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Introduction
• What is chaos topology and why is it important in the theory of dynamical systems and in 

nonlinear time series analysis? 

Methods
• When and how can these concepts be applied? 

Applications
• Lagrangian analysis

Challenges
• Noise-driven chaotic dynamics

Perspectives
• Atmospheric blocking events and Tipping Points (TPs)

Topology of chaos and climate dynamics



The first methods of time series analysis trying to associate geometric structures with experimental time series 
appear in 1980.

Introduction
• What is chaos topology and why is it important? 



Geometric methods continue to be used, e.g., to 
understand datasets of Lagrangian trajectories. 

But, is geometry the best lens we can use to classify 
data according to underlying differences in dynamics?

Introduction
• What is chaos topology and why is it important? 



Invariants in phase space can be of different types:

a) Metric: dimensions of various types, e.g., correlation dimension (Grassberger & Procaccia, 1983), 

multifractal scaling functions (Halsey et al., 1986). 

b) Dynamic: Lyapunov exponents (Oseledec, 1968; Wolf et al., 1985), as discussed by Eckmann & Ruelle (1985) 

and by Abarbanel et al. (1993). 

c) Topological: linking numbers, relative rotation rates, Conway polynomials, 

Branched Manifolds (Birman & Williams, 1983). 

Invariants (a) and (b) do not provide information on how to model 

the system’s dynamics, while (c) actually does!

Introduction

R. Gilmore, Reviews of Modern Physics, Vol. 70(4), October 1998

• What is chaos topology and why is it important? 



The “recipe” to 
“knead” the 
Lorenz(1963) 
attractor is a 
sequence of steps 
that are topological 
in nature. 

Introduction

Gilmore & Lefranc. The Topology of Chaos: Alice in Stretch 
and Squeezeland. Wiley-Interscience, 2002.

Topology is concerned with the properties of a geometric object that are preserved under continuous deformations,
such as stretching, twisting, crumpling, and bending; that is, without closing holes, opening holes, gluing, or passing
through itself. The animated image shows a continuous deformation of a mug into a doughnut: both objects are
topologically equivalent.

• Why is this so? 



Geometry may differ, but if the underlying dynamics is equivalent, the topology should be the same. 

Introduction

Unveiling the topology <=> Unveiling the dynamics

The advantage of using topology instead of geometry or fractality to describe chaos lies in
the fact that topology provides information about the stretching, folding, tearing or
squeezing mechanisms that act in phase space to shape the flow.

• What is chaos topology and why is it important?



Henri Poincaré first described they way in which a dynamical system’s properties depend upon its topology.

The concept of branched manifold, introduced by Robert F. Williams in 1974, was anticipated in Edward Lorenz’s
famous 1963 paper: on page 20, he remarks that the trajectory ‘lives’ on a surface and describes the architecture
of the attractor in terms of “isopleths.”

Publ. Math. IHES, v. 43 (1974), p. 169–203

Introduction



With Joan Birman, Robert F. Williams used branched manifolds to classify chaotic attractors in terms of the way
periodic orbits are “knotted” in dynamical systems.

The set of unstable periodic orbits (UPOs) of
the Lorenz attractor lie on a “Branched
Manifold”, i.e. on a 2-manifold or surface with
the property that each point has a
neighbourhood that is homoeomorphic to
either a full 2-ball or a half 2-ball.

Introduction

Birman & Williams discovered that systems whose branched manifolds have the same topology are dynamically 
equivalent. 



Dynamical system ODEs Parameters Branched manifold

Is there a “table of elements” for the different dynamics?

Introduction

Gilmore & Lefranc. The Topology of Chaos: Alice in Stretch and Squeezeland. Wiley-Interscience, 2002.



In the late 90s, it was possible to determine whether or not two three-dimensional (3-D) dissipative dynamical
systems are equivalent by using knot theory.

Introduction



1) Approximate trajectories by closed curves.

2) Find a topological representation for the orbit structure. 

3) Obtain an algebraic description for the topological structure. 

1) Close-return method – time series, though, must be long and noise free.

2) Knot theory – knot º orbit in three dimensions.

3) Knot invariants – e.g., linking numbers, Conway polynomials.  

2 3

1 2 3

Knotted 
periodic 
orbits in 
dynamical 
systems. 
Topology: 
Vol.22. No. 
I,pp.47~81. 
1983 

• When and how can these concepts be applied? 

1

Computing topological invariants
using knots…

3D trajectory set Knot invariants 

Methods



Computing topological invariants
using braids…

3D trajectory set Braid invariants 

• When and how can these concepts be applied? 

Methods

When we connect the ends of a braid, we end up with a knot.



• When and how can these concepts be applied? 

Computing topological invariants
without using knots or braids

3D trajectory set ?

Methods



• When and how can these concepts be applied? 

RESTRICTIONS

• Precision and length of time series must be good enough for 
orbits in phase space to be reconstructed accurately … 

• Phase space dimension cannot be higher than three, since 
knots or braids unknot …

HOMOLOGY GROUPS

• Time series can be shorter and noisy since the method is 
independent of the reconstruction of trajectories in phase 
space (no periodic orbit). 

• Applicable in n dimensions: the method is knotless and 
braidless.

Computing topology 
using homologies

3-D trajectory set Knot invariants 

n-D point-cloud Homologies

Computing topology 
using knot theory

Methods



• When and how can these concepts be applied? 

1) Approximate points as lying on a branched manifold.

2) Find a topological representation for the branched manifold.

3) Obtain an algebraic description of the topological structure. 

1) Local approximation by d-disks => short and noisy time series can be handled.

2) Build a cell complex keeping track of the gluing prescriptions => 3-D+ can be handled. 

3) Compute homologies and orientability properties of the cell complex => the structure can be identified.    

HOMOLOGY 
GROUP 
computation

CELL 
COMPLEX 
construction

Computing topological invariants
using homologies

n-D point-cloud Homologies

Methods



• When and how can these concepts be applied? 

HOMOLOGY GROUPS

https://youtu.be/RH2zzE8OkgE

Branched Manifold Analysis through 
Homologies (BraMAH)

Methods



Computing topological invariants
using homologies

n-D point-cloud Homologies1993

1999

2001

Methods
Historical steps



Computing topological invariants
using homologies

n-D point-cloud Homologies

Methods

The 1993 approach does not extract all the information that is relevant to identify a branched manifold.

The topological information obtained as output by Muldoon et al. (1993) 
does not suffice to correctly identify the dynamics from time series. 



• When and how can these concepts be applied? 

Computing topological invariants
using homologies

n-D point-cloud Homologies

Methods

In 1999, we showed that the branched manifold could be reconstructed with all its features (including torsions) from
noisy datasets.

There is much more information in a cell complex than
that computed by Muldoon et al in 1993, and this
information is relevant to describe a branched manifold.



• When and how can these concepts be applied? 

Computing topological invariants
using homologies

n-D point-cloud Homologies

Methods

The approach unveils the topology of branched
manifolds (including torsions) in more than three
phase space dimensions.

Chaotic solutions of Shilnikov type 

The flow generated by a set of equations 
such that any three-dimensional projection 
of it presents self-intersections. 



• When and how can these concepts be applied? 

Computing topological invariants
using homologies

n-D point-cloud Homologies

Methods

A Klein bottle is a a one-sided surface 
that is formed by passing the narrow 
end of a tapered tube through the 
side of the tube and flaring this end 
out to join the other end.

Should we encounter a Klein bottle in our data, our method 
would detect it. 



Voice production

Laser optics

Cardiac arrythmia

Chemical 
reactionsPopulation dynamics

Vegetation index

Nano-oscillators

Birdsong 
motor control

• The topological program has been applied to data in multiple fields of research. 

Methods



• The topological program can be harnessed for multiple purposes. 

« Topological methods can be used to determine whether or not two dynamical systems are equivalent; in 
particular, they can determine whether a model developed from time-series data is an accurate 
representation of a physical system. Conversely, it can be used to provide a model for the dynamical 
mechanisms that generate chaotic data. » 

R. Gilmore, Reviews of Modern Physics, Vol. 70, No. 4, October 1998 

ü Validate/refute models – simulations vs. observations.

ü Comparing models – time series generated by different models.

ü Comparing datasets – e.g., in situ versus satellite data.

ü Extracting models from data – using global modeling techniques with a topological validation.

ü Characterizing and labeling chaotic behaviors – towards a systematic classification.

ü Classifying sets of time series according to their main dynamical traits – e.g., in Lagrangian Analysis.

Applications



• Lagrangian Analysis

Applications

What is Lagrangian analysis? 

In fluid mechanics, two viewpoints are possible. 

In the Eulerian viewpoint, fluid motion is observed at specific
locations in space, as time passes.

In the Lagrangian viewpoint, the observer follows individual fluid
particles as they move through the fluid domain.

The Driven Double Gyre (DDG) system is an analytic model, often
used to show how much Lagrangian patterns may differ from
patterns in Eulerian fields.

It was introduced by Shadden et al. (2005) to mimic the motion of
two adjacent oceanic gyres enclosed by land and, since Sulalitha
Priyankara et al. (2017), it is known to present chaotic transport
between the two counter-rotating laterally oscillating vortices.

From the Eulerian perspective, the DDG has a 
periodic and simple behaviour. 

What happens, for instance, if there is an 
“oil spill” in the middle of the domain? 



• Lagrangian Analysis

Applications

Lagrangian analysis is a powerful way to analyse fluids when tracking and understanding the fates, or origins, 
of fluid particles in flows. 

Lagrangian drifters in the Southern Ocean 



Interesting cases correspond to dynamical 
systems that are nonautonomous (NDSs). 

In NDSs, the phase space is not completely 
determined, i.e., some processes involved in 
the dynamics are not explicitly described. 

Many authors choose to work in an 
“extended phase space” in which time is 
added as a phase space coordinate. 

Applications
• Lagrangian Analysis

But the “extended phase space” is in fact deceptive, since it assigns a double status to the time variable, which should
not play the role of an independent and a dependent variable at the same time. Among other problems, this leads to an
unbounded phase space where some tools from nonlinear dynamical systems theory do not necessarily apply.

Topological studies for NDSs require working in a higher-dimensional phase space that does not include time as a
coordinate. This can be achieved using a knotless approach!



• Lagrangian Analysis

When applied to time series describing particle trajectories, BraMAH falls within a family of methods that measure
“complexity of individual trajectories” to identify coherent regions, i.e., regions with qualitatively different dynamical
behaviour of trajectories in fluid flows.

Rypina et al (2011), for instance, use correlation dimension as a measure of complexity.  

Applications



• Lagrangian Analysis

Let’s try

Applications



• Lagrangian Analysis

Applications



• Lagrangian Analysis

Applications

BraMAH does not look into the geometrical complexity of individual particle trajectories, but into the
topology of the associated branched manifolds, which dictate the recipes that knead their dynamical
behavior in phase space.

Back to the “oil spill” in the middle of the domain of the DDG system, we apply BraMAH to 8528 fluid particles 
in a four-dimensional reconstructed phase space. Only five different topological classes come out, and there is a 
Klein bottle among them, stressing the importance of working in a sufficiently high-dimensional phase space 
(the Klein bottle cannot be immersed in three dimensions without self-intersections). 



• Lagrangian Analysis

Applications

Assigning a different color to each topological class, the colors in motion define particle sets that move robustly. Let
us use the term ‘separator’ to designate the frontier between differently colored regions. Such flow separators are
associated with ‘Lagrangian coherent structures’, known to separate dynamically distinct regions in fluid flows (Kelley,
Allshouse & Ouellette, 2013).



• Lagrangian Analysis

Applications

“Topological colouring of fluid particles” = using BraMAH to 
study the individual dynamics of a sparse particle set.

Numerically generated fluid particle behaviour in the wake past a rotary oscillating cylinder (ROC). With these applications, 
methodological progress is being made: BraMAH is successfully applied to non-dissipative (conservative) systems. 



Challenges

• Can we take one step 
beyond, and extend the 
topological perspective 
to random dynamical 
systems (RDSs), which 
provide the appropriate 
mathematical 
framework to tackle 
ocean–atmosphere 
coupling and climate 
change? 



In physical systems, such as those 
encountered in the climate 
sciences, time-dependent and 
random forcing is often present. 

In a single very long integration 
of a stochastic system, noise has 
a smoothing or blurring effect. 

In the so-called “pullback” 
approach (PBA), introduced by 
Chekroun, Simonnet and Ghil, 
one follows an ensemble of 
trajectories, each driven by the 
same noise realization.  

This way, the smoothing 
disappears, and the fractal 
structure is fully captured. 

Challenges



Focus: LORA the stochastic Lorenz model’s pullback
attractor as computed & studied by Chekroun et al.
(2011).

Challenges



PBAs provide the perfect way to reveal the
stretching and folding caused by the
interactions between noise and chaotic
nonlinearity.

The static picture of a strange attractor is
replaced by a dynamic version that is even
stranger, and that we refer to as noise-driven
chaos.

Can we examine noise-driven chaos through
the lens provided by algebraic-topology
tools?

Let us redefine “branched manifold” locally
as an integer-dimensional set in phase space
that is a robust skeleton of the point cloud
associated, at each instant, with the invariant
measure supported by the random attractor.

Challenges



q BraMAH captures LORA’s time-evolving coarse-grained structure.
q The topologies differ from the deterministic Lorenz model’s strange attractor.
q The noise-driven model’s branched manifold exhibits sharp topological transitions in time. 

Challenges

Results!

Coarse-grained 
(sieved) point 

clouds

BraMAH cell 
complexes



Challenges

q Enlightening surprises arise if one
extends the topological perspective to
random dynamical systems.

q Noise modifies the behavior of a
random attractor: at each instant in
time, though, the random attractor’s
structure is still well represented by a
branched manifold.

q Different “stages” in the “life” of a
random attractor can be identified by
monitoring the abrupt changes of the
branched manifold’s topology.

What about perspectives?

Conclusions!



Perspectives



Perspectives
BraMAH could be used to clarify the so-called quandary of subseasonal to 
seasonal (S2S)  prediction

Which type of phenomenon dominates LFV? Two apparently contradictory descriptions are possible.

Oscillatory (wave-like) flow features or geographically fixed (particle-like) episodic flow features; e.g.,
blocking of the westerlies (particle-like) or intraseasonal oscillations (wave-like) with periodicities of 40–50 days.

Low-frequency variability (LFV) is associated with the vast range of atmospheric processes occurring on a time
scale that ranges from about a week to about a month, and no complete understanding of its nature has yet
been attained.

PNAS February 19, 2002, vol. 99, suppl. 1, 2493–2500



• Blocking has been recently studied by
Lucarini & Gritsun (2020) by using a
new mathematical framework that
extracts from the complex high-
dimensional dynamics of a model its
essential building blocks, given by
truly nonlinear modes.

• They abandon the classic
identification of weather regimes with
fixed points, and directly consider the
chaotic nature of the atmosphere,
using the unstable periodic orbits
(UPO) methodology of Gilmore.

• BraMAH could address the waves-v.-
particles quandary more generally
and efficiently, indicating how it might
be affected by global change.

Perspectives

How can these two apparently contradictory descriptions of LFV be reconciled? 



• Tipping points (TPs) have been given a 
precise definition in the climate sciences 
as a generalization of classical 
bifurcations from autonomous systems 
to NDSs and RDSs, and they are actively 
being pursued. 

• Topological tipping points (TTPs) can be 
understood as abrupt changes in the 
topological description of a random 
attractor’s branched manifold. 

• TTPs seem to be a further generalization 
of the concept that could help us 
apprehend sudden and drastic changes 
in time of model behaviour, as well as 
drastic changes due to mean forcing 
intensity. 

Perspectives

More broadly, BraMAH holds promise for the understanding of topological tipping points (TTPs).



More broadly, BraMAH holds promise for the understanding of topological tipping points (TTPs).

• The gradual change of atmospheric concentrations of 
greenhouse gases and aerosols modifies global 
temperatures in a fairly smooth way, although it 
might also lead to dynamical tipping points.

• The intrinsic noise associated with cloud processes 
on small space and time scales affects the entire 
climate system through their interaction with 
dynamic and radiative processes on larger scales. 

• This noise is considerably more complex than the one 
considered herein, and the climate system is infinitely 
more complex that we have studied. 

• Still, given the huge recent increases in both 
computing power and data storage, it is worth 
exploring further whether such an interaction 
between large-scale dynamics and small-scale noise 
might not lead to striking surprises in the not-too-
distant future. 

Perspectives



Within the deterministic framework: 

• The topology of branched manifolds provides information on the stretching, folding, tearing 
and squeezing mechanisms that act in phase space to shape a deterministic flow. 

• These concepts and tools have been recently extended to address nonautonomous dynamical 
systems. They provide an unprecedented nonlinear perspective that can be fruitful for the 
climate sciences in several ways. 

To conclude…

Within the stochastic framework: 

• The use of branched manifolds can be extended beyond the deterministic framework by investigating 
the evolution in time of the topological structure of Random Dynamical Systems. 

• The branched manifold is found to undergo abrupt changes for some values of the noise forcing, 
suggesting that the effects of noise on chaotic dynamics can be robustly addressed in this manner.



Perspectives on Climate Sciences 
Nonlinear Processes Division

Thank you!
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Questions?



In the same year, Otto E. Rössler came up with an attempt at constructing a hierarchy of chaos. In this
hierarchy, branched manifolds are the finest description of the structure underlying complex dynamical
systems.

Extra slides



• Lagrangian Analysis

In this work, BraMAH is applied to the numerically
generated fluid particle behaviour in the wake past a
rotary oscillating cylinder (ROC) at a low Reynolds
number.

The results are compared with those obtained when
applying BraMAH to another paradigmatic analytical
model of Lagrangian motion: the Driven Double Gyre
(DDG).

Both systems, the ROC and the DDG, present a
background region with several groups of particles
forming islands, which have been studied as resonance
phenomena for Hamiltonian systems using a Lagrangian
variational formulation.

The interesting point is that BraMAH can be used to
relate particle behaviour in a priori unrelated flows,
provided the analysis is performed in equivalently scaled
time windows, and that the recirculation cells of the ROC
can be seen as a ‘materialisation’ of the DDG.

Extra slides



• Lagrangian Analysis

Topological colouring of 4 797 fluid particles using BraMAH for the ROC system. 

Extra slides



• Lagrangian Analysis

With these applications, theoretical progress is also being made, since BraMAH is successfully applied to non-
dissipative (conservative) systems, characterizing both the quasi-periodic resonant islands and the so-called 
chaotic sea. 

Even if the ROC system is an open flow, only particles in the recirculation cells are being studied. 

Can BraMAH be applied to an open flow? 

The ROC system is found to share many
features encountered in the DDG, with
several groups of particles forming islands,
which have been studied as resonance
phenomena for Hamiltonian systems using
a Lagrangian variational formulation.

Rev. Mod. Phys., Vol. 64, No. 3, July 1992

Extra slides



• Lagrangian Analysis

BraMAH applied to a set of 9 516 particles 
of the Bickley jet. 

Torus
3-loop structure Moebius strip Standard strip

Extra slides



• Lagrangian Analysis

(1) 3-loop structure → Blue
(2) Moebius strip →  Red
(3) Standard strip → Green
(4) Torus → Magenta

Topological 
colouring of a 
collection of 9 516 
particles of the 
Bickley jet. 

The Bickley jet is an analytic model of an open flow that captures the essential characteristics of the stratospheric 
polar vortex, in which a zonal jet acts as a transport barrier. 

The stream function ᴪ(x, y, t) has a 
steady background flow ᴪ0(y) and 
three traveling Rossby waves are 
superimposed. 

Extra slides



• Lagrangian Analysis

(1) 3-loop structure → Blue
(2) Moebius strip →  Red
(3) Standard strip → Green
(4) Torus → Magenta

At each position of the grid, the colour/label corresponding to the 
topological class of a particle that is passing through that position 
at an instant t for a time series defined for instance in [t , t + Tw] 
(or [t –Tw , t]). 

BraMAH applied to a collection of 9 516 
particles of the Bickley jet. 

Extra slides



• Lagrangian Analysis

Although the cases we discuss are 2-D incompressible
flows, the technique is not restricted to them.

The prospects of this methodology are multiple and
diverse, opening the possibility of addressing Lagrangian
studies from an unprecedented perspective.

Classifying topologies (= classifying dynamics) can be 
used: 
- to unravel finite-time coherent sets,
- to characterize particle dynamics within each 

coherent set, 
- to compare non neighbouring regions of a flow,
- to compare the behaviour of particles in different 

flows. 

Extra slides



Several research groups carried out an important extension of the dynamical systems and model hierarchy
framework of Ghil (2001) during the past 2 decades, from deterministically autonomous to nonautononomous
and random dynamical systems (NDSs and RDSs: e.g., Ghil et al., 2008; Chekroun et al., 2011; Bódai & Tél, 2012;
Ghil & Lucarini, 2020; Tél et al., 2020).

This framework allows one to deal, in a self-consistent way, with the increasing role of time-dependent forcing
applied to the Earth system by humanity and by natural processes, such as solar variability and volcanic eruptions.
Among the 10 problems proposed in Ghil 
(2001), the first two were: 

1. What is the coarse-grained structure 
of low-frequency atmospheric 
variability, and what is the connection 
between its episodic and oscillatory 
description?

2. What can we predict beyond 1 week, 
for how long, and by what methods?

Extra slides



The point cloud density in the deterministic Lorenz attractor is quite
homogeneous, but LORA is quite inhomogeneous in this respect.

We are interested in LORA’s coarse-grained topology, so we will construct 
BraMAH complexes with the most populated regions of the point cloud.

Extra slides



q At t=40.27, there are four holes that perdure as the value of the threshold !𝑛 increases.
q In (b) and (c) we use a sieve of !𝑛 = 2x10-4 for the estimated sample measure 𝜇̂!. 
q We construct the BraMAH complexes with the most populated regions of the point cloud. 

Extra slides


