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ABSTRACT 

Exact models of photo-induced temperature and thermal radiation are presented for optical coatings submitted to spatio-

temporal regimes. Results are useful to analyze and predict thermal processes in optical thin films at different temporal 

and spatial scales.  They also open a door to control the emissivity patterns of multilayers. 
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1. INTRODUCTION 

Optical coatings have been extensively characterized these last decades, due to more and more severe requirements. 

These characterizations include optical properties, uniformity, hardness, adhesion and stress, damage threshold, 

absorption, scattering and others… For applications involving mirrors for gyro-laser systems, detection of gravitational 

waves and space micro-optics, huge efforts were developed to overpass the “ppm barrier”, though absorption and scattering 

still limit the energy balance to a few ppm losses.  

Despite this state of the art, thermal radiation [1], [2] in optical coatings was rarely investigated in detail until now, while 

emissivity [2] plays a key role in numerous sectors related to energy and defense, space optics and MIR imaging... Thermal 

radiation in multilayers originates from both the ambient and the absorption-induced temperature, and has mostly been 

studied for opaque samples or for transparent samples supporting a constant temperature in time. Predictions can be found 

in the literature [2], [3], [4], [5] but often rely on approximations or assumptions, and are rarely connected to photo-induced 

effects in optical coatings.  

The scope of this work is to provide an exact theory of thermal radiation in optical multilayers submitted to an arbitrary 

illumination (continuous, pulsed, modulated). In a first part, the modelling of the laser induced temperature in optical 

coatings is discussed and some examples are given for a quarter wave mirror submitted to nanosecond and millisecond 

pulses. Then the thermal radiation is linked to the temperature thanks to the fluctuation dissipation theorem. Finally, ideas 

to build planar optical coatings that radiate thermically at specific wavelength and angle are given. 

2. PHOTO-INDUCED TEMPERATURE WITHIN MULTILAYERS OPTICS  

Thermal radiation of optical coatings originates from both the ambient and the photo-induced temperature that occurs 

when the sample is submitted to an optical illumination. Hence, the first section of this article is dedicated to the modelling 

of this laser induced temperature. 

2.1. Theory modelling 

Figure 1 shows the geometry of an optical multilayer with p thin film layers. The media are considered isotropic and 

homogenous. For each layer (i), the thickness is noted ei, the refractive index ni, the thermal conductivity bi and the thermal 

diffusivity ai. The superstrate has the refractive index n0 whereas the substrate has the index nS. The illumination is coming 

from the superstrate. 



 

 
 

 

 

Figure 1: geometry of an optical multilayer (see text) 

 

In this work we focus on the conduction process (heat diffusion), so that heat transfer by convection in the surrounding 

media is not considered. Hence the temperature in each layer (i) is governed by the classical heat equation: 

∆𝑇𝑖(𝑟, 𝑧, 𝑡) − (
1

𝑎𝑖

) 𝜕𝑡𝑇𝑖(𝑟, 𝑧, 𝑡) = − (
1

𝑏𝑖

) 𝑆𝑖(𝑟, 𝑧, 𝑡) (1) 

with 𝑇𝑖  is the photo-induced temperature, t is the temporal variable, 𝑟 = (𝑥, 𝑦) the transversal space coordinates and z the 

perpendicular direction to the interfaces of the component. 𝑆𝑖 is the thermal source and represents the absorption density 

created by the optical illumination in the media (i). 

It is important to notice that this model is acceptable only if the pulse duration is longer than 10 picoseconds. To tackle the 

temperature induced by ultra-short pulses, one needs to consider the two-temperature model [6]. 

The resolution of the heat equation has been widely studied in the literature. A lot of papers have considered finite 

difference algorithms [7], [8], [9], [10], [11] and [12]. Others have used Hankel transform or Laplace transform [13], [14]. 

In this article, we choose to rely on an analogy between optical propagation and heat diffusion [15] that allows to reuse 

algorithms that have been developed for the optical propagation in multilayer systems. To use this analogy, one needs to 

take a double Fourier transform of the heat equation versus the time variable t and the transverse coordinates 𝑟: 

𝜕𝑧
2�̂�𝑖(𝜈, 𝑧, 𝑓) + 𝛼𝑖

2(𝑓, 𝜈) �̂�𝑖(𝜈, 𝑧, 𝑓) = − (
1

𝑏𝑖

) �̂�𝑖(𝜈, 𝑧, 𝑓) (2) 

where:  

𝛼𝑖
2(𝑓, 𝜈) = 𝑗 (

2𝜋𝑓

𝑎𝑖

) − 4𝜋2𝜈2   and   𝜈 = |𝜈| = √𝜈𝑥
2 + 𝜈𝑦

2 (3) 

and the double Fourier transform is written as follow: 

�̂�(𝜈, 𝑧, 𝑓) = ∫ ∫ 𝑇(𝑟, 𝑧, 𝑡)𝑒−𝑗2𝜋�⃗⃗⃗�.𝑟𝑒𝑗2𝜋𝑓𝑡𝑑2𝑟𝑑𝑡 (4) 

From a mathematical perspective, equation (2) is similar for heat diffusion and optical propagation in absorbing media. 

The solution of (2) is the sum of the homogenous solution �̂�ℎ,𝑖 and a particular solution �̂�𝑔,𝑖.  

�̂�𝑖(𝜈, 𝑧, 𝑓) = �̂�ℎ,𝑖(𝜈, 𝑧, 𝑓) + �̂�𝑔,𝑖(𝜈, 𝑧, 𝑓) (5) 

The homogenous solution is classically given by the following equation: 

�̂�ℎ,𝑖(𝜈, 𝑧, 𝑓) = 𝑇𝑖−1
+ (𝜈, 𝑓)𝑒𝑗𝛼𝑖(𝑓,𝜈)𝑧 + 𝑇𝑖−1

− (𝜈, 𝑓)𝑒−𝑗𝛼𝑖(𝑓,𝜈)𝑧 (6) 

The constants 𝑇𝑖−1
±  are determined thanks to the continuity of both the temperature and the heat flux at each interface of 

the component [8]. 

The particular solution is the convolution product (with respect to the z variable) between the thermal source and the Green 

function. 



 

 
 

 

�̂�𝑔,𝑖(𝜈, 𝑧, 𝑓) =  𝐺𝑖(𝜈, 𝑧, 𝑓) ∗𝑧 (
−1

𝑏𝑖

) �̂�𝑖(𝜈, 𝑧, 𝑓)  with  𝐺𝑖(𝜈, 𝑧, 𝑓) =
1

2𝑗𝛼𝑖(𝑓, 𝜈)
𝑒𝑗𝛼𝑖(𝑓,𝜈)|𝑧| (7) 

The last step of the modelling is the determination of the thermal source 𝑆𝑖 which is the absorption density 
𝜕𝒜𝑖

𝜕𝑣
 of the 

incident laser beam in the layer (i). In the most general form, one can write: 

𝜕𝒜𝑖

𝜕𝑣
= 𝐸𝑖𝜕𝑡𝐷𝑖 + 𝐻𝑖𝜕𝑡𝐵 = 𝑆𝑖(𝑟, 𝑧, 𝑡)  with  𝐷𝑖 = 휀𝑖 ∗𝑡 𝐸𝑖   and  𝐵𝑖 = 𝜇𝑖 ∗𝑡 𝐻𝑖 (8) 

This expression can be greatly simplified by considering two reasonable assumptions. First, the laser is assumed to be 

quasi monochromatic around a central frequency f0. Then the divergence of the laser beam is assumed to be weak which 

means that the optical source is collimated. The incident laser beam occurs from one direction described with the spatial 

frequency 𝜈0 = 𝑛0𝑠𝑖𝑛𝜃0/𝜆0 where 𝜃0 is the angle of incidence and 𝜆0 the central wavelength of the laser. With these two 

assumptions one can write: 

𝑆𝑖(𝑟, 𝑧, 𝑡) = 𝜕𝑧𝒜𝑖(𝜈0, 𝑧, f0) 𝑔2(𝑟, 𝑧, 𝑡) (9) 

with 𝒜𝑖(𝜈0, 𝑧, f0) the monochromatic and monodirectional absorption and  𝑔2 a function that describe the shape and the 

temporal envelope of the laser. The absorption is described by the classical formulation (10) where (�̂�0
+, �̂�0

+) is the double 

Fourier transform of the incident electric and magnetic field: 

𝜕𝑧𝒜𝑖(𝜈0, 𝑧, f0) = 𝜋𝑓0  {𝐼𝑚(𝜖𝑖) |
�̂�𝑖(𝜈0, 𝑧, 𝑓0)

�̂�0
+(𝜈0, 𝑓0)

|

2

+  𝐼𝑚(𝜇𝑖) |
�̂�𝑖(𝜈0, 𝑧, 𝑓0)

�̂�0
+(𝜈0, 𝑓0)

|

2

} (10) 

To go further, one can assume that the incident beam can be described by separating the temporal variable and the spatial 

one. If we choose a gaussian laser in time and space, then 𝑔2 can be written as follow: 

𝑔2(𝑟, 𝑧 = 0, 𝑡) = 𝑔1(𝑟)𝑔2(𝑡)   with   𝑔1(𝑟) = 𝑔01𝑒
−

2(𝑥2 cos2 𝜃0+𝑦2)

𝐿2    and   𝑔2(𝑡) = 𝑔02𝑒
−

2𝑡2

𝜏2 (11) 

L represents the width of the beam at 𝑒−2 and 𝜏 the pulse duration.  

Finally, the amplitude of the two gaussian functions can be linked to the energy of the laser pulse W and the thermal source 

can be expressed, in the second Fourier plane, as: 

�̂�𝑖(�⃗⃗⃗�, 𝑧, 𝑓) = 𝜕𝑧𝒜𝑖
(𝜈0, 𝑧, f0)

2𝑊

ℜ{�̃�0}
𝑒−

𝜋2𝑓2𝜏2

2 𝑒
−

𝜋2𝐿2

2
(

𝜈𝑥
2

cos2 𝜃0
+𝜈𝑦

2)
(12) 

In the following, the illuminated surface on the top interface of the sample will be large and we will be interested in the 

depth variation of the temperature field. In these conditions, the incident wave can be assimilated to a plane wave and one 

can consider a surface energy density. The system becomes invariant in x, y, and the second Fourier transform is not 

necessary. Therefore, in the first Fourier plane, the heat equation becomes: 

𝜕𝑧
2�̃�𝑖(𝑧, 𝑓) +

𝑗2𝜋𝑓

𝑎𝑖

�̃�𝑖(𝑧, 𝑓) = − (
1

𝑏𝑖

) �̃�𝑖(𝑧, 𝑓) (13) 

with the thermal source: 

�̃�𝑖(𝑧, 𝑓) = 𝜕𝑧𝒜𝑖(𝜈0, 𝑧, f0)
2

ℜ{�̃�0}

∂W

∂S
 𝑒−

(𝜋𝜏𝑓)2

2 (14) 

∂W

∂S
 can be seen as the fluence of the illumination. 

2.2. Numerical results 

 In this section, the laser-induced temperature of a mirror made of seven quarter wave layers is computed. The 

high index material is Nb2O5, and the low index is SiO2. The formula of the component is: Air/H(BH)7/BK7. The optical 

and thermal properties chosen for the materials are summarized in Table 1.  

 



 

 
 

 

Materials Nb2O5 SiO2 Air BK7 

Refractive index @ 

1µm 
2.25 + 10-4j 1.45 + 10-6j 1 1.52 

Thermal conductivity 

(W/m/K) 
1 0.5 2.5*10-2 1.14 

Thermal diffusivity 

(m²/s) 
4.3*10-7 1.84*10-7 2.05*10-5 6.2*10-7 

Table 1: Optical and thermal parameters used for the simulations of the laser-induced temperature 

We first study the laser induced temperature in the nanosecond regime. The laser has an energy of one mJ over one 

nanosecond. The central wavelength of the laser is of 1064 nm. The illuminated surface is of 100 µm by 100 µm, which 

gives a fluence of 103 J/cm². Note here that laser-induced damage processes are not considered. We are interested in the 

link between temperature and incident energy. This link is linear and can be used to predict the temperature in other 

situations. The photo-induced temperature in this configuration is given in Figure 2.  

The temperature is also studied in the millisecond regime. The properties of the laser and the materials are the same, except 

for the pulse duration chosen at one millisecond. Results are given in Figure 3. 

 

Figure 2: Laser-induced temperature of a quarter wave stack illuminated by a nanosecond pulse (see text). (left) time 

dependence of the temperature at the top surface of the mirror and of the gaussian shape of the laser pulse. (right) temperature 

at fixed time with respect to the stack depth z. 

  

Figure 3: Laser-induced temperature of a quarter wave stack illuminated by a millisecond pulse (see text). (left) time 

dependence of the temperature at the top surface of the mirror and of the gaussian shape of the laser pulse. (right) temperature 

at fixed time with respect to the stack depth z.  

In the nanosecond regime, the temperature distribution along the direction of depth in the coating follows the normalized 

modulus squared of the tangential electric field (Figure 4) whereas in the millisecond regime the distribution profile is 



 

 
 

 

almost monotonic. This can be explained with the thermal diffusion length 𝐿 = √𝑎𝜏 which is equal, for the Nb2O5, to 20.7 

nm in the ns regime, and to 20.7 µm in the ms regime. In the ns regime, the temperature field mostly stays in the layers 

and so follows the thermal source, which is proportional to the electric field. Conversely, in the ms regime the temperature 

field diffuses along the depth of the thin film which allows the temperature to stabilize. 

 

Figure 4: Variation with stack depth z of the normalized modulus squared of the tangential electric field 

Because of the confinement of the temperature field, the ns regime may give the opportunity to solve different inverse 

problems such as the extraction of the thermal parameters of the different layers from the measurements.   

3. PHOTO-INDUCED THERMAL RADIATION WITHIN MULTILAYER OPTICS  

The aim of this section is to develop the model of the laser-induced thermal radiation of an optical thin film filter 

submitted to an arbitrary illumination.  

3.1. Theory modelling 

The previous section gives a map of the photo-induced temperature in the coating with respect to the time. This map is 

discretised in the space and the time domain. The steps of the discretisation are chosen to obtain areas where the 

temperature is considered as a constant. This discretisation is essential to satisfy the hypothesis of thermal equilibrium that 

is needed to apply the fluctuation dissipation theorem. Over a given period of time, we place ourselves in the situation of 

an optical filter where each layer has a different temperature. In this situation, the model of thermal radiation in an 1D 

multilayer structure can be found in [3], [4], or [5]. The major steps of the modelling are recalled here.  

In each medium at thermal equilibrium (where a temperature can be defined), the random thermal movement of the charged 

particles can be modelled by a spatial time depend electric current density written 𝐽𝑒
⃗⃗⃗ ⃗(𝑟, 𝑧, 𝑡) [1], [16]. The time average of 

this current density is zero. Rytov [1] has applied the fluctuation dissipation theorem and found a relation between the 

spatial correlation function of the current at two different locations and the temperature of a local isotropic medium: 

〈𝐽𝑚,𝑒(r⃗, 𝑧, 𝑓)𝐽𝑛,𝑒
∗ (r⃗′, 𝑧′, 𝑓)〉 = 4πϵ′′(𝑓)Θ(𝑓, 𝑇)δ𝑛𝑚δ(r⃗ − r⃗′)δ(𝑧 − 𝑧′) (13) 

With: 

- 〈. 〉 is a statistical average  

- 𝑚, 𝑛 ∈ {𝑥, 𝑦, 𝑧} are the coordinates of the current density 

- 𝐽𝑚,𝑒(r⃗, 𝑧, 𝑓) = ∫ 𝐽𝑚,𝑒(r⃗, 𝑧, 𝑡)𝑒𝑗2𝜋𝑓𝑡𝑑𝑡 

- 𝜖′′ is the imaginary part of the dielectric permittivity of the medium 

- Θ(𝑓, 𝑇) =
ℎ𝑓

𝑒
ℎ𝑓
𝑘𝑇−1

 is the mean energy of Planck’s oscillator at the frequency f and temperature T in thermal 

equilibrium 

- δ𝑛𝑚 is the Kronecker symbol  



 

 
 

 

- 𝛿 is the Dirac function  

To compute the thermal radiation of the medium, one needs to introduce this thermal current density in the Maxwell 

equations. Most of the literature [3], [4], [5], [17] make the use of the Dyadic Green function to solve this problem. We 

choose to use the results of the theory of bulk scattering [18] that enable to compute the power spectrum of a bulk 

distribution of current.  

In this work we only consider non-magnetic mediums. To tackle the thermal radiation of magnetic component, an analogue 

relation of (13) that describes the presence of magnetic current must be considered. The imaginary part of the permittivity 

will be replaced by the imaginary part of the permeability.  

Eventually for a component made of p layers at thermal equilibrium, the time average of the power of the thermal radiation 

that merges in the superstrate can be written as: 

〈Φ0(𝑡)〉 = ∑ 2 ∫ ∫ ℜ{�̃�0}4𝜋𝜖𝑖
′′(𝑓)Θ(𝑓, 𝑇𝑖)𝐹𝑖𝑑

2𝜈
+∞

�⃗⃗⃗�=−∞

𝑑𝑓
+∞

𝑓=0

𝑝

𝑖=1

(14) 

where �̃�0 is the effective index of the superstrate and 𝐹𝑖 is a function that depends on the optical parameters (effective 

index, complex admittance) and the polarisation of the illumination.  

It is useful to extract the common properties of thermal radiation such as intensity and emissivity [2] from equation (14). 

The intensity is linked to the monochromatic surface flux density of thermal radiation with the following relation. 

𝜕Φ

𝜕𝑆𝜕𝑓𝜕Ω
= 𝐼(𝑓, Ω, 𝑇) cos 𝜃 (15) 

where S and T are respectively the emissive surface and the temperature of the component, Ω is the solid angle in which 

the radiation is propagating, (𝜃, 𝜙) are the spherical coordinates and f is the frequency of the radiation.  

By considering equation (14) and (15), one can find for the intensity of thermal radiation of the layer (i) in the superstrate: 

𝐼(𝑓, Ω, 𝑇𝑖) = 2
𝑘0

2

4𝜋2
ℜ{�̃�0}4𝜋𝜖𝑖

′′(𝑓)Θ(𝑓, 𝑇𝑖)𝐹𝑖 (16) 

with 𝑘0 the wavevector in the superstrate.  

It is usual to normalize this intensity by the intensity of the blackbody 𝐼𝑏(𝑓, 𝑇) = 2
𝑘0

2

4𝜋2 Θ(𝑓, 𝑇) which introduces the 

emissivity [2]. One can define, for each layer at thermal equilibrium, its emissivity: 

𝜖𝑖(𝑓, Ω) =
𝐼(𝑓, Ω, 𝑇𝑖)

𝐼𝑏(𝑓, 𝑇)
(17) 

To conclude this section, it is important to introduce the Kirchhoff’s law that equalize the emissivity at a given frequency 

and angle of a given medium, and the absorption by this medium of an incident beam that originates from the same direction 

at the same frequency. This relation gives an indirect way to compute the thermal radiation by considering the absorption 

and allows to verify the computational codes [4]. 

3.2. Numerical results 

The thermal radiation of the optical component taken in the section 2 is now studied. The ns regime is chosen because 

of the higher temperature variations. The ambient temperature is chosen at 20°C (293.15K). The temporal, angular and 

wavelength pattern of thermal radiation are shown in Figure 5. Refractive index dispersion is not taken into account. The 

TE polarisation of the radiation is considered.  



 

 
 

 

 

Figure 5: The temporal, angular and wavelength pattern of the thermal radiation of a quarter wave stack illuminated by a 

nanosecond pulse (see text). (left) wavelength dependence of the intensity at normal incidence and at fixed time. (right) angular 

dependence at 10µm and at fixed time. Refractive index dispersion is not considered. Patterns in TE polarisation. 

In conclusion, the model is accurate to compute the thermal radiation of optical thin film illuminated by an arbitrary laser 

beam. It should be recall that the model depends on the knowledge of the optical indices of the materials that are poorly 

known in the infrared region.  

4. TAILORING THE THERMAL RADIATION 

The thermal radiation of solid object at a given temperature is usually quasi-isotropic and spread over a large 

wavelength bandwidth. Huge efforts have been made to tailor the thermal radiation with the help of nanostructures [5]. 

Some articles show how to confine the thermal radiation in small wavelength bandwidth or in a small directional aperture 

thanks to 2D multilayers structures [19] or gratings [20]. Some works are also dedicated to the control of thermal radiation 

with 1D multilayer structure such as metallic Fabry Perot [4], photonic crystals coated with SiC [21] or Ag [22]. In this 

article, we demonstrate that we can theoretically achieve coherent thermal radiation with the use of Zero Admittance Layer 

(ZAL) [23], [24] in 1D dielectric multilayer structures under total internal reflection.  

The ZAL layer allows to make a resonant mode of the structure at a specific frequency. At this specific frequency, 

coherence of thermal radiation can be recovered thanks to the narrow bandwidth. The physical aspects under this 

phenomenon are similar to those involved in a Fabry Perot filter or in planar micro-microcavities [24],[25],[26]. 

A multilayer, made of a quarter wave stack with Nb2O5 and SiO2 for, respectively, the high and low index material, and a 

ZAL layer of Nb2O5 has been simulated. The wavelength is chosen at 1µm. The structure is assumed to be at thermal 

equilibrium at a constant temperature of 300K. Optical parameters of the medium are given in Table 1. Results are shown 

in Figure 6. We can see that the thermal radiation is confined in a very narrow angular and wavelength region. 

To compare with the literature, the full width at half maximum of the emissivity peak in wavelength (Δ𝜆) and in angle 

(Δ𝜃) are computed. We find Δ𝜆 = 0.4 nm, which defined a Q factor of 𝑄 = 𝜆𝑐/Δ𝜆 = 2500, and Δ𝜃 = 0.014° which 

defines a coherent length of 𝐿𝑐 = 𝜆/Δ𝜃 = 71.4𝜆. The Q factor is 10 times higher than those of the structures found in [4], 

[20], [21] and [22]. The coherence length is also higher. Dahan et al [27] have made a coupled resonant cavity structure 

that have a larger coherence length but a smaller Q factor. It should be recalled that these results are theoretical ones. The 

Q factor and the coherence length will probably be reduced in practice.  



 

 
 

 

  

Figure 6: Emissivity of a quarter wave stack with a ZAL layer. (left) wavelength dependence at fixed angles. (right) angular 

dependence at fixed wavelength 

In conclusion, planar multilayer structures made of dielectric are useful to tailor thermal radiation. The Q factor of the 

structure and the spatial coherence length of the radiation are similar or improved compared to the literature. It is important 

to highlight the fact that our results were achieved in the near infrared. If one wants to move to the medium infrared region, 

the materials will have to change to Ge, ZnS and so on. Indeed, the optical materials are likely to be opaque in this region 

preventing the interference effects to occur.  
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