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Topology of chaos and climate dynamics

Introduction
 What is chaos topology and why is it important in the theory of dynamical systems and in
nonlinear time series analysis?

Methods
* When and how can these concepts be applied?

Applications
* Lagrangian analysis

Challenges
* Noise-driven chaotic dynamics

Perspectives
 Atmospheric blocking events and Tipping Points (TPs)




Introduction

 What is chaos topology and why is it important?

The first methods of time series analysis trying to associate geometric structures with experimental time series
appear in 1980.

VOLUME 45, NUMBER 9 PHYSICAL REVIEW LETTERS 1 SEPTEMBER 1980

Geometry from a Time Series

N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S. Shaw

Dynamical Systems Collective, Physics Department, University of California, Santa Cruz, California 95064
(Received 13 November 1979)

It is shown how the existence of low-dimensional chaotic dynamical systems describing
turbulent fluid flow might be determined experimentally. Techniques are outlined for re-
constructing phase-space pictures from the observation of a single coordinate of any dis-
sipative dynamical system, and for determining the dimensionality of the system’s at-

tractor. These techniques are applied to a well-known simple three~-dimensional chaotic
dynamical gystem.

PACS numbers: 47.25.-c¢




Introduction

 What is chaos topology and why is it important?

Geometric methods continue to be used, e.g., to
understand datasets of Lagrangian trajectories.
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But, is geometry the best lens we can use to classify
data according to underlying differences in dynamics?




Introduction

 What is chaos topology and why is it important?

Invariants in phase space can be of different types:

a) Metric: dimensions of various types, e.g., correlation dimension (Grassberger & Procaccia, 1983),

multifractal scaling functions (Halsey et al., 1986).

b) Dynamic: Lyapunov exponents (Oseledec, 1968; Wolf et al., 1985), as discussed by Eckmann & Ruelle (1985)
and by Abarbanel et al. (1993).

c) Topological: linking numbers, relative rotation rates, Conway polynomials,

Branched Manifolds (Birman & Williams, 1983). @ ‘D
boundary
. ) . ) layer O
Invariants (a) and (b) do not provide information on how to model
the system’s dynamics, while (c) actually does! % ‘\sﬁ%
squeeze .. 3 €lch ~0

(b)

R. Gilmore, Reviews of Modern Physics, Vol. 70(4), October 1998 @
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Why is this so?

Topology is concerned with the properties of a geometric object that are preserved under continuous deformations,
such as stretching, twisting, crumpling, and bending; that is, without closing holes, opening holes, gluing, or passing

through itself. The animated image shows a continuous deformation of a mug into a doughnut: both objects are
topologically equivalent.
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Introduction

 What is chaos topology and why is it important?

The advantage of using topology instead of geometry or fractality to describe chaos lies in
the fact that topology provides information about the stretching, folding, tearing or
squeezing mechanisms that act in phase space to shape the flow.

\ IS WS YE I'

Geometry may differ, but if the underlying dynamics is equivalent, the topology should be the same.

Unveiling the topology <=> Unveiling the dynamics




Introduction

Henri Poincaré first described they way in which a dynamical system’s properties depend upon its topology.

The concept of branched manifold, introduced by Robert F. Williams in 1974, was anticipated in Edward Lorenz’s
famous 1963 paper: on page 20, he remarks that the trajectory ‘lives’ on a surface and describes the architecture
of the attractor in terms of “isopleths.”

EXPANDING ATTRACTORS Deterministic Nonperiodic Flow!

by R. F. WILLIAMS EpwarDp N. LoreNZz

Massachusetis Institute of Technology
(Manuscript received 18 November 1962, in revised form 7 January 1963)
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Introduction

With Joan Birman, Robert F. Williams used branched manifolds to classify chaotic attractors in terms of the way

periodic orbits are “knotted” in dynamical systems.

1
Topology Vol. 22. No. 1, pp. 47-82, 1983
Printed in Great Britain.

0040-9383/83/010047-36$03.00/0
Pergamon Press Ltd.

KNOTTED PERIODIC ORBITS IN DYNAMICAL SYSTEMS—I:
LORENZ’S EQUATIONS

Joan S. Birmant and R. F. WiLLIAMSE
(Received 31 March 1980)

§1. INTRODUCTION

THIS PAPER is the first in a series which will study the following problem. We
investigate a system of ordinary differential equations which determines a flow on the
3-sphere S® (or R® or ultimately on other 3-manifolds), and which has one or perhaps
many periodic orbits. We ask: can these orbits be knotted? What types of knots can
occur? What are the implications?

The set of unstable periodic orbits (UPOs) of
the Lorenz attractor lie on a “Branched
Manifold”, i.e. on a 2-manifold or surface with
the property that each point has a
neighbourhood that is homoeomorphic to
either a full 2-ball or a half 2-ball.

Birman & Williams discovered that systems whose branched manifolds have the same topology are dynamically

equivalent.




Introduction

Is there a “table of elements” for the different dynamics?

Dynamical system ODEs Parameters Branched manifold
T = —-y—2z y
Rossler y = x+ay (a,b,c) = (2.0,4.0,0.398) @
2 = b+z(z—0c)
P o= y ~ E000G)
Duffing i = Sy—a® 4o+ Asin(w) (8, A,w) = (0.4, 0.4, 1.0) w
i = by+(c—dy)e (b6, 4, ) T
van der Pol = s ARl = S
4 (0.7,1.0,10.0,0.25, 7/2) ol
T = —ox+o0y | |
Lorenz Yy = Rx—vy—uxz (R,0,b) = (26.0,10.0,8/3) w
z = —=bz+uwzy

Gilmore & Lefranc. The Topology of Chaos: Alice in Stretch and Squeezeland. Wiley-Interscience, 2002.




Introduction

In the late 90s, it was possible to determine whether or not two three-dimensional (3-D) dissipative dynamical
systems are equivalent by using knot theory.

Topological analysis of chaotic dynamical systems

T [ s SRyt |

Department of Physics & Atmospheric Science, Drexel University, Philadelphia, Robert Gilmore and Marc Lefranc WWILEY-VCH

Pennsylvania 19104 the user's Oppl’OC\Ch to

Topological methods have recently been developed for the analysis of dissipative dynamical systems

that operate in the chaotic regime. They were originally developed for three-dimensional dissipative T T

dynamical systems, but they are applicable to all “low-dimensional” dynamical systems. These are e o o o
systems for which the flow rapidly relaxes to a three-dimensional subspace of phase space.

Equivalently, the associated attractor has Lyapunov dimension d;<3. Topological methods
supplement methods previously developed to determine the values of metric and dynamical % 5
invariants. However, topological methods possess three additional features: they describe how to top0|09 | COI meth Ods |n
model the dynamics; they allow validation of the models so developed; and the topological invariants o aos

are robust under changes in control-parameter values. The topological-analysis procedure depends on 3d d'\" ﬂOm i CO I SlljStGmS
identifying the stretching and squeezing mechanisms that act to create a strange attractor and organize

all the unstable periodic orbits in this attractor in a unique way. The stretching and squeezing Alice in Stretch and Squeezeland

mechanisms are represented by a caricature, a branched manifold, which is also called a template or
a knot holder. This turns out to be a version of the dynamical system in the limit of infinite dissipation.
This topological structure is identified by a set of integer invariants. One of the truly remarkable
results of the topological-analysis procedure is that these integer invariants can be extracted from a
chaotic time series. Furthermore, self-consistency checks can be used to confirm the integer values.
These integers can be used to determine whether or not two dynamical systems are equivalent; in
particular, they can determine whether a model developed from time-series data is an accurate
representation of a physical system. Conversely, these integers can be used to provide a model for the
dynamical mechanisms that generate chaotic data. In fact, the author has constructed a doubly
discrete classification of strange attractors. The underlying branched manifold provides one discrete
classification. Each branched manifold has an “‘unfolding” or perturbation in which some subset of
orbits is removed. The remaining orbits are determined by a basis set of orbits that forces the presence
of all remaining orbits. Branched manifolds and basis sets of orbits provide this doubly discrete
classification of strange attractors. In this review the author describes the steps that have been
developed to implement the topological-analysis procedure. In addition, the author illustrates how to
apply this procedure by carrying out the analysis of several experimental data sets. The results
obtained for several other experimental time series that exhibit chaotic behavior are also described.
[S0034-6861(98)00304-3]
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Methods

* When and how can these concepts be applied?

— 1) Approximate trajectories by closed curves.
2) Find a topological representation for the orbit structure.

3) Obtain an algebraic description for the topological structure.

1({)\@' 2@
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1) Close-return method — time series, though, must be long and noise free.

— 2) Knot theory — knot = orbit in three dimensions.

~ 3) Knot invariants — e.g., linking numbers, Conway polynomials.

Computing topological invariants
using knots...

g

3D trajectory set Knot invariants
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periodic
orbits in
hype (3,70 dynamical
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Methods

* When and how can these concepts be applied?

When we connect the ends of a braid, we end up with a knot.

2.4.1 Braid Words

We can label the braid crossings in a similar way as in knots, this time using
the additional strand information. We call o; the crossing where strand ¢
goes over strand i + 1, and o; ! the opposite crossing where i goes under
1+ 1. For a braid of n > 1 strands ¢ runs from 1 to n — 1. Hence, a
braid can be described by listing the crossings of its knot projection in the
parametric order. A braid can then be represented by a braid word. The
braid in Figure 2.5 has the word W = o109 ~!. We say that a positive braid
has no negative exponents among the ¢’s in its braid word.

2.4.2 The braid group I

Braids are also introduced as the free group of n generators with the follow-
ing two restrictions: 0;0; = 0,05, |i — j| > 1 and 0;0;410; = 0;410:0:41.
The latter restriction resembles Reidemeister move III 2 in the sense that
it states that a crossing between two strands can be moved to the “other
side” of a third strand simply by sliding it down, as if the strands were

2Move I is unnecessary since defining braids as functions rules out the possibility

of self-loops and move II is immediate since the group property assures that o;0; 1=

Identity.

Computing topological invariants
using braids...

&

3D trajectory set  Braid invariants

24 The User’s Approach to Topological Methods in 3-D Dynamical Systems

/

Fig. 2.5 A period-3 orbit of a dynamical system in R? x S! and its knot projection
as a braid. The arrows along the flow and braid indicate the time evolution from 6o
to 0p + 2m. These two angles are split in the braid graph (right, bottom and top) but
identified in the time evolution (left, control section).



Computing topological invariants

Methods without using knots or braids

* When and how can these concepts be applied? y

Chapter 7 3D trajectory set ?

the user's approach to

SeriesA  Vol.84.

Frlﬁvﬁ

topological methods in
3d dynamical systems

uyp}gmkgﬁnﬂﬁ%ug A braided view of a knotty story
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6.6.3 Homology groups

Periodic orbits of 3-d dynamical systems admitting a Poincaré section can be
deSC.I'lbed e blfalds', This Charac_tems-atlon S be transported t(_) the Pomca?e Still, we may want to understand the topological properties of the set of
section and Poincaré map, resulting in the braid type. Information from braid
types allows to estimate bounds for the topological entropy of the map while re-
vealing detailed orbit information from the original system, such as the orbits that
are necessarily present along with the given one(s) and their organisation. We re- and one method that appears to jump at hand is to consider the homology
view this characterisation with some examples —from a user-friendly perspective-, groups associated to our data [Muldoon et al. 1993, Sciamarella and Mindlin
focusing on systems whose Poincaré section is homotopic to a disc. 1999; 2001].

periodic orbits hidden in our data. We need some “braidless” method (in
the sense that knots “dissolve” into trivial objects in higher dimensions))




Methods

* When and how can these concepts be applied?

Computing topology
using knot theory

&

3-D trajectory set

Computing topology
using homologies

&

n-D point-cloud

X

Knot invariants

=

Homologies

RESTRICTIONS

* Precision and length of time series must be good enough for
orbits in phase space to be reconstructed accurately ...

e Phase space dimension cannot be higher than three, since
knots or braids unknot ...

HOMOLOGY GROUPS

e Time series can be shorter and noisy since the method is
independent of the reconstruction of trajectories in phase
space (no periodic orbit).

e Applicable in n dimensions: the method is knotless and
braidless.



Computing topological invariants
Methods

using homologies

* When and how can these concepts be applied? y &

1) Approximate points as lying on a branched manifold. b pointdoud Homdlogies
— 2) Find a topological representation for the branched manifold.
3) Obtain an algebraic description of the topological structure.
— = Hy~Z.
0 ’
CELL X HOMOLOGY H, ~ Z3;
COMPLEX GROUP
construction computation Hy =0
B 1) Local approximation by d-disks => short and noisy time series can be handled.
— 2) Build a cell complex keeping track of the gluing prescriptions => 3-D+ can be handled.

L 3) Compute homologies and orientability properties of the cell complex => the structure can be identified.




Methods

* When and how can these concepts be applied? https://youtu.be/RH2zzE8OkgE
HOMOLOGY GROUPS

Computing state-space topology with BraMaH

Exploring state-space topology in the geosciences
Denisse SCIAMARELLA (CNRS)
How to determine if two spaces are

topologically equivalent?

HOMOLOGY GROUP computation

Cell complex covering the cylinder

UMI - 3351 IFAECI

Q<G
D

With G. Artana, G. Chard, Mickadl Chelroun and Michael Ghil

An n-cell is a set corresponding to the interieur of a disk in n An n-complex is a set of cells such that their
dimensions whose.borders are divided into a number of cells of borders are elements of the complex with
lower dimension. interiors that do not intersect.

_' w— e Branched Manifold Analysis through
Homologies (BraMAH)

Exploring state-space topology in the geosciences - Sciamarella - Workshop 1 -
CEB T3 2019

22 600 suscriptores

(\ Institut Henri Poincaré
inp

Sciamarella (CNRS) /11.10.2019




Computing topological invariants

Methods using homologies

Historical steps
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Topology from time series
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) , Topological Structure of Chaotic Flows from Human Speech Data
We describe methods for the study of topological pro
systems. We explain how to compute such invariants as the
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Departamento de Fisica, FCEN, Universidad de Buenos Aires, Pab I, Ciudad Universitaria,
cp 1428, Buenos Aires, Argentina
(Received 7 July 1998)

We report the analysis of branched manifolds through homologies, in order to extend the range of 200 1
applicability of the topological approach to the analysis of human speed data. Analytic and experimental
cases are discussed. [S0031-9007(99)08424-0]
PHYSICAL REVIEW E, VOLUME 64, 036209
PACS numbers: 47.52.+j, 02.40.Sf, 43.72.+q

Unveiling the topological structure of chaotic flows from data

Denisse Sciamarella and G. B. Mindlin
Departamento de F isica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pab I, Ciudad Universitaria,
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bility of the topological approach to the analysis of chaotic data. Analytic and numerical cases are discussed.
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Methods

The topological information obtained as output by Muldoon et al. (1993)
does not suffice to correctly identify the dynamics from time series.

Physica D 65 (1993) 1-16
North-Holland :
]

SDI: 0167-2789(92)00026-1

Topology from time series

M.R. Muldoon® R.S. MacKay® J.P. Huke® and D.S. Broomhead®

*Nonlinear Systems Laboratory, Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom
®*DRA at RSRE, Malvern, St. Andrew’s Road, Great Malvern, Worcestershire WR14 3PS, United Kingdom

Received 15 August 1992

Revised manuscript received 13 November 1992
Accepted 23 November 1992

Communicated by G. Ahlers

We describe methods for the study of topological properties of the invariant manifolds of experimental dynamical
systems. We explain how to compute such invariants as the Euler characteristic and Betti numbers using time series data,
and suggest a number of potential applications. .

Computing topological invariants
using homologies

&

n-D point-cloud Homologies

4. Concluding remarks

We have introduced novel algorithms to ex-
tract topological information from experimental
time series and have illustrated them with ex-
perimental examples. The examples involved
boundaryless manifolds traversed by a dense
orbit and may leave the impression that our
methods are useless for systems whose attractors
are not manifolds. To counter this impression,
we suggest potential applications to a broader
class of objects: some are not attractors and one
is not a manifold.

The 1993 approach does not extract all the information that is relevant to identify a branched manifold.



Computing topological invariants

Methods using homologies

* When and how can these concepts be applied? y k

There is much more information in a cell complex than

n-D point-cloud Homologies

that computed by Muldoon et al in 1993, and this
information is relevant to describe a branched manifold.

In 1999, we showed that the branched manifold could be reconstructed with all its features (including torsions) from
noisy datasets.

VOLUME 82, NUMBER 7 PHYSICAL REVIEW LETTERS 15 FEBRUARY 1999

P(t-1)
Topological Structure of Chaotic Flows from Human Speech Data

Denisse Sciamarella and G.B. Mindlin

Departamento de Fisica, FCEN, Universidad de Buenos Aires, Pab I, Ciudad Universitaria,

cp 1428, Buenos Aires, Argentina
(Received 7 July 1998)

We report the analysis of branched manifolds through homologies, in order to extend the range of
applicability of the topological approach to the analysis of human speed data. Analytic and experimental
cases are discussed. [S0031-9007(99)08424-0]

PACS numbers: 47.52.+j, 02.40.5f, 43.72.+q




Methods

* When and how can these concepts be applied?

The approach unveils the topology of branched
manifolds (including torsions) in more than three
phase space dimensions.

PHYSICAL REVIEW E, VOLUME 64, 036209

Unveiling the topological structure of chaotic flows from data

Denisse Sciamarella and G. B. Mindlin
Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pab I, Ciudad Universitaria,
Casilla de Correo 1428, Buenos Aires, Argentina
(Received 13 December 2000; published 21 August 2001)

We report the analysis of branched manifolds through homologies, in order to extend the range of applica-
bility of the topological approach to the analysis of chaotic data. Analytic and numerical cases are discussed.

DOI: 10.1103/PhysRevE.64.036209 PACS number(s): 05.45.Pq, 47.52.+j, 02.40.Sf

Computing topological invariants
using homologies

g

n-D point-cloud Homologies

Chaotic solutions of Shilnikov type

The flow generated by a set of equations
such that any three-dimensional projection
of it presents self-intersections.

x'=—(z+2)d{x—[a+e2+w)[}+(2—2){a(x—2)

—By—a(x—2)[(x—2)*+y*/R*]},

Yy =—{(zt2)}(y—b)+(2—2}{B(x—2)—ay
—ay[(x—2)*+y*/R*]},
€,2'=(4-72*)[z+2—m(x+2)]—€;cz,

ew' =(4—2)[z+2—m(x+2)]— ecz



Computing topological invariants

Methods using homologies

* When and how can these concepts be applied? y k

Should we encounter a Klein bottle in our data, our method
would detect it. n-D point-cloud Homologies

Physica| D 102 (1997) 177-186 PHYSICA [
% i

ELSEVIER

Tori and Klein bottles in four-dimensional chaotic flows

G.B. Mindlin *, H.G. Solari G.B. Mindiin. HG. Solari/Physica D 102 (1997) 177-186 181
Departamento de Fisica, FCEN, Universidad de Buenos Aires, Pab I, Ciudad Universitaria, cp 1428, Buenos Aires, Argentina
Received 11 October 1995; revised 24 June 1996: accepted 5 July 1996 1.25r
Communicated by A. Albano 1.2
1.15 F
A Klein bottle is a a one-sided surface T
. that is formed by passing the narrow
end of a tapered tube through the
side of the tube and flaring this end P T —T9—0—5— 0BT 08093084 0.85
out to join the other end. e ot s sclocted within ths surfae (A, B. G0y and e votions laplaged 6 dak lnes. They seach the eints

A’.B'.C’. D'. Notice that in the three-dimensional projection used (x, ¥, z), the surface self-intersects (the curves joining A. B. C, D
and A". B, C'. D’ are oriented in opposite ways).




Methods

* The topological program has been applied to data in multiple fields of research.
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Applications

* The topological program can be harnessed for multiple purposes.

« Topological methods can be used to determine whether or not two dynamical systems are equivalent; in
particular, they can determine whether a model developed from time-series data is an accurate

representation of a physical system. Conversely, it can be used to provide a model for the dynamical
mechanisms that generate chaotic data. »

R. Gilmore, Reviews of Modern Physics, Vol. 70, No. 4, October 1998

v’ Validate/refute models — simulations vs. observations.

v' Comparing models — time series generated by different models.

v' Comparing datasets — e.g., in situ versus satellite data.

v’ Extracting models from data — using global modeling techniques with a topological validation.
v Characterizing and labeling chaotic behaviors — towards a systematic classification.

v’ Classifying sets of time series according to their main dynamical traits — e.g., in Lagrangian Analysis.




Applications A

Euler /

e Lagrangian Analysis /
Lagrange

What is Lagrangian analysis?

In fluid mechanics, two viewpoints are possible.

In the Eulerian viewpoint, fluid motion is observed at specific
locations in space, as time passes.

In the Lagrangian viewpoint, the observer follows individual fluid
particles as they move through the fluid domain.

The Driven Double Gyre (DDG) system is an analytic model, often
used to show how much Lagrangian patterns may differ from
patterns in Eulerian fields.

It was introduced by Shadden et al. (2005) to mimic the motion of
two adjacent oceanic gyres enclosed by land and, since Sulalitha
Priyankara et al. (2017), it is known to present chaotic transport
between the two counter-rotating laterally oscillating vortices.

From the Eulerian perspective, the DDG has a
periodic and simple behaviour.

Double-gyre Flow at 0.01s

0 05 1 15 2

What happens, for instance, if there is an
“oil spill” in the middle of the domain?

anime () 01
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e Lagrangian Analysis

Lagrangian analysis is a powerful way to analyse fluids when tracking and understanding the fates, or origins,
of fluid particles in flows.

Ocean Modelling 121 (2018) 49-75

Contents lists available at ScienceDirect
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Lagrangian ocean analysis: Fundamentals and practices M)
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updates
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Lagrangian drifters in the Southern Ocean
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e Lagrangian Analysis

Interesting cases correspond to dynamical
systems that are nonautonomous (NDSs).

In NDSs, the phase space is not completely
determined, i.e., some processes involved in
the dynamics are not explicitly described.

Many authors choose to work in an
“extended phase space” in which time is
added as a phase space coordinate.

Chaos ARTICLE scitation.org/journal/cha

Observability of laminar bidimensional fluid flows
seen as autonomous chaotic systems

Cite as: Chaos 29, 123126 (2019); doi: 10.1063/1.5120625 1
Submitted: 19 July 2019 - Accepted: 2 December 2019 - @ r_-l @
Published Online: 18 December 2019 View Online Export Ciation

Gisela D. Charo,’ () Denisse Sciamarella,? () Sylvain Mangiarotti,” ) Guillermo Artana,’ ' and

Christophe Letellier”

AFFILIATIONS

"Laboratorio de Fluidodinamica, Facultad de Ingenieria, Universidad de Buenos Aires, CONICET, C1I063ACV CABA, Argentina

2 Institut Franco-Argentin d'Etudes sur le Climat et ses Impacts (IFAECI), UMI 3351 (CNRS-CONICET-UBA),
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3Centre d'Etudes Spatiales de la Biosphére, UPS-CNRS-CNES-IRD, Observatoire Midi-Pyrénées, 18 avenue Edouard Belin, 31401
Toulouse, France

“Normandie Université—CORIA, Campus Universitaire du Madrillet, F-76800 Saint-Etienne du Rouvray, France

But the “extended phase space” is in fact deceptive, since it assigns a double status to the time variable, which should
not play the role of an independent and a dependent variable at the same time. Among other problems, this leads to an
unbounded phase space where some tools from nonlinear dynamical systems theory do not necessarily apply.

Topological studies for NDSs require working in a higher-dimensional phase space that does not include time as a
coordinate. This can be achieved using a knotless approach!



Applications
e Lagrangian Analysis

When applied to time series describing particle trajectories, BraMAH falls within a family of methods that measure
“complexity of individual trajectories” to identify coherent regions, i.e., regions with qualitatively different dynamical
behaviour of trajectories in fluid flows.

Rypina et al (2011), for instance, use correlation dimension as a measure of complexity.

Nonlin. Processes Geophys., 18,977-987, 2011 y ‘* N | P
www.nonlin-processes-geophys.net/18/977/2011/ G onlinear Frocesses
doi:10.5194/npg-18-977-2011 in Geophysics

© Author(s) 2011. CC Attribution 3.0 License. =

Investigating the connection between complexity of isolated
trajectories and Lagrangian coherent structures

I.I. Rypina!, S. E. Scott?, L. J. Pratt!, and M. G. Brown>

IPhysical Oceanography Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
2Department of Mathematics, Statistics, and Computer Science, Marquette University, Milwaukee, W1, 53201, USA
3RSMAS, University of Miami, 4600 Rickenbacker Causeway, Miami, FL., 33149, USA

Received: 9 February 2011 — Revised: 19 September 2011 — Accepted: 2 December 2011 — Published: 15 December 2011
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* Lagrangian Analysis

Introduction

* What is chaos topology and why is it important in the theory of dynamical systems and in nonlinear time series
analysis?

Invariants in phase space can be of different types:

a) Metric: dimensions of various types, e.g., correlation dimension (Grassberger & Procaccia, 1983),
multifractal scaling functions (Halsey et al., 1986).

b) Dynamic: Lyapunov exponents (Oseledec, 1968; Wolf et al., 1985), as discussed by Eckmann & Ruelle (1985)
and by Abarbanel et al. (1993).

c) Topological: linking numbers, relative rotation rates, Conway polynomials,

Branched Manifolds (Birman & Williams, 1983). - ‘D

boundary
layer
Invariants (a) and (b) do not provide information on how to model O

the system’s dynamics, while (c) actually does!

squeeze

R. Gilmore, Reviews of Modern Physics, Vol. 70, Nro. 4, Octobre 1998

Let’s try BH N
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° Lagrangian Ana|y5i5 Physica D 405 (2020) 132371
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Topology of dynamical reconstructions from Lagrangian data )

Check for
updates
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Gisela D. Char6 ***, Guillermo Artana *°, Denisse Sciamarella
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ARTICLE INFO ABSTRACT
Article history: Branched Manifold Analysis through Homologies (BraMAH) is a technique that computes the state-
Received 16 August 2019 space topology of a dynamical reconstruction from scalar data. This work introduces the application

Received in revised form 9 December 2019
Accepted 20 January 2020

Available online 30 January 2020
Communicated by G. Froyland

of this technique to Lagrangian time series. The approach unveils the topological structure underlying
the behavior of a fluid particle. When applied to a set of sparse particles, the results of the analysis
can be used to classify them according to the dynamics they deploy during a given time window.
Topological grids can be constructed to portray the spatial organization of the topological classes. The

Keywords: connection between the topological grids and the transport properties of the flow is examined using
Topology streaklines. Even if demonstrated here in the context of kinematic flow models, the generality of the
Delay-coordinate embedding method allows for its potential application to experimental or observational Lagrangian data satisfying
Nonlinear time-series analysis the technical requirements for the analysis.

Homology

© 2020 Elsevier B.V. All rights reserved.
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e Lagrangian Analysis

BraMAH does not look into the geometrical complexity of individual particle trajectories, but into the
topology of the associated branched manifolds, which dictate the recipes that knead their dynamical

behavior in phase space.

Back to the “oil spill” in the middle of the domain of the DDG system, we apply BraMAH to 8528 fluid particles
in a four-dimensional reconstructed phase space. Only five different topological classes come out, and there is a
Klein bottle among them, stressing the importance of working in a sufficiently high-dimensional phase space
(the Klein bottle cannot be immersed in three dimensions without self-intersections).

AR
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e Lagrangian Analysis

Assigning a different color to each topological class, the colors in motion define particle sets that move robustly. Let
us use the term ‘separator’ to designate the frontier between differently colored regions. Such flow separators are
associated with ‘Lagrangian coherent structures’, known to separate dynamically distinct regions in fluid flows (Kelley,
Allshouse & Ouellette, 2013).

PHYSICAL REVIEW E 88, 013017 (2013)

Lagrangian coherent structures separate dynamically distinct regions in fluid flows

Douglas H. Kelley,"" Michael R. Allshouse,? and Nicholas T. Ouellette™!

'Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
2Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
3Department of Mechanical Engineering & Materials Science, Yale University, New Haven, Connecticut 06520, USA
(Received 28 September 2012; published 26 July 2013)

Using filter-space techniques, we study the scale-to-scale transport of energy in a quasi-two-dimensional,
weakly turbulent fluid flow averaged along the trajectories of fluid elements. We find that although the spatial
mean of this Lagrangian-averaged flux is nearly unchanged from its Eulerian counterpart, the spatial structure of
the scale-to-scale energy flux changes significantly. In particular, its features appear to correlate with the positions
of Lagrangian coherent structures (LCS’s). We show that the LCS’s tend to lie at zeros of the scale-to-scale flux,
and therefore that the LCS’s separate regions that have qualitatively different dynamics. Since LCS’s are also
known to be impenetrable barriers to advection and mixing, we therefore find that the fluid on either side of an
LCS is both kinematically and dynamically distinct. Our results extend the utility of LCS’s by making clear the
1 role they play in the flow dynamics in addition to the kinematics.

DOI: 10.1103/PhysRevE.88.013017 PACS number(s): 47.10.Fg, 47.27.De, 89.75.Fb
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Topological colouring of fluid particles unravels
finite-time coherent sets

. ’ A ' . 3 . . D/
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“Topological colouring of fluid particles” = using BraMAH to
study the individual dynamics of a sparse particle set.
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Numerically generated fluid particle behaviour in the wake past a rotary oscillating cylinder (ROC). With these applications,
methodological progress is being made: BraMAH is successfully applied to non-dissipative (conservative) systems.



Challenges

Can we take one step
beyond, and extend the
topological perspective
to random dynamical
systems (RDSs), which
provide the appropriate
mathematical
framework to tackle
ocean—atmosphere
coupling and climate
change?

Cornell University

arXiv.org > nlin > arXiv:2010.09611

Nonlinear Sciences > Chaotic Dynamics

[Submitted on 19 Oct 2020 (v1), last revised 9 Jun 2021 (this version, v6)]

Noise-driven Topological Changes in
Chaotic Dynamics

Gisela D. Charo, Mickaél D. Chekroun, Denisse Sciamarella, Michael
Ghil

Noise modifies the behavior of chaotic systems. Algebraic topology
sheds light on the most fundamental effects involved, as illustrated
herein by using the Lorenz (1963) model. This model's deterministic
attractor is "strange" but frozen in time. When driven by
multiplicative noise, the Lorenz model's random attractor (LORA)
evolves in time. Here, we use Branched Manifold Analysis through
Homologies (BraMAH) to describe changes in LORA's coarse-grained
topology. BraMAH is thus extended from deterministic flows to
noise-driven systems. LORA's homology groups and branched
manifold differ from the deterministic ones and they change in time.




Challenges

In physical systems, such as those
encountered in the climate
sciences, time-dependent and
random forcing is often present.

In a single very long integration
of a stochastic system, noise has
a smoothing or blurring effect.

In the so-called “pullback”
approach (PBA), introduced by
Chekroun, Simonnet and Ghil,
one follows an ensemble of
trajectories, each driven by the
same noise realization.

This way, the smoothing
disappears, and the fractal
structure is fully captured.

Physica D 240 (2011) 1685-1700
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Physica D

journal homepage: www.elsevier.com/locate/physd o
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ABSTRACT

This article attempts a unification of the two approaches that have dominated theoretical climate
dynamics since its inception in the 1960s: the nonlinear deterministic and the linear stochastic one.
This unification, via the theory of random dynamical systems (RDS), allows one to consider the detailed
geometric structure of the random attractors associated with nonlinear, stochastically perturbed systems.
We report on high-resolution numerical studies of two idealized models of fundamental interest for
climate dynamics. The first of the two is a stochastically forced version of the classical Lorenz model. The
second one is a low-dimensional, nonlinear stochastic model of the El Nifio-Southern Oscillation (ENSO).
These studies provide a good approximation of the two models’ global random attractors, as well as of
the time-dependent invariant measures supported by these attractors; the latter are shown to have an
intuitive physical interpretation as random versions of Sinai-Ruelle-Bowen (SRB) measures.

© 2011 Elsevier B.V. All rights reserved.




Challenges

Focus: LORA the stochastic Lorenz model’s pullback
attractor as computed & studied by Chekroun et al.
(2011).

For chaotic systems subject to noise, however, this noise-
induced smoothing observed in the forward approach compresses
a lot of crucial information about the dynamics itself; quite to
the contrary, the pullback approach brings this information into
sharp focus. A quick look at Figs. 1-3 is already enlightening in
this respect. All three figures refer to the invariant measure i,
supported by the random attractor of our stochastic Lorenz model
[SLM]. This model obeys the following three SDEs:

dx = s(y — x)dt + ox dW;,
[SLM] 1dy = (x —y — x2)dt + oy dW;, (7)
dz = (—bz + xy)dt + oz dW;.

In system (7), each of the three equations of the classical, deter-
ministic model [3] is perturbed by linearly multiplicative noise in
the Itd sense, with W; a Wiener process and o > 0 the noise inten-
sity. The other parameter values are the standard ones for chaotic
behavior [48], and are given in the caption of Fig. 1.

r=28,s=10b=8/3




Challenges

PBAs provide the perfect way to reveal the
stretching and folding caused by the
interactions between noise and chaotic
nonlinearity.

The static picture of a strange attractor is
replaced by a dynamic version that is even
stranger, and that we refer to as noise-driven
chaos.

Can we examine noise-driven chaos through
the lens provided by algebraic-topology
tools?

Let us redefine “branched manifold” locally
as an integer-dimensional set in phase space
that is a robust skeleton of the point cloud
associated, at each instant, with the invariant
measure supported by the random attractor.




Challenges

Results!

1 BraMAH captures LORA’s time-evolving coarse-grained structure.
O The topologies differ from the deterministic Lorenz model’s strange attractor.
[ The noise-driven model’s branched manifold exhibits sharp topological transitions in time.
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Challenges

Conclusions!

O Enlightening surprises arise if one
extends the topological perspective to
random dynamical systems.

1 Noise modifies the behavior of a
random attractor: at each instant in
time, though, the random attractor’s
structure is still well represented by a
branched manifold.

O Different “stages” in the “life” of a
random attractor can be identified by
monitoring the abrupt changes of the
branched manifold’s topology.

What about perspectives?

-10 O




Perspectives

Nonlin. Processes Geophys., 27, 429-451, 2020
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Perspectives

BraMAH could be used to clarify the so-called quandary of subseasonal to
seasonal (S2S) prediction

““Waves" vs. “particles” in the atmosphere’s phase
space: A pathway to long-range forecasting? \

i ?
Michael Ghilt and Andrew W. Robertson or pa rticles?

Department of Atmospheric Sciences and Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90095-1567

PNAS February 19, 2002, vol. 99, suppl. 1, 2493-2500

Low-frequency variability (LFV) is associated with the vast range of atmospheric processes occurring on a time
scale that ranges from about a week to about a month, and no complete understanding of its nature has yet

been attained.

Which type of phenomenon dominates LFV? Two apparently contradictory descriptions are possible.

Oscillatory (wave-like) flow features or geographically fixed (particle-like) episodic flow features; e.g.,
blocking of the westerlies (particle-like) or intraseasonal oscillations (wave-like) with periodicities of 40-50 days.



Perspectives

How can these two apparently contradictory descriptions of LFV be reconciled?

Blocking has been recently studied by
Lucarini & Gritsun (2020) by using a
new mathematical framework that
extracts from the complex high-
dimensional dynamics of a model its
essential building blocks, given by
truly nonlinear modes.

They abandon the classic
identification of weather regimes with
fixed points, and directly consider the
chaotic nature of the atmosphere,
using the unstable periodic orbits
(UPO) methodology of Gilmore.

BraMAH could address the waves-v.-
particles quandary more generally
and efficiently, indicating how it might
be affected by global change.

Climate Dynamics (2020) 54:575-598 N

https://doi.org/10.1007/500382-019-05018-2

or particles?

A new mathematical framework for atmospheric blocking events

Valerio Lucarini*3® . Andrey Gritsun*

Received: 21 May 2019 / Accepted: 14 October 2019 / Published online: 1 November 2019
© The Author(s) 2019

Abstract

We use a simple yet Earth-like hemispheric atmospheric model to propose a new framework for the mathematical proper-
ties of blocking events. Using finite-time Lyapunov exponents, we show that the occurrence of blockings is associated with
conditions featuring anomalously high instability. Longer-lived blockings are very rare and have typically higher instability.
In the case of Atlantic blockings, predictability is especially reduced at the onset and decay of the blocking event, while a
relative increase of predictability is found in the mature phase. The opposite holds for Pacific blockings, for which predict-
ability is lowest in the mature phase. Blockings are realised when the trajectory of the system is in the neighbourhood of
a specific class of unstable periodic orbits (UPOs), natural modes of variability that cover the attractor the system. UPOs
corresponding to blockings have, indeed, a higher degree of instability compared to UPOs associated with zonal flow. Our
results provide a rigorous justification for the classical Markov chains-based analysis of transitions between weather regimes.
The analysis of UPOs elucidates that the model features a very severe violation of hyperbolicity, due to the presence of a
substantial variability in the number of unstable dimensions, which explains why atmospheric states can differ a lot in term
of their predictability. Additionally, such a variability explains the need for performing data assimilation in a state space that
includes not only the unstable and neutral subspaces, but also some stable modes. The lack of robustness associated with
the violation of hyperbolicity might be a basic cause contributing to the difficulty in representing blockings in numerical
models and in predicting how their statistics will change as a result of climate change. This corresponds to fundamental
issues limiting our ability to construct very accurate numerical models of the atmosphere, in term of predictability of the
both the first and of the second kind in the sense of Lorenz.



Perspectives

More broadly, BraMAH holds promise for the understanding of topological tipping points (TTPs).

Tipping points (TPs) have been given a
precise definition in the climate sciences
as a generalization of classical
bifurcations from autonomous systems
to NDSs and RDSs, and they are actively
being pursued.

Topological tipping points (TTPs) can be
understood as abrupt changes in the
topological description of a random
attractor’s branched manifold.

TTPs seem to be a further generalization
of the concept that could help us
apprehend sudden and drastic changes
in time of model behaviour, as well as
drastic changes due to mean forcing
intensity.

International Journal of Bifurcation and Chaos, Vol. 21, No. 2 (2011) 399-423
(© World Scientific Publishing Company
DOI: 10.1142/S0218127411028519

PREDICTING CLIMATE TIPPING AS A
NOISY BIFURCATION: A REVIEW

J. MICHAEL T. THOMPSON
Department of Applied Mathematics & Theoretical Physics,

Cambridge University, Centre for Mathematical Sciences,
Wilberforce Road, Cambridge, CB3 0WA, UK

School of Engineering (Sixth Century Professor),
Aberdeen University, UK
JmittQucl.ac.uk
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Perspectives

More broadly, BraMAH holds promise for the understanding of topological tipping points (TTPs).

* The gradual change of atmospheric concentrations of PHILOSOPHICAL
L [y Phil. Trans. R. Soc. A (2012) 370, 1166-1184
greenhouse ga.ses aer aerosols modifies global‘ _or Q e ol ik i
temperatures in a fairly smooth way, although it SOCIETY

might also lead to dynamical tipping points.

Tipping points in open systems: bifurcation,
noise-induced and rate-dependent examples
in the climate system

e The intrinsic noise associated with cloud processes
on small space and time scales affects the entire
climate system through their interaction with

dynamlc and radiative processes on Iarger scales. BY PETER ASHWIN*, SEBASTIAN WIECZOREK, RENATO VITOLO
AND PETER CoOX

e This noise is considerably more complex than the one Mathematics Research Institute, University of Exeter, Exeter EX/ JQF, UK
considered herein, and the climate system is |nf|n|te|y Tipping points associated with bifurcations (B-tipping) or induced by noise (N-tipping)
more com plex that we have studied. are recognized mechanisms that may potentially lead to sudden climate change. We focus

here on a novel class of tipping points, where a sufficiently rapid change to an input
. . . . or parameter of a system may cause the system to ‘tip’ or move away from a branch

* Stl”; given the hUge recent increases in both of attractors. Such rate-dependent tipping, or R-tipping, need not be associated with

Computing power and data Storage it is worth either bifurcations or noise. We present an example of all three types of tipping in a
. ' . simple global energy balance model of the climate system, illustrating the possibility
explorlng further whether such an interaction of dangerous rates of change even in the absence of noise and of bifurcations in the

underlying quasi-static system.

between large-scale dynamics and small-scale noise
might not lead to striking surprises in the not-too-
distant future.

Keywords: rate-dependent tipping point; bifurcation; climate system




To conclude...

Within the deterministic framework:

* The topology of branched manifolds provides information on the stretching, folding, tearing
and squeezing mechanisms that act in phase space to shape a deterministic flow.

* These concepts and tools have been recently extended to address nonautonomous dynamical
systems. They provide an unprecedented nonlinear perspective that can be fruitful for the
climate sciences in several ways.

Within the stochastic framework:

* The use of branched manifolds can be extended beyond the deterministic framework by investigating
the evolution in time of the topological structure of Random Dynamical Systems.

* The branched manifold is found to undergo abrupt changes for some values of the noise forcing,
suggesting that the effects of noise on chaotic dynamics can be robustly addressed in this manner.
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Extra slides

In the same year, Otto E. Rossler came up with an attempt at constructing a hierarchy of chaos. In this
hierarchy, branched manifolds are the finest description of the structure underlying complex dynamical

systems.

The Chaotic Hierarchy
Otto E. Rossler

Z. Naturforsch. 38a, 788 —801 (1983); received December 4, 1982

The complexity of dynamical behavior possible in nonlinear (for example, electronic) systems
depends only on the number of state variables involved. Single-variable dissipative dynamical
systems (like the single-transistor flip-flop) can only possess point attractors. Two-variable
systems (like an LC-oscillator) can possess a one-dimensional attractor (limit cycle). Three-
variable systems admit two even more complicated types of behavior: a toroidal attractor (of
doughnut shape) and a chaotic attractor (which looks like an infinitely often folded sheet). The
latter is easier to obtain. In four variables, we analogously have the hyper-toroidal and the hyper-
chaotic attractor, respectively; and 50 forth. In every higher-dimensional case, all of the lower
forms are also possible as well as “mixed cases” (like a combined hypertormdal and chaotic
motion, for example). Ten simple ordinary differential equations, most of them easy to
implement electronically, are presented to illustrate the hierarchical tree. A second tree, in which
one more dimension is needed for every type,is called the weak hierarchy because the chaotic
regimes contained cannot be detected physically and numerically. The relationship between the
two hierarchies is posed as an open question. It may be approached empirically — using
electronic systems, for example.

O. E. Rossler - The Chaotic Hierarchy

Fig. 2. The flow generated by (1) in 3-space. The same
picture is shown twice (the second time schematically).
Numerical simulation of (1), performed on an HP 9845B
desk-top computer with peripherals using a standard
Runge-Kutta-Merson integration routine. Initial condi-
tions: x(0)=10, y(0)=1, z(0)=0; t,9=116. Axes:
-20...20for x,—20...15for y,0... 30 for z.
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In this work, BraMAH is applied to the numerically
generated fluid particle behaviour in the wake past a
rotary oscillating cylinder (ROC) at a low Reynolds
number.

The results are compared with those obtained when
applying BraMAH to another paradigmatic analytical
model of Lagrangian motion: the Driven Double Gyre
(DDG).

Both systems, the ROC and the DDG, present a
background region with several groups of particles
forming islands, which have been studied as resonance
phenomena for Hamiltonian systems using a Lagrangian
variational formulation.

The interesting point is that BraMAH can be used to
relate particle behaviour in a priori unrelated flows,
provided the analysis is performed in equivalently scaled
time windows, and that the recirculation cells of the ROC
can be seen as a ‘materialisation’ of the DDG.



Extra slides

e Lagrangian Analysis

Topological colouring of 4 797 fluid particles using BraMAH for the ROC system.

Cell complex Topological class Colour
Lo K I Green
e K, 11 Magenta
' K5 111 Blue
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e La gran gi an Ana Iysi S Symplectic maps, variational principles, and transport
J. D. Meiss
Program in Applied Mathematics, University of Colorado, Boulder, Colorado 80309
Th e ROC Sy Ste m |S fo un d to S h are ma ny Symplectic maps are the discrete-time analog of Hamiltonian motion. They arise in many applications in-

cluding accelerator, chemical, condensed-matter, plasma, and fluid physics. Twist maps correspond to
Hamiltonians for which the velocity is a monotonic function of the canonical momentum. Twist maps

fe at ures encou nte re d In t h e D D G ’ Wi t h have a Lagrangian variational formulation. One-parameter families of twist maps typically exhibit the full
range of possible dynamics—from simple or integrable motion to complex or chaotic motion. One class of

severa | g rou pS Of pa rt | C I es fO rm | n g |S | an d S ) orbits, the minimizing orbits, can be found throughout this transition; the properties of the minimizing or-

bits are discussed in detail. Among these orbits are the periodic and quasiperiodic orbits, which form a

W h iC h h ave bee N St u d | ed as resonance scaffold in the phase space and constrain the motion of the remaining orbits. The theory of transport

deals with the motion of ensembles of trajectories. The variational principle provides an efficient tech-

H H H nique for computing the flux escaping from regions bounded by partial barriers formed from minimizing

p h enomena fo r H ami |to nian SySte ms usin g orbits. Unsolved problems in the theory of transport include the explanation for algebraic tails in correla-
a Lagrangian variational formulation.

tion functions, and its extension to maps of more than two dimensions.

Rev. Mod. Phys., Vol. 64, No. 3, July 1992

With these applications, theoretical progress is also being made, since BraMAH is successfully applied to non-
dissipative (conservative) systems, characterizing both the quasi-periodic resonant islands and the so-called
chaotic sea.

Even if the ROC system is an open flow, only particles in the recirculation cells are being studied.

Can BraMAH be applied to an open flow?
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7
BraMAH applied to a set of 9 516 particles X,
of the Bickley jet.
, x10° x10° <10° <10°
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The Bickley jet is an analytic model of an open flow that captures the essential characteristics of the stratospheric
polar vortex, in which a zonal jet acts as a transport barrier.

The stream function w(x, y, t) has a

v(x1, X2, t) = Yo(x2) + ¥1(x1, X2, t), steady background flow wg(y) and
X three traveling Rossby waves are
Yo(x2) = —UpLp tanh (L_) superimposed. Topological (1) 3-loop structure - Blue
’ , colouring of a (2) Moebius strip = Red
X2 collection of 9 516 (3) Standard strip > Green
X1, X, t) = UpLgsech? | = €,c0s (kn(X; — Cpt
s 52a 3 o (Lo) ; " o1 = Gt ) particles of the (4) Torus - Magenta

Bickley jet.
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BraMAH applied to a collection of 9 516

particles of the Bickley jet. At each position of the grid, the colour/label corresponding to the
topological class of a particle that is passing through that position
at an instant t for a time series defined for instance in [t, t+ T,]
(or [t-T,, t]).

x1°
2‘+o Q7+ N+ * PP @/
{ - W\% 0O * A\% C * CL\ #
><N 0% OO O o c AN
L O/0 % W@ * 0O X (0 *\\O
-2 RO & _x IR RO\ x _x K GREFA * x—£ D
xl L SN —_— S— —_— el A L B SRl -
5 5.5 6 6.5 r
X1 ><107
(1) 3-loop structure - Blue Fig. 11. Streakline associated to the Bickley Jet flow at t; = 40 days with
(2) Moebius strip > Red injection locations at p = (x1,%2) / x1 = 1 x 108 Ax, € [—4 : 0.05 :

) —2] x 10° U [2:0.05 : 4] x 10°, juxtaposed with the topological grid where
8; _Srtandfidl\;t“p -> Green (@) K; (A), (b) Kz (O), () K3 (0) and (d) K4 (). Length units are measured
orus agenta in meters.
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Classifying topologies (= classifying dynamics) can be
used:

to unravel finite-time coherent sets,

to characterize particle dynamics within each
coherent set,

to compare non neighbouring regions of a flow,
to compare the behaviour of particles in different
flows.

Although the cases we discuss are 2-D incompressible
flows, the technique is not restricted to them.

The prospects of this methodology are multiple and
diverse, opening the possibility of addressing Lagrangian
studies from an unprecedented perspective.
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Several research groups carried out an important extension of the dynamical systems and model hierarchy
framework of Ghil (2001) during the past 2 decades, from deterministically autonomous to nonautononomous
and random dynamical systems (NDSs and RDSs: e.g., Ghil et al., 2008; Chekroun et al., 2011; Bédai & Tél, 2012;
Ghil & Lucarini, 2020; Tél et al., 2020).

This framework allows one to deal, in a self-consistent way, with the increasing role of time-dependent forcing
applied to the Earth system by humanity and by natural processes, such as solar variability and volcanic eruptions.

Among the 10 problems proposed in Ghil
(2001), the fl rst two were: Nonlinear Processes in Geophysics (2001) 8: 211-222

Nonlinear Processes
in Geophysics
1. What is the coarse-grained structure (©European Geophysical Society 2001

of low-frequency atmospheric
variability, and what is the connection
between its episodic and oscillatory

description? Hilbert problems for the geosciences in the 21st century
M. Ghil
2 Wh at can we p red | ct beyo N d 1 wee k Dept. of Atmospheric Sciences and Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA
. ’

90095-1565, USA
for hOW |Ong, d nd by What methOdS? Received: 7 February 2001 — Accepted: 30 April 2001
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The point cloud density in the deterministic Lorenz attractor is quite
homogeneous, but LORA is quite inhomogeneous in this respect. .

We are interested in LORA’s coarse-grained topology, so we will construct =
BraMAH complexes with the most populated regions of the point cloud.
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L At t=40.27, there are four holes that perdure as the value of the threshold 71 increases.
O In (b) and (c) we use a sieve of n = 2x10 for the estimated sample measure fi;.
d We construct the BraMAH complexes with the most populated regions of the point cloud.
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FIG. 2. LORA snapshot at ¢ = 40.27, for 0 = 0.3. (a) perdurance of the 1-holes as the density threshold 7 is increased; the most perdurant
holes are labeled with numbers (1)—(4); (b) (¥, z) projection of the sieved point cloud (7 = 2 X 10~%) with 13 colored 1-holes: (c) projection
onto the plane —2.25x — 20y + 6z = 0 of the sieved point cloud with the 1-hole labeled (4) in red.



