition 5.1 below.

Let k € N*. By Proposition 3.1, \; is an eigenvalue of T of geometric multiplicity
1. There exist ¥y 1, ..., Wim, such that (T—Ag)¥p1 = 0and (T —Xg)¥p; = Vg1
for j € {2,...,my}. By Proposition 4.4, we can choose these vectors in such a way
that (Wy ;)ken+ 1<j<m, 1S a Riesz basis of .77.

Let F' e 2 ~ L*(R%*!,.%). For almost all z € R! we have F(z,-) € ., so
there exist fi j(x), k € N*, 1 < j < my, such that, in .%7,

=) kaj )y ;. (5.1)
keN* j=1

Moreover, by the Riesz basis property, there exists C' > 1 independant of F' such
that, for almost all z € R?!,

et S S @ < 1P <0 X S )

keN* j=1 keN* j=1
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After integration over x € R we get

my my
CT Y Y Mkiliegary < IFI% <C O Dl fesliemey - (5:2)

keN* j=1 keN* j=1
With this notation we set, for ( € C\,

+00 my mE—j

=222 (€=M P frge) @k (5.3)

k=1j=1 p=0

Proposition 5.1. Let ( € C\X. The series in the right-hand side of (5.3) con-
verges in A for all F € 7. This defines a bounded operator R(C) on A which is
an inverse for (P —() : Dom(P) — . Moreover, there exists C' > 0 independant
of ¢ such that

C

IR(Oer) < Gorie mymm

Proof. Let F' € 7. We use notation (5.1).
o For ke N* je{l,...,my} and p € {0,...,my — j} we have by the spectral
theorem

(5.4)

1 1 1
L—(¢=N)"" < < = < & :
I = €= ooy < Garr R S dete, 5 < det(C, D)
With (5.2) we deduce that for N, N; € N* we have

(=P ((L = (¢ = M) P frjup) ® Wi

H
N+N; my,

(d.stgz )2 2 Z|f’“| = O

k=N j=1

so R(¢)F converges in . and, by (5.2) again,

|F'lLe
dist(¢, $)ml”

This proves that R(() defines a bounded operator on .7 and (5.4) is satisfied.
e For N € N* we set

Un =35 ST (DP((L— (€= M) P fige) ® Uiy

Then Uy € Dom(P), it goes to R(¢)F in s and

N my

(P — CUN—ZkaJG@‘I’k]

k=1j=1

IR(OF] =

F.
+0

Since P is closed, this proves that R(¢)F € Dom(P) and (P — {)R({)F = F. In
particular, for (s € p(P) we have

(P —¢)™" = R(C). (5.5)
e It remains to prove that for ( € C\X and U € Dom(P) we have
R()(P—-QU =U. (5.6)
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This will prove that ¢ € p(P). Let (o € p(P). We can check that for F' € . we
have R(¢)R(¢)F = R((o)R({)F. On the other hand we have

(P —G)(ROF —R(G)F) = (¢ = C)R(QOF
so, by (5.5), R satisfies the resolvent identity

R(OF = R(G)F = (¢ = G)R(G)R(OF = (¢ = C)R(OR(Co) F.
Applied with F' = (P — (o) "'U this gives

RGP = QU = R(OF = (¢ = G)R(QOU = U.
This proves (5.6) and completes the proof. O

6. MORE ABOUT THE LOW FREQUENCY TRANSVERSE EIGENVALUES

In Section 3 we did not say much about the low frequency eigenvalues of the
transverse operator 7 = 7,;,. We were quite accurate with the large eigenvalues,
and then we said that the part of the spectrum in D(0, R?) (see Proposition 3.3)
consists of a finite number of eigenvalues with finite multiplicities, and negative
imaginary parts if @ > 0 and b # 0. That was enough to prove that there is a
spectral gap for P = P, and hence the local energy decay for (1.1). In this final
section we provide more information about these low frequency eigenvalues.

We consider a = 0 and b € R such that (a,b) # (0,0). Taking the adjoint, we
get similar results for the case a < 0 (for the proofs the roles of ¢_ and ¢, are
reversed ).

We recall from Proposition 3.1 that the eigenvalues of T are geometrically sim-
ple. In the following proposition we discuss their algebraic simplicity.

Proposition 6.1. Let a = 0 and b € R such that (a,b) # (0,0).
(i) If a* = 4b* then the eigenvalues of T are not simple.

(i) Assume that a*> # 4b*. Let o € {£} and let z € C* be a zero of ¢,. Then z*
is an algebraically simple eigenvalue of T if and only if z is a simple zero of

Do -
(iii) All the zeros of ¢ are simple. If a* > 4b? then all the zeros of ¢_ are simple.

There exists a countably infinite subset © | of{(a, b) e R* x Rla? < 4b2} such
that ¢_ has a multiple zero if and only if (a,b) € © .

Proof. e 1If a* = 4b* then (M — p)? = 0 so, by (3.8), ker((T — 2%)?) is at least of
dimension 2 for any z € Z.

e Now we assume that a? # 4b>. We consider z € Z and o € {£} such that
¢o(z) = 0. We have ker((M — p,)?) = ker(M — p,) so from (3.8) we see that
ker ((T — 22)?) = ker(T — z?) if and only if 7,(z) # 0. On the other hand we have

Pl (z) = ¥ — 14 2il(z — py)e*.

Then we can check that 7,(z) = 0 if and only if ¢/ (2) = 0. This gives the second
statement.
e If¢,(2) =0and a> 0 we have

Re(py +il(z* — p%)) = Re(uy) — OIm(2%) + im(p3) > 0, (6.1)
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so 4 (z) # 0 and the zeros of ¢, are simple. If a® > 4b* then u_ is real positive

and we similarly see that the zeros of ¢_ are simple. If a = 0 we have z € R so
g +il(2% — p%) =i b + ilz* + ilb* # 0

and, again, the zeros of ¢, are simple.

e Assume that there exists z € Z such that ¢_(2) = ¢’ (2) = 0. We assume for
instance that Re(z) = 0 and Im(2) < 0. We have e** + 1 # 0,

62iz€ -1
and
sin(2z0) 4+ 2z¢ = 0. (6.3)

This last equality implies in particular that z is not real or purely imaginary. We
write 220 = £ + ik with £ > 0 and k < 0. Then (6.3) gives

{COSh(H) sin(§) + & =0,

sinh(k) cos(€) + = 0. (6.4)

In particular cos(§) < 0 and sin(§) < 0. Then

o —angeh (-5 ) (6.5)

| & § ) _
cos(§) Sn(ef 1 + argch (_sin(g)) =0. (6.6)

e Let k € N. The left-hand side of (6.6) has a positive derivative in I, =
|(2k + 1)m, (2k + 2)r], it goes to —co at (2k + 1)m and is positive at (2k + 2)r.
We denote by & the unique solution of (6.6) in I. Then we define kj by (6.5)
and we set

and

& + ik
We finally define g, by (6.2). Notice that if Re(u,) < 0 then there exist o < 0
and 3 € R such that 2, € Z,5 and py = fi1ap OF fig = p_ap. Since Im(22) < 0
this gives a contradiction and proves that Re(uy) > 0. Then we set

1
ar = 2Re(py) >0 and by = 51/&% + Im(ug)? > 0.

e Ifa > 0andbe R* are such that a®> < 4b? and Tap has an eigenvalue with
algebraic multiplicity greater than 1, then this eigenvalue is necessarily z? for some
k e N, we have p_ ., = pi and, finally, @ = a;, and |b| = b,. Conversely, 7, », and
Tar.—b, have an eigenvalue 27 of algebraic multiplicity greater than 1 for all k£ € N.
This proves that 7, has a non-simple eigenvalue if and only if (a,b) belongs to
Uen{(@k, bi), (ak, —by)} and concludes the proof. O

For a single equation with damping at the boundary, is is proved in [Roy15]
that for each n € N there is exaclty one square root of an eigenvalue with real part
n |nv, (n + 1)v[. This came from the continuity of the spectrum with respect to
the absorption index a and the fact that the square roots of the eigenvalues do
not have their real parts in ¥N. This ensured in particular that each eigenvalue
of the transverse operator is simple. Here we prove an analogous result, but the
situation is not as simple as it was for a single equation.
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Proposition 6.2. Let a = 0 and b € R such that (a,b) # (0,0). Let n € N*.

(i) If ¢ (2) = 0 then Re(z) # nv.
(ii) Ifb =0 (and a > 0) we have ¢_(nv) = 0 (this is a simple zero) and ¢_ has
no other zero of real part equal to nv.
(iii) If b # 0 then ¢_ has a zero of real part nv if and only if 0 < a® < 4b?,
a < 2nv and
o %2,1 _ 2nv+a

. 6.8
2nv —a (6:8)
In this case z is unique and is given by
4 42
2 =nw =il — = 1. (6.9)

This is a simple zero of ¢_.

Proof. ¢ We easily see that nv belongs to Z if and only if b = 0, and that in this
case it is a simple zero of ¢_ and not a zero of ¢, .

e Assume that z € Z satisfies Re(z) = nv > 0 and Im(z) # 0. We necessarily
have a > 0 and Im(z) < 0 so

eZizf _ e—QZIm(z) 6]17 +OO[

We set
€2iz€ +1
K = m E]l, +OO[
By (3.13) we have z = kuy or z = ku_. If a®> > 4b* then py and p_ are real,
which gives a contradiction. Thus we have a? < 4b%. Since Im(u;) > 0 we cannot

have z = kp. Therefore z = su_. Since Re(pu—) = § we necessarily have
2nv
= — 6.10
h= (6.10)

which gives (6.9) and implies 2nv > a. Then we can write

b2 _ 2nv + a , k+1
eQnTr -1 _ _ e?zzZ _ _

= 0. 6.11
2nrv — a k—1 ( )

Conversely, if (6.8) holds then with z defined by (6.9) we have z = ku_ with &
given by (6.10), so the equality (6.11) now gives ¢_(z) = 0, and hence z € Z.
Finally, for z given by (6.9) we have

Im (¢ (2)) = Im(e*** — 1 + 2ilu_(k — 1)e**") = 20(rk — 1)e**'Re(p_) # 0,
so ¢’ (z) # 0 and z is a simple zero of ¢_ O

For n € N we set C,, = {z€C : nv <Re(z) < (n+ 1)v}. We recall that if
a® # 4b* then the functions ¢_ and ¢, have no common zeros.

Proposition 6.3. Leta > 0 and be R. Let n e N.

(i) If a > 0 and b = 0 then ¢_(nv) = 0 (this is a simple zero), ¢_ has no zero
in C, and ¢, has a unique zero in C,, (which is also simple).

(ii) If a* > 4b* > 0 then ¢4 has a unique zero (, + in C,, (and this zero is simple).

(iii) If a®> = 4b*> > 0 then ¢, = ¢_ has a unique zero ¢, in C,, and this zero is
simple (therefore it is a zero of order 2 for the product ¢_¢. ).
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(iv) If a* < 4b* then the function ¢, has a unique zero , . in C, (and this zero

is simple). There ezists a unique 6 € ]%, +oo] such that

2 2
9 9 a 20v+a
4b* = a* + SV In (201/ — a) , (6.12)

and then the number of zeros of ¢_ in C,, (counted with multiplicities) is

2 ifn<f<n+1,
1 otherwise.

Proof. ¢  We begin with the case a®> > 40> > 0. By Proposition 3.2, Z, 4 is

included in a horizontal strip of C which does not depend on s € [0, 1]. Moreover,
by Proposition 6.2, Z, does not intersect the vertical lines Re(¢) = nv and
Re(¢) = (n+1)v for s €]0, 1]. Then, by the Rouché Theorem, the number of zeros
of ¢1 s = ¢4 sasp in C,, is a continuous and hence constant function of s €]0, 1].

Assume that n # 0. We know that nv is a simple zero of ¢ (see (3.16)). By
the implicit functions theorem there exist sy €]0,1], a neighborhood V of nv in
C and analytic functions ¢, + : [0, s9] — U such that for s € [0, s¢] and ( € V we
have ¢4 5(¢) = 0 if and only if ¢ = (,,+(s). We can compute

- 2.2
itas | s 3

= . 6.13
nw n3m3 +s(20(8 ) ( )

o (5) = v —

In particular, for s > 0 small enough we have ¢, +(s) € C,,. Moreover, by Proposi-
tion 6.1 applied to T; = Tsa,s, the eigenvalues ¢, +(s)? of T; are simple (we can also
abserve that n?v? has multiplicity 2 for 7y and splits into two distinct eigenvalues
Zn+(8)? of T;, so each of these two eigenvalues is necessarily simple for s > 0
small).

We proceed similarly around (n + 1)v, and we see that the zero (n+ 1)v of ¢4 g
moves to C,4; for s > 0 small. Finally, for s > 0 small the functions ¢, ; have
exactly one simple zero in C,. We recall that by Proposition 3.1 applied to g,
the zeros of ¢ 5 and ¢_ 4 cannot meet. Then the functions ¢4 , have exactly one
simple zero in C,, for any s €]0,1] . All this holds in particular for s = 1 and the
first statement is proved for n # 0.

We proceed similarly for n = 0. 0 is a zero of ¢4 ( of multiplicity 2, which splits
into two opposite simple zeros for s > 0 small (once squared, they correspond
to the same eigenvalue of 7). One of these two zeros is in Cy, and we conclude
similarly.

e When a > 0 and b = 0 we know that nv is a zero of ¢_ ; for all s € [0, 1] and
the zero of ¢, s near nv behaves as in the previous case.

e We continue with the case a® = 4b%. We set ¢ = ¢4 .. As above, if n # 0
then nv is a simple zero of ¢g, and for s > 0 small there is a unique zero (, of
¢s near nv, and (6.13) holds for (,(s) with gy = §. Then for s > 0 small the
function ¢4 has a unique zero in C,,. Since this is a simple zero there is no splitting,
we have a unique simple zero in C,, for all s €]0,1]. Then, by continuity of the
spectrum of 7, with respect to s, the corresponding eigenvalue (,(s)? of 7, has
algebraic multiplicity 2, as is the case for the eigenvalue n?v? of 7. As above we
deal similarly with the case n = 0.

e We finish with the case a® < 4b?. The zeros of ¢, ; behave exactly as in the
first case: the asymptotic expansion (6.13) still holds and, since p, has a positive
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imaginary part, we still have (, € C,, for s > 0 small. The same applies to the
zeros of ¢_ 5 if @ = 0 and b # 0.

e Things are different for the zeros of ¢, _ in general, since by Proposition 6.2
they can go through the vertical lines Re(z) € vN. Assume that a > 0. For
s € [0,1] we set

saegy, 1 20v + sa '\
als) = sa, bls) = T\/1 T = (29V — sa> ’

where g, € {£1} is the sign of b and 6 is defined by (6.12). We also set u(s) =
P a(s)p(s) and, for z € C, ¢4(2) = d_ a(5)4(s)(2). We have

sa is%a?

_ 3
) = 5 = gy, T O

We set 7N; = Ta(s)b(s)- Then we can proceed as above. If n # 0, nv is a simple zero

of ¢o. By the implicit function Theorem there exist sg €]0, 1], a neighborhood V
of nv and an analytic function ¢, : [0, so] — V such that for s € [0, so] and (€ V
we have ¢4(¢) = 0 if and only if ( = (,,(s). Moreover,

~ isa  s*a*(6% —n?)

Cu(8) = nv — + 0 (s%).

nm 42yn302? 550

We see that for s > 0 small enough we have fn(s) €C, if 6 >n and fn(s) eC,_
if @ < n. If § = n, we necessarily have Re(,(s)) = nv by Proposition 6.2.

We proceed similarly around (n — 1)v and (n + 1)v, and we obtain that for
s > 0 small the numbers of zeros of ¢, with real part in |(n — 1)v, nv[, {nv} and
|nv, (n + 1)v| depend on the value of 0 as follows.

Re(C) €
|(n — Dv,nv| | {nv} | |nv,(n + 1)v|
0<n-—1 1 0 1
n—1<6<n 2 0 1 (6.14)
0=n 1 1 1
n<f<n+1 1 0 2
0=n+1 1 0 1

By continuity of the zeros of ¢, we can extend this observation for all s € [0,1].
If § # n, then the zeros of ¢, cannot go through the line Re(() = nv. If § = n,
there is always one zero of g?)s on this line. Since this zero is always simple, the
zeros in C,,_; or C,, cannot meet it. Since the same argument is valid for the
lines Re(¢) = (n — 1)v and Re(¢) = (n + 1)v, we obtain that (6.14) holds for any
s €]0,1]. The only difference is that when we have two zeros (for instance in C,,
if 0 €]nv, (n + 1)v[) then for s small we know that we have two simple zeros (one
close to nv and the other close to (n + 1)v), while for large s they could meet
and produce a zero of multiplicity 2 (and this happens for some values of (a,b) by
Proposition 6.1). The discussion of the case n = 0 is the same as above (in this
case we necessarily have § > n). U
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