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ABSTRACT 

We show how to design huge enhancement of emission patterns in multilayer planar micro-cavities. Optimization 

is carried out arbitrarily for both the free-space pattern of plane waves and for the modal pattern of guided modes. The 

energy carried by these patterns is compared for various stacks, and their control is discussed.  

Keywords: Micro-cavity, enhancement patterns, free-space, modal space. 

1. INTRODUCTION 

Optical sources within micro-cavities have been extensively studied for at least 2 decades [1]-[12]. These days it is 

well known that over-coating these cavities with multilayer optics allows their emission patterns in free-space to be 

modified. While sources within single cavities radiate a quasi-lambertian pattern, more elaborate structures (such as Fabry-

Perot filters) enable the patterns in angular or spectral regions to be confined. Applications concern lighting and bio-

photonics, micro-sources and single photon sources, antennas, optical sensors, etc... The theoretical modelling has allowed 

to optimize the efficiency of the radiated pattern in free-space with remarkable results. The Fabry Perrot structure is, in 

most of the cases, used. However, the energy transferred to guided modes has been less studied because of the complexity 

of the problem. 

In recent work we introduced the zero-admittance technique [16] for designing huge field enhancement in specific 

multilayer optics (ZAL coatings). This problem differs from that of micro-cavities since the optical coating is free of 

sources, and is illuminated from a high-index medium to allow total internal reflection (TIR) to occur. The field 

enhancement can be arbitrarily controlled (amplitude, wavelength, incidence and polarization, depth localization) with the 

design technique and increases with the layer number; its amplitude is bounded by intrinsic (absorption, roughness, thermal 

and non-linear effects, damage threshold) and extrinsic bandwidth phenomena such as divergence and spectral width, 

design accuracy and transverse uniformity) conditions. Here enhancement means that the electromagnetic stationary field 

in the coating is much greater (by several decades) than the incident field. 

The objective of this paper is to show that similar techniques are available for designing huge enhancement of emission 

patterns in micro-cavities. Specific layers are introduced to over-coat given cavities and are first shown to create asymptotic 

poles in the reflection coefficient of the multilayer structure in the free-space (plane waves) frequency range. The result is 

a huge enhancement of the free-space pattern, by several decades. In a second step the technique is extended to the modal 

(guided waves) window, where another technique allows exact poles to be constructed and to attain huge enhancement of 

arbitrary modes. We compare the energy carried in free space to that transferred to the guided modes, and address the 

question of controlling this ratio. Results are discussed for a series of stacks. This technique could be of great interest in 

the fabrication of ultra-sensitive optical sensor and differs from other works that rely mostly on numerical optimization 

[13],[14]. 

2. RECALLS ON MICRO-CAVITIES 

The aim of this section is to recall how the emission patterns in micro-cavities can be obtain. We work in a single 

wavelength (or harmonic) regime with a temporal dependence exp(−𝑗𝜔𝑡), 𝜔 = 2𝜋𝑐/𝜆being the temporal pulsation, and 

𝜆 the illumination wavelength.  All media are assumed to be linear, isotropic, and non-magnetic. The end media (substrate 

and superstrate) are assumed to be non-absorbing. The planar geometry of the all-dielectric stack is shown in Figure 1. 

Such a stack can be designed either as an optical filter or coating (when illuminated at infinity from the surrounding media), 

or a micro-cavity (when the sources are located within the stack) or a waveguide (case of integrated optics). In Figure 1 



 

 
 

 

all thicknesses have the same order of magnitude as the wavelength. At each interface (i) of the coating, an electric of 

magnetic current can be found and stands for the optical sources.  

 

Figure 1: geometry of a planar multilayer stack, with n0 and nS the refractive indices of the superstrate and the substrate 

Since we are interested in the emission pattern of optical sources in micro-cavities, it is useful to remind how the energy 

balance can be analysed in those structures. The energy balance can be written [3], [4], [15] as: 

𝐹 = Φ + 𝐴 (1) 

where 𝐹 is the total power provided by the sources, Φ the Poynting flux through a closed surface surrounding the cavity, 

and A the absorption within the cavity. We assume the absence of interaction between fields and currents (weak regime), 

and that the cavity supports a unique electric current 𝐽𝑖⃗⃗ (𝑟 ) located at one interface (i). Under these conditions, in a single 

wavelength regime each term of relation (1) follows [3], [4], [15]: 
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where 𝜎 = 𝜎(𝑐𝑜𝑠𝜑, 𝑠𝑖𝑛𝜑)is the spatial pulsation in polar direction 𝜑 in the range [0; 2𝜋], 𝑟 = (𝑥, 𝑦) the spatial transverse 

coordinates and 𝑧 an altitude in a direction perpendicular to the multilayer. Note that all energy quantities are given per 

unit of current surface area. The stationary electromagnetic field in the volume of the stack is denoted 𝐸(𝑧, 𝜎). Also, recall 

that all quantities depend on ω, whose notation is omitted for the sake of simplicity. The temporal Fourier transform of 

permittivity 휀(𝑡, 𝑧) is denoted 휀̃(𝑧).  

In relation (2) the 𝑓 and 𝑔 functions are spectral densities of power and flux respectively, per unit spatial pulsation and 

polar angle. The power density is given as [3], [4], [15]: 

𝑓(𝜎 ) =
𝑑𝐹

𝑑𝜎𝑑𝜑
= 2𝜋2ℜ{

1

ΔYi(𝜎)
} |𝐽𝑖(𝜎 )|

2
(3) 

where 𝐽𝑖(𝜎) is the spatial Fourier transform of 𝐽𝑖⃗⃗ (𝑟 ) and the quantity Δ𝑌𝑖 = 𝑌𝑖
′ − 𝑌𝑖 is the difference in the complex 

admittances from each side of surface (i), that is, in layers (i) and (i-1) respectively. Note that the admittances are 

discontinuous at surface i where the current is present. Relation (3) shows how the cavity coefficient 
1

ΔYi(𝜎)
drives the 

power provided by the current, which can be inhibited or enhanced (at constant current). It should be stressed that all terms 

in relation (1) are cavity-related (they depend on the cavity coefficient), so that the optical balance is always satisfied [15].  

The flux density emerging into the end media is given by: 

𝑔(𝜎 ) = 𝑔−(𝜎 ) + 𝑔+(𝜎 ) (4) 

Where 𝑔
+
− is relative to the flux by reflection (𝑔−) or transmission (𝑔+), that is: 

𝑔−(𝜎 ) =
dΦ−

dσd𝜑
= 2𝜋2𝜎ℜ{�̃�0}|𝐸0

−(𝜎 )|2and𝑔+(𝜎 ) =
dΦ+

dσd𝜑
= 2𝜋2𝜎ℜ{�̃�𝑆}|𝐸𝑆

−(𝜎 )|2 (5) 

In relations (5), �̃� denotes the effective index in the superstrate (�̃�0) or in the substrate (�̃�𝑠).  



 

 
 

 

Throughout all these formulae, light polarization is considered by the effective indices and admittances. Finally, one can 

check [15] for a lossless cavity that the provided power is equal to the sum of the emerging fluxes.  

In relation (5) the flux is given as a function of fields, while in (3) the power was given as a function of the current. We 

will also need to express the power as a function of the fields [15] which can be written in the absence of magnetic currents: 

𝑓(𝜎 ) = 𝑓−(𝜎 ) + 𝑓+(𝜎 ) = 2𝜋2𝜎[ℜ{𝑌𝑖
′}|𝐸𝑖

′(𝜎)|2 − ℜ{𝑌𝑖}|𝐸𝑖(𝜎)|2] = 2𝜋2𝜎ℜ{Δ𝑌𝑖}|𝐸𝑖(𝜎)|2 (6) 

As an illustration and because of future need for normalization in the next sections, the emission pattern of 2 single cavities 

is plotted at a wavelength of 633nm in Figure 2. The first cavity (on the left) is a single very thin (1nm) high-index layer 

between an air superstrate and an air substrate, with the current located at half distance from each interface. We observe a 

quasi-lambertian pattern in both reflection and transmission, which will be used for normalization of the patterns from 

other cavities. The second cavity (on the right) is a 𝑄𝑊 = 𝐿(𝐻𝐿)𝑞stack matched at wavelength 𝜆0
0 = 633𝑛𝑚for normal 

incidence 𝜃0
0 = 0°. The current is located at the top surface of the mirror. This second cavity pattern is normalized at each 

angle by the previous one, which highlights the cavity effect (moderate enhancement in reflection by a factor of 4, and 

strong reduction in transmission). TE polarization is used for all patterns. Notice that huge enhancement is not expected 

here and will be discussed in the next section. 

 

Figure 2: Angular patterns at 633nm for a single very thin layer cavity (left side, SI units) and for a quarter-wave stack (right 

side). The second pattern is normalized with respect to the first (see text). TE polarization. 

3. ENHANCEMENT PATTERNS IN FREE SPACE WITH ZAL COATINGS 

3.1. Analytical discussion 

Field enhancement still remains one of the key objectives of nanophotonics [17],[18], regardless of the geometry 

(planar, radial, concentric) of the component. Enhancement means that the stationary field in the stack is much greater 

than the input (incident) collimated (plane wave) field in the superstrate. In the case of planar multilayers, we recently 

highlighted an analytical design technique for creating huge (several decades) field enhancement with zero-admittance 

layers [15], [16] a technique that is relevant for threshold reduction of micro-sources and high-sensitivity optical sensing. 

The enhancement can be controlled in amplitude and for arbitrary illumination conditions (incidence, wavelength and 

polarization), provided the stack is under total internal reflection (TIR). Hence the superstrate is a high-index material with 

respect to the substrate material (𝑛0 > 𝑛𝑠) and oblique incidence (𝜃0) in the superstrate is required beyond the refraction-

limit angle, that is, in terms of spatial pulsation: 

𝜎0 = 𝑘0 sin 𝜃0 > 𝑘𝑆with𝑘0,𝑆 = 2𝜋𝑛0,𝑆/𝜆andσ0istheincidentspatialpulsation (7) 

The TIR regime is a key feature since it allows the complex admittance to be cancelled at a particular altitude 𝑧𝑐 of the 

stack (which is the origin of huge enhancement in quarter-wave stacks under TIR), while in free space this zero admittance 

value must be approached asymptotically (as in Fabry-Perot filters). So, if one considers a quarter wave stack with a ZAL 

layer over coating the stack we obtain, at a specific spatial pulsation 𝜎𝑐 > 𝑘𝑆 and at the top interface of the ZAL layer (𝑧 =
𝑧𝑝−1): 

𝑌′(𝜎𝑐 , 𝑧 = 𝑧𝑝−1) = 0 (8) 



 

 
 

 

We are now interested in the optimization of light emitted by the micro-cavity in the absence of illumination. As per 

relation (3), maximum enhancement in the cavity would be provided at spatial frequencies 𝜎𝑚 which satisfy the condition: 

Δ𝑌𝑖(𝜎𝑚) = Δ𝑌𝑖
′(𝜎𝑚, 𝑧 = 𝑧𝑖) = 0 (9) 

Note that relations (8-9) are respectively related to TIR (𝑘𝑠 < 𝜎𝑐 < 𝑘0) and modal (max(𝑘0, 𝑘𝑠) < 𝜎𝑚 < max(𝑘𝑖)) 

frequency ranges which do not intersect [4], [15] so that they do not seem related a priori. This result is illustrated in Figure 

3, where the abscissa is the normalized spatial frequency (𝜈∗ = 𝜆𝜎/2𝜋) analogous to 𝑛𝑠𝑖𝑛𝜃. 

 

 

Figure 3: Free-space and modal frequency windows. The abscissa is the normalized spatial frequency 

Since we are concerned with an optimization of the reflected pattern only, we start with relation (6) which can be further 

developed as [15]: 

𝑓−(𝜎 ) = −2𝜋2𝜎ℜ{𝑌𝑖}
|𝐽𝑖(𝜎 )|

2

|Δ𝑌𝑖|
2

(10) 

We assume the current to be located at the top interface (p-1) of the ZAL layer. With relation (8), we obtain: 

Δ𝑌(𝜎𝑐 , 𝑧𝑝−1) = −𝑌(𝜎𝑐 , 𝑧𝑝−1) = −𝑌𝑝−1(𝜎𝑐) (11) 

So that: 

𝑓−(𝜎𝑐⃗⃗  ⃗) = 2𝜋2𝜎𝑐ℜ{𝑌𝑝−1(𝜎𝑐)}
|𝐽𝑖(𝜎𝑐)|

2

|Yp−1(𝜎𝑐)|
2

(12) 

and the question is whether this last quantity can be maximized at 𝜎𝑐. For that we use the transfer matrix from interface 0 

to p-1 to find an expression of Yp−1 [15]: 

𝑌𝑝−1(𝜎𝑐) =
�̃�𝐿

2

�̃�0

(
1

𝛽2𝑞
) with𝛽 = �̃�𝐻/�̃�𝐿 (13) 

We can then conclude that the single wavelength cavity pattern at the ZAL frequency 𝜎𝑐 < 𝑘0is enhanced in the form: 

𝑓−(𝜎𝑐⃗⃗  ⃗) = 2𝜋2𝜎𝑐𝛽
2𝑞

�̃�0
2

�̃�𝐿

|𝐽𝑖(𝜎𝑐)|
2

(14) 

The key result here is the proportionality to the term 𝛽2𝑞 of the effective index ratio, which creates a huge enhancement 

pattern of the micro-cavity. 

It should be stressed that huge enhancement occurred at the ZAL frequency 𝜎𝑐 though this frequency does not belong to 

the modal frequency, in contrast with the poles 𝜎𝑚. The reason is that 𝜎𝑐 is not an exact, but an asymptotic zero of the 

admittance difference: 

lim
𝑞→∞

Δ𝑌𝑝−1(𝜎𝑐) = 0 (15) 

3.2. Numerical results 

In Figure 4 we have plotted the angular pattern of a multilayer stack with a ZAL layer. The design of the coating is 

Glass/L(HL)q/ZAL/Air. The stack was formerly designed for a free-space illumination for TE polarization, at wavelength 

𝜆0
0 = 633𝑛𝑚 and incidence 𝜃0

0 = 45°. Here there is no free-space illumination, but a current located at the top surface of 

the ZAL layer (interface p-1=13 with q = 6). The emission pattern is plotted for TE polarization in the incidence plane 



 

 
 

 

(𝜑 = 0°) at wavelength 𝜆0 = 𝜆0
0. In order to quantify the gain of this cavity, the pattern is normalized at each normal angle 

𝜃 to the pattern value (at the same angle) of the thin layer cavity to the left of Figure 2. 

Following (14) the cavity is expected to enhance the source emission at the same 𝜆0
0 and 𝜃0

0. This is indeed what we observe 

in Figure 4 since there is an intense peak of four decades enhancement at 45°. Note also the narrow angular width ∆𝜃0of 

the peak, where most of the energy is concentrated; the percentage of energy in the peak is 14% for ∆𝜃0 = 0.01° and 36% 

for ∆𝜃0 = 0.1°. These values must be multiplied by a factor of 2 because of the symmetrical peak. Contrary to its integral, 

the peak magnitude is not bounded due to the fact that the width and amplitude of the peaks are respectively proportional 

and inversely proportional to the imaginary indices of the thin film materials. Other peaks are present but cannot be seen 

in the left-hand figure because their amplitude is much lower by several decades. They can be seen on the right-hand figure 

where I0 is plotted for the reflected pattern and IS for the transmitted pattern. 

 

Figure 4: TE normalized angular pattern at 633nm of the ZAL micro-cavity in polar (left figure) and cartesian (right figure) 

coordinates (see text). 

4. ENHANCEMENT OF GUIDED WAVE IN MICRO-CAVITIES 

Until this point, we were limited to free-space optics and never considered the energy carried by guided modes within 

the cavity in directions parallel to the interfaces. In this section we address the question of modal efficiency, that is, the 

ability to reach a maximum power carried by these modes without radiative losses. In other words, starting from a given 

source in the cavity, the question is how to optimize the power provided to the modal window, or to a specific mode in 

this window, and to quantify this power in comparison with the free-space power in the surrounding media. 

4.1. Working with the ZAL coating and the ZAL frequency 

An initial idea was to keep the same ZAL coating but modify the superstrate so that the zero-admittance frequency 𝜎𝑐 is 

transferred to the modal space. Hence the glass superstrate is replaced by air, which turns the modal frequency range into: 

max(𝑘𝑆, 𝑘𝑆) = 𝑘𝑆 < 𝜎𝑐 < max(𝑘𝑖) = 𝑘𝐻 (16) 

where k𝑠 is for the air medium. The surface current is still located at the top surface (p-1) of the ZAL layer. The power 

density 𝑓(𝜎, 𝜑 = 0) of the cavity is shown in Figure 5 for TE polarization. Eight modes can be seen in the modal window, 

with the TE0 mode at the highest frequency, while the zero-admittance frequency 𝜎𝑐 is close to the TE6 mode (with the 

highest amplitude). Actually, the TE6 frequency tends to the ZAL frequency when the layer number of the QW stack 

increases, that is: 

lim
𝑞→∞

𝜎6 = 𝜎𝑚 (17) 

As expected, we observe an intense peak in the vicinity of the ZAL frequency 𝜎𝑐 ≈ 𝜎6. 



 

 
 

 

 

Figure 5: Power density versus normalized frequency, plotted for the ZAL cavity where the superstrate is replaced by air 

Recall here that in contrast with the free-space situation where the poles are complex, there are 8 exact poles in the modal 

window at which the reflection function diverges. For that reason we used small imaginary indices (10-6) for thin film 

dielectric materials in order to remove these singularities. 

Results can be found in Table 1. In this table we give the modal energy carried by each mode and for different current 

localization after normalization by the energy provided in the free-space window. This allows the efficiency of the process 

to be quantified. We first observe that, when the current is localized on the p-1 interface (#13), the total modal power (last 

column) is greater by a factor of 4 than the free-space power, and that among the modes the greatest energy is carried by 

the TE6 mode (close to the ZAL frequency). Results vary with the depth localization of current. The greatest modal 

efficiency is reached at the 9th interface, with maximum power transferred to the TE4 mode. 

Modes TE0 TE1 TE2 TE3 TE4 TE5 TE6 TE7 total 

Inter 0 0.0040 0.0154 0.0323 0.0504 0.0596 0.0390 0.0137 1.2431 1.4576 

Inter 1 0.4103 1.4034 2.3922 2.7552 2.1810 0.8954 0.0065 0.0177 10.0617 

Inter 2 0.3701 1.1269 1.5607 1.2986 0.6286 0.1265 0.0085 0.8513 5.9712 

Inter 3 0.9758 1.7215 0.5457 0.1399 1.6293 1.5430 0.0138 0.0030 6.5720 

Inter 4 1.5858 2.1256 0.1889 0.9196 2.6219 1.2934 0.0041 0.4536 9.1929 

Inter 5 1.3600 0.4179 0.6843 1.2168 0.0979 1.7770 0.0374 0.0003 5.5917 

Inter 6 1.8752 0.2240 1.4767 0.8784 0.7534 2.0425 0.0011 0.1258 7.3772 

Inter 7 1.7853 0.1886 1.4491 0.7620 0.7940 1.8889 0.1490 0.0002 7.0173 

Inter 8 1.3741 0.3922 0.7328 1.1729 0.1321 1.7746 0.0003 0.0322 5.6113 

Inter 9 1.9440 2.5291 0.1831 1.2213 3.1648 1.4529 0.7466 0.0040 11.2458 

Inter 10 0.9069 1.5617 0.4534 0.1629 1.5353 1.3530 0.0001 0.0109 5.9843 

Inter 11 0.6583 1.9798 2.6793 2.1423 0.9655 0.1687 2.1841 0.0149 10.793 

Inter 12 0.4006 1.3564 2.2710 2.5431 1.9307 0.7490 4*10-5 0.0044 9.2552 

Inter 13 0.0093 0.0359 0.0752 0.1172 0.1390 0.0917 3.6326 0.0249 4.1258 

Inter 14 0.0052 0.0205 0.0446 0.0736 0.0939 0.0673 4.3954 0.0353 4.7357 

Table 1: Energy provided to each mode, after normalization by the energy provided in the free-space window. ZAL cavity 

with air superstrate and substrate. TE polarization. Each line is for a particular current localization (see text) 

4.2. Designing an exact pole with a MZAL coating 

In sub-section 3.1 we worked with the ZAL coating and observed that the zero-admittance (ZAL) frequency 𝜎𝑐 was an 

asymptotic pole (see relation (15)). The best optimization would be to design an arbitrary exact pole (as opposed to 

asymptotic pole). While this was not possible in free space where exact poles are necessarily complex [10], the modal 

window offers the opportunity to construct an exact pole. To this end, we consider a QW stack alone and, in the absence 

of absorption, look for real pole 𝜎𝑚that satisfies: 

Δ𝑌𝑝(𝜎𝑚) = 0 ⇔ 𝑌𝑝(𝜎𝑚) = �̃�𝑆(𝜎𝑚) (18) 



 

 
 

 

We coat the QW stack with a with a single layer of refractive index n and we seek the thickness layer that satisfies the 

condition 𝑌𝑝+1 = �̃�𝑆, where subscript (p+1) is used to localize the new last interface of the stack. The admittances 𝑌𝑝+1and 

𝑌𝑝are related through: 

𝑌𝑝+1 =
𝑌𝑝 cos 𝛿 + 𝑗�̃� sin 𝛿

cos 𝛿 + 𝑗
𝑌𝑝

�̃�
sin 𝛿

with𝛿 = √𝑘2 − 𝜎2𝑒 (19)
 

Due to the lossless regime of the guided waves, the 2 emerging effective indices (�̃�0𝑎𝑛𝑑�̃�𝑠) and the 2 admittances are 

pure imaginary numbers (𝑌 = 𝑗𝑌") [3], [4], [15] while the effective indices in the layer media are real (k𝑠 < 𝜎𝑚 < k𝐿 <
k𝐻). Seeking a solution for 𝑌𝑝+1(𝜎𝑚) = �̃�𝑆(𝜎𝑚), we obtain: 

tan 𝛿 = �̃�
�̃�𝑆

′′ − 𝑌𝑝
′′

�̃�2 + �̃�𝑆
′′𝑌𝑝

′′
(20) 

Relation (20) gives the thickness of the additional layer once its refractive index is chosen. By analogy with the ZAL layer, 

such a layer will be denoted MZAL to refer to the modal window to which it applies. Note that while the ZAL layer cancels 

the admittance in the free-space window, the MZAL layer cancels an admittance difference in the modal window. 

Note that a MZAL could also be designed at the top interface. For that, following the same method, we coat the stack with 

a single layer of refractive index n and we seek the thickness that satisfies the condition 𝑌−1
′ = −�̃�0, where the subscript 

(-1) is used to localize the new top interface of the stack. We obtain: 

tan 𝛿 = �̃�
�̃�0

′′ + 𝑌0
′′

�̃�2 − �̃�0
′′𝑌0

′′ (21) 

The MZAL layer allows an exact pole to be constructed whatever the coating design. Hence a complex stack is not required, 

and for this reason we address the case of a single layer over-coated with a MZAL layer on the superstrate side. The design 

of the coating is Air/MZAL H/Air and the question is how to quantify its performance with respect to the previous coatings. 

The MZAL is a high-index layer still calculated for a pole at 45° and 633nm wavelength. Results are plotted in Figure 6 

for 3 different current localizations. Two poles appear in the modal window for TE polarization. The modal efficiency is 

given in Table 2. A maximum value is obtained at the top surface of the single layer (#1), with maximum energy transferred 

to the TE0 mode that we constructed. We also notice that the modal efficiency is much greater (19) than that (4) of the QW 

stack, which highlights the results of this sub-section. We have checked that such efficiency can be increased (up to 25-

fold) if the high index material (Ta2O5) is replaced by a higher index one (Nb2O5, n = 2.3216 at 633nm) as is currently used 

in thin films. Note, however, that though these single stacks provide high efficiency in the modal window on account of 

their exact poles, this efficiency vanishes in free space since their behaviour is not asymptotic. 

 

Figure 6 : power density for a single layer coated with a MZAL layer (see text) 

 

 



 

 
 

 

Modes TE0 TE1 total 

Inter 0 2.5355 1.7743 4.3098 

Inter 1 18.7449 0.3490 19.0940 

Inter 2 2.5355 1.7743 4.3098 
Table 2: Energy provided to each mode, after normalization by the energy provided in the free-space window. Case of a 

single layer coated with a MZAL layer. TE polarization. Each line is for a particular surface localization (see text) 
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