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ABSTRACT 

 

 

 

This paper explores the implications of tax rate randomness, identifying 

circumstances in which revenue-neutral rate variability increases profitability, economic 

activity, and the efficiency of resource allocation.  Furthermore, with heterogeneous 

taxpayers, tax rate variability is shown to perform an efficiency-enhancing screening 

function, imposing heavier expected tax burdens on less responsive taxpayers.  And while 

efficient tax randomness enables governments to reduce average costs of taxation, it 

necessarily increases the marginal cost of taxation over some ranges of expected revenue, 

so may reduce efficient levels of government spending. 
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1. Introduction 

Thoughtful observers have long criticized uncertainty in tax matters.  One of Adam 

Smith’s (1802, p. 256) canons of taxation is that “the tax which each individual is bound to pay 

ought to be certain,” while for Alexander Hamilton (Hamilton, 1865, p. 163), “The genius of 

liberty…exacts that every man, by a definite and general rule, should know what proportion of 

his property the State demands.”  Such concerns are with us still. Perceptions of an increasingly 

random tax environment1 prompted the G20 (2016) to stress “the benefits of tax certainty to 

promote investment and trade,” and to put the IMF and OECD (2017) to work on how to 

enhance it,2 with the European Union also addressing these issues.3 Tax uncertainties loom large 

as an element of policy uncertainty more widely; in constructing their influential index of 

economic policy uncertainty, Baker, Bloom and Davis (2016, p. 1602) find that “Fiscal matters, 

especially tax policy, stand out…as the largest source of policy uncertainty, especially in recent 

years.” Against the background of this long-lasting and increasingly high profile concern, the 

purpose of this paper is to explore one aspect of uncertainty in taxation—tax randomness—and 

its impact on economic activity and economic welfare. 

By ‘random taxation’ we mean a situation in which tax parameters are uncertain ex ante 

but economic actors make decisions, without costs of delay, once tax parameters are revealed.4 

This contrasts with situations in which irreversible decisions must be made before tax outcomes 

are known.5 In practice, both types of unpredictability are commonly at work.  For example, 

firms may need to decide where to locate new plants before knowing the tax treatment that will 

apply to their investments, workers and sales; afterwards, however, they have flexibility in 

varying operational decisions in light of the treatment they find themselves facing. The concern 

of this paper is with uncertainty of the latter kind, randomness in taxation that is an omnipresent 

                                                 
1  Largely, though not only, in relation to implementation of the outcomes of the G20-OECD project on Base 

Erosion and Profit Shifting (BEPS), intended to curb tax avoidance by multinationals. 
2 See also IMF and OECD (2018). 
3 See Zangari, Caiumi and Hemmelgarn (2017). 
4 This is the kind of uncertainty analyzed in Weiss (1976), Stiglitz (1982a,b), Alm (1988), Skinner (1988), and 

Pestieau, Possen, and Slutsky (1998) in terms of individual welfare and behavior, and by Hartman (1972), Pindyck 

(1982), Abel (1983), and Auerbach and Hines (1988) in relation to investment behavior. 
5 This is the kind of uncertainty analyzed, in relation to investment, by Pindyck (1982), Abel (1983), Alvarez, 

Kanniainen, and Sodersten (1998), Hassett and Metcalf (1999), Niemann (2004, 2011), Bloom, Bond and van 

Reenen (2007) and Bloom (2014). 
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aspect of business life, as a result of which tax burdens can differ widely between firms in 

otherwise very similar business situations, or even for the same firm at different times.   

Tax randomness can have an aspect of capriciousness. Favorable tax treatment might be 

afforded firms that happen to be located in certain regions, have certain ownership or 

organizational structures, export their output, or are simply politically well-connected.6 

Capricious though that may seem, it might also possibly serve some useful purpose. 

Concentrating tax benefits in a subset of firms, for example, may stimulate greater economic 

activity than spreading them broadly. It is notable too that in recent years a variety of 

administrative measures that create a form of tax randomness have become more common. 

Advance rulings, for instance, enable businesses to resolve uncertainty over the tax consequences 

of potential transactions before they are undertaken, and allow firms to adjust their actions  

accordingly.7 Furthermore, the haphazardness of electoral politics and other shocks mean that tax 

rates can vary over time in ways that for practical business purposes are random.  The tax 

uncertainties that have troubled Hamilton and the G20 include much more than randomness. 

Nonetheless, the randomness that we focus on here is an inescapable and critical element of 

uncertainty.  

Interest in tax randomness goes back many years, and it has long been recognized that 

while random taxation poses challenges to consumers and firms it need not be harmful to their 

interests.  Indeed, one of the fundamental propositions of price theory is that a competitive firm’s 

profits are convex in input and output prices (Mas-Colell, Whinston and Green, 1995, pp. 138, 

141), implying that its expected profits increase with mean-preserving spreads in these prices—

and hence too with corresponding randomization of input or output tax rates.  Input price 

variation, for instance, permits firms to economize on expensive input purchases while prices are 

high, substituting with other inputs and reducing output; and they can expand the use of 

inexpensive inputs when prices are low.  By adjusting its purchases and sales, a firm can thus 

effectively use price variability to reduce the average unit cost of its inputs, thereby improving 

after-tax profits.  

                                                 
6 So-called ‘rifle-shot’ provisions in U.S. tax laws that provide tax benefits tailored to specific taxpayers are extreme 

examples of this kind of tax randomness.  
7 Other administrative approaches that also have much current support—such as ‘cooperative compliance’ programs, 

which aim to foster the identification and resolution of ‘risky’ tax positions—have similar effects (see for example 

IMF and OECD (2017), pp. 48-52).  
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Remarkable though these results are, however, they offer incomplete guides to policy. 

This is because firm responses mean that randomizing a tax rate, holding its expected value 

unchanged, generally reduces expected tax revenue.8  A more appropriate assessment of the 

effects of tax randomness would hold constant not expected tax rates but expected tax revenue.  

The point is of considerable practical importance.  In the context of the G20’s current policy 

concerns, it is important—but rarely attempted—to disentangle business worries over tax 

uncertainty from those related to expected tax liabilities. Empirically too, while such evidence as 

is currently available suggests that tax uncertainty may discourage investment, it generally does 

little to distinguish the effects of uncertainty as such from the effects of expected levels of 

taxation.9  

A further limitation of the standard price theory result is that it speaks only to the effect 

of tax randomness on after-tax profits, whereas the effect of tax randomness on input use—as 

with the G20’s concern for investment—and economic output are also important for policy 

assessment.  There are of course some results on this, notably those presented by Hartman (1972) 

and Abel (1983), who show that a mean preserving spread in an output tax rate leads a 

competitive firm to increase its capital stock, so long as the marginal value product of capital is 

convex in that output price.  Again, however, this does not condition on expected tax revenue—

as is also true of more recent results on the effect of tax uncertainty with irreversible 

investment.10   

This paper takes up these and related issues, examining the effect of random taxation on 

profitability, economic activity, and the efficiency cost of raising government revenue, all while 

holding constant expected tax revenue. The context of this analysis is what appears to be a 

widely held presumption, shared by the G20, that random taxes inefficiently reduce economic 

activity and depress profits; some see this view as simply ‘common sense.’11  And there might 

                                                 
8 This is true not only of previous models of tax randomization, such as Hartman (1972), but also of models with 

irreversible investment, such as Hassett and Metcalf (1999). 
9 Edmiston (2004), for example, uses the deviation of tax rates from trend as an indicator of tax randomness, without 

reference to the expected level of revenue. Baker, Bloom and Davis (2016) use as their indicator of tax uncertainty 

the dollar value of tax provisions set to expire, which holds expected revenue constant only under limited 

circumstances.  And much of the empirical literature reviewed in IMF and OECD (2017) and Zangari, Caiumi and 

Hemmelgarn (2017) does not distinguish the effects of tax randomness from those of uncertainty more generally. 
10 Such as those of Alvarez, Kanniainen, and Sodersten (1998) and Hassett and Metcalf (1999). 
11 As for instance do Zangari, Caiumi and Hemmelgarn (2017). 
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indeed appear to be some principled reason to suppose this to be the case. Higher tax rates 

discourage taxed activity, and the resulting economic losses are commonly presumed to rise with 

the amount of tax revenue collected at an increasing rate, making it ever more expensive—in an 

efficiency sense—to collect additional tax revenue. The familiar Harberger triangle 

approximation, that deadweight loss is proportional to the square of the tax rate (Harberger, 

1964, 1971; Auerbach, 1985; Hines, 1998), lends support to this intuition.  It implies that tax rate 

variability increases the deadweight loss associated with raising a given level of expected tax 

revenue; the cost of this deadweight loss is borne by consumers in the form of higher prices and 

business in the form of lower profits, and these discourage economic activity. This intuition is in 

many cases correct: in contrast to the standard result that a mean-preserving spread in tax rates 

increases a firm’s after-tax profits, for instance, randomization that holds expected tax revenue 

constant may well reduce profits. But this intuition can also be plain wrong. 

There are two reasons why tax rate variability might instead improve the efficiency of the 

tax system.  The first is that the discouraging effects of higher increments to tax rates can 

become more moderated at high rates, causing the marginal deadweight loss of collecting 

additional tax revenue to decline with tax revenue.  This possibility reflects an important 

inaccuracy in the intuitive approximation to the size of the deadweight loss triangle, and is the 

basis of earlier normative arguments (e.g., Stiglitz, 1982b) made in favor of random taxation. 

The analysis below identifies the circumstances—looking first at the impact on a single firm—in 

which, conditional on expected tax revenue, tax rate variability does indeed reduce expected 

profits, output and input use, as well as those in which, counter to ‘common sense,’ tax 

randomness actually increases all or some of these.  

 A second reason why randomness can improve the efficiency of the tax system— 

previously unnoticed but commonly more powerful—emerges from the analysis below.  This is 

that random taxation serves as a screening device, effectively imposing higher tax rates on firms 

and activities that are relatively unresponsive to taxation, and lower tax rates on firms and 

activities that are more responsive; and that, by standard intuition, improves efficiency.  If there 

is any type of taxpayer heterogeneity, then the fraction of taxed activity undertaken by taxpayers 

that are most responsive to taxation will decline as tax rates rise.  Consequently, as tax rates rise 

the high tax rates increasingly bear on activities that are relatively unresponsive to taxation.  The 
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opposite happens when tax rates decline: the resulting low tax rates apply to a population that is 

relatively dominated by taxpayers and activities that are highly responsive to taxation.  Random 

taxation therefore implements a subtle version of the Ramsey rule, imposing higher tax rates on 

the activities of less-responsive taxpayers, and lower tax rates on the activities of more-

responsive taxpayers—which has the effect of reducing the total cost of taxation.  If the 

government cannot distinguish firms and activities any other way, it can do so indirectly with tax 

rate variability. 

All of this carries implications for efficient tax policy that are also subtle and to some 

degree surprising.  In the absence of randomness, and with a single tax instrument, tax policy is 

dictated by the government’s revenue needs.  Tax rate variability expands the range of 

possibilities, and may allow the government to reduce the total economic cost of taxation by 

randomizing between disparate tax rates, each associated with relatively low deadweight loss per 

dollar of tax revenue collection.  While over some ranges of expected tax revenue such policies 

will reduce the marginal cost of public funds, it is also the case that over some ranges they will 

increase the marginal cost of public funds.  It follows that there are many circumstances in which 

the adoption of efficiency-enhancing tax randomization will reduce the efficient level of 

government spending even though it reduces the average cost of taxation.  

The paper is structured as follows. Section 2 sets out the basic framework of the analysis, 

and Section 3 analyzes the effects of random taxes on firm profits and economic activity in 

settings with identical taxpayers.  Section 4 introduces taxpayer heterogeneity, showing it to 

have a marked effect on the efficiency properties of tax randomization by performing the 

screening function described above.  Section 5 considers the efficient design of random taxes and 

its implications for the marginal cost of public funds.  Section 6 concludes, noting additional 

implications and generalizations.  

 

2. Preliminaries 

A perhaps surprising degree of theoretical richness is available from considering a simple 

setting in which a fixed number of identical price-taking competitive firms each purchases a 
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taxed input in amount x, paying suppliers a unit price, and also paying a specific tax of  per unit 

purchased;12 it is assumed that 0  , but will be seen later that the results extend readily to cases 

in which  is strictly negative.   Each firm has a production function13 ( )q x  that is increasing, 

continuous and continuously differentiable as needed in x, and exhibits decreasing returns, so 

that ( ) 0q x   and ( ) 0q x  .  There may be other untaxed inputs, in which case ( )q x  

represents output net of the cost of these optimally chosen additional inputs.14 Firms sell their 

output at constant unit price (and untaxed) on the world market.  The profits of the representative 

firm ( ) , arising from the presence of some fixed factor(s), are therefore given by 

(1)     ( ) ( )1q x x = − + . 

The first order condition15 for profit maximization is ( ) ( )1q x  = + , which generates a derived 

demand for x as a function of , ( )x  , that is continuous and continuously differentiable, with 

( ) 0x   .  

Tax revenue is ( )R x  .  The analysis confines attention to ranges of tax rates over 

which tax revenue monotonically increases with the tax rate, which requires that 

(2)     ( ) ( ) 0x x  +  . 

                                                 
12 Specific and ad valorem taxes have equivalent effects in competitive markets in the absence of uncertainty in the 

tax-exclusive price of the taxed input, as noted by Suits and Musgrave (1953).  The effects of (non-stochastic) 

specific and ad valorem taxes will, however, differ in competitive markets with price uncertainty (Goerke, 2011; 

Kotsogiannis and Serfes, 2014; Goerke, Herzberg, and Upmann, 2014) and in imperfectly competitive markets 

(Delipalla and Keen, 1992; Weyl and Fabinger, 2013).  When, for either of these reasons, equivalence fails, the 

distinction between specific and ad valorem taxes will be material for the impact of random taxes; this paper’s 

analysis, however, abstracts from these issues.   

 
13 It is an important feature of the model that production functions are exogenously given.  If firms could choose 

among possible production functions then their choices, and therefore output, would be affected by the anticipated 

distribution of tax rates. Furthermore, the production functions considered here exhibit no adjustment costs or other 

forms of intertemporal dependence, so input choices and output are determined only by contemporaneous prices and 

taxes. 

 
14 Appendix A of Hines and Keen (2018) extends the analysis to allow for other variable inputs taxed at fixed rates.   

 
15 The assumption that ( ) 0q x  ensures that the firm’s second order condition is satisfied. 
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Of course, (2) is not always satisfied, particularly at high tax rates.  It is nonetheless constructive 

to restrict attention to ranges of tax rates over which (2) is satisfied, since there are predictably 

strange consequences of randomizing tax rates into ranges in which higher tax rates are 

associated with reduced tax collections. Thus, it is assumed throughout that (2) holds, or, 

equivalently, that 

(3) ( )1 0 +  , 

where 

(4) ( )
( )

( )
0

x

x


  




   

denotes the elasticity of input demand with respect to the tax rate.  This elasticity (strictly 

negative at any positive tax rate), and its properties, plays a central role in the analysis that 

follows.  

 From the implied one-to-one relationship between the tax rate and tax revenue, it is 

possible to express the tax rate as an implicit function of tax revenue, ( )R , with 

(5)     ( )
( ) ( )

1
0R

x x


  
 = 

+
. 

Input demand is then also an implicit function of tax revenue, ( )( )x R , and so too are both 

output ( )( )q x R 
  and profits ( )R .  The device of characterizing firm behavior and profits as 

a function of tax revenue, used repeatedly in the next section, makes it possible to infer the effect 

of revenue-neutral tax rate randomization from their convexity or concavity in revenue.  For 

example, a local randomization of tax rates that leaves expected revenue unchanged16 increases 

the expected value of profits if and only if ( )R is convex in R. 

 

                                                 
16 For brevity, this is referred to simply as a revenue neutral reform. 
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3.  The impact of random taxes with identical firms 

To identify clearly the considerations that influence the effects of random taxes on 

expected profits, input use and output, it is helpful to start by considering randomness that 

applies to a single firm or to a set of identical firms.  

3.1 Expected profits 

Consider first the impact of a revenue neutral tax rate randomization on the firm’s 

expected profits.  Shephard’s lemma implies, from (1), that ( ) ( ) ( )R x R   = − and so, using 

(4) and (5), that: 

(6)     ( )
( )
1

1
R

 

−
 =

+
. 

Recalling (3), it follows that at any positive tax rate ( ) 1R  − : profits decline by more than 

any increment to tax revenue, reflecting that the marginal deadweight loss associated with raising 

an additional dollar is positive—a point returned to in Section 5.  It also follows from inspection 

of (6) that if ( ) 0   , so that the elasticity of input demand has a larger negative magnitude as 

the tax rate increases, then increments of tax revenue will be associated with ever larger 

reductions in firm profits, making the profit function concave in revenue.  More formally, 

differentiating (6) produces: 

(7)     ( )
( )

( )
( )2

1
R R

 
 

 


 =

+  

. 

Hence given (5), profits are locally strictly concave in tax revenue if and only if ( ) 0   and 

locally strictly convex in tax revenue if and only if ( ) 0   .  Therefore:17 

                                                 
17 Equation (7) readily generalizes to cases in which there are multiple taxed inputs, as elaborated in Appendix A of 

Hines and Keen (2018). 
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PROPOSITION 1: A revenue neutral local tax rate randomization reduces expected profits if 

and only if ( ) 0   , and increases expected profits if and only if ( ) 0   . 

The impact of tax rate randomization thus turns on whether the elasticity of derived input 

demand increases or decreases with the tax rate.   

 Figure 1 provides some intuition for this.  It displays the relationship between tax rates 

and firm profits, with the solid locus in the figure plotting firm profit as a decreasing convex 

function of the tax rate.  This captures the notion that a mean-preserving price spread gives firms 

more options than they would have under price stability; formally, convexity is guaranteed by 

the combination of Shephard’s Lemma, which implies that the slope of the profit function is 

( )x − , and the input demand implication that ( ) 0x   .  The figure describes a setting with 

random tax rates: the tax rate takes the high value H with probability 0.5, and the low value 

L with probability 0.5. 

Consider then a revenue-neutral reform that increases the scope of tax randomness by 

increasing H  by an amount that would raise an additional $1 in tax revenue while lowering 

L by an amount that would lose $1 in tax revenue.  Denoting input demand at H  

by ( )H Hx x  , and analogously the input demand elasticity at H  by ( )H H   , it follows 

from (5) that the new high value of the tax rate is ( )
( )

1

1
H H H

H H

R
x

  


 
+ = +  

+ 
.  Since the 

slope of the profit function at H is given by Hx− , the change (a reduction) in profit if this small 

tax increase were to arise is 
( ) ( )

1

1 1

H

H H H

x

x  

− −
=

+ +
.  By a similar calculation, the increase in 

profit if the tax were reduced is 
( )

1

1 L+
.  Consequently, with equal probabilities of high and low 

tax rates, the net increase in expected profits from widening the spread of tax rates in this 

expected revenue-neutral way is given by 
( ) ( )

1 1
0.5

1 1L H 

 
− 

+ + 
.  Expected profits therefore 

fall if and only if H L   , which is the case if and only if the tax elasticity of input demand 
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declines (is more negative) at higher tax rates—which is precisely the condition that ( ) 0   , 

just as in Proposition 1.18    

Much thus turns on the sign of the derivative ( )  . This, as a general matter, is 

ambiguous.  To see the forces at work, denote by ( ) ( )
( )

( )
1 0

x

x


  




 +   the price elasticity of 

demand for the taxed input, so that ( ) ( )
1


   



 
=  

+ 
 and hence 

( )
( )

( )
( )

( )2

1

11


     


 = +

++
. Since the first term on the right points toward ( ) 0   ,  it is 

sufficient, but not necessary, for ( ) 0    that the price elasticity of the input demand be 

decreasing or constant in the input price—which will be the case, for instance, if input demand is 

linear or (a case explored further below) Cobb-Douglas.  Conversely, it can be the case that 

( ) 0    – so that revenue-neutral randomization of tax rates raises expected profits – only if the 

price elasticity ( )  not only increases with the input price but does so sufficiently rapidly to 

offset the mechanical effect of a higher tax rate.  That this is a real possibility is illustrated by 

considering firms with production functions 

(8) ( ) ( )

1
1

ln
cx

c

x

z
q x q x b dz

a

−

  
= +   

  
 , 

with a, b and c all strictly positive constants.  The production function (8) generates input 

demands  

(9) 
( )1

c
b

x ae


−
+

= , 

which imply that ( )
( )

1
1

c

bc
 


+

−
=

+
, and for b sufficiently small, ( )0 1   − .  It follows that 

                                                 
18 While this exercise starts from a situation with random taxes, its implications also apply to introducing a small 

amount of randomness into a setting with tax certainty. 
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(10) ( )
( )

( )
2

1

1
c

bc c
 


+

− −
 =

+
. 

Equation (10) then implies that that ( ) 0   whenever 1 c  . 19 

While theory thus leaves the sign of ( )  open, and there are clearly instances in which 

( ) 0   , there is perhaps a cautious presumption that in many cases ( ) 0   , at least in the 

sense that this can be shown to be case for the specific functional forms often found convenient 

to work with and used to guide intuition. The implication is a similarly guarded presumption 

that, with identical firms, revenue neutral tax rate randomization will commonly lower expected 

profits.  This, of course, stands in sharp contrast to the established result that randomization of 

tax rates holding the expected tax rate constant increases expected profits: controlling for the 

expected impact on revenue makes a great deal of difference to the likely consequences of tax 

randomness for firm profitability. 

3.2 Expected input use 

The impact of revenue neutral tax rate randomization on input use turns on the convexity 

or concavity of demand for input x expressed as a function of R.  With ( ) ( ) ( )x R x R   = , 

imposing (5) gives: 

(11)     ( )
( )

( )1
x R

 

  
 =

+  

. 

Equation (11) then implies: 

                                                 
19 More generally it is readily shown that the necessary and sufficient condition for ( ) 0   is that the price 

elasticity of the price elasticity of input demand be greater than 1 − .   
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PROPOSITION 2: Expected input use is reduced by revenue neutral local tax rate 

randomization if and only if ( )
( ) ( )1

0
   

 


+     . Conversely, expected input use is 

increased by revenue neutral local tax rate randomization if and only if ( )
( ) ( )1   

 


+    . 

Proof: Differentiating both sides of (11) with respect to R produces: 

(12)   ( )
( )

( ) ( )
( ) ( )

2

11

1
x R R

   
  

  

 +     = − 
+     

. 

Since the first two terms on the right side of (12) are positive, the sign of ( )x R depends on the 

sign of the term in braces, from which the proposition follows. □ 

 Proposition 2 implies that ( ) 0    is a sufficient condition for expected input use to 

increase with tax randomness.  So, from Proposition 1, if tax randomness increases expected 

profits then it will also increase expected input use.  The central implication of Proposition 2, 

however, is that the converse is not true: if ( ) 0   , so that tax randomness reduces expected 

profits, it may nonetheless increase expected input use if ( )   is sufficiently small in 

magnitude.  When ( )  is negative but vanishingly small, for instance, a revenue neutral tax rate 

randomization reduces expected profits but increases expected input use. 

3.3 Expected output 

 The effect of tax randomness on expected output can be analyzed in the same way.  

Expressing output as a function of tax revenue, ( )q R , the output effect of greater tax revenue is 

( ) ( ) ( ) ( )q R q x x R    = .  Imposing the firm’s first order condition that ( ) ( )1q x  = + , 

together with (5), gives: 

(13)     ( )
( ) ( )

( )

1

1
q R

  

  

+
 =

+  

. 
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Differentiating equation (13) then gives: 

PROPOSITION 3: Expected output declines with revenue neutral local tax rate randomization if 

and only if ( )
( ) ( )

( )

1

1

   
 

 

+   
+

. Conversely, expected output increases with revenue neutral 

local tax rate randomization if and only if ( )
( ) ( )

( )

1

1

   
 

 

+   
+

. 

Proof: Differentiating both sides of (13) with respect to R produces: 

 (14)   ( )
( )

( )
( ) ( )

( ) ( )

( )2

11

11
q R R

   
  

   

 + +     = − 
++     

. 

Since the first two terms on the right side of (14) are positive, the sign of ( )x R depends on the 

sign of the term in braces, from which the proposition follows. □ 

The results in Propositions 2 and 3 can be visualized in a fashion similar to that of Proposition 

1,20 though with the important difference that, while profits, input demand and output are all 

decreasing in the tax rate, only profit is guaranteed to be convex in the tax rate.   

Tax randomness thus exerts many of the same effects on expected output as it does on 

expected input use.  In particular, if tax randomness increases expected profits 

(because ( ) 0   ) then it also increases expected output.  Again, however, the converse is not 

true: tax randomness reduces expected profits but increases expected output if  

( )
( ) ( )

( )

1
0

1

   
 

 

+   
+

.   Comparing the critical values in Propositions 2 and 3, the 

additional ( )1 +  in the denominator of the latter means that while a reduction in expected input 

use is a sufficient condition for expected output also to fall, it is not necessary: there is a range of 

values of ( )   over which tax randomness is associated with greater expected input use but 

reduced expected output. 

                                                 
20 Appendix B of Hines and Keen (2018) offers an illustration of Proposition 3. 
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3.4  Interpretation 

Figure 2 summarizes the relationships between the value of ( )  and the signs of the 

effects of tax randomness on expected profits, input use, and output implied by Propositions 1, 2 

and 3.  At sufficiently low (negative) values of ( )  , for example, revenue neutral tax rate 

randomization reduces the expected levels of profits, input use, and output.  At the other 

extreme, if (and only if) ( )  is strictly positive does a revenue neutral tax rate randomization 

increases all three.  In between, there is a ready intuition for the hierarchy of results shown in 

Figure 2.  Concavity of the production function implies that for any expected level of input use, 

the expected level of output declines with tax-induced variation in input use.  This means, 

loosely speaking, that output is more likely to be a concave function of revenue than is input 

use—and so randomness reduces output more readily than it reduces inputs.  And since profits 

are concave in output they are in turn more likely to be reduced by randomness than are outputs.  

To illustrate these results, consider the effects of taxation when firms have identical 

Cobb-Douglas production functions given by: 

(15) ( )q x kx= , 

with 0k   and 1 0  .  The first order condition for profit maximization implies 

( )
1

1

k
x  



− =
+

; differentiating this with respect to  yields: 

(16) ( )
( ) ( )1 1


 

 

−
=

+ −
. 

Differentiating again produces: 

(17)     ( )
( ) ( )

2

1

1 1
 

 

−
 =

+ −
. 
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It is clear from (17) that, as claimed earlier, in this case ( ) 0   , so that, by Proposition 1, tax 

randomness reduces firm profits.  This reflects the fact that in the Cobb-Douglas case the tax 

elasticity of input demand is zero in the absence of taxation, steadily rising in magnitude with 

higher tax rates and ultimately converging to 
( )

1

1 

−

−
.  Furthermore, (16) and (17) together 

imply: 

(18) 
( )

( ) ( )

( )

( )

11 1

1 1 1

  

      

 −
= 

+ − +      

, 

where the inequality in (18) follows from the restriction that ( ) 0R   , which implies ( ) 1   −  

and therefore, from (16), that ( )1 1 +  .  Applying Propositions 2 and 3, equation (18) implies 

that with Cobb-Douglas production functions tax randomness also reduces both expected input 

use and expected output. 

A numerical example for this Cobb-Douglas case, to be exploited further below, is 

presented in Table 1.  The initial tax rate is 2 =  and the production function has 0.2 = , and k 

chosen so that x = 10 initially.21  With these input demand parameters, initial tax revenue is 20, 

output is 150, and profits are 120.  Tax randomness takes the form of reducing the tax rate to 1.6 

with probability 0.5, and raising it to 2.86 with probability 0.5, an asymmetric difference that 

leaves expected tax revenue unchanged at 20.  As reflected in the table, this tax rate fluctuation 

reduces expected profits to 118.5, and similarly reduces expected input use to 9.65 and expected 

output to 148.15.  The rising tax sensitivity of input demand requires a significantly higher tax 

rate in the state of the world with high taxes to compensate for a lower tax rate in the state of the 

world with low taxes, distorting production and reducing expected input use and profits. 

 

4. Heterogeneous firms  

                                                 
21 This entails k = 94.64. 
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 The focus so far has been on economies with representative firms, or equivalently, 

economies in which all firms are identical—and, moreover, are taxed identically ex post.  Of 

course this is not an accurate representation of the world.  This section considers the 

consequences of taxpayer heterogeneity, finding that differences among taxpayers significantly 

increase the likelihood that tax randomness will lead to higher profits, greater input use, and 

greater output.   

 Consider first a setting with a fixed number of heterogeneous firms, indexed by i.  

Letting ( )ix   denote firm i’s demand for productive input x, ( )i   its corresponding tax 

elasticity of input demand, and ( )i   its profits, the requirement that aggregate tax revenue 

increase with the tax rate now implies that ( ) ( )1 0i ix   +    .  Taking this requirement to 

be met, the tax rate can again be written as a function of aggregate revenue, ( )R , with  

(19) ( )
( ) ( )

1

1 A i

R
x


  

 =
+  

, 

in which ( )A   is the elasticity of aggregate input demand, which in turn is simply a weighted 

average of the individual demand elasticities: 

(20) ( )
( )

( )
( ) ( )i

A i i

i

x
w

x

 
    




 =





, 

with the weight ( )
( )

( )
i

i

i

x
w

x








 being firm i’s share of aggregate input demand.   

Consider then the impact of revenue neutral local tax rate randomization on aggregate 

profits ( ) ( )( )iR R   .  From Shephard’s lemma, ( ) ( ) ( )iR R x R  = −  ; hence from 

(19), it follows that ( )
( )

1

1 A

R
 

−
 =

+
.  Thus (7) also applies to aggregate profits in the 

heterogeneous firm case, with ( )  replaced by ( )A  , and ( )  replaced by ( )A  .  

Differentiating (20), noting that 
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(21) ( ) ( ) ( ) ( )
1

i i i Aw w     


 = −   , 

and using ( ) 0iw  =  to replace ( ) ( )i iw     with ( ) ( ) ( )i i Aw      −   , gives 

(22)   ( ) ( ) ( ) ( ) ( ) ( )
21

A i i i i Aw w         


 = + −    . 

Consequently: 

PROPOSITION 4: With an unchanging set of active firms a revenue neutral local tax rate 

randomization reduces expected aggregate profits if and only if ( ) 0A   , where ( )A  is given 

by (22).  Conversely, a revenue neutral local tax rate randomization increases expected 

aggregate profits if and only if ( ) 0A   .  

Proposition 4 is a straightforward generalization of Proposition 1.22  The structure of the 

tax derivative of aggregate demand for the taxed input, however, points to potentially quite 

different outcomes.  For while the first term on the right side of (22) is negative if all of the 

( )i  s are negative, the second term, which is the variance of the elasticities (weighted by input 

shares), is unambiguously positive under the very mild condition that the elasticities ( )i   

differ—and that points to ( ) 0A   .  In this sense, taxpayer heterogeneity increases the 

likelihood that revenue neutral tax rate randomization increases aggregate expected profits; and 

this is so even if ( ) 0i    for each individual firm.23 

If, for example, all taxpayers have constant input demand elasticities, but those 

elasticities differ, then (22) implies that the aggregate demand elasticity is unambiguously 

increasing in the tax rate ( )( )0A   . This follows simply from the fact that the variance term in 

                                                 
22 Appendix B of Hines and Keen (2018) illustrates Proposition 4 by revisiting the analysis in Figure 1 above. 
23 It is perhaps counterintuitive that there are situations in which, from the standpoint of any individual firm, a 

revenue neutral tax rate randomization would reduce its profits, yet an aggregate revenue neutral tax rate 

randomization for all firms subject to the same tax rates would increase aggregate profits. The explanation is simply 

that with heterogeneous firms, a tax rate randomization that keeps aggregate tax payments constant generally will 

not keep constant the expected tax payments of each firm.  



 18 

(22) is positive.  Intuitively, what happens in this case is that, as the tax rate increases, input 

demands by firms with relatively inelastic demands decline proportionately less than input 

demands by firms with more elastic demands, so aggregate input demand ( )A  becomes less 

elastic.  Conversely, as the tax rate decreases input demands by firms with relatively elastic 

demands increase disproportionately, so aggregate demand becomes more elastic.  The resulting 

induced positive correlation between the tax rate and the aggregate demand elasticity gives the 

aggregate demand elasticity a positive derivative.  Profits increase because higher tax rates apply 

disproportionately to firms with inelastic demands: tax uncertainty serves, in effect, as a 

screening device for focusing taxation on firms with less elastic input demands.24 

Proceeding similarly for aggregate output and aggregate input, analogs to Propositions 2 

and 3 follow easily, the only difference being that terms in ( )  are replaced by terms in ( )A  , 

and ( )   is replaced by ( )A  .  But this difference evidently matters; and even if there is 

insufficient taxpayer heterogeneity to make the tax derivative of the aggregate input demand 

elasticity positive, heterogeneity may so elevate the derivative of the aggregate demand elasticity 

that tax randomness will stimulate greater expected input use or output.25 

To illustrate the screening function of random taxes, it is instructive to introduce firm 

heterogeneity into the example of section 3.4.  Suppose that half of input demand comes from 

firms with identical Cobb-Douglas production functions given by (15), while the other half 

comes from firms with production functions that give them (over the relevant tax range) 

perfectly inelastic input demands. Since half of input demand arises from firms with zero 

demand elasticities, it follows that the aggregate demand elasticity is half its value in (16): 

(23) ( )
( )( )2 1 1

A


 

 

−
=

+ −
. 

                                                 
24 There are echoes here of the model of sales of Varian (1980), in which price variability emerges as a device to 

distinguish between informed and uniformed consumers. 
25 The model takes the firm population to be fixed; but if there is endogenous entry and exit, then firm heterogeneity 

introduces the possibility that taxes could affect the average characteristics of firms in the market.  This additional 

source of screening changes the properties of the model rather little, and Proposition 5 of Hines and Keen (2018) 

identifies circumstances in which Propositions 1-4 continue to hold with endogenous entry and exit. 
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Furthermore, (19) and (23) together imply that, for the half of the firm population with Cobb-

Douglas production functions, ( ) ( ) ( )2 1A      = +   .   Consequently, (22) implies: 

(24) ( )
( )

( )

( )
2

1

A A

A

   
 

  
 = +

+
. 

And applying (23), (24) produces: 

(25) ( )
( )

( ) ( )
2 2

2 1

4 1 1
A

 
 

 

− −
 =

− +
. 

It is clear from (25) that there exist values of  and   for which ( ) 0A   , and for which 

therefore expected inputs, outputs, and profits all increase with tax randomness; and this is so 

despite the fact that neither type of individual firm exhibits ( ) 0   . 

Table 2 revisits the random tax scenario examined in Table 1, now adding an equal 

number of firms with inelastic input demands. 26  Given the assumed parameter values, and as 

above, at a tax rate 2 = firms of both types demand 10 units of x, produce output of 150, have 

profits of 120, and generate tax revenue of 20.  A tax rate of 1.6 is associated with greater input 

use and output by the type 1 firms with Cobb-Douglas production functions, and unchanged 

input use and output by the type 2 firms; profits rise for both firm types, and tax revenues 

decline.  It is now the case that a high tax rate of only 2.43 is necessary to accompany the low tax 

rate of 1.6 for the government to collect (in expectation) the same revenue as with a certain tax 

rate of 2.  This high tax rate is of course associated with reduced input demand and output by 

firms of type 1, but over the two possible tax rates firms of type 1 have expected input demand of 

10.25, exceeding their input demand with a certain tax of 2, and an expected output of 150.3, 

also exceeding output with tax certainty.  Since firms of type 2 do not change their inputs and 

outputs, aggregate expected input demand and output increase with tax randomness.  Similarly, 

tax randomness increases firm 1’s expected profits from 120 to 120.25, and since firm 2’s 

expected profits decline from 120 to 119.85, aggregate expected profits rise. 

                                                 
26 These firms have production functions 0, 10q x=   and 150, 10q x=   . 
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5. Efficient tax randomness and the marginal cost of public funds 

Any kind of taxation is apt to affect the efficiency of resource allocation.  While the 

analysis in sections 3 and 4 largely concerns the effects of random taxes on incentives and 

outcomes for firms, it also carries implications for aggregate economic efficiency.  This section 

turns to implications for deadweight loss and efficient tax design, beginning by characterizing 

the ranges over which tax randomization is efficient and then considering the effect of efficient 

randomization on the marginal cost of public funds.  

5.1 Deadweight loss 

Proposition 1 can be interpreted in terms of the deadweight loss associated with input 

taxation, denoted ( )DL R  and defined as the difference between the tax-induced loss of profits 

and the amount of tax revenue collected:27 

(26)     ( ) ( ) ( )0 0DL R R R  − −  . 

Rearranging gives: 

(27)     ( ) ( ) ( )0R R DL R = − − , 

from which it follows directly that profit is concave (resp. convex) in tax revenue if and only if 

deadweight loss is convex (concave) in tax revenue.  The effects of an increase in tax revenue on 

profits and on deadweight loss are thus mirror images: a revenue neutral tax rate randomization 

reduces expected profit, for instance, if and only if deadweight loss is convex in tax revenue, so 

that the randomization also increases expected deadweight loss.  And convexity of deadweight 

loss in tax revenue, as stressed at the outset, is not implied by conditions that make deadweight 

loss convex in the tax rate.  Specifically, it follows from (26) and (7) that   

                                                 
27 This definition of deadweight loss excludes changes in consumer surplus because the model takes consumer 

demand to be infinitely elastic at unit price. 
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(28)    ( )
( )

( )
( )''

2
( )

1
DL R R R

 
 

 

−
 = − =

+  

, 

so that, consistent with Proposition 1, it is the tax elasticity of derived demand that shapes the 

convexity/concavity of deadweight loss in revenue and so determines the effect of tax rate 

randomization.  Equation (28) implies that: 

PROPOSITION 5: A revenue neutral local tax rate randomization increases expected 

deadweight loss if and only if ( ) 0   . Conversely, a revenue neutral local tax rate 

randomization reduces expected deadweight loss if and only if ( ) 0   . 

5.2 Efficient random tax ranges 

In order to understand the effect of tax randomness on the marginal cost of public funds it 

is necessary to broaden the analysis to incorporate more than local tax rate randomizations.  In 

circumstances when it is efficient to impose random taxes, the resulting tax rates over which the 

government randomizes will differ substantially, producing a wide range of rates that the 

government will never find it efficient to impose with certainty.  The top panel of Figure 3 

depicts the possible scope for and consequences of tax rate randomization that is efficient in the 

sense of minimizing expected deadweight loss subject to raising some given amount of expected 

tax revenue.  The solid locus plots the deadweight losses produced by tax rates implied by 

different tax revenue levels; it is possible to reduce expected deadweight loss by randomizing tax 

collections between any two points on this solid locus for which a line segment connecting them 

lies below it.  While there are many such possibilities between the revenue levels R1 and R2, 

intuition suggests (and it will shortly be proved) that the greatest efficiency gains are to be had 

by randomizing between these two levels.   

It is clear that the region R1 – R2 includes points over which deadweight loss is concave 

in tax revenue; indeed, the purpose of randomization is to exploit these ranges of tax revenue to 

minimize the expected cost of tax collections.  But it is also apparent from Figure 3 that the 

region R1 – R2 contains points over which deadweight loss is convex in tax revenue, including 

the endpoints R1 and R2 themselves.  It may seem paradoxical to randomize tax collections 
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between points at which deadweight loss is convex in tax revenue, but this follows simply from 

the nature of the exercise being performed.  An efficient program cannot include positive 

probability of imposing taxes at points where deadweight loss is concave in tax revenue, since 

randomizing away from these points reduces expected deadweight loss while maintaining 

expected revenue; hence deadweight loss must be convex in tax revenue at R1 and R2.  Indeed in 

order for the deadweight loss minimizing choices of R1 and R2 fully to exploit the opportunity 

created by the concavity of deadweight loss over a region of revenue levels between them, that 

interval must also contain ranges over which deadweight loss is convex in revenue.   

PROPOSITION 6: For any interval R1 – R2 of tax revenue over which tax rates are efficiently 

randomized: (i) The government cannot reduce deadweight loss by randomizing over more than 

two tax rates; (ii) Deadweight loss is convex in tax revenue at the revenue levels R1 and R2; (iii) 

Marginal deadweight loss is equal at R1 and R2, and so marginal deadweight loss under efficient 

randomization is perfectly certain; and (iv) There are regions over which deadweight loss is 

concave and convex in tax revenue. 

Proof: Efficient randomization entails minimizing ( )i iDL R  over the choices of iR  and 

probability weights i , subject to the constraints that 
i iR R   and 1 0i  .  The first order 

condition corresponding to an efficient choice of i  is 

(29) ( ) 1 2 0i i i iDL R R  − + − = , 

in which   is the multiplier corresponding to the tax revenue constraint, 1i  is the multiplier 

corresponding to the constraint that 0i  , and 2i  is the multiplier corresponding to the 

constraint that 1 i .  Since randomization requires that 1,i i   , it is appropriate to restrict 

attention to cases in which the 1 i  constraint does not bind, and therefore 2 0i = .  Since 

1 0i =  for any revenue level Ri with positive probability weight, (29) implies that  

(30) ( )i iDL R R= . 
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From (30), expected deadweight loss is R  for any combination of probability weights 

producing expected revenue R .  Consequently, randomizing over any two revenue levels that 

satisfy (30) and generate expected revenue R  minimizes deadweight loss, thereby confirming 

the first part of the proposition.  As a result, it is possible to confine attention to randomizations 

over just two revenue levels, R1 and R2. 

The first order condition corresponding to minimizing expected deadweight loss over the 

choices of R1 and R2, subject to the expected revenue constraint, is 

(31) ( ) ( )1 2DL R DL R  = = . 

The second part of Proposition 6 comes from the second-order conditions corresponding to the 

cost-minimizing choices of R1 and R2.  These conditions are 

(32a) ( )1 0DL R   

(32b) ( )2 0DL R  , 

from which this part of the proposition follows directly. 

The third part of Proposition 6 follows from (31), which also implies 

that ( ) ( )2 1 0DL R DL R − = .  Applying the fundamental theorem of the calculus to this equation, 

(33) ( )
2

1

0
R

R
DL R dR = . 

And since the second order conditions (32a) and (32b) imply that ( ) 0DL R   over at least some 

parts of the range R1 – R2, it follows from (33) that ( ) 0DL R   over other parts, thereby 

confirming the fourth part of the proposition. □ 

5.3 The marginal cost of public funds 

The marginal cost of public funds is the cost that government imposes on society in the 

course of raising an additional dollar of tax revenue.  This includes not only the dollar of 



 24 

resources extracted from the population but also any cost of economic distortions that 

accompany the use of the tax system.  In the setting depicted in Figure 3 the marginal cost of 

public funds at revenue level R1, for example, is ( )11 DL R+   , reflecting the additional 

deadweight loss associated with an incremental dollar of tax revenue.  Recall too that efficient 

randomization implies that marginal deadweight loss is perfectly certain, and equal to its 

common value at R1 and R2.  

A key reason for the centrality of concept of the marginal cost of public funds is in 

shaping the efficient level of public spending.  Efficient government policy equates the marginal 

value of additional public spending to the marginal cost of public funds, so a higher marginal 

cost of public funds usually entails a lower efficient level of public spending.  This may not be 

the case, however, with efficient randomization of tax rates. 

To illustrate this, the bottom panel of Figure 3 depicts the marginal cost of public funds at 

different revenue levels; this is simply one plus the slope of the corresponding solid locus in the 

top panel of Figure 3.  As stressed above, the marginal cost of public funds at revenue level R1 

must equal that at R2.  Between R1 and R2 the marginal cost of public funds first rises, then falls, 

and then rises again, exceeding its initial level over roughly half of the R1 – R2 interval, and lying 

below it over the other half.  Since with efficient tax rate randomization the marginal cost of 

public funds is constant at its R1 and R2 levels over the entire R1 – R2 range, it follows that the 

effect of tax rate randomization (relative to fully certain levels of tax revenue within this range) 

is to reduce the marginal cost of public funds at some expected revenue levels and increase it at 

others.  And indeed, equation (33) implies that area A in Figure 3 is equal in size to area B.  

Proposition 7 brings out a key implication of these observations:  

PROPOSITION 7: Relative to fully certain tax policy, efficient tax rate randomization reduces 

the marginal cost of public funds at some expected revenue levels and increases it at others. 

Proof: Equations (30) and (31), together with the fundamental theorem of the calculus, 

collectively imply 

(33) ( ) ( ) ( ) ( ) ( )
2

1
2 1 2 1 1

R

R
DL R DL R DL R dR R R DL R − = = − . 
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It follows from (33) that:  

(34) ( ) ( ) 
2

1
11 1 0

R

R
DL R DL R dR + − + =       . 

Equation (34) indicates that when tax rates are efficiently randomized the additional deadweight 

loss associated with raising a marginal unit of public funds is given by ( )1DL R = , so the 

second bracketed term in (34), ( )11 DL R+   , is the marginal cost of funds with efficient tax rate 

randomization.  The first bracketed term is the marginal cost of public funds at each revenue 

level without randomization.  Since from (32a), ( )1 DL R+  will exceed ( )11 DL R+    at 

revenue levels just exceeding R1, and from (32b), ( )1 DL R+  will be less than ( )11 DL R+    at 

revenue levels just below R2, it follows that ( )1 DL R+    must differ from ( )11 DL R+   at 

various points in the R1 – R2 range.  From equation (34) the integral of these differences is zero, 

implying that since randomization reduces the marginal cost of public funds at some revenue 

levels it must increase it at others. □ 

 The intuition for Proposition 7 stems from recognizing that randomization does not 

reduce total deadweight loss at revenue level R2.  Consequently, to the extent that randomization 

reduces marginal deadweight loss at revenue levels above R1, it must increase marginal 

deadweight loss at some revenue levels in the interval R1 – R2.  Indeed, the property that tax rate 

randomization increases the marginal cost of public funds at some levels of expected tax revenue 

and reduces it at others does not depend on the randomization being chosen to minimize 

expected deadweight loss. 

 The importance of Proposition 7 lies in pointing to the existence of circumstances in 

which a spending rule equating the marginal value of public expenditure to the marginal cost of 

public funds will entail reduced public expenditures upon the adoption of efficiency-enhancing 

tax rate randomization, notwithstanding that this tax rate randomization reduces the deadweight 

cost of collecting any given level of revenue within the range of the randomization.  This 

spending implication follows from the mixed effect of tax rate randomization on the marginal 

cost of public funds; Figure 4 offers an illustration.  This figure reproduces the bottom panel of 



 26 

Figure 3, superimposing on this schedules MV1 and MV2 representing two alternative 

specifications of marginal values of public expenditures (which for illustration are taken to be 

declining in spending levels and unaffected by tax policy choices).  In the absence of 

randomization, equating the marginal value of public spending to the marginal cost of public 

funds yields an efficient level of revenue (and public expenditure) of S1 if that marginal valuation 

is given by MV1, whereas efficient expenditure is S4 if marginal valuation is given by MV2.  With 

efficient randomization, however, the marginal cost of public funds is ( )1 + for all levels of 

revenue between R1 and R2.  This marginal cost is represented by the horizontal line between R1 

and R2, with different levels of revenue simply corresponding to different probabilities attached 

to R1 and R2, both of which are associated with the same marginal deadweight loss  .  Equating 

the marginal valuation of spending to this constant marginal cost of public funds leads to 

efficient spending of S2 if the marginal value of public spending is given by MV1.  In this case the 

adoption of efficient tax rate randomization produces a lower marginal cost of public funds at the 

efficient allocation and so supports a higher spending level, S2 > S1.  If, however, public 

expenditures are valued according to MV2, things are the other way around: efficient tax rate 

randomization increases the marginal cost of public funds at the efficient allocation and so 

lowers the efficient spending level from S4 to S3.  In either case, however, the randomization 

improves efficiency in taxing and spending. 

 

6. Evaluating random taxes 

The proposition that price uncertainty enhances firm profitability is due originally to Oi 

(1961), which considered output prices and attracted immediate qualifications that the 

proposition depends on firms’ abilities costlessly to adjust production levels (Tisdell, 1963; Oi, 

1963) and that uncertainty take the form of mean-preserving price variability (Zucker, 1965).  As 

it happens, an earlier28 contribution of Waugh (1944), together with comments (Howell, 1945; 

                                                 
28 And apparently overlooked, at least until the appearance of Waugh (1966), by those analyzing the effect of price 

uncertainty on firm profits.  Samuelson (1972, p. 476) notes that the first version of Samuelson’s 1972 critique of 
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Lovasy, 1945) and reply (Waugh, 1945), considered the symmetric problem from the consumer 

standpoint, analogously concluding that price instability increases consumer welfare.  Samuelson 

(1972) subjected these lines of inquiry to scorching critiques, noting their inattention to budget 

constraints and the patent invalidity of their apparent joint implication that random price 

variations unconnected to fundamentals somehow benefit both firms and consumers.  As 

Samuelson (1972) notes, the contemplated random price variations are infeasible,29 in that the 

gains to consumers come from reducing the expected returns of producers, and vice versa, so the 

only way for both consumers and producers to gain would be with the injection of external 

resources.  Thus “Waugh’s result can never be applied so as to permit a society to lift its welfare 

by its own bootstraps through manufactured instability.”30 

Critically, however, this brutal conclusion does not apply to tax randomness: its 

properties differ from those of the price uncertainty considered by this earlier literature, as 

taxation creates inefficiencies whether or not tax rates are uncertain.31  One general lesson from 

the literature on marginal deadweight loss is that the simple intuition that marginal deadweight 

loss rises with tax revenue, making total deadweight loss convex in tax revenue, need not 

describe reality: there can be ranges, such as those depicted in Figure 3, over which marginal 

deadweight loss declines.32  There is a common presumption, drawn from implicitly linearizing 

behavioral response functions, that tax randomness will increase deadweight loss due to the 

convexity of deadweight loss in tax revenue.  This presumption is intuitively appealing for a 

                                                                                                                                                             
Waugh (1944) was accepted for publication by the Quarterly Journal of Economics in 1944/45, but that “when the 

manuscript was lost in the editorial process, the exigencies of war did not seem to warrant preparing a new copy.” 
29 “That is, unless you have a Santa Claus; but then if you do have a Santa Claus available, who needs the Waugh-Oi 

theorems?” (Samuelson, 1972, p. 488). 
30 Samuelson (1972, p. 476). 
31 This is the basis of the welfare consequences of random taxation analyzed by Balcer and Sadka (1982, 1986) and 

those of insurance policy differentiation considered by Arnott and Stiglitz (1988). 
32 See, for example, Atkinson and Stern (1974), Ballard (1990), Mayshar (1990), Triest (1990), Fullerton (1991), 

Kaplow (1996), Snow and Warren (1996), Auerbach and Hines (2002), and Gahvari (2006); Dahlby (2008) offers an 

interpretive survey of this literature. 
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world of identical economic agents, and conditioning on expected tax revenue (rather than 

considering mean preserving spreads of the tax rate) eliminates the unambiguous conclusion that 

randomness reduces deadweight loss. Indeed the usual convenient functional forms imply, when 

firms are identical, that tax randomness increases deadweight loss. Nonetheless, the common 

presumption that tax randomness increases inefficiency is correct only in an unknown portion of 

cases---and this is considerably less likely to be the case in settings characterized by extensive 

taxpayer heterogeneity. 

Tax stability entails choosing just one point on the deadweight loss-revenue locus in 

Figure 3, with the choice dictated by government revenue needs.  Tax randomness can afford the 

government the opportunity to extend its taxation into ranges of tax rates over which marginal 

deadweight loss declines, making it possible to reduce total deadweight loss.  The ability to 

exploit tax ranges over which there are low values of marginal deadweight loss is part of the 

basis of Stiglitz’s (1982b) normative argument favoring random taxation.33  Interpretation of the 

Stiglitz model is complicated by its randomization across individuals with differing social 

welfare weights and marginal propensities to consume taxed goods, but its case for 

randomization relies at least in part on the ability of governments that randomize to raise tax 

revenue over ranges in which marginal deadweight loss is particularly low.  The analysis here 

contributes to the understanding of random taxation by identifying the elasticity conditions 

required for revenue neutral local tax rate randomizations to enhance aggregate profits and 

economic activity, applying equation (22) to establish that taxpayer heterogeneity increases the 

                                                 
33 This is implied by conditions (13), (14) and (14´) of Stiglitz (1982b); analogous terms appear in Chang and 

Wildasin (1986) and Brito et al. (1995), though in all cases without the elasticity formulation of Proposition 1. 
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likelihood that these conditions are satisfied, and noting that welfare-improving tax 

randomizations may reduce incentives for government spending.34 

One notable implication of the possibility that tax randomization can increase expected 

profits is that firms themselves may seek to increase such variability, even at no expected 

revenue cost to the government.  They may, for instance, consider highly aggressive forms of 

avoidance in the knowledge that an advance ruling from tax authorities will enable them to go 

ahead if favorable and simply walk away from the scheme if it is adverse. Importers might claim 

favorable ex ante classifications of certain items for tariff purposes, rather than simply accept 

broad classifications at moderate rates, knowing that they can limit the damage if the outcome is 

unfavorable. Taking risky tax positions can be good business strategy even if it does not reduce 

expected tax payments.  Government policies and practices such as advanced tax rulings and 

other forms of tax dispute resolution that create opportunities for firms to obtain probabilistic tax 

treatments thereby effectively introduce an important form of tax randomness.35 

It is also important to recognize that this tax analysis applies readily and with equal force 

to subsidies.  With 0  , the elasticity ( )   as defined in (4) becomes positive, but it is readily 

verified that the results  above—as summarized for Propositions 1-4 in Figure 2, for example36—

                                                 
34 Proposition 6 also shows that any efficient randomization must include ranges of tax rates at which local 

randomizations would be inefficient.  Stiglitz (1982b, p. 8, fn. 10) points to a graphical example in which a welfare-

improving tax rate randomization includes a point at which a local randomization would be welfare-reducing, but 

does not address the necessary inclusion of such points in any welfare-improving randomization. 
35 The model introduced in section 2 takes a firm’s tax rate to be assigned by the government, which includes cases 

in which firms can take actions that increase the variability of tax rate assignments.  The model assumes that the 

government does not permit firms facing high tax rates to reorganize themselves (say, by shutting down and 

restarting in new guises) and thereby obtain more favorable tax treatment, so to the extent that actual policies may 

permit some firms to do this, the associated resource costs and tax revenue consequences would need to be 

incorporated in the analysis.  
36

 Note that ( )    remains negative.  
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continue to hold as stated.37  A government eager to stimulate business activity with a limited 

budget will find that a revenue neutral local subsidy rate randomization increases expected input 

use if and only if the condition identified in Proposition 2 holds. 

Economists have long noted the profit opportunities created by price uncertainty even 

while extolling the benefits of tax stability in limiting deadweight loss and maintaining 

incentives for forward-looking economic activities.  Since in the framework of this paper firms 

bear the cost of inefficiencies introduced by the tax system,38 the effect of tax randomness on 

profitability is really the effect of tax randomness on efficiency.  The second-best nature of 

resource allocation in the presence of taxation creates the possibility that random taxes can 

reduce deadweight loss and encourage output by imposing taxes in ranges over which aggregate 

behavior is relatively unresponsive to taxation.  The possibility, counter to ‘common sense’ 

though it may be, that random taxation encourages firm operations and enhances profitability is 

just one aspect of the reality that tax policy adjustments may have very different effects on 

economies significantly distorted by prior taxation than they do on economies starting from 

efficient production points in the absence of taxation. 

                                                 
37

 Restricting   to negative values may, however, change the likelihood of various possibilities; for instance, ( )   

becomes unambiguously negative for the production function in (8). 
38 If inputs were less than perfectly elastically supplied or outputs less than perfectly elastically demanded then their 

prices would be affected by tax rates, and firms would share some of the tax burden with other economic actors.  

Even with firms bearing the full burden of the tax plus deadweight loss, imposition of the tax may well affect the 

real incomes of economic actors outside the model, since in general equilibrium their returns are functions of supply 

and demand, notwithstanding the indiscernible effect of the tax on input and output prices (Bradford, 1979; 

Kotlikoff and Summers, 1987). 
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 Figure 1 

Effect of Tax Randomness on Firm Profitability 
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Note: Figure 1 depicts the effect on firm profits of broadening the scope of tax randomness.  The 

solid locus is firm profits as a function of the tax rate.  Initial taxes are random: the tax rate 
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Figure 2 

Effects of Tax Randomness on Inputs, Output, and Profit 
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Note: Figure 2 depicts the signs of the effects of tax randomness on expected inputs, expected 

output, and expected profits for differing values of ( )  .  If ( ) 0    then tax randomness 

increases expected input use, output, and profits.  Tax randomness is associated with greater 

expected output even for some negative values of ( )  , and is associated with greater expected 

input use for an even wider range of negative values of ( )  . 
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Figure 3 

Deadweight Loss and the Marginal Cost of Public Funds 
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           Tax revenue 

Note to Figure 3: The solid locus in the top panel depicts deadweight loss as a function of tax 

revenue.  Deadweight loss is increasing in tax revenue, with regions of convexity and concavity.  

A deadweight-loss-minimizing program does not impose taxes that collect revenues between R1 

and R2, but instead randomizes tax collections between R1 and R2 in order to raise needed 

revenue in that range.  The solid locus in the bottom panel of Figure 3 depicts the marginal cost 

of public funds, which is one plus marginal deadweight loss (given by the slope of the locus in 

the top panel).  Randomizing tax rates between R1 and R2 produces a marginal cost of public 

funds equal to1 +  , where   is the slope of the dotted line in the top panel.  Area A is equal in 

size to Area B. 
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Figure 4 

Efficient Government Spending with and without Random Taxes 
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Note: Figure 4 presents the marginal cost of public funds schedules that appear in the bottom 

panel of Figure 3, superimposing two functions representing alternative marginal valuations of 
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Table 1 

Random Taxes with Cobb-Douglas Production Functions 

Tax Rate  Inputs Output Profits Tax Revenue 

 

2.0  10 150 120 20 

 

1.6  12 155.5 124.4 19.1 

2.86  7.3 140.8 112.6 20.9 

 

Note: the table presents per-firm inputs, outputs, profits and tax revenue 

produced by firms facing two different tax regimes.  The top panel presents 

outcomes when firms face an input tax rate of 2.0, and have production 

functions given by 0.2(94.64)q x= .  These firms maximize profits given by 

( )1q x− + , in which x is their input demand; and they generate tax revenue 

of x . 

The bottom panel of the table presents outcomes for two different input tax 

rates, 1.6 and 2.86, each with probability of 50 percent, corresponding to a 

revenue neutral tax rate randomization around a tax rate of 2.0.  Production 

functions are the same as in the specification reported in the top panel. 
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Table 2 

Random Taxes with Heterogeneous Firms 

Tax Rate  Firm Inputs Output Profits Tax Revenue 

 

2.0  1 10 150 120 20 

  2 10 150 120 20 

 

1.6  1 12 155.5 124.4 19.1 

  2 10 150 124 16 

 

2.43  1 8.5 145.1 116.1 20.6 

  2 10 150 115.7 24.3 

Note: the table presents per-firm inputs, outputs, profits and tax revenue produced by two 

types of firms facing two different tax regimes.  Firms of type 1 have production 

functions given by 0.2(94.64)q x= ; firms of type 2 have production functions given by 

0, 10q x=   and 150, 10q x=   .  Both types of firms maximize profits given by 

( )1q x− + , in which x is their input demand; and each type generates tax revenue of 

x . 

The top panel presents outcomes when both types of firms face an input tax rate of 2.0.  

The second and third panels present outcomes for two different input tax rates, 1.6 and 

2.43, each with probability of 50 percent, corresponding to a revenue neutral tax rate 

randomization around a tax rate of 2.0. 

 


