
HAL Id: hal-03420004
https://hal.science/hal-03420004

Submitted on 8 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The bang-bang property in some parabolic bilinear
optimal control problems via two-scale asymptotic

expansions
Idriss Mazari

To cite this version:
Idriss Mazari. The bang-bang property in some parabolic bilinear optimal control problems via
two-scale asymptotic expansions. Journal of Functional Analysis, 2022, 284 (10), pp.109855.
�10.1016/j.jfa.2023.109855�. �hal-03420004�

https://hal.science/hal-03420004
https://hal.archives-ouvertes.fr


The bang-bang property in some parabolic bilinear optimal

control problems via two-scale asymptotic expansions

Idriss Mazari

November 8, 2021

Abstract

We investigate the bang-bang property for fairly general classes of L∞ − L1 constrained
bilinear optimal control problems in two cases: that of the one-dimensional torus, in which case
we consider parabolic equations, and that of general d dimensional domains for time-discrete
parabolic models. Such a study is motivated by several applications in applied mathematics,
most importantly in the study of reaction-diffusion models. The main equation in the one-
dimensional case writes ∂tum − ∆um = mum + f(t, x, um), where m = m(x) is the control,
which must satisfy some L∞ bounds (0 6 m 6 1 a.e.) and an L1 constraint (

∫
m = m0 is

fixed), and where f is a non-linearity that must only satisfy that any solution of this equation
is positive at any given time. The time-discrete models are simply time-discretisations of such
equations. The functionals we seek to optimise are rather general; in the case of the torus,
they write J (m) =

∫∫
(0,T )×T j1(t, x, um) +

∫
T j2(x, um(T, ·)). Roughly speaking we prove in

this article that, if j1 and j2 are increasing, then any maximiser m∗ of J is bang-bang in
the sense that it writes m∗ = 1E for some subset E of the torus. It should be noted that
such a result rewrites as an existence property for a shape optimisation problem. We prove
an analogous result for time-discrete systems in any dimension. Our proofs rely on second
order optimality conditions, combined with a fine study of two-scale asymptotic expansions.
In the conclusion of this article, we offer several possible generalisations of our results to more
involved situations (for instance for controls of the form mϕ(um)), and we discuss the limits
of our methods by explaining which difficulties may arise in other contexts.
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1 Introduction

1.1 Scope of the paper, informal presentation of our results

In this paper, we offer a theoretical analysis of an ubiquitous constrained optimal control problem,
in which one aims at optimising a criteria by acting in a bilinear way on the state of the PDE.
Prototypically, the model under consideration reads as follows: for a given non-linearity f =
f(t, x, u) and a control m = m(t, x), we let um be the solution of

∂tum −∆um = mum + f(t, x, um)

with variables x ∈ Ω and t ∈ [0, T ] under certain boundary conditions. For a certain time horizon
T > 0, we aim at optimising criteria of the form

J (m) =

∫∫
(0,T )×Ω

j1(t, x, um) +

∫
Ω

j2(x, um(T, ·))

under some constraints on the control m. Throughout the paper, the constraints on m will be of
L1 and L∞ type; in other words, one constraint takes the form

∀t ∈ [0, T ] ,

∫
Ω

m(t, x)dx = V0 fixed or

∫
Ω

m(x)dx = V0 (if m does not depend on time)

while the other is of the type
α 6 m 6 β a.e.

In this type of setting, one of the salient qualitative features of optimisers is the bang-bang property.
In other words, is it true that any maximiser writes m∗ = α + (β − α)1E for some measurable
subset E of Ω? This property is linked to (non-)existence results for shape optimisation problems.
There were, in recent years, several fine qualitative studies of this property in the elliptic case or
in the space-discretised case; we refer to Section 1.6. However, in the context of parabolic models
and despite the current activity in the study of parabolic bilinear optimal control problems, this
property does not seem to be reachable by the available techniques; we refer to section 1.4 and
section 1.6.

In the first part of this paper, we prove that, under reasonable assumptions on the non-linearity
f that ensure the well-posedness of the parabolic system, and on the cost functions j1 , j2 (roughly
speaking, they must both be non-decreasing, and one has to be increasing), the bang-bang property
holds if we assume that admissible controls are constant in time and that the domain is one-
dimensional. This is the main contribution of this article. It hinges on the methods of [39],
coupled with two-scale asymptotic techniques previously used in [37] in the context of the optimal
control of initial conditions in reaction-diffusion equations. The reason why we tackle the one-
dimensional periodic case will be explained later on. It should be noted that we explain in the
conclusion how we may cover, with the same type of arguments, higher-dimensional orthotopes.
The main explanation behind having to work with time constant controls is a technical one; this
allows to gain further regularity on the solutions of the parabolic PDE under consideration. For
this reason, section 4.1.2 of the conclusion contains a discussion of possible generalisations and
obstructions to generalisations; we explain, for instance, how to deal with the case of controls m
writing

∑N
i=1 φi(t)mi(x). As a first side comment, it should also be noted that our analysis cover

the case of some tracking-type functionals. This is not the main topic, and we refer to remark 5. As
a second side comment, our analysis can encompass more intricate interactions between the control
and the state. For instance, we provide, in section 4.1.3 of the conclusion, a generalisation of our
results to the case where the control and the state are coupled via a term of the form mϕ(um) for
a large class of ϕ.
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Our second contribution deals with a semi-discretised (in time) parabolic model, where the
main system of equation is given by

wm,k+1 − wm,k

δt
−∆wm,k+1 = mk+1wm,k+1 + fk+1(x,wm,k+1) , k = 0, . . . , N − 1

for some time step δt, where m = (m1, . . . ,mN ) and each mi satisfies L∞ and L1 constraints. The
optimisation problem is rather, in this case

J(m) =

N∑
i=1

ji(x, um,i).

For this semi-discrete parabolic model, we prove that, provided the functions ji are increasing,
any optimiser m is of bang-bang type. Here, our analysis holds in any dimension, in any smooth
bounded domain for Neumann or Robin boundary conditions. The reason we deal with this semi-
discretised version is twofold: first, there has recently been some interest in the discretisation of
bilinear optimal control problems [43]. Second, this allows us to give more perspective on the proof
of the bang-bang property for the parabolic model in general domains.

Our introduction is divided accordingly: section 1.2 is devoted to the study of parabolic prob-
lems, while section 1.3 tackles time-discrete parabolic models.

1.2 Main model and result for parabolic problems

1.2.1 The parabolic equation

Admissible controls in parabolic models In the case of parabolic models, we are working in
the (one-dimensional) torus T. In section 4.2.1, we explain how our methods may extend to the
case of higher dimensional tori.

Regarding the time regularity of admissible resources distribution, we shall make a strong
assumption: the admissible controls are constant in time. The reason is that the method we
introduce and develop hinges on fine regularity properties of solutions of the associated evolution
equation that can not be obtained in the case where the control m also depends on time. We also
refer to remark 8 for further comments.

In this setting, denoting by um the state of the equation and by m the control, the only type
of interaction we are interested in is bilinear; in other words, the control appears in the model
via the term mum (see Remark 7 and section 4.1.3 for considerations on the case of interactions
of the form mϕ(um)). In terms of constraints, we impose two on the controls, an L∞ and an L1

one. Each of these constraints has a natural interpretation in different fields of applications. In
spatial ecology for instance, one may think of m as a resources distributions, in which case the L∞

constraint simply models the fact that, at any given point, there can only be a maximum amount
of resources available, while the L1 constraint accounts for the limitation of the global quantity of
resources involved. For the L∞ constraints, without loss of generality (we also refer to remark 6),
we shall consider controls satisfying

0 6 m 6 1 a.e. in T.

For the L1 constraint, we fix a volume constraint V0 ∈ (0,Vol(T)), and we shall consider controls
satisfying ∫

T
m = V0.

This leads to considering the admissible class
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M(T) :=

{
m ∈ L∞(T) : 0 6 m 6 1 a.e. in T ,

∫
T
m = V0

}
. (Adm)

Of notable interest in M(T) are bang-bang functions; as they are the central theme of this paper
we isolate their definition here.

Definition 1. A function m ∈M(T) is called bang-bang if there exists E ⊂ T such that m = 1E.

Nonlinearities under consideration Our choice of nonlinearity in the parabolic model also
derives from considerations in mathematical biology or chemistry. Namely, we want the solutions
not only to exist but to be uniformly bounded (in time) in the L∞ norm, as well as to enjoy a strong
maximum property (in the sense that, starting from a non-zero initial condition, the solution is
positive at any arbitrary positive time). The latter is not only important from a modelling point
of view but also in the course of the proof, as it influences the monotonicity of the functional under
consideration.

As the right hand side of the reaction-diffusion equation writes mu + f(t, x, u) we shall make
the following assumptions that guarantee the well-posedness of the ensuing system:

f is C 1 in time, L∞ in x, and C 2 in u,

and, for any K ∈ IR, sup
x∈T ,u∈[0,K],t∈[0,K]

(∣∣∣∣∂f∂t
∣∣∣∣+

∣∣∣∣∂f∂u
∣∣∣∣+

∣∣∣∣∂2f

∂u2

∣∣∣∣) <∞. (H1)

Assumption (H1) serves to derive the proper regularity of the solutions of the equation. The next
assumption is used to obtain upper and lower bounds on the solution:

f(·, ·, 0) > 0, f(·, ·, 0) ∈ L∞((0, T )× T) and

there exists κ > 0 such that for any u > κ, for any t ∈ IR+, for a.e. x ∈ T, f(t, x, u) 6 −u. (H2)

In the first condition, if we had f(·, ·, 0) = 0 this would simply model that when no individuals are
present no reaction is happening. Assuming the general inequality allows to consider non-negative
source terms (i.e. one may take f(t, x, u) = ug(t, x, u) + y(t, x) for a certain g and a non-negative
source term y). It should be noted that, had we taken −κ0 6 m 6 κ1 as L∞ constraints, the final
inequality in (H2) would rewrite f(t, x, u) 6 − sup{|κ0| , |κ1|}u.

Finally the last assumption is seemingly the most restrictive one, but we explain, in Remark 2,
why it is not problematic for the type of problems we have in mind.

f is, uniformly in (t, x) ∈ (0, T )× T, uniformly Lipschitz in u ∈ IR: there exists A such that,

for any (t, x) ∈ (0, T )× T , for any u, u′ ∈ IR, |f(t, x, u)− f(t, x, u′)| 6 A|u− u′|. (H3)

Remark 2 (Comment on (H3)). (H3) may seem restrictive, as the typical monostable logistic
diffusive equation would involve the non-linearity f(u) = −u2, which grossly violates the Lips-
chitz condition of (H3). However, assumption (H2) ensures that, if we start from a positive
bounded initial condition u0, then the solution remains positive and bounded uniformly in time by
max

(
‖u0‖L∞ , κ

)
(see lemma 13) so that it suffices to extend f(t, x, ·) outside (0,max

(
‖u0‖L∞ , κ

)
)

to a globally uniformly Lipschitz function on IR.

Initial condition We simply take an initial condition independent of m, say u0, satisfying

inf
T
u0 > 0 , u0 ∈ C 2(T). (1.1)
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Parabolic model We define, for any m ∈M(T), um as the unique solution of{
∂um

∂t −∆um = mum + f(t, x, um) in (0, T )× T ,
um(0, ·) = u0 in T.

(1.2)

By [45, Theorem 5.2, Chapter 1] there exists a unique solution um of (1.2) (we also refer to lemma
16 for further regularity information about um).

Optimisation problem in the parabolic context: time-constant controls We consider
fairly general functionals that we seek to optimise. To define this functional, we consider two
functions j1 , j2, a time horizon T > 0 and we define

J :M(T) 3 m 7→
∫∫

(0,T )×T
j1(t, x, um) +

∫
T
j2 (x, um(T, ·)) . (1.3)

We mentioned earlier the crucial role of the monotonicity of the functional J , which hinges on
that of j1 and j2; we refer to section 1.6 for further comments. We thus assume that j1 , j2 satisfy

j1 and j2 are non-decreasing in the second variable on IR+,

j1 is C 1 in its two first variable and C 2 in its third variable,

j2 is C 2 in its two variables,

∀(t, x) ∈ (0, T )× T ,∀K ∈ IR∗+ ,

sup
(t,x)∈(0,T )×T ,u∈[0,K]

sup
α=0,1,2

∣∣∣∣∂j1∂t (t, x, u)

∣∣∣∣+

∣∣∣∣∂αj1∂uα
(t, x, u)

∣∣∣∣+

∣∣∣∣∂αj2∂uα
(x, u)

∣∣∣∣ <∞,
and either for any (t, x) ∈ (0, T )× T, ∂uj1(t, x, ·) > 0 in (0; +∞) or

for any (t, x) ∈ (0, T )× T, ∂uj2(t, x, ·) > 0 in (0; +∞), (HJ )

and we say (with a slight abuse of notation, identifying J with (j1, j2)) that J satisfies (HJ ).
In particular, we may choose

j1(t, x, u) = uα and j2(x, u) = uβ

for α , β > 0, or j1 = ϕ1(u) , j2 = ϕ2(u) with ϕ1 , ϕ2 smooth and non-decreasing and at least
one with positive derivative on IR∗+, or j1(u) = ψ(x)u , j2(u) = ψ2(x)u with ψ1 , ψ2 > 0 and
sup (inf |ψ1| , inf |ψ2|) > 0. The parabolic optimisation problem reads

max
m∈M(T)

J (m) (Pparab)

Remark 3 (Existence of maximisers). The existence of a solution of the variational problems
(Pparab) is a standard consequence of the direct method in the calculus of variations.

1.2.2 Main result for the parabolic problem

We state our main result:

Theorem I. Assume f satisfies (H1)-(H2)-(H3). Assume J satisfies (HJ ). Any solution m∗ of
(Pparab) is bang-bang: there exists E ⊂ T such that

m∗ = 1E .

The proof of this theorem is the core of this paper, and takes up the entire section 2.
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An application to a spatial ecology problem We can apply theorem I to the following spatial
ecology problem. Consider, for any m ∈M(T), the logistic-diffusive equation

∂θm
∂t −∆θm = θm (m− θm) in (0, T )× T ,
θm(0, ·) = θ0 ∈ C 2(T) in T ,
infT θ

0 > 0.

(1.4)

In this context, the control m accounts for a resources distribution available to a population, the
density of which is the function θm. A relevant query is to solve the optimisation problem

sup
m∈M(T)

∫∫
(0,T )×T

θm(t, ·) +

∫
T
θm(T, ·), (1.5)

for some time horizon T > 0. This problem is the parabolic counterpart of a related elliptic
optimisation problem that was intensively studied in the past few years, see section 1.6 and [20,
23, 24, 28, 30, 31, 35, 39, 40, 43, 44]. In the elliptic case, the bang-bang property for optimisers
was, in particular, a question that drew a lot of attention [35, 40, 44] and was only recently settled
in [39]. In the parabolic setting, i.e. for problem (1.5), we refer, for instance, to the recent [10]
for the derivation of optimality conditions, as well as for some numerical simulations for a close
variant of (1.5). Then, as corollary of theorem I we obtain

Corollary 4. Any solution m∗ of (1.5) is of bang-bang type.

The same conclusion holds for the two related problems

sup
m∈M(T)

∫
T
θm(T, ·) , sup

m∈M(T)

∫∫
(0,T )×T

θm.

It should be noted that, in [10], the case m = m(t, x) is also considered. Our results do not
hold in this case, as already underlined. We nonetheless refer to section 4.1.2 for generalisation of
theorem I to some classes of time-dependent controls.

We conclude this section on parabolic models with some remarks .

Some remarks on theorem I

Remark 5 (Tracking type functionals). Another class of functionals is of particular interest, that
of tracking-type functionals. The goal is, in this case, to solve an optimisation problem of the form

inf
m∈M(T)

∫
Ω

|um(T, ·)− yref |2, (1.6)

where yref is a target state. We would like to underline that such problems fall in our framework
provided yref is large enough to ensure that, for any m ∈ M(T) and any T > 0, yref > um(T, ·).
Indeed, as will be clear throughout the proof, the assumption that ∂uj1(t, x, u) > 0 on IR∗+ can be
restricted to

∀(t, x) ∈ (0, T )× T , ∂uj1(t, x, u) > 0 in

(
0, sup
m∈M(T) ,T∈IR∗+

‖um(T, ·)‖L∞
)
.

It is the minimum requirement we can make, as we know that the solutions of some tracking-type
problems are not bang-bang.

7



Let us now consider the case of (1.4) with θ0 < 1 and consider the optimisation problem

min
m∈M(T)

∫∫
(0,T )×T

|θm − 1|2.

This optimisation problem is equivalent to

max
m∈M(T)

(
−
∫∫

(0,T )×T
|θm − 1|2

)
.

As, from the maximum principle, θm < 1, the map j1(x, u) = −|1 − u|2 is increasing and has a
positive derivative in (0; 1), whence we can apply theorem I to conclude that any minimiser of the
initial problem is of bang-bang type. This example immediately generalises to the case where the
target yref = 1 is replaced with any target yref > 1 a.e.

Remark 6 (Regarding the L∞ constraints on m). It should be noted that we may consider con-
straints of the form

κ0 6 m 6 κ1

for two parameters κ0 , κ1 ∈ IR (possibly non-positive), without changing the conclusions of the
theorems. The only difference would be that a bang-bang m would in that case be of the form
m = κ0 + (κ1 − κ0)1E. Indeed, the proof relies on a second-order derivative argument that still
holds in this case, as the key point is that um(t, ·) is positive whenever t > 0. For an interaction
of the type mum with a sign-changing m, this is still the case.

Remark 7 (Regarding the bilinearity of the control). It is also worth noting that our method
is flexible enough to cover the case of other interactions, of the form mϕ(um), for suitable non-
linearities ϕ. In the conclusion, see theorem IV, section 4.1.3, we give a sketch of proof for a version
of theorem I for this type of interactions. The main condition on ϕ to ensure that the bang-bang
property holds is that ϕ′/ϕ > 0 in IR∗+, which is still sufficient to cover the case of the optimisation
of the carrying capacity, where one works with the equation ∂tym − ∆ym = ym(1 −mym). This
last example is motivated by [20].

Remark 8 (Regarding the time dependency of the control). Our method also allows to cover a
form of time-dependency of the control. If we consider, rather than m(x)um(t, x), an interaction

of the form um(t, x)
∑N
i=1 φi(t)mi(x), where the φi are bounded, smooth functions of time, then the

bang-bang property holds. We refer to theorem III , section 4.1.2. In the conclusion, see section
4.3, we explain the difficulty in obtaining the same results for general time-dependent controls.

Remark 9 (Regarding the one-dimensional setting). The reason we work in the one-dimensional
torus is a technical one; while the dimension of the torus is not problematic (see section 4.2.1 of
the conclusion), the space periodicity enables us to carry out rigorous two-scale expansions in the
following setting: a key part of the proof is the study of the solution u̇ of an equation of the form

∂tu̇−∆u̇ = V (t, x)
∑
k�1

αk cos(kx),

and we study u̇ by providing an explicit expansion as all the Fourier indexes k � 1 are very large.
While, in more general domains, we may replace the right-hand side in the equation above with∑
k�1 αkψk(x) for some eigenfunctions ψk of the laplacian operator, it is not yet clear how we

may reach the necessary conclusion.
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1.3 Main model and result for time-discrete problems

1.3.1 The time-discrete model

In this section, we work in any dimension d > 1. We consider a bounded, connected C 2 domain
Ω ⊂ IRd. Rather than periodicity condition, we shall impose Neumann boundary conditions (Robin
boundary conditions would also be suitable for our analysis, see Remark 12). We fix an integer
N ∈ IN\{0} as well as a time step δt > 0.

Constraints and admissible controls For the same reasons as in the parabolic model, we fix
a volume constraint V0 ∈ (0,Vol(Ω)) and we define the set

M(Ω) :=

{
m ∈ L∞(Ω) : 0 6 m 6 1 a.e. in Ω ,

∫
Ω

m = V0

}
.

The set of admissible controls for the time-discrete system is the set of N -tuples (m1, . . . ,mN )
where, for any i ∈ {1, . . . , N}, mi ∈M(Ω).

Remark 10. The fact that we assume all mi (i = 1, . . . , N) belong to the same set M(Ω) is
merely for notational convenience. We may introduce, for any i ∈ {1, . . . , N}, the set Mi := {m ∈
L∞(Ω) , αi 6 m 6 βi a.e. ,

∫
Ω
m = Vi} and replace the conditions ” ∀i ∈ {1, . . . , N} ,mi ∈M(T)”

with ”∀i ∈ {1, . . . , N} ,mi ∈Mi(T)”. This would not change the conclusion.

We define
M(Ω) :=M(Ω)N .

Generically, the notation m stands for such an N -tuple and, m ∈M(Ω) being given, mk denotes
the k-th component of m.

We shall say that m ∈M(Ω) is bang-bang if, for any i ∈ {1, . . . , N}, mi is a bang-bang function.

Non-linearities under consideration The non-linearities fk (k = 1, . . . , N) are assumed to
satisfy the same assumptions (H1)-(H2)-(H3) as in the parabolic case (and with uniform constants
in the sense that the κ of (H2) and the A of (H3) do not depend on the index k), with the convention
that fk(t, x, u) := fk(x, u). We say that {fk}k=1,...,N satisfies (Hdis).

Initial condition We assume that we are given w0 ∈ L∞(Ω) with 0 6 w0 , w0 6= 0. For the sake
of simplicity (since this allows us to simply use κ instead of max{κ, ‖w0‖L∞}) we further assume
that

w0 6 κ where κ is given by (H2).

Time-discrete model We define, for any m ∈M(Ω), wm = {wm,0 . . . , wm,N} as the solution
of

wm,0 = w0 and for any k ∈ {0, . . . , N − 1},{
wm,k+1−wm,k

δt −∆wm,k+1 = mk+1wm,k+1 + fk+1(x,wm,k+1) in Ω ,
∂wm,k+1

∂ν = 0 on ∂Ω.
(1.7)

In lemma 22 we recall (with proofs in appendices) that, provided δt > 0 is small enough, this
system is uniquely solvable. Lemma 22 also contains the relevant regularity properties.
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Optimisation problem in the time-discrete context We consider N non-linearities ji =
ji(x,w) (i = 1 , . . . , N) and we define the functional

J : M 3m 7→
N∑
i=1

ji(x,wm,i).

We assume that

For any i ∈ {1, . . . , N}, ji is L∞ in its first variable and C 2 in its second variable,

∀x ∈ T ,∀K ∈ IR∗+ , sup
i=1,...,N

sup
(t,x)∈(0,T )×T ,w∈[0,K]

|∂wji(x,w)| <∞, and

∀i ∈ {1, . . . , N} ,∀x ∈ Ω , ∂wji(x, ·) > 0 in (0; +∞). (HJ)

We say that J satisfies (HJ).
The optimisation problem reads

max
m∈M(Ω)

J(m) (PNdis)

Remark 11 (Existence of maximisers). The existence of a solution of the optimisation problem
(PNdis) is an easy consequence of the direct method in the calculus of variations.

1.3.2 Main result for time-discrete models

The main theorem of this section is the following:

Theorem II. Assume {fk}k=1,...,N satisfies (Hdis). Assume J satisfies (HJ). Any solution
m∗ = (m∗1 , . . . ,m

∗
N ) of (PNdis) is bang-bang: there exist E1 , . . . , EN ⊂ T such that

∀i ∈ {1, . . . , N} ,m∗i = 1Ei .

Remark 12 (Regarding the boundary conditions). The main reason we consider Neumann bound-
ary conditions is to ensure the strict positivity of the adjoint function; in other words, the only
time these boundary conditions come into play is when using a strong maximum principle to obtain
a positive lower-bound on the state wm. Of course, since we also have such information for Robin
boundary conditions, we claim that theorem II holds when the Neumann boundary condition is
replaced by the Robin boundary condition

∂wm,k+1

∂ν
+ βk+1wm,k+1 = 0

for some βk > 0 , βk <∞ (k = 1, . . . , N).

1.4 Comments on the proofs of Theorems I and II

As mentioned, the starting point of our method is an idea we introduced in [39] in the elliptic
context. Roughly speaking, consider an elliptic bilinear optimal control problem of the form
supm∈M(T)

∫
T j(zm)(= Jell(m)) where M(T) is defined in (Adm), subject to −∆zm = mzm +

g(x, zm). We proved that, under suitable assumptions on the non-linearity g and provided j was
increasing, any optimiser m∗ell was a bang-bang function. The crucial point was the following

lower estimate of the second order derivative J̈ell(m)[h, h] of Jell at an admissible control m in the
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direction of a perturbation h: if j is increasing, if zm > 0 is a stable steady-sate for any m, then
for any m there exist two positive constant α , β > 0 such that for any admissible h at m,

J̈ell(m)[h, h] > α

∫
T
|∇żm|2 − β

∫
T
ż2
m. (1.8)

In the expression above, żm is the derivative of m 7→ zm at m, in the direction h. It appears
that żm solves a linear equation of the form Lmżm(:= −∆żm − Vmzm) = hzm for some bounded
potential Vm. To obtain that any maximiser m∗ell is bang-bang, we argued by contradiction: if m∗ell

is not bang-bang, then it suffices to build a perturbation h at m∗ell supported in {0 < m∗ell < 1}
such that J̈ell(m

∗
ell)[h, h] > 0 and, given the bound (1.8), it suffices to have

∫
T |∇żm∗ell |

2 �
∫
T ż

2
m∗ell

.

We then used the spectral eigenvalues and eigenfunctions {λk, ψk}k∈IN of the operator Lm∗ell to
build an h such that, in the eigenfunction basis, the only non-zero Fourier modes of żm∗ell are high
order Fourier modes:

żm =
∑
k>K

αkψk for some large integer K.

In the case of time-discrete models, this strategy proves efficient as well; however, in the case
of parabolic equations, even obtaining such a lower order estimate on the second order derivative
of the functional requires some time regularity on the controls m (hence the assumption that
m does not depend on time in theorem I). However, even with such an estimate at hand, the
problem is still not solved. Indeed, in the parabolic case, the structure of the equation on u̇m (the
Gateaux-derivative of the map m 7→ um at m in an admissible direction h) is rather of the form
∂tu̇m −∆u̇m = Vm(t, x)u̇m + hum(t, x), with a time-varying potential Vm, and the lower estimate
assumes the form

J̈ (m)[h, h] > α

∫∫
(0,T )×T

|∇u̇m|2 − β
∫∫

(0,T )×T
u̇2
m − γ

∫
T

u̇m(T, ·)2.

We refer to estimate (2.13), proposition 15, for a precise statement. But even in the one-dimensional
case, finding a perturbation h such that, for a fixed (and large) integer K ∈ IN, we have u̇m =∑
k>K αkφk(t) cos(kx) proves impossible because the potential Vm varies in time. Thus was have

to resort to some two-scale asymptotic expansions in order to attain an approximation u̇m ≈∑
k>K αkφk(t) cos(kx) that is strong enough, see proposition 19. This part, which takes up most

of the proof, is in part inspired by [37] and by seminal works on two-scale expansions [2], but
requires some fine improvements to be better suited to our needs. The need for these improvements
essentially comes from the fact that the potential Vm is merely W 2,p in space, and not C 2, as is
customary in such queries.

1.5 Relationship with some shape optimisation problems

There is another possible outlook on theorems I and II that relates their conclusions to (non-
)existence results for PDE constrained shape optimisation problems. We only detail this for theo-
rem I, as the case of the other results is exactly similar. For any subset E ⊂ T, we may define the
shape functional

F(E) := J (1E),

and investigate the shape optimisation problem

sup
E⊂T ,Vol(E)=V0

F(E). (1.9)

For this type of optimisation problems, it is usually very difficult to obtain an existence prop-
erty. The most general result is that of Buttazzo and DalMaso, in the seminal [11], which states
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that, if the functional F is increasing with respect to the set inclusion, and is moreover upper
semi-continuous for the γ-convergence of sets, then an optimal set E∗ exists. In theorem I, the
monotonicity (which in turn hinges on that of (j1, j2)) plays a crucial role, and we prove that under
assumption (HJ ), J is indeed increasing. However, F is not continuous for the γ convergence
of sets, which thus prevents using the result of [11]. This is well-known, and usually leads to
considering the relaxation of the class of admissible sets A := {1E , E ⊂ T ,Vol(E) = V0} in the
weak L∞ − ∗ topology; this relaxation exactly corresponds to (Adm), and the relaxed version of
(1.9) is (Pparab). In this way, theorem I states that every solution of (Pparab) belongs to A, and,
consequently, that (1.9) has a solution.

This remark was also one of the motivation for the present work, which continues a series of
papers devoted to establishing existence results for some shape optimisation problems, see [38, 39].

1.6 Bibliographical references and comments

Bilinear optimal control problems and the optimal control of semilinear parabolic models are
present in a very large number of fields of applied mathematics. It is impossible to give an
exhaustive list of contributions, but we single out a few that we think are closely related to our
queries.

1.6.1 Elliptic bilinear optimal control problem

Spectral optimisation problems Let us begin with a spectral optimisation problem. In this
setting, one aims at minimising the first eigenvalue λ(m) of the operator −∆ − m in a smooth
bounded domain Ω ⊂ IRd, endowed with certain boundary conditions, with respect to admissible
controls m that satisfy L∞ and L1 constraints. The reason this problem is bilinear is that the
state equation assumes the form

−∆zm = mzm + λ(m)zm.

The study of the minimisation problem of λ(m) with respect to m originates in spatial ecology
consideration see [13, 14, 15, 16, 17, 18, 19, 25, 26, 27, 32, 36, 46] and the references therein. For
such problems, the bang-bang property is usually immediate [26] and can be deduced from the
concavity of the functional at hand or from classical tools such as the bathtub principle. Similarly,
following [9], the geometric properties of optimisers have been thoroughly analysed, and are by
now well understood; the main tool for this query is that of rearrangements, and a key point is
that the functional is energetic. We refer to [27] for up to date results in this direction, as well as
to the survey [34].

A non-energetic elliptic bilinear optimal control problem A problem which displays the
rich behaviour of elliptic bilinear optimal control problems is that of the total population size in
logistic-diffusive equations. In this setting, the PDE writes

−µ∆θm = θm(m− θm) , θm > 0 , θm 6= 0

with Neumann or Robin boundary conditions. The control m is assumed to satisfy L∞ and L1

constraints. The functional to optimise is J : m 7→
∫

Ω
θm. For modelling issues, we refer to [30]

and the references therein. Obtaining the bang-bang property for its maximisers is surprisingly
difficult. In [35, 44] this bang-bang property is proved under several restrictive assumptions. In
[39], we introduced a new method to prove this property without these assumption; we refer to
section 1.4 above to see why the method of [39] does not apply in the parabolic context. Regarding
the geometric features of optimisers, it was proved in [23, 40] that the BV -norm of optimisers blows
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up as µ→ 0+; in [39], this blow-up rate is quantified. It would be very interesting, in the context
of parabolic models, to obtain such qualitative information about the geometry of maximisers.

A discretised bilinear optimal control problem We refer to [43] for the study of a bilinear
optimal control problem for a stationary, space-discrete logistic-diffusive model. What is most
surprising in [43] is that the authors achieve a complete description of maximisers in the low
dispersal rate. It should be noted that [43] is also a motivation for us to undertake the study of
time-discrete problems.

1.6.2 Optimal bilinear control of parabolic equations

Since we adopt, in the present paper, the point of view of optimal control, we merely indicate that
there is a branch of research devoted to the question of bilinear controllability (i.e. is it possible to
reach an exact state using a bilinear control ?); we refer the interested reader to [1, 7, 12] and the
references therein. In the field of bilinear optimal control problems, let us first point to [21, 22] for
the study of bilinear control problems in connection with chemotaxis or chemorepulsion; another
very interesting example of such a problem is studied in [48]. In it, the authors study an optimal
control problem for brain tumor growth. Although their bilinear control only depends on time (i.e.
their function m satisfies m = m(t), which is exactly the type of case not covered in the present
contribution), some emphasis is put, through numerical simulations, on the bang-bang property.

A very relevant reference for the type of problems we are studying is the recent [10], in which the
exact problem of optimisation of the total population size for parabolic logistic-diffusive equations
is studied under the same type of constraints we have here. The optimality conditions are derived,
and several numerical simulations are carried out.

2 Proofs of theorems I

We break this section down in several parts: first, we give a basic positivity estimate on um. Then
we compute the first and second order Gateaux derivative of the criterion by the use of an adjoint
state. Moreover, we give all the regularity information that are needed, and we use them to obtain
a lower estimate on the second-order derivative. Finally, we provide a fine analysis of this second
order derivative using two scale asymptotic expansions.

We first have the following basic estimate on um:

Lemma 13. There holds

∀m ∈M(T) , 0 < inf
(0,T )×T

um 6 ‖um‖L∞((0,T )×T) 6 max{‖u0‖L∞ , κ}.

As this lemma is a straightforward consequence of the maximum principle, we prove it in
appendix A.1.

2.1 Computation of first and second order Gateaux derivatives via an
adjoint state

In this section we analyse the Gateaux derivatives of the criterion and comment on its monotonicity.
It is standard to see that the map

m 7→ um
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is twice Gateaux differentiable. For a given m ∈ M(T) and an admissible1 perturbation h at m,
we call u̇m[h] (resp. üm[h]) the first (resp. the second) order Gateaux derivative in the direction
h. When no ambiguity is possible, we use the notation u̇m (resp. üm) for the first (resp. second)
order Gateaux derivative at m in the direction h. It is straightforward to see that u̇m solves∂u̇m

∂t −∆u̇m − u̇m
(
m+ ∂f

∂u

∣∣∣
u=um

)
= hum in (0, T )× T,

u̇m(0, ·) ≡ 0 in T.
(2.1)

Similarly we obtain, for the first-order Gateaux derivative of J at m in the direction h the expres-
sion

J̇ (m)[h] =

∫∫
(0,T )×T

u̇m
∂j1
∂u

∣∣∣∣
u=um

+

∫
T
u̇m

∂j2
∂u

∣∣∣∣
u=um(T,·)

. (2.2)

We define

Vm := m+
∂f

∂u

∣∣∣∣
u=um

. (2.3)

and introduce the function pm as the solution of the backward parabolic equation
∂pm
∂t + ∆pm + Vmpm = − ∂j1

∂u

∣∣∣
u=um

in (0, T )× T ,

pm(T, ·) = ∂j2
∂u

∣∣∣
u=um

in T.
(2.4)

Multiplying (2.4) by u̇m and integrating by parts, we obtain

J̇ (m)[h] =

∫
T

∂j2
∂u

∣∣∣∣
u=um(T,·)

u̇m +

∫∫
(0,T )×T

∂j1
∂u

∣∣∣∣
u=um

u̇m =

∫∫
(0,T )×T

humpm. (2.5)

Let us now comment on the monotonicity of the functional, which shall play a crucial role in the
forthcoming analysis. Of course, none of the computations above require that h be admissible, and
we may take, for h, a non-negative function, as the constraints (and hence the admissibility of h)
only play a role in the derivation of optimality conditions. By monotonicity we mean the following
property:

∀m ∈M(T) ,∀h ∈ L∞(Ω) , h > 0⇒ J̇ (m)[h] > 0.

Given (2.5) and lemma 13, this monotonicity property actually holds if pm itself is positive. This
is where assumption (HJ ) comes into play:

Lemma 14. If J satisfies (HJ ) then pm ∈W 2,2((0, T )× T) and, for any ε > 0,

inf
[0,T−ε]×T

pm > 0.

Proof of lemma 14. If we set qm(t, ·) := pm(T − t, ·) it appears that qm solves
∂qm
∂t −∆qm − Vmqm = ∂j1

∂u

∣∣∣
u=um

in (0, T )× T ,

qm(0, ·) = ∂j2
∂u

∣∣∣
u=um

in T.

If ∂uj2 > 0 then, as ∂uj1 > 0 the conclusion follows from the strong maximum principle. Likewise,
if on the other hand we merely have ∂uj2 > 0 then, as ∂uj1 > 0 in this case, we obtain the
conclusion by the maximum principle.

1The wording “admissible perturbation” means that h belongs to the tangent cone to the set B(∂Ω) at β. It
corresponds to the set of functions h ∈ L∞(Ω) such that, for any sequence of positive real numbers εn decreasing to
0, there exists a sequence of functions hn ∈ L∞(Ω) converging in L2(Ω) to h as n → +∞, and β + εnhn ∈ B(∂Ω)
for every n ∈ IN.
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We now move on to the computation of the second order Gateaux derivative of the functional
at hand. The second order derivative of m 7→ um in the direction h solves∂üm

∂t −∆üm − Vmüm = 2hu̇m + ∂2f
∂u2

∣∣∣
u=um

(u̇m)
2

in (0, T )× T,

üm(0, ·) ≡ 0 in T
(2.6)

We also have, for the second order Gateaux derivative of J at m in the direction h, the following
expression:

J̈ (m)[h, h] =

∫
T
u̇2
m(T, ·) ∂

2j2
∂u2

∣∣∣∣
u=um(T,·)

+

∫
T
üm(T, ·) ∂j2

∂u

∣∣∣∣
u=um(T,·)

+

∫∫
(0,T )×T

u̇2
m

∂2j1
∂u2

∣∣∣∣
u=um

+

∫∫
(0,T )×T

üm
∂j1
∂u

∣∣∣∣
u=um(T,·)

. (2.7)

We use the adjoint state pm again: multiplying (2.4) by üm and integrating by parts, we obtain

2

∫∫
(0,T )×T

hu̇mpm +

∫∫
(0,T )×T

∂2f

∂u2

∣∣∣∣
u=um(T,·)

(u̇m)2pm

=

∫
Ω

üm
∂j2
∂u

∣∣∣∣
u=um(T,·)

+

∫∫
(0,T )×T

üm
∂j1
∂u

∣∣∣∣
u=um

(2.8)

so that

J̈ (m)[h, h] =

∫
T
u̇2
m(T, ·) ∂

2j2
∂u2

∣∣∣∣
u=um(T,·)

+

∫∫
(0,T )×T

u̇2
m

∂2j1
∂u2

∣∣∣∣
u=um

+ 2

∫∫
(0,T )×T

hu̇mpm +

∫∫
(0,T )×T

pmu̇
2
m

∂2f

∂u2

∣∣∣∣
u=um

. (2.9)

Rearranging the terms, we get

J̈ (m)[h, h] = 2

∫∫
(0,T )×T

hu̇mpm +

∫
T
u̇2
m(T, ·) ∂

2j2
∂u2

∣∣∣∣
u=um(T,·)

+

∫∫
(0,T )×T

u̇2
m

(
∂2j1
∂u2

∣∣∣∣
u=um

+
∂2f

∂u2

∣∣∣∣
u=um

pm

)
. (2.10)

Let us focus on the term ∫∫
(0,T )×T

hu̇mpm. (2.11)

From (2.1) we rewrite

h =
∂u̇m

∂t −∆u̇m − u̇mVm
um

.

Let us define
Ψm :=

pm
um

.

Plugging this expression in (2.11) we obtain∫∫
(0,T )×T

hu̇mpm =

∫∫
(0,T )×T

Ψmu̇m

(
∂u̇m
∂t
−∆u̇m − u̇mVm

)
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=
1

2

∫∫
(0,T )×T

Ψm
∂u̇2

m

∂t

+

∫∫
(0,T )×T

Ψm |∇u̇m|2

+

∫∫
(0,T )×T

u̇m〈∇Ψm,∇u̇m〉

−
∫∫

(0,T )×T
ΨmVmu̇

2
m

= −1

2

∫∫
(0,T )×T

∂Ψm

∂t
u̇2
m +

1

2

∫
T

Ψm(T, ·)u̇2
m

+

∫∫
(0,T )×T

Ψm |∇u̇m|2 −
1

2

∫∫
(0,T )×T

u̇2
m∆Ψm −

∫∫
(0,T )×T

ΨmVmu̇
2
m

=
1

2

∫
T

Ψm(T, ·)u̇2
m +

∫∫
(0,T )×T

Ψm |∇u̇m|2

− 1

2

∫∫
(0,T )×T

∂Ψm

∂t
u̇2
m −

1

2

∫∫
(0,T )×T

u̇2
m∆Ψm −

∫∫
(0,T )×T

ΨmVmu̇
2
m

=
1

2

∫
T

Ψm(T, ·)u̇2
m +

∫∫
(0,T )×T

Ψm |∇u̇m|2

+

∫∫
(0,T )×T

u̇2
m

(
−1

2

∂Ψm

∂t
− 1

2
∆Ψm −ΨmVm

)
.

With

Zm := −1

2

∂Ψm

∂t
− 1

2
∆Ψm −ΨmVm +

∂2j1
∂u2

∣∣∣∣
u=um

+
∂2f

∂u2

∣∣∣∣
u=um

pm,

the second order derivative writes

J̈ (m)[h, h] =

∫
T
u̇2
m(T, ·) ∂

2j2
∂u2

∣∣∣∣
u=um(T,·)

+
1

2

∫
T

Ψm(T, ·)u̇2
m

+

∫∫
(0,T )×T

Ψm |∇u̇m|2 +

∫∫
(0,T )×T

Zmu̇
2
m. (2.12)

We analyse this expression further in the next section.

2.2 Lower estimate on the second order Gateaux derivative of J
We now prove the following lower estimate on this second order Gateaux derivative:

Proposition 15. Let ε > 0 be arbitrarily small. There exist three positive constants α =
α(ε) , β , γ > 0 such that, for any admissible perturbation h at m, there holds

J̈ (m)[h, h] > α

∫∫
(0,T−ε)×T

|∇u̇m|2 − β
∫∫

(0,T )×T
u̇2
m − γ

∫
T
u̇2
m(T, ·). (2.13)

Proving this proposition requires some additional regularity on um , pm. This is where the
regularity of m in time (here, m is constant in time) is crucial. We gather these regularity properties
in the following proposition:
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Proposition 16. For any m ∈ M(T), for any p ∈ [1; +∞), there exists a constant Mm,p such
that

sup
t∈[0,T ]

‖∂tum(t, ·)‖Lp(T) + sup
t∈[0,T ]

‖um(t, ·)‖W 2,p(T)

+ sup
t∈[0,T ]

‖∂tpm(t, ·)‖Lp(T) + sup
t∈[0,T ]

‖pm(t, ·)‖W 2,p(T) 6 Mm,p. (2.14)

In particular, by Sobolev embeddings, there exists a constant N such that

sup
t∈(0,T )

‖um(t, ·)‖C 1(T) , sup
t∈(0,T )

‖pm(t, ·)‖C 1(T) 6 N.

The proof of this proposition is standard in the regularity theory of parabolic equations; it can
be derived from classical Lp estimates (see for instance [29, Theorem 7.32, pp. 182-183]) but the
setting we are working in allows for a quicker proof, that we give in appendix A.2.

With these regularity estimates we can prove proposition 15

Proof of proposition 15. First off, from lemmas 13 and 14 we have that

∀ε > 0 , inf
(0,T−ε]×T

Ψm > 0.

Hence there exists a constant α0 = α0(ε) > 0 such that∫∫
(0,T )×T

Ψm|∇u̇m|2 > α0

∫∫
(0,T−ε)×T

|∇u̇m|2.

Second, since j2 is C 2 in u and um is bounded, there exists a constant γ > 0 such that∫
T
u̇2
m(T, ·) ∂

2j2
∂u2

∣∣∣∣
u=um(T,·)

> −γ
∫
T
u̇2
m(T, ·).

Estimates on Zm As for Zm, we rewrite it

Zm = −1

2

∂Ψm

∂t
− 1

2
∆Ψm + Ym with Ym := −ΨmVm +

∂2j1
∂u2

∣∣∣∣
u=um

+
∂2f

∂u2

∣∣∣∣
u=um

pm.

Of course,
Ym ∈ L∞.

Let us focus on the term

−∂Ψm

∂t
−∆Ψm.

We compute
∂Ψm

∂t
=

1

um

∂pm
∂t
− pm
u2
m

∂um
∂t

, (2.15)

and (since we are working in one-dimension, ∆ = ∂2
xx),

∂2Ψm

∂x2
= −2

1

u2
m

∂pm
∂x

∂um
∂x

+
1

um

∂2pm
∂x2

− pm
u2
m

∂2um
∂x2

+ 2
pm
u3
m

(
∂um
∂x

)2

. (2.16)

Setting

Xm := −2
1

u2
m

∂pm
∂x

∂um
∂x

+ 2
pm
u3
m

(
∂um
∂x

)2

17



we have
∂2Ψm

∂x2
=

1

um

∂2pm
∂x2

− pm
u2
m

∂2um
∂x2

+ Xm.

From Proposition 16 we know that

Xm ∈ L∞((0, T )× T).

Hence,

∂Ψm

∂t
+
∂2Ψm

∂x2
=

1

um

∂pm
∂t
− pm
u2
m

∂um
∂t

+
1

um

∂2pm
∂x2

− pm
u2
m

∂2um
∂x2

+ Xm

= Xm

+
1

um

(
∂pm
∂t

+
∂2pm
∂x2

)
− pm
u2
m

(
∂um
∂t

+
∂2um
∂x2

)
= Xm +

pm
um

(
− ∂j1

∂u

∣∣∣∣
u=um

)

− pm
u2
m

(
2
∂2um
∂x2

+mum + f(t, x, um)

)
,

whence, using the fact that j1 ∈ C 1 and proposition 16, the function Z̃m satisfies

∀p ∈ [1; +∞) , sup
t∈[0,T ]

‖Zm(t, ·)‖Lp(T) =: M(p) <∞. (2.17)

This allows to estimate the last term in the second-order Gateaux derivative: from the Sobolev
embedding W 1,2(T) ↪→ C 0(T) with constant Csob and the Cauchy-Schwarz inequality we obtain∫∫

(0,T )×T
Zmu̇

2
m > −

∫ T

0

‖u̇m(t, ·)‖W 1,2(T) · ‖Zm(t, ·)‖L2(T) · ‖u̇m(t, ·)‖L2(T)dt

= −M(2)Csob

∫ T

0

‖u̇m(t, ·)‖W 1,2(T) · ‖u̇m(t, ·)‖L2(T)dt

= −M(2)Csob

∫ T

0

‖∇u̇m(t, ·)‖L2(T) · ‖u̇m(t, ·)‖L2(T)dt

−M(2)Csob

∫∫
(0,T )×T

u̇2
m.

Remark 17. It may be argued that here we already use the fact that we are working in the one-
dimensional setting, when using the Sobolev embedding W 1,2 ↪→ C 0. However, this can be very
well extended to the higher dimensional setting, in which case, we would simply have an estimate

of the form
∫∫

Zmu̇
2
m > −Csob

∫ T
0
‖u̇m(t, ·)‖W 1,2 · ‖Z̃m(t, ·)‖Lp · ‖u̇m(t, ·)‖L2dt, where we would

have used the three exponents’ Hölder inequality with 1/p+ 1/q + 1/2 = 1, with Csob the constant
of the embedding W 1,2 ↪→ Lq.

18



We obtain

J̈ (m)[h, h] > α

∫∫
(0,T−ε)×T

|∇u̇m|2 −M(2)Csob

∫∫
(0,T )×T

u̇2

−M(2)Csob

∫ T

0

‖∇u̇m(t, ·)‖L2(T)‖u̇m(t, ·)‖L2(T)dt− γ
∫
T
u̇2(T, ·). (2.18)

We perform one last step: from the arithmetic geometric inequality, for any δ > 0,

‖∇u̇m(t, ·)‖L2(T) · ‖um(t, ·)‖L2(T) 6 δ‖∇u̇m(t, ·)‖2L2(T) +
1

δ
‖u̇m(t, ·)‖2L2(T). (2.19)

Choosing δ := α0

2M(2)Csob
, setting α := α0

2 and defining β :=
(
1 + 1

δ

)
M(2)Csob we have the estimate

J̈ (m)[h, h] > α

∫∫
(0,T−ε)×T

|∇u̇m|2 − β
∫∫

(0,T )×T
u̇2 − γ

∫
T
u̇2(T, ·). (2.20)

The proof is now complete.

This proposition indicates that a possibility to derive a proof of theorem I is as follows: first,
picking a maximiser m∗ of (Pparab), we argue by contradiction and assume m∗ is not bang-bang,
so that the set ω = {0 < m∗ < 1} has positive measure. Thus, for any admissible pertur-
bation h supported in ω, J̇ (m∗)[h] = 0. If we can pick an admissible perturbation such that∫∫

(0,T−ε)×T |∇u̇m|
2 �

∫∫
(0,T )×T u̇

2
m +

∫
T u̇

2
m(T, ·), the second order Gateau derivative is positive,

in contradiction with the optimality of m∗. To build such an h, we need to choose it highly oscil-
lating; in other words, its Fourier series only has high order modes. Thus, the next sections are,
respectively, devoted to the construction of an admissible h that only has high Fourier modes, and
to the study of the ensuing u̇m via two-scale asymptotic expansions.

Throughout, we thus consider a non bang-bang maximiser m∗ and define ω := {0 < m∗ < 1}.

2.3 Construction of an admissible perturbation

The relevant function to study is u̇m, which solves the parabolic equation

∂u̇m
∂t
−∆u̇m − Vmu̇m = hum.

We want to build h such that, a large integer K being fixed, h is supported in ω and that has the
Fourier decomposition

h(x) =

∞∑
k=K

ak cos(kx) + bk sin(kx).

Let us prove that such an admissible perturbation exists: let ω := {0 < m∗ < 1}. As m∗ is
not bang-bang, Vol(ω) > 0. Consequently the space L2(ω) is infinite dimensional. We identify
each H ∈ L2(ω) with h := H1ω ∈ L2(T). We fix an integer K ∈ IN\{0} and we define, for any
0 6 k 6 K − 1 the linear functionals

T 1
k : L2(ω) 3 H 7→

∫
ω

H cos(kx)dx , T 2
K : L2(ω) 3 H 7→

∫
ω

H sin(kx)dx.

Finally, we define

EK :=

K−1⋂
k=0

(
ker
(
T 1
k

)
∩ ker

(
T 2
k

))
19



EK , as an intersection of closed hyperplanes, is of finite co-dimension. It is, in particular, infinite
dimensional. Hence, we can pick HK ∈ EK such that ‖HK‖L2(ω) > 0. By definition, hK := Hk1ω
has the Fourier decomposition

hK(x) =

∞∑
k=K

ak cos(kx) + bk sin(kx) with, up to renormalisation,

∞∑
k=K

a2
k + b2k = 1.

We now want to study how u̇m[hK ] behaves, for K large. This prompts us to considering, first,
the case of single cosines and sines.

2.4 Computations for single-mode perturbations

We emphasise once again that the computations of this paragraph are formal; we refer to propo-
sition 19 for the rigorous proof of the expansions.

Case of single cosines Let, for any k ∈ IN\{0}, ηk be the solution of{
∂tηk −∆ηk − Vmηk = um(t, x) cos(kx) in (0, T )× T ,
ηk(0, ·) = 0 in T.

(2.21)

A natural expansion to look for is of the form

ηk(t, x) ≈ 1

k2
R1(x, kx, t, k2t) +

1

k3
R2(x, kx, t, k2t) + . . .

By convention, we call y and s the second and fourth variables of R1 and R2. Plugging this formal
expansion in (2.21) we obtain the following equations:{

∂sR1 − ∂2
yyR1 = cos(y)um(t, x) ,

R1(x, y, 0, 0) = 0,
(2.22)

and {
∂sR2 − ∂2

yyR2 = 2∂2
xyR1(x, y, t, s) ,

R2(x, y, 0, 0) = 0.
(2.23)

(2.22) can be solved explicitly and we obtain

R1(x, y, t, s) = um(t, x)(1− e−s) cos(y). (2.24)

This allows to derive the explicit form of (2.23). Namely, R2 satisfies

∂sR2 − ∂2
yyR2 = −2

∂um
∂x

(t, x)(1− e−s) sin(y). (2.25)

As a consequence, we look for R2 under the form

R2(x, y, t, s) = −2
∂um
∂x

(t, x) sin(y)ϕ(s).

The function ϕ satisfies
ϕ′ + ϕ = 1− e−s

which can be integrated explicitly as

ϕ(s) = 1− se−s − e−s.

Finally,

R2(x, y, t, s) = −2
∂um
∂x

(t, x) sin(y)(1− se−s − e−s). (2.26)
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Case of single sines We then consider the case of single sines. Let, for any k ∈ IN\{0}, ζk be
the solution of {

∂tζk −∆ζk − V ζk = um(t, x) sin(kx) in (0, T )× T ,
ζk(0, ·) = 0 in T.

(2.27)

Similarly, we look for an expansion in the form

ζk(t, x) ≈ 1

k2
S1(x, kx, t, k2t) +

1

k3
S2(x, kx, t, k2t) + . . .

By convention, we call y and s the second and fourth variables of S1 and S2. Plugging this formal
expansion in (2.27) we obtain the following equations:{

∂sS1 − ∂2
yyS1 = sin(y)um(t, x) ,

S1(x, y, 0, 0) = 0,
(2.28)

and {
∂sS2 − ∂2

yyS2 = 2∂2
xyS1(x, y, t, s) ,

S2(x, y, 0, 0) = 0.
(2.29)

(2.28) can be solved explicitly and we have

S1(x, y, t, s) = um(t, x)(1− e−s) sin(y). (2.30)

This allows to derive the explicit form of (2.29). Namely, S2 satisfies

∂sS2 − ∂2
yyS2 = 2

∂um
∂x

(t, x)(1− e−s) cos(y). (2.31)

Proceeding as in the computations of R2 we derive

S2(x, y, t, s) = 2
∂um
∂x

(t, x) cos(y)(1− se−s − e−s). (2.32)

Of course we wish to write an approximation of the type

u̇m ≈
∞∑
k=K

ak

(
1

k2
R1(x, kx, t, k2t) +

1

k3
R2(x, kx, t, k2t)

)

+

∞∑
k=K

bk

(
1

k2
S1(x, kx, t, k2t) +

1

k3
S2(x, kx, t, k2t)

)
. (2.33)

In order to determine how strong this approximation should be to yield an exploitable result on
J̈ , we next study the leading term of (2.13), should the expansion (2.33) hold.

2.5 Formal estimate of the leading order term

We work under the assumption that

u̇m ≈
∞∑
k=K

akηk +

∞∑
k=K

bkζk

≈
∞∑
k=K

ak

(
um(t, x)

1

k2
cos(kx)(1− e−k

2t)− ∂um
∂x

2

k3
sin(kx)(1− k2te−k

2t − e−k
2t)

)
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+

∞∑
k=K

bk

(
um(t, x)

1

k2
sin(kx)(1− e−k

2t) +
∂um
∂x

2

k3
cos(kx)(1− k2te−k

2t − e−k
2t)

)
In particular, we have (this is still formal, at this point)

∂xu̇m ≈
∞∑
k=K

ak

(
∂um
∂x

1

k2
cos(kx)(1− e−k

2t)− ∂2um
∂x2

2

k3
sin(kx)(1− k2te−k

2t − e−k
2t)

)

+

∞∑
k=K

ak

(
−um

1

k
sin(kx)(1− e−k

2t)− ∂um
∂x

2

k2
cos(kx)(1− k2te−k

2t − e−k
2t)

)

+

∞∑
k=K

bk

(
∂um
∂x

1

k2
sin(kx)(1− e−k

2t) +
∂2um
∂x2

2

k3
cos(kx)(1− k2te−k

2t − e−k
2t)

)

+

∞∑
k=K

bk

(
um

1

k
cos(kx)(1− e−k

2t)− ∂um
∂x

2

k2
sin(kx)(1− k2te−k

2t − e−k
2t)

)

= um

{ ∞∑
k=K

−ak sin(kx) + bk cos(kx)

k

(
1− e−k

2t
)}

(=: LK)

+
∂um
∂x

{ ∞∑
k=K

ak cos(kx)− bk sin(kx)

k2

(
−1 + e−k

2t + 2k2te−k
2t
)}

(=: IK)

− 2
∂2um
∂x2

{ ∞∑
k=K

ak sin(kx)− bk cos(kx)

k3

(
1− k2te−k

2t − e−k
2t
)}

(=: JK) .

Thus, we should have ∫∫
(0,T−ε)×T

|∇u̇m|2 ≈
∫∫

(0,T−ε)×T
(IK + JK + LK)

2
. (2.34)

Given the expressions for IK , JK , LK , we expect
∫∫

(0,T−ε)×T L
2
K to be leading in (2.34). For this

reason we first bound the right-hand side of (2.34) from below; we shall use the inequality

|xy| 6 εx2 +
1

ε
y2 for any x , y ∈ IR , ε > 0 (2.35)

as well as
(x+ y)2 6 2

(
x2 + y2

)
for any x, y ∈ IR. (2.36)

We obtain∫∫
(0,T−ε)×T

(IK + JK + LK)
2

=

∫∫
(0,T−ε)×T

L2
K + 2

∫∫
(0,T−ε)×T

LK(IK + JK) (2.37)

+

∫∫
(0,T−ε)×T

(IK + JK)2 (2.38)

>
∫∫

(0,T−ε)×T
L2
K −

1

2

∫∫
(0,T−ε)×T

L2
K (2.39)

− 4

∫∫
(0,T−ε)×T

(IK + JK)
2

+

∫∫
(0,T−ε)×T

(IK + JK)
2

(2.40)

from (2.35) with ε =
1

2
(2.41)

22



=
1

2

∫∫
(0,T−ε)×T

L2
K − 6

∫∫
(0,T−ε)×T

I2
K − 6

∫∫
(0,T−ε)×T

J2
K .

(2.42)

We recall that from lemma 13 we have

d := inf
(0,T )×T

um > 0.

This will prove crucial.
We shall estimate the three terms (i.e.

∫∫
L2
K ,
∫∫

I2
K ,
∫∫

J2
K) separately.

Estimate of LK We have∫∫
(0,T−ε)×T

L2
K =

∫∫
(0,T−ε)×T

u2
m(t, x)

{ ∞∑
k=K

−ak sin(kx) + bk cos(kx)

k

(
1− e−k

2t
)}2

dxdt

> d2

∫∫
(0,T−ε)×T

{ ∞∑
k=K

−ak sin(kx) + bk cos(kx)

k

(
1− e−k

2t
)}2

dxdt

= d2π

∞∑
k=K

(
a2
k + b2k

) ∫ T−ε

0

{
1

k2

(
1− e−k

2t
)2
}
dt

> 2C0

∞∑
k=K

a2
k + b2k
k2

for a positive constant C0 > 0. We have hence obtained∫∫
(0,T−ε)×T

L2
K > 2C0

∞∑
k=K

a2
k + b2k
k2

for a constant C0 > 0. (2.43)

Remark 18. We choose 2C0 to obtain a cleaner estimate on the second order derivative.

Estimate of IK We first recall that from proposition 16

d := sup
t∈[0,T ]

‖um‖C 1(T) <∞.

We then bound and compute

∫∫
(0,T−ε)×T

I2
K = 4

∫∫
(0,T−ε)×T

(
∂um
∂x

)2
{ ∞∑
k=K

ak cos(kx)− bk sin(kx)

k2

(
−1 + e−k

2t + 2k2te−k
2t
)}2

dtdx

6 4d
2
∫∫

(0,T−ε)×T

{ ∞∑
k=K

ak cos(kx)− bk sin(kx)

k2

(
−1 + e−k

2t + 2k2te−k
2t
)}2

dxdt

= 4πd
2
∞∑
k=K

a2
k + b2k
k4

∫ T−ε

0

(
−1 + e−k

2t(2k2t+ 1)
)2

dt

= 4πd
2
∞∑
k=K

a2
k + b2k
k4

∫ T−ε

0

(1 + 4e−2k2tk4t2 − 2e−k
2t − 4k2te−k

2t + 4k2te−2k2t + e−2k2t)dt.
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However, each of the integrals can be computed explicitly:∫ T−ε

0

t2e−2k2tdt = − (T − ε)2e−2k2(T−ε)

2k2
− (T − ε)e−2k2(T−ε)

2k4
+

1

4k6

(
1− e−2k2(T−ε)

)
6
N0,I

k6
for some constant N0,I ,∫ T−ε

0

e−2k2tdt 6
N1,I

k2
for some constant N1,I ,∫ T−ε

0

te−k
2tdt 6

N2,I

k4
for some constant N2,I .

Hence, there exists K ∈ IN and a constant N3,I such that for any k > K,∫ T−ε

0

(1 + 4e−2k2tk4t2 − 2e−2k2t − 4k2te−k
2t + 4k2te−2k2t + e−2k2t)dt 6 N3,I

(
1 +

1

k2

)
. (2.44)

Consequently, there exists a positive constant C1 such that∫∫
(0,T−ε)×T

I2
K 6

C1

6

∞∑
k=K

a2
k + b2k
k4

. (2.45)

Estimate on JK This last term is the trickiest one. Indeed, we do not have ∂2um

∂x2 ∈ L∞, but
simply, from proposition 16,

∀p ∈ [1; +∞) , sup
t∈[0,T ]

∥∥∥∥∂2um
∂x2

(t, ·)
∥∥∥∥
Lp(T)

=: M(p) <∞.

However, we can use the same trick as in bounding the second order derivative (see the proof of
proposition 15). We indeed obtain

∫∫
(0,T−ε)×T

J2
K =

∫∫
(0,T−ε)×T

4

(
∂2um
∂x2

)2


∞∑
k=K

ak sin(kx)− bk cos(kx)

k3

(
1− k2te−k

2t − e−k
2t
)

︸ ︷︷ ︸
=:WK



2

6 16M(4)2Csob︸ ︷︷ ︸
=:D0,J

∫ T−ε

0

‖WK(t, ·)‖L2(T)‖WK(t, ·)‖W 1,2(T)dt

6 D0,J

∫∫
(0,T−ε)×T

W 2
K +D0,J

∫ T−ε

0

‖WK(t, ·)‖L2(T)‖∇WK(t, ·)‖L2(T)dt,

where Csob is the constant of the (one-dimensional) embedding W 1,2(T) ↪→ C 0(T).
We compute, for every t ∈ [0, T ], both ‖WK(t, ·)‖L2(T) and ‖∇WK(t, ·)‖L2(T). First,

∫
T
W 2
K(t, ·) =

∫
T

{ ∞∑
k=K

ak sin(kx)− bk cos(kx)

k3

(
1− k2te−k

2t − e−k
2t
)}2

dx

= π

∞∑
k=K

a2
k + b2k
k6

(
1− k2te−k

2t − e−k
2t
)2

.
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Second,∫
T
|∇WK |2 (t, ·) =

∫
T

{ ∞∑
k=K

−ak sin(kx)− bk cos(kx)

k2

(
1− k2te−k

2t − e−k
2t
)}2

dx

= π

∞∑
k=K

a2
k + b2k
k4

(
1− k2te−k

2t − e−k
2t
)2

.

We notice that ∫
T
|∇WK |2 (t, ·) > K2

∫
T
W 2
K(t, ·) (2.46)

or, in other terms, that, for any t ∈ [0, T ],

‖WK(t, ·)‖L2(T) 6
1

K
‖∇WK(t, ·)‖L2(T). (2.47)

Consequently,∫∫
(0,T−ε)×T

W 2
K +

∫ T−ε

0

‖WK(t, ·)‖L2(T)‖∇WK(t, ·)‖L2(T)dt

6
∫∫

(0,T−ε)×T
W 2
K +

∫ T−ε

0

‖WK(t, ·)‖L2(T)‖∇WK(t, ·)‖L2(T)dt

6

(
1

K2
+

1

K

)∫ T−ε

0

||∇WK ||2L2(T)(t, ·)

6
2π

K

∞∑
k=K

a2
k + b2k
k4

∫ T

0

(1− e−k
2t(k2t+ 1))2dt.

From the same computations that established (2.44), there exists a constant D1,J such that, when-
ever K is large enough, for any k > K, there holds∫ T

0

(1− e−k
2t(k2t+ 1))2dt 6 D1,J , (2.48)

and so, finally, for a constant C2,∫∫
(0,T−ε)×T

J2
K 6

C2

6

∞∑
k=K

a2
k + b2k
k4

. (2.49)

Combining (2.42)-(2.43)-(2.45)-(2.49) we finally derive the following lower-bound on the leading
term: there exists Clead > 0 such that∫∫

(0,T−ε)×T
(IK + JK + LK)

2 > Clead

∞∑
k=K

a2
k + b2k
k2

. (2.50)

2.6 Formal estimate of the lower order term

If we assume that

u̇m ≈
∞∑
k=K

akηk +

∞∑
k=K

bkζk
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=

∞∑
k=K

ak

(
u(t, x)

1

k2
cos(kx)(1− e−k

2t)− ∂um
∂x

2

k3
sin(kx)(1− k2te−k

2t − e−k
2t)

)

+

∞∑
k=K

bk

(
u(t, x)

1

k2
sin(kx)(1− e−k

2t) +
∂um
∂x

2

k3
cos(kx)(1− k2te−k

2t − e−k
2t)

)
,

then, in the very same way, we obtain the existence of a constant Clow such that∫∫
(0,T )×T

{ ∞∑
k=K

akηk + βkζk

}2

6 Clow

∞∑
k=K

a2
k + b2k
k4

. (2.51)

2.7 Strategy and comment for the proof of the asymptotic expansion

We shall now establish rigorously a strong enough approximation result. Let us define

ZK :=

∞∑
k=K

ak

(
um
k2

cos(kx)(1− e−k
2t)− 2∂xum

k3
sin(kx)(1− k2te−k

2t − e−k
2t)

)

+

∞∑
k=K

bk

(
um
k2

sin(kx)(1− e−k
2t) +

2∂xum
k3

cos(kx)(1− k2te−k
2t − e−k

2t)

)
.

From (2.51)-(2.50), we need the following proposition to prove the theorem (see also lemma 20
below, which proves that this proposition is enough):

Proposition 19. There exists a constant Ccont such that, for any Υ > 0,∫ T

0

‖u̇m − ZK(t, ·)‖2W 1,2(T) dt+ ‖u̇m(T, ·)− ZK(T, ·)‖2L2(T) 6
Ccont

Υ

∞∑
k=K

a2
k + b2k
k4

+ ΥCcont

∞∑
k=K

a2
k + b2k
k2

. (2.52)

The object of the next lemma is to prove that proposition 19 suffices to obtain theorem I.

Lemma 20. Proposition 19 implies theorem I.

Proof of Lemma 20. We use proposition 15 with the perturbation hK constructed in Section 2.3.
We study the right-hand side of (2.13). On the one-hand, we have∫∫

(0,T−ε)×T
|∇u̇m|2 >

1

2

∫∫
(0,T−ε)×T

|∇ZK |2 −
∫∫

(0,T )×T
|∇u̇m −∇ZK |2 dtdx

>
Clead

2

∞∑
k=K

a2
k + b2k
k2

− Ccont

Υ

∞∑
k=K

a2
k + b2k
k4

−ΥCcont

∞∑
k=K

a2
k + b2k
k2

.

On the other hand,∫∫
(0,T )×T

u̇2
m 6 2

∫∫
(0,T )×T

|ZK |2 + 2

∫∫
(0,T )×T

|u̇m − ZK |2 dtdx

6 2Clow

∞∑
k=K

a2
k + b2k
k4

+
2Ccont

Υ

∞∑
k=K

a2
k + b2k
k4

+ 2ΥCcont

∞∑
k=K

a2
k + b2k
k2
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for K large enough, from (2.51) and Proposition 19, and, in the same way,∫
T
u̇2
m(T, ·) 6 2Ccont

Υ

∞∑
k=K

a2
k + b2k
k4

+ 2ΥCcont

∞∑
k=K

a2
k + b2k
k2

Consequently,

J̈ (m∗)[hK , hK ] >
αClead

2

∞∑
k=K

a2
k + b2k
k2

− αCcont

Υ

∞∑
k=K

a2
k + b2k
k4

− αΥCcont

∞∑
k=K

a2
k + b2k
k2

− 2βClow

∞∑
k=K

a2
k + b2k
k4

− 2
βCcont

Υ

∞∑
k=K

a2
k + b2k
k4

− 2βΥCcont

∞∑
k=K

a2
k + b2k
k2

− 2γClow

∞∑
k=K

a2
k + b2k
k4

− 2γ
Ccont

Υ

∞∑
k=K

a2
k + b2k
k4

− 2γΥCcont

∞∑
k=K

a2
k + b2k
k2

=

( ∞∑
k=K

a2
k + b2k
k2

){
αClead

2
− αΥCcont − 2βΥCcont − 2γΥCcont

}

−

( ∞∑
k=K

a2
k + b2k
k4

){
αCcont

Υ
− 2βClow − 2

βCcont

Υ
− 2γClow − 2γΥCcont

}

>

( ∞∑
k=K

a2
k + b2k
k2

){
αClead

2
− αΥCcont − 2βΥCcont − 2γΥCcont

}

−

( ∞∑
k=K

a2
k + b2k
k2

) ∣∣∣αCcont

Υ − 2βClow − 2βCcont

Υ − 2γClow − 2γΥCcont

∣∣∣
K2

We first pick Υ > 0 small enough so that

α′′ :=
αClead

2
− αΥCcont − 2βΥCcont − 2γΥCcont > 0.

We define

β′′ :=

∣∣∣∣αCcont

ε
− 2βClow − 2

βCcont

Υ
− 2γClow − 2γΥCcont

∣∣∣∣ .
Thus we have the lower bound

J̈ (m∗)[hK , hK ] >

{
α′′ − β′′

K2

}( ∞∑
k=K

a2
k + b2k
k2

)
. (2.53)

We pick K large enough to ensure that

α′′ − β′′

K2
>
α′′

2

and it follows that
J̈ (m∗)[hK , hK ] > 0,

in contradiction with the optimality ofm∗. The conclusion of the Theorem follows: every maximiser
must be a bang-bang function.

The rest of this section is devoted to the proof of proposition 19.
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2.8 Proof of proposition 19

Proof of proposition 19. We recall that, in its expanded form, ZK writes

ZK :=

∞∑
k=K

ak

(
um
k2

cos(kx)(1− e−k
2t)− 2∂xum

k3
sin(kx)(1− k2te−k

2t − e−k
2t)

)

+

∞∑
k=K

bk

(
um
k2

sin(kx)(1− e−k
2t) +

2∂xum
k3

cos(kx)(1− k2te−k
2t − e−k

2t)

)
We define the remainder term

RK := u̇m − ZK .

The computations needed in order to determine an explicit equation for RK are rather lengthy.
We split them up.

Define

T 1
K := um

∞∑
k=K

ak cos(kx) + bk sin(kx)

k2
(1− e−k

2t).

We first have

∂T 1
K

∂t
=
∂um
∂t

∞∑
k=K

ak cos(kx) + bk sin(kx)

k2
(1− e−k

2t) + um

∞∑
k=K

(ak cos(kx) + bk sin(kx)) e−k
2t.

Second, we have

∂T 1
K

∂x
=
∂um
∂x

∞∑
k=K

ak cos(kx) + bk sin(kx)

k2
(1− e−k

2t)− um
∞∑
k=K

ak sin(kx)− bk cos(kx)

k
(1− e−k

2t)

so that

∂2T 1
K

∂x2
=
∂2um
∂x2

∞∑
k=K

ak cos(kx) + bk sin(kx)

k2
(1−e−k

2t)−um
∞∑
k=K

(ak cos(kx) + bk sin(kx)) (1−e−k
2t)

− 2
∂um
∂x

∞∑
k=K

ak sin(kx)− bk cos(kx)

k
(1− e−k

2t).

Hence, introducing the differential operator

LVm : Φ 7→ ∂tΦ−∆Φ− VmΦ

we obtain

LVmT
1
K = (LVmum)

∞∑
k=K

ak cos(kx) + bk sin(kx)

k2
(1− e−k

2t) + um

∞∑
k=K

(ak cos(kx) + bk sin(kx))

+ 2
∂um
∂x

∞∑
k=K

ak sin(kx)− bk cos(kx)

k

(
1− e−k

2t
)

(2.54)

Second, we set

T 2
K := −2

∂um
∂x

∞∑
k=K

ak sin(kx)− bk cos(kx)

k3
(1− k2te−k

2t − e−k
2t).
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We obtain

∂T 2
K

∂t
= −2

∂

∂x

(
∂um
∂t

) ∞∑
k=K

ak sin(kx)− bk cos(kx)

k3
(1− k2te−k

2t − e−k
2t)

− 2

(
∂um
∂x

) ∞∑
k=K

(ak sin(kx)− bk cos(kx)) kte−k
2t.

Let us define, in order to alleviate the upcoming computations,

ϕ(s) := 1− se−s − e−s.

Similarly we obtain

∂T 2
K

∂x
= −2

∂2um
∂x2

∞∑
k=K

ak sin(kx)− bk cos(kx)

k3
ϕ(k2t)− 2

∂um
∂x

∞∑
k=K

ak cos(kx) + bk sin(kx)

k2
ϕ(k2t)

as well as (the next equation should be understood in the W−1,2(Ω) sense)

∂2T 2
K

∂x2
= −2

∂

∂x

(
∂2um
∂x2

) ∞∑
k=K

ak sin(kx)− bk cos(kx)

k3
ϕ(k2t)

− 4
∂2um
∂x2

∞∑
k=K

ak cos(kx) + bk sin(kx)

k2
ϕ(k2t)

+ 2
∂um
∂x

∞∑
k=K

ak sin(kx) + bk cos(kx)

k
ϕ(k2t).

Combining these bricks we are left with

LVmT
2
K = −2

∂

∂x
(LVmum)

∞∑
k=K

ak sin(kx)− bk cos(kx)

k3
ϕ(k2t)

− 2
∂um
∂x

∞∑
k=K

(ak sin(kx)− bk cos(kx))

(
kte−k

2t +
ϕ(k2t)

k

)

− 4
∂2um
∂x2

∞∑
k=K

ak cos(kx) + bk sin(kx)

k2
ϕ(k2t)

= −2
∂

∂x
(LVm

um)

∞∑
k=K

ak sin(kx)− bk cos(kx)

k3
ϕ(k2t)

− 2
∂um
∂x

∞∑
k=K

ak sin(kx)− bk cos(kx)

k

(
1− e−k

2t
)

− 4
∂2um
∂x2

∞∑
k=K

ak cos(kx) + bk sin(kx)

k2
ϕ(k2t),

where, to obtain the last equality, we simply wrote

kte−k
2t +

ϕ(k2t)

k
= kte−k

2t +
1

k
− kte−k

2t − e−k
2t

k
=

1− e−k2t

k
.
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Now, it follows that RK satisfies

LVmRK = LVm u̇m − LVmT
1
K − LVmT

2
K

= um

∞∑
k=K

ak cos(kx) + bk sin(kx)− (LVmu)

∞∑
k=K

ak cos(kx) + bk sin(kx)

k2
(1− e−k

2t)

− um
∞∑
k=K

(ak cos(kx) + bk sin(kx))

− 2
∂um
∂x

∞∑
k=K

ak sin(kx)− bk cos(kx)

k

(
1− e−k

2t
)

+ 2
∂

∂x
(LVm

um)

∞∑
k=K

ak sin(kx)− bk cos(kx)

k3
ϕ(k2t)

+ 2
∂um
∂x

∞∑
k=K

ak sin(kx)− bk cos(kx)

k

(
1− e−k

2t
)

+ 4
∂2um
∂x2

∞∑
k=K

ak cos(kx) + bk sin(kx)

k2
ϕ(k2t)

= − (LVm
um)

∞∑
k=K

ak cos(kx) + bk sin(kx)

k2
(1− e−k

2t)

+ 2
∂

∂x
(LVmum)

∞∑
k=K

ak sin(kx)− bk cos(kx)

k3
ϕ(k2t)

+ 4
∂2um
∂x2

∞∑
k=K

ak cos(kx) + bk sin(kx)

k2
ϕ(k2t)

We need one more transformation before this is in a workable form: we observe that (still in the
W−1,2(Ω) sense) we have

∂

∂x
(LVmum)

∞∑
k=K

ak sin(kx)− bk cos(kx)

k3
ϕ(k2t) =

∂

∂x

{
LVmum

∞∑
k=K

ak sin(kx)− bk cos(kx)

k3
ϕ(k2t)

}

− (LVm
um)

∞∑
k=K

ak cos(kx) + bk sin(kx)

k2
ϕ(k2t),

and the equation we shall be working on is then given by

LVmRK = − (LVmum)

∞∑
k=K

ak cos(kx) + bk sin(kx)

k2
(1− e−k

2t + 2ϕ(k2t))

+ 2
∂

∂x

{
LVmum

∞∑
k=K

ak sin(kx)− bk cos(kx)

k3
ϕ(k2t)

}

+ 4
∂2um
∂x2

∞∑
k=K

ak cos(kx) + bk sin(kx)

k2
ϕ(k2t) (2.55)
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Estimating RK We introduce the notation

φ(t) := 1− e−s + 2ϕ(s).

As ϕ is bounded, so is φ. Let RK,1 , RK,2 , RK,3 be the solutions of

LVmRK,1 = − (LVmum)

∞∑
k=K

ak cos(kx) + bk sin(kx)

k2
φ(k2t) ,

LVmRK,2 = 2
∂

∂x

{
LVmum

∞∑
k=K

ak sin(kx)− bk cos(kx)

k3
ϕ(k2t)

}
,

LVm
RK,3 = −4

∂2um
∂x2

∞∑
k=K

ak cos(kx) + bk sin(kx)

k2
ϕ(k2t).

(2.56)

Obviously,
RK = RK,1 +RK,2 +RK,3,

and so, up to a multiplicative constant E1 we have∫∫
(0,T )×T

|∇RK |2 +

∫∫
(0,T )×T

R2
K +

∫
T
R2
K(T, ·)

6 E1

3∑
j=1

(∫∫
(0,T )×T

|∇RK,j |+
∫∫

(0,T )×T
R2
K,j +

∫
T
R2
K,j(T, ·)

)
. (2.57)

We shall now estimate each of these three functions. All the upcoming estimates rely on the
following, standard, parabolic regularity result (proved in appendix A.3):

Lemma 21. Let f ∈ L2(Ω) and g ∈ L2(Ω). Let q ∈ L∞((0, T )× T). Let θ be the solution of{
∂tθ − ∂2

xxθ − V θ = ∂xf + qg in (0, T )× T ,
θ(0, ·) = 0.

(2.58)

Then ∫∫
(0,T )×T

|∂xθ|2 +

∫∫
(0,T )×T

θ2 +

∫
T
θ2(T, ·) 6 C(V, q)

∫∫
(0,T )×T

(f2 + g2). (2.59)

We can move back to estimating RK,j , for j = 1, 2, 3. To estimate RK,1 we apply Lemma 21
with

f = 0 , q = −LVm
um , g =

∞∑
k=K

ak cos(kx) + bk sin(kx)

k2
φ(k2t).

Thus we obtain

∫∫
(0,T )×T

|∇RK,1|2 +

∫∫
(0,T )×T

R2
K,1 +

∫
(0,T )×T

RK,1(T, ·)2

6 C1

∫∫
(0,T )×T

{ ∞∑
k=K

ak cos(kx) + bk sin(kx)

k2
φ(k2t)

}2

dtdx. (2.60)
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Since φ is bounded by a constant, which we take equal to 1 up to changing the value of C1, we
obtain

∫∫
(0,T )×T

|∇RK,1|2 +

∫∫
(0,T )×T

R2
K,1 +

∫
(0,T )×T

RK,1(T, ·)2 6 C1

∞∑
k=K

a2
k + b2k
k4

. (2.61)

For RK,2, it suffices to apply lemma 21 with

f = 2LVmum

∞∑
k=K

ak sin(kx)− bk cos(kx)

k3
ϕ(k2t) , q = g = 0

and we obtain, since LVmum ∈ L∞((0, T )× T), the existence of a constant C2 such that∫∫
(0,T )×T

|∇RK,2|2 +

∫∫
(0,T )×T

R2
K,2 +

∫
T
RK,2(T, ·)2 6 C2

∞∑
k=K

a2
k

k6
. (2.62)

The case of RK,3 is, on the other hand, trickier, but can be handled similarly. We first recall
that, from proposition 16, for any p ∈ [1; +∞),

M(p) := sup
t∈[0,T ]

‖um(t, ·)‖W 2,p(T) <∞.

From standard W 1,2 parabolic estimates, we obtain, for a constant C3,∫∫
(0,T )×T

|∇RK,3|2 +

∫∫
(0,T )×T

R2
K,3 +

∫
T
R2
K,3(T, ·)

6 C3

∫∫
(0,T )×Ω

(
∂2um
∂x2

)2
{ ∞∑
k=K

ak cos(kx) + bk sin(kx)

k2
ϕ(k2t)

}2

. (2.63)

Thus, up to replacing C3 with C3‖ϕ‖L∞ , we obtain∫
T
R2
K,3(T, ·) +

∫∫
(0,T )×T

R2
K,3 +

∫∫
(0,T )×T

|∇RK,3|2

6 C3

∫∫
(0,T )×Ω

(
∂2um
∂x2

)2
{ ∞∑
k=K

ak cos(kx) + bk sin(kx)

k2

}2

. (2.64)

Define

ΨK :=

∞∑
k=K

ak cos(kx) + bk sin(kx)

k2
.

From Hölder’s inequality, we obtain∫
T
R2
K,3(T, ·) +

∫∫
(0,T )×T

R2
K,3 +

∫∫
(0,T )×T

|∇RK,3|2 6 C3

∫∫
(0,T )×T

(
∂2um
∂x2

)2

Ψ2
K

6 C3M(4)︸ ︷︷ ︸
=:C′3

∫ T

0

‖∇ΨK(t, ·)‖L2(T)‖ΨK(t, ·)‖L2(T)dt
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6 2C ′3

{
Υ

∫∫
(0,T )×T

|∇ΨK |2 +
1

Υ

∫∫
(0,T )×T

Ψ2
K

}
.

However, since

∂ΨK

∂x
=

∞∑
k=K

−ak sin(kx) + bk cos(kx)

k

we obtain, on the one-hand, ∫∫
(0,T )×T

Ψ2
K =

1

2

∞∑
k=K

a2
k + b2k
k4

,

and, on the other hand, ∫∫
(0,T )×T

|∇ΨK |2 =
1

2

∞∑
k=K

a2
k + b2k
k2

.

Finally, we obtain the estimate∫
T
R2
K,3(T, ·)+

∫∫
(0,T )×T

R2
K,3+

∫∫
(0,T )×T

|∇RK,3|2 6 ΥC ′3

∞∑
k=K

a2
k + b2k
k2

+
C ′3
Υ

∞∑
k=K

a2
k + b2k
k4

. (2.65)

Hence, summing (2.61)-(2.62)-(2.65) and plugging these estimates in (2.57), there exists Ccont

such that

∫∫
(0,T )×T

|∇RK |2 +

∫∫
(0,T )×T

R2
K +

∫
T
R2
K(T, ·) 6 Ccont

Υ

∞∑
k=K

a2
k + b2k
k4

+ ΥCcont

∞∑
k=K

a2
k + b2k
k2

,

thus concluding the proof.

Thus proposition 19 is proved. As, from lemma 20, proposition 19 implies theorem I, theorem
I is established.

3 Proof of Theorem II

The first part of the proof follows the plan of the proof of theorem I: the idea is to obtain a time-
discrete analog of proposition 15, see lemma 23 below. The way to use such an estimate then differs
from the proof of theorem I and is simpler, as there is no need to carry out two-scale asymptotic
expansions.

3.1 Preliminary analysis of the system

We recall that the system of equations we work with is

wm,0 = w0 and for any k ∈ {0, . . . , N − 1},{
wm,k+1−wm,k

δt −∆wm,k+1 = mk+1wm,k+1 + fk+1(x,wm,k+1) in Ω ,
∂wm,k+1

∂ν = 0 on ∂Ω.
(3.1)

The following Lemma contains all the information we shall need regarding the solvability of (3.4),
and the regularity we will use. Since its proof relies on standard techniques in time-discretised
systems, we give it in Appendix B.
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Lemma 22. Assume {fk}k=1,...,n satisfies (Hdis). Let w0 ∈ L∞(Ω) satisfy

0 < inf
Ω
w0 6 ‖w0‖L∞(Ω) 6 κ

where we recall that κ is given by (H2). For any δt > 0 small enough, for any m ∈ M(Ω) the
system (3.4) is uniquely solvable. Furthermore,

∀k ∈ {1 , . . . , N} , 0 < inf
Ω
wm,k 6 ‖wm,k‖L∞(Ω) 6 κ

and
∀k ∈ {1 , . . . , N} ,∀p ∈ [1; +∞) , wm,k ∈W 2,p(Ω).

3.2 Computation and estimate on the derivatives of the functional

The Gateaux derivative of the state solves

ẇm,0 = 0 and for any k ∈ {0, . . . , N − 1},{
ẇm,k+1

δt −∆ẇm,k+1 = ẇm,k+1 (mk+1 + ∂wfk+1(x,wm,k+1)) +
ẇm,k

δt + hk+1wm,k+1 in Ω ,
∂ẇm,k+1

∂ν = 0 on ∂Ω.

(3.2)

The derivative of the criterion under consideration writes

J̇dis(m)[h] =

N∑
i=1

∫
Ω

ẇm,i∂wji(x,wm,i). (3.3)

Let us define, for any k ∈ {1, . . . , N},

Wk := (mk+1 + ∂wfk+1(x,wm,k+1)) .

We introduce the adjoint state, namely, the solution qm = (qm,0, . . . , qm,N−1) solution of

q̇m,N−1

δt
−∆q̇m,N−1 +WN−1q̇m,N−1 = ∂wjN (x,wm,N ) and, for any k ∈ {1, . . . , N − 1},{

q̇m,k−1

δt −∆q̇m,k−1 = q̇m,k−1Wk +
q̇m,k

δt − ∂wj1(x,wm,k) in Ω ,
∂q̇m,k+1

∂ν = 0 on ∂Ω.
(3.4)

Multiplying (3.2) by qm and integrating by parts in space yields

1

δt

N−1∑
k=0

∫
Ω

(ẇm,k+1 − ẇm,k)qm,k +

N−1∑
k=0

∫
Ω

〈∇ẇm,k+1 ,∇qm,k〉

+

N−1∑
k=0

∫
Ω

Wk+1ẇm,k+1qm,k =

N−1∑
k=0

∫
Ω

hk+1wm,k+1qm,k. (3.5)

We perform an Abel transformation:

N−1∑
k=0

∫
Ω

(ẇm,k+1 − ẇm,k)qm,k =

N−1∑
k=0

∫
Ω

ẇm,k+1qm,k −
N−1∑
k=0

∫
Ω

ẇm,kqm,k

34



=

N∑
k=1

∫
Ω

ẇm,kqm,k−1 −
N−1∑
k=1

∫
Ω

ẇm,kqm,k

=

∫
Ω

ẇm,Nqm,N−1 +

N−1∑
k=1

∫
Ω

ẇm,k (qm,k−1 − qm,k) ,

where we used repeatedly the fact that ẇm,0 = 0.
As a consequence, we obtain

1

δt

∫
Ω

ẇm,Nqm,N−1 +
1

δt

N−1∑
k=1

∫
Ω

ẇm,k (qm,k−1 − qm,k) +

N−1∑
k=0

∫
Ω

〈∇ẇm,k+1 ,∇qm,k〉

+

N−1∑
k=0

∫
Ω

Wk+1ẇm,k+1qm,k =

N−1∑
k=0

∫
Ω

hk+1wm,k+1qm,k, (3.6)

which rewrites

1

δt

∫
Ω

ẇm,Nqm,N−1 +
1

δt

N−1∑
k=1

∫
Ω

ẇm,k (qm,k−1 − qm,k) +

N∑
k=1

∫
Ω

〈∇ẇm,k ,∇qm,k−1〉

+

N∑
k=1

∫
Ω

Wkẇm,kqm,k−1 =

N∑
k=1

∫
Ω

hkwm,kqm,k−1. (3.7)

It follows that

J̇(m)[h] =

N∑
i=1

∫
Ω

ẇm,i∂wji(w,wm,i) =

N∑
k=1

∫
Ω

hkwm,kqm,k−1. (3.8)

In the same way, we have the following system for the second-order Gateau derivative

ẅm,0 = 0 and for any k ∈ {0, . . . , N − 1},
1
δt ẅm,k+1 −∆ẅm,k+1 = ẅm,k+1 (mk+1 + ∂wfk+1(t, x, wm,k+1)) + (ẇm,k+1)

2
∂2
wwfk+1

+ 1
δt ẅm,k + 2hk+1ẇm,k+1 in Ω ,

∂ẅm,k+1

∂ν = 0 on ∂Ω,

(3.9)

as well as the second-order derivative of the criterion

J̈(m)[h] =

N∑
i=1

ẅm,i∂wji(x,wm,i) +

N∑
i=1

(ẇm,i)
2
∂2
wwji(x,wm,i)

= 2

N∑
k=1

∫
Ω

hkẇm,kqm,k−1 +

N∑
k=1

∫
Ω

(ẇm,k)
2
∂2
wwfk+1qm,k−1 +

N∑
i=1

(ẇm,i)
2
∂2
wwji(x,wm,i). (3.10)

The main lemma is then

Lemma 23. Let m ∈ M(Ω). There exist two positive constant α , β > 0 such that for any
admissible perturbation h at m there holds

J̈(m)[h,h] > α

N−1∑
k=0

∫
Ω

|∇ẇm,k+1|2 − β
N−1∑
k=0

∫
Ω

ẇ2
k+1.

35



Proof of Lemma 23. Let us focus on

N∑
k=1

∫
Ω

hkẇm,kqm,k−1 =

N−1∑
k=0

∫
Ω

hk+1ẇm,k+1qm,k.

Let us observe that, for any k ∈ {0, . . . , N − 1}, we have

hk+1 =
1
δt (ẇm,k+1 − ẇm,k)−∆ẇm,k+1 − ẇm,k+1Wk+1

wm,k+1

In particular, for any k ∈ {0, . . . , N − 1},∫
Ω

hk+1ẇm,k+1qm,k =

∫
Ω

qm,k

1
δt (ẇm,k+1 − ẇm,k)−∆ẇm,k+1 − ẇm,k+1Wk+1

wm,k+1
ẇm,k+1.

Let us define, for any k ∈ {0, . . . , N − 1},

Ψm,k+1 :=
qm,k

wm,k+1
.

The above expression rewrites∫
Ω

hk+1ẇm,k+1qm,k =

∫
Ω

(
1

δt
Ψm,k+1 −Wk+1

)
(ẇm,k+1)

2

+
1

δt

∫
Ω

Ψm,k+1ẇm,k+1ẇm,k

− 1

2

∫
Ω

∆(ẇ2
m,k+1)Ψm,k+1 +

∫
Ω

Ψm,k+1|∇ẇm,k+1|2

=

∫
Ω

(
1

δt
Ψm,k+1 −Wk+1 −

1

2
∆Ψm,k+1

)
(ẇm,k+1)

2

+

∫
Ω

Ψm,k+1|∇ẇm,k+1|2

+
1

δt

∫
Ω

Ψm,k+1ẇm,k+1ẇm,k.

However, adapting the arguments of lemma 22 and using the fact that J satisfies (HJ) we easily
derive that

∀k ∈ {0, . . . , N} , 0 < inf
Ω
qm,k 6 ‖qm,k‖L∞ <∞.

With lemma 22 this implies that there exists a constant α > 0 such that

N−1∑
k=0

∫
Ω

Ψm,k+1|∇ẇm,k+1|2 > α

N−1∑
k=0

∫
Ω

|∇ẇm,k+1|2 (3.11)

Similarly, there exists a constant β0 ∈ IR such that

N−1∑
k=0

∫
Ω

(
1

δt
Ψm,k+1 −Wk+1 −∆Ψm,k+1

)
(ẇm,k+1)

2
+

1

δt

∫
Ω

Ψm,k+1ẇm,k+1ẇm,k

6 β0

N−1∑
k=0

∫
Ω

w2
m,k+1. (3.12)
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To obtain the estimate above, in particular, we used the fact that ẇm,0 = 0 to derive the bound

N−1∑
k=0

∫
Ω

Ψm,k+1ẇm,k+1ẇm,k 6 2 sup
k=0 ,...,N−1

‖Ψm,k+1‖L∞
N−1∑
k=0

ẇ2
m,k+1.

Let us also notice that from lemma 22 and explicit computations similar to [39, Estimate (2.14)-
(2.15)] that

∀k ∈ {0, . . . , N − 1} ,∆Ψm,k+1 ∈ L∞(Ω)

and so there exists β1 such that

N∑
k=1

∫
Ω

(ẇm,k)
2
∂2
wwfk+1qm,k−1 +

N∑
i=1

(ẇm,i)
2
∂2
wwji(x,wm,i) 6 β1

N−1∑
k=0

∫
Ω

ẇ2
m,k+1.

Setting β := β0 + β1 we obtain the following estimate on J̈ :

J̈(m)[h,h] > α
N−1∑
k=0

∫
Ω

|∇ẇm,k+1|2 − β
N−1∑
k=0

∫
Ω

ẇ2
k+1.

With this estimate at hand, we can conclude the proof of theorem II.

Proof of Theorem II. We argue by contradiction and fix a maximiser m∗ = (m∗1 , . . . ,m
∗
N ) that

is not bang-bang. In particular, one of the m∗i is not bang-bang. Let i∗ be such that m∗i∗ is not
bang-bang, and let

ω∗ := {0 < m∗i∗ < 1}.

By construction
Vol(ω∗) > 0.

We now construct a perturbation h at m∗ in order to derive the conclusion. This h has the form

h = (0 , . . . , hi∗ , . . . , 0).

To yield a contradiction, we need to choose hi∗ such that

1. ∫
Ω

hi∗ = 0 , hi∗ is supported in ω∗ and ‖hi∗‖L2 = 1. (3.13)

2. The associated ẇm must satisfy

α

N−1∑
k=0

∫
Ω

|∇ẇm,k+1|2 >
N−1∑
k=0

β

∫
Ω

ẇ2
k+1.

First observe that for such an h we have ẇm,i = 0 if i < i∗. Let for any k ∈ IN∗ and any
i ∈ {i∗ , . . . , N} φk,i be the i-th eigenfunction, associated with the eigenvalue λk,i, of the operator

Li := −∆−Wk +
1

δt
,
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endowed with Neumann boundary conditions. If we fix a large integer K, if we can choose hi∗ such
that (3.13) holds and such that for every i > i∗ we have, in the spectral basis {φk,i}k∈IN,

ẇm,i =

∞∑
k=K

ak,iφk,i (3.14)

then we obtain the lower bound

J̈(m)[h,h] > α

∞∑
i=i∗

∫
Ω

|∇ẇm,i|2 − β
N∑
i=i∗

∫
Ω

ẇm,i|2

> α

∞∑
i=i∗

(∫
Ω

|∇ẇm,i|2 −
(
Wi −

1

δt

)
ẇ2

m,i

)
−

N∑
i=i∗

∫
Ω

ẇ2
m,i

(
β + αWi −

1

δt

)

> α

∞∑
k=K

N∑
i=i∗

λk,ia
2
k,i − β′

∞∑
k=K

N∑
i=i∗

a2
k,i ,

for β′ = β+ 1
δt+α supi∈{i∗ ,... ,N} ‖Wi‖L∞ . For K large enough, this immediately gives J̈(m)[h,h] >

0.
Thus it suffices to build h such that (3.13)-(3.14) hold simultaneously.

Heuristic We proceed inductively to explain our construction. First, we explain how to build
h0
i∗ such that, in the spectral basis {φk,i∗}k∈IN we have

h0
i∗wm,i∗ =

∞∑
k=K

a0
k,i∗φk,i∗ . (3.15)

That such an admissible perturbation exists for any k ∈ IN is guaranteed by the following fact: as
Vol(ω∗) > 0, the space E := L2(ω∗) is infinite dimensional. Consider the family of functionals

R0 : E 3 h 7→
∫
ω∗
h and ∀k ∈ {0, . . . ,K − 1} , Tk,i∗ : E 3 h 7→

∫
ω∗
hwm,i∗φk,i∗ .

Each of this functional is continuous on E and thus if we define

Fi∗ := ker(R0) ∩
K−1⋂
k=0

ker(Tk,i∗)

then Fi∗ has finite co-dimension. Consequently, there exists h0
i∗ ∈ Fi∗\{0} supported in ω such

that ‖h0
i∗‖L2(ω∗) = 1 (which we extend by setting Hi∗ = hi∗1ω∗) and such that (3.15) holds. As

wm,i∗ solves
Li∗ẇm,i∗ = hwm,i (3.16)

we obtain

ẇm,i∗ =

∞∑
k=K

a0
k,i∗

λk,i∗
φk,i∗ . (3.17)

However, if we merely choose hi∗ like this, we may have problems when considering the spectral
decomposition of ẇm,i∗+1. Indeed, since hi∗+1 = 0 in our construction, ẇm,i+1∗ solves

Li∗+1ẇm,i∗+1 =
1

δt
ẇm,i∗ ,
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it appears that we must choose h0
i∗ such that in the spectral basis {φk,i∗+1} ẇm,i∗ has a decom-

position of the form

ẇm,i∗ =

∞∑
k=K

a0
k,i∗+1φk,i∗+1.

In other words, we must ensure that

∀k ∈ {0, . . . ,K} , Tk,i∗+1(h0
i∗) :=

∫
Ω

ẇm,i∗φk,i∗+1 = 0.

Let us first note that for any k ∈ {0, . . .K−1} the map Tk,i∗+1 is linear in h0
i∗ . Furthermore, from

standard elliptic regularity, Tk,i∗+1 is continuous on E. Thus, it would suffice to choose h0
i∗ in the

set Fi∗+1 where Fi∗+1 is defined as

Fi∗+1 = Fi∗ ∩
K−1⋂
k=0

ker(Tk,i∗+1).

This indicates how to construct the function hi∗ .

Construction of hi∗ We define the following family of maps on E = L2(ω∗):

1. R0 : E 3 h 7→
∫
ω
h

2. For any k 6 K we define

Tk,i∗ : E 3 h 7→
∫
ω∗
hwm,i∗φk,i∗ .

3. For any i ∈ {i∗ + 1 , . . . , N}, for any k 6 K,

Tk,i : E 3 h 7→
∫

Ω

ẇm,i−1φk,i.

From elliptic regularity, each of these maps is continuous on E. Consequently, the space

F := ker(R0) ∩
N⋂
i=i∗

K−1⋂
k=0

ker(Tk,i)

has finite codimension. We pick hi∗ ∈ F\{0} and up to a rescaling assume that

‖hi∗‖L2(ω∗) = 1.

We extend hi∗ by 0 outside of Ω∗ and, by construction, for any i ∈ {i∗ , . . . N}, (3.14) holds. This
concludes the proof.

4 Conclusion

4.1 Possible generalisations of theorem I

4.1.1 General comment about generalisations

Throughout these generalisations, we still assume that we are working with an initial condition
u0 ∈ C 2(T) with infT u

0 > 0. Let us draw attention to the fact that the core idea of the proof
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of theorem I consists in combining two ingredients: the first one is proposition 15, which gives a
lower estimate of J̈ , and the second one is a two scale asymptotic expansion. This second part is
independent of the functionals j1 , j2, the monotonicity of which are only used in the first step. To
generalise our model to other types of interactions, some assumptions will ensure that proposition
15 remain valid. A crucial part in deriving the conclusion however is estimate (2.43). To obtain
it, we used the fact that in our bilinear model we have inf(0,T )×T |um| > 0. This plays a role when
using the fact that u̇m solves

∂u̇m
∂t
−∆u̇m − Vmu̇m = umh.

In other types of model, u̇m solves (generically) an equation of the form

∂u̇m
∂t
−∆u̇m − Vmu̇m = F (um,m)h,

and other assumptions will thus ensure that inf(0,T )×T F (um,m) > 0.

4.1.2 Approximations of time dependent controls

Although we can not handle general time-dependencies, see section 4.3, we would nonetheless like
to draw attention to the fact that our method covers some approximations of time-varying controls.
Consider an integer N and a family of functions {φi}i=1,...,N satisfying the following conditions:

For any i ∈ {1, . . . , N}, φi ∈ C 1([0, T ], IR) (A1)

For any i ∈ {0, . . . , N}, inf
[0,T ]
|φi| > 0. (A2)

Let

MN (T) :=
{
m ∈ L∞((0, T )× T) that write m =

N∑
i=1

φi(t)mi

where for any i ∈ {1, . . . , N} ,mi ∈M(T)
}
. (4.1)

A generic m ∈ MN (T) is identified with the associated N -tuple (m1, . . . ,mN ) ∈ M(T)N . A
function m ∈MN (T ) is called bang-bang if for any i ∈ {1, . . . , N} mi is a bang-bang function.

We can define um as the solution of (1.2) with m replaced with m, and the optimisation problem
is

max
m∈MN (T)

J (m), (PN
parab)

where J still satisfies assumption (HJ ) of Theorem I. We claim that, up to minor adaptations of
our proof, the following result holds:

Theorem III. Assume J satisfies (HJ ) and φ = {φi}i=1 ,...,N satisfies (A1)-(A2). Any solution
m∗ of (PN

parab) is bang-bang: there exist E1 , . . . , EN ⊂ T such that

m∗ =

N∑
i=0

φi(t)1Ei
.
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Sketch of proof of theorem III First of all, we once again have

inf
(0,T )×T

um > 0 and for any p ∈ [1; +∞) sup
t∈[0,T ]

‖um(t, ·)‖W 2,p(T) <∞.

We can compute, for an admissiblem ∈MN (T) and an admissible perturbation h = (h1, . . . , hN )
at m, the first and second order derivatives of m 7→ um in the direction h solve, respectively,{

∂u̇m

∂t −∆u̇m − Vmu̇m = um
∑N
i=1 φi(t)hi in (0, T )× T,

u̇m(0, ·) ≡ 0 in T.
(4.2)

and ∂üm

∂t −∆üm − Vmüm = 2u̇m
∑N
i=1 φi(t)hi + ∂2f

∂u2

∣∣∣
u=um

(u̇m)
2

in (0, T )× T,

üm(0·) ≡ 0 in T
(4.3)

with

Vm :=

(
m+

∂f

∂u

∣∣∣∣
u=um

)
.

We introduce the adjoint state pm, solution of
∂pm
∂t + ∆pm + Vmpm = − ∂j1

∂u

∣∣∣
u=um

in (0, T )× T ,

pm(T, ·) = ∂j2
∂u

∣∣∣
u=um

in T.
(4.4)

From the same arguments as in lemma 14 we have

∀ε > 0 , inf
(0,T−ε)×T

pm > 0 and for any p ∈ [1; +∞) sup
t∈[0,T ]

‖pm(t, ·)‖W 2,p(T) <∞.

For any admissible perturbation h we then have

J̈ (m)[h, h] = 2

∫∫
(0,T )×T

u̇mpm

{
N∑
i=1

φi(t)hi(t)

}
+

∫
T
u̇2
m(T, ·) ∂

2j2
∂u2

∣∣∣∣
u=um(T,·)

+

∫∫
(0,T )×T

u̇2
m

(
∂2j1
∂u2

∣∣∣∣
u=um

+
∂2f

∂u2

∣∣∣∣
u=um

pm

)
. (4.5)

We then use the fact that
N∑
i=1

φi(t)hi =
∂u̇m

∂t −∆u̇m − Vmu̇m
um

.

From this point on, we can follow all the steps of the proof of proposition 15 to obtain the existence
of three positive constants α , β , γ and of a positive ε > 0 such that, for any admissible perturbation
h there holds

J̈ (m)[h, h] > α

∫∫
(0,T−ε)×T

|∇u̇m|2 − β
∫∫

(0,T )×T
u̇2
m − γ

∫
T
u̇2
m(T, ·).

We then argue by contradiction, assuming that there exists a maximiser m and an index
j ∈ {1, . . . , N} such that m∗j is not bang-bang, so that ω := {0 < m∗j < 1} has positive measure.
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We fix this index j and henceforth only consider perturbations h of the form (0, . . . , hj , . . . , 0) with
hj an admissible perturbation at mj supported in ωj , and admitting the Fourier decomposition

hj =

∞∑
k=K

ak cos(kx) + bk sin(kx).

For such a perturbation, the derivative u̇m solves{
∂u̇m

∂t −∆u̇m − Vmu̇m = umφj(t)hj in (0, T )× T,
u̇m(0, ·) ≡ 0 in T,

(4.6)

and given that inf(0,T )×T |umφj | > 0 we can conclude in exactly the same way.

4.1.3 Other types of interactions: generalisation and obstruction

One may argue that other types of interactions can be relevant. To motivate this point, let us
consider another type of model from spatial ecology, were one rather aims at optimising a certain
criterion for a state equation of the form{

∂ym
∂t −∆ym = f(t, x, ym) +mϕ(ym) in (0, T )× T ,
ym(0, ·) = y0 in T,

(4.7)

where y0 ∈ C 2(T) and infT y
0 > 0 is a fixed initial condition, f and ϕ are non-linearities that must

satisfy that for any m ∈M(T), ym satisfies

inf
(0,T )×T

ym > 0 (4.8)

and
∀T > 0 , sup

t∈[0,T ]

‖ym(t, ·)‖L∞ <∞. (4.9)

We aim at optimising

J :M(T) 3 m 7→
∫∫

(0,T )×T
j1(t, x, ym) +

∫
T
j2(x, ym(T, ·)) (4.10)

and assume that J satisfies (HJ ).
We claim that, up to minor adaptation of the proof of theorem I, the following result holds:

Theorem IV. Assume that ϕ is C 2 on IR∗+. If, for any K ∈ IR∗+, for any ε > 0,

inf
y∈(0,K)

ϕ′(y)

ϕ(y)
= a1(K) > 0 , inf

y∈(ε;K)
|ϕ(y)| = a2(ε,K) > 0 (4.11)

then any solution m∗ϕ of the optimisation problem

sup
m∈M(T)

J (m)

is bang-bang.
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Let us explain why this type of setting is relevant in application: consider the case of the
logistic-diffusive equation{

∂ym
∂t −∆ym = ym(1−mym) in (0, T )× T ,
ym(0, ·) = y0 in T,

(4.12)

as well as the functional

J (m) :=

∫
T
ym(T, ·).

Maximising J with respect to m ∈ M(T) amounts to optimising the total population size with
respect to m, the inverse of the carrying capacity (at this stage, one may argue that it would make
more sense to consider the case of m satisfying ε 6 m 6 1 in the definition ofM(T); given remark
6, we claim that this would not change anything to the conclusion of theorem IV). Such a problem
is inspired by the considerations of [20].

Sketch of proof of theorem IV We start by noticing that

inf
(0,T )×T

ym > 0 and for any p ∈ [1; +∞) sup
t∈[0,T ]

‖ym(t, ·)‖W 2,p(T) <∞.

Let m ∈ M(T), and consider an admissible perturbation h at m; the first and second order
derivatives of m 7→ um in the direction h solve,{

∂ẏm
∂t −∆ẏm − Vmẏm = ϕ(ym)h in (0, T )× T,
ẏm(0, ·) ≡ 0 in T.

(4.13)

and∂ÿm
∂t −∆ÿm − Vmÿm = 2ẏmhϕ

′(ym) +

(
mϕ′′(ym) + ∂2f

∂u2

∣∣∣
u=ym

)
ẏ2
m in (0, T )× T,

ÿm(0·) ≡ 0 in T
(4.14)

with

Vm :=

(
m+

∂f

∂u

∣∣∣∣
u=ym

+ ϕ′(ym)

)
.

We introduce the adjoint state qm, solution of
∂qm
∂t + ∆qm + Vmqm = − ∂j1

∂u

∣∣∣
u=ym

in (0, T )× T ,

qm(T, ·) = ∂j2
∂u

∣∣∣
u=ym

in T.
(4.15)

From the same arguments as in lemma 14 we have

∀ε > 0 , inf
(0,T−ε)×T

qm > 0 and for any p ∈ [1; +∞) sup
t∈[0,T ]

‖qm(t, ·)‖W 2,p(T) <∞.

For any admissible perturbation h we then have

J̈ (m)[h, h] = 2

∫∫
(0,T )×T

ẏmϕ
′(ym)qmh+

∫
T
ẏ2
m(T, ·) ∂

2j2
∂u2

∣∣∣∣
u=ym(T,·)
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+

∫∫
(0,T )×T

ẏ2
m

(
∂2j1
∂u2

∣∣∣∣
u=ym

+
∂2f

∂u2

∣∣∣∣
u=ym

qm +mϕ′′(ym)

)
. (4.16)

We then use the fact that

h =
∂ẏm
∂t −∆ẏm − Vmẏm

ϕ(ym)
.

Following all the steps of the proof of proposition 15, we obtain the existence of two constants β , γ
such that, for any admissible perturbation h at m, there holds

J̈ (m)[h, h] >
∫∫

(0,T )×T

qmϕ
′(ym)

ϕ(ym)
|∇ẏm|2 − β

∫∫
(0,T )×T

ẏ2
m − γ

∫
T
ẏ2
m(T, ·).

We then use the assumption to obtain the existence of an ε > 0 such that we have, for any
admissible perturbation h at m, the estimate

J̈ (m)[h, h]

>

(
inf

(0,T−ε)×T
qm

)
a1(sup(0,T )×T ym)

a2(inf(0,T )×T ym, sup(0,T )×T ym)

∫∫
(0,T−ε)×T

|∇ẏm|2−β
∫∫

(0,T )×T
ẏ2
m−γ

∫
T
ẏ2
m(T, ·)

> α

∫∫
(0,T−ε)×T

|∇ẏm|2 − β
∫∫

(0,T )×T
ẏ2
m − γ

∫
T
ẏ2
m(T, ·)

for a positive α > 0. We then follow exactly the same steps.

4.1.4 Some interactions not covered by our method

However, despite their interest, our generalisations, theorems IV and III, do not cover several cases.
A typical example of such an interaction between the state and the control is, typically, of the form
mϕ(um) with ϕ an increasing, negative function. Indeed, the following is easily checked via the
same computations: let ϕ be a smooth function such that

∀K , ε > 0 , sup
(0;K)

ϕ′

ϕ
= −a1 < 0 , inf

[ε;K]
|ϕ| = a2(ε,K) > 0,

and consider the solution zm of{
∂zm
∂t −∆zm = f(t, x, zm) +mϕ(zm) in (0, T )× T ,
zm(0, ·) = z0 in T,

(4.17)

where infT z
0 > 0 and ϕ and f are further chosen to satisfy

∀m ∈M(T) , inf
(0,T )×T

zm > 0 , sup
t∈[0,T ]

‖zm(t, ·)‖W 2,p(T) <∞.

Then, considering a functional J that satisfies (HJ ), there exists a positive constant α > 0 and
two constants β , γ > 0 such that

J̈ (m)[h, h] 6 −α
∫∫

(0,T−ε)×T
|∇żm|2 + β

∫∫
(0,T )×T

ż2
m + γ

∫
T
ż2
m(T, ·),

where żm is of course the derivative ofm 7→ zm atm in the direction h. In this case, our method fails
to provide a bang-bang property for maximisers, but yields a bang-bang property for minimisers.
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4.2 Generalisations and obstructions for Theorem I

In this section, we present several possible obstructions and generalisations of theorem I and of our
methods to other contexts (e.g to the multi-dimensional case or to other geometries), pinpointing
what the main difficulties seem to be.

4.2.1 Higher dimensional tori

We believe that our method extends, in a straightforward manner, to the case of d-dimensional tori,
for any d ∈ IN\{0}; once again, two steps are crucial in deriving theorem I. The first one, proposition
15, is an estimate on the second order Gateaux derivative of the functional which does not depend
on the dimension, see in particular remark 17. The second one is to establish a two-scale asymptotic
expansions for solutions of a linear heat equation with a highly oscillating source term. We claim
that this step can be extended in a straightforward way to the d dimensional torus, provided
the functions cos(k·) and sin(k·) are replaced with products of the form

∏d
i=1 cos(kix) sin(k′ix) or∏d

i=1 cos(kix) where (k1, . . . , kd , k
′
1, . . . , k

′
d) ∈ IN2d.

4.2.2 Possible obstructions in other domains

It would be extremely interesting and relevant, in many applications, to consider not only the case
of bounded domains Ω ⊂ IRd with, for instance, Neumann or Robin boundary conditions (Dirichlet
boundary conditions may not be suitable for our needs, as we need, in a crucial manner, a uniform
lower bound on solutions of the equation). In this context, we claim that the lower estimate given
by proposition 15 still holds, as is clear in the proof and in remark 17. The main difficulty lies
elsewhere, namely, in the possibility to attain two-scale asymptotic expansions in order to derive
the bang-bang property. A possibility to do so would be to replace the cos(k·) , sin(k·) with ψk,
where the {ψk}k∈IN or the Neumann (if working with Neumann boundary conditions) or Robin (if
working with Robin boundary conditions) eigenfunctions of the laplacian in Ω, associated with the
(increasing) sequence of eigenvalues {λk}k∈IN. Let us assume that we are working with Neumann
boundary conditions. Then the task at hand would be, if we mimicked our approach, to find an
asymptotic expansion for a solution u̇m of

∂u̇m

∂t −∆u̇m − Vmu̇m = um(t, x)
∑∞
k=K akψk(x) in (0, T )× Ω ,

∂u̇m

∂ν = 0 on ∂Ω ,

u̇m(0, ·) = 0 in Ω.

It is unclear, in this situation, which asymptotic expansion would yield a result analogous to that
of proposition 19.

4.2.3 Possible obstructions for other diffusion operators

A very relevant query, if we keep application to mathematical biology in mind, is the analysis of
heterogeneous diffusion operators. In other words, following, for instance, [8], one may rather be
interested in state equations assuming the form

∂um
∂t
−∇ · (A∇um) = mum + f(t, x, u)

where A = A(t, x) accounts for some heterogeneity. It is likely that our methods extend to this
case, provided A is smooth enough to guarantee uniform (in time) W 2,p(T) (in space) estimates
on the solution um. Although this can be of interest, since our main goal is the analysis of shape
optimisation problems in optimal control problems, this is not the most relevant analytical setup for
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us. Indeed, in the context of spatial ecology, the diffusion matrix A and the resources distribution
m are often linked, which will lead to very intricate situations from the regularity point of view.
For an example of such an optimisation problem and of the wealth of qualitative and technical
issues it can lead to we refer to the elliptic optimisation problem studied in [36].

4.2.4 Some possible open questions

Of course, the bang-bang property is one of the many qualitative aspects of bilinear optimal
control problems. Even when m does not depend on time, and we know that maximisers are
bang-bang, what do theses optimisers look like from a geometric point of view? In other words,
considering a maximiser m∗ = 1E∗ , what are the geometric and topological features of E∗? Is
it connected, disconnected, and how may we quantify such information? Let us underline here
that the functionals under consideration in this paper are non-energetic, which prohibits the use of
rearrangement techniques. Such techniques, developed in the context of mathematical biology in [9]
for instance, although very powerful for energetic or spectral optimisation problems in the elliptic
case [27] or for the study of concentration phenomena in parabolic models [3, 4, 5, 6, 33, 41, 42, 47]
can not yield satisfying results for non-energetic problems. As an example, we refer to the elliptic
problem of optimising the total population size described in section 1.6 and, more specifically, to
the results of [23, 39, 40]: in the elliptic context, depending on the dispersal rate of the population,
optimal resources distributions are either concentrated (and when that dispersal rate is high enough
we can apply symmetrisation properties) or display hectic oscillations (this corresponds to the low
dispersal rate limit, and is clearly a case where it is hopeless to apply rearrangements). The study
of these properties in parabolic models seems challenging, and we plan on studying it in further
works.

4.3 The difficulty with general time dependent controls

Finally, let us underline the core difficulties in reaching the bang-bang property for general time-
dependent controls. In other words, assume we are working with controls m satisfying

m ∈M((0, T )× T)

=

{
m ∈ L∞((0, T )× T) : 0 6 m 6 1 a.e. and for a.e. t ∈ [0, T ]

∫
T
m(t, ·) = m0

}
,

and we are studying the maximisation of J overM((0, T )× T). Two problems rapidly arise. The
first one is that, as noted several times, the regularity of um is crucial in deriving proposition 15;
this necessarily requires some a priori assumptions on the regularity of the control m in time.
The second difficulty is in defining, for a given maximiser m∗ that would, arguing by contradiction,
not be bang-bang, a highly oscillating perturbation h. One may be tempted to reason in a way
analogous to that of theorem II and to choose a perturbation h supported in the right set (i.e. in
the set {0 < m∗ < 1}) by reasoning as follows: define, for a.e. t ∈ [0, T ], ω(t) := {t}×{0 < m∗ < 1}
and consider a function ht supported in ω(t) that only has high (enough) Fourier modes. One would
then define the perturbation as h(t, x) = ht(x). The problem here is that there is no guarantee
that such a function h is measurable in (t, x).

On the other hand, enforcing strong time regularity constraints on the control m (such as, for
instance, m ∈ C 1([0, T ];M(T))) may allow such constructions to work. This is however, beyond
the scope of our article, and we plan on investigating the influence of time-regularity constraints
on the bang-bang property in the future.
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Feb. 2020.

[36] I. Mazari, G. Nadin, and Y. Privat. Optimization of a two-phase, weighted eigenvalue with
dirichlet boundary conditions. To appear in Archive for Rational Mechanics and Analysis,
2022.

[37] I. Mazari, G. Nadin, and A. I. Toledo-Marrero. Optimisation of the total population size with
respect to the initial condition for semilinear parabolic equations: Two-scale expansions and
symmetrisation. Nonlinearity, 34(11), 2021.

[38] I. Mazari and Y. Privat. Qualitative analysis of optimisation problems with respect to non-
constant Robin coefficients. Submitted, 2021.

[39] I. Mazari, Y. Privat, and G. Nadin. Optimisation of the total population size for logistic
diffusive equations: bang-bang property and fragmentation rate. Submitted, 2021.

[40] I. Mazari and D. Ruiz-Balet. A fragmentation phenomenon for a nonenergetic optimal control
problem: Optimization of the total population size in logistic diffusive models. SIAM Journal
on Applied Mathematics, 81(1):153–172, Jan. 2021.
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A Study of the parabolic model

A.1 Proof of lemma 13

Proof of lemma 13. Given that f satisfies (H3), um satisfies the inequality{
∂um

∂t −∆um > mum + f(t, x, 0)−A|um| > mum −A|um| in (0, T )× T
um(0, ·) = u0 in T.

(A.1)

Multiplying this equation by the negative part u−m of u−m and integrating by parts gives

∂

∂t

∫
T
(u−m)2 +

∫
T
(u−m)2 6 A

∫
Ω

(u−m)2

and since u−m(0, ·) ≡ 0 we obtain
um > 0 in (0, T )× T.

To derive that
inf

(0,T )×T
um > 0

it suffices to apply the strong maximum principle.
For the upper bound, let κ be given by (H2). Up to replacing κ with max{‖u0‖L∞ , κ} we may

assume that
κ > ‖u0‖L∞ .

Let zm := um − κ. zm solves the partial differential equation

∂zm
∂t
−∆zm = mum + f(t, x, um) = mzm + f(t, x, um) + κm

= mzm + f(t, x, um)− f(t, x, κ) + κm+ f(t, x, κ)

6 mzm + f(t, x, um)− f(t, x, κ)

6 (m+A)|zm|.

As zm(0, ·) 6 0, the conclusion follows: zm 6 0 in (0, T )× T so that um 6 κ.

A.2 Regularity results: proof of proposition 16

To prove proposition 16 we need an auxilliary result:

Lemma 24. For any p ∈ [1; +∞) there exists a constant Cp such that the following holds: there
exists q > 1 such that, for any θ0 ∈ C∞(T), for any Θ ,W ∈ W 1,q(0, T ;Lq(T)) ∩ L∞((0, T )× T),
if θ be the unique Lp(0, T ;W 1,p(T)) solution of{

∂tθ − ∂xxθ −Wθ = Θ in (0, T )× T ,
θ(0, ·) = θ0 in T.

(A.2)

Then

sup
t∈[0,T ]

‖∂tθ(t, ·)‖Lp(T) + sup
t∈[0,T ]

‖θ(t, ·)‖W 2,p(T)

6 Cp

(
‖Θ‖W 1,q(0,T ;Lq(T)) + ‖W‖W 1,q(0,T ;Lq(Ω) +

∥∥θ0
∥∥

C 2(T)

)
. (A.3)

It suffices to take q = 4bpc.

50



Proof of Lemma . Let us first prove that for any p ∈ [1; +∞) there exists a constant C0
p such that

sup
t∈[0,T ]

‖θ(t, ·)‖Lp(T) 6 C0
p

(
‖Θ‖L∞((0,T )×T) + ‖θ0‖Lq

)
, (A.4)

for q large enough. We first recall the inclusion of Lebesgue spaces: if p1 > p0 then Lp1(T) ↪→
Lp0(T). By this inclusion of Lebesgue spaces it suffices to prove (A.4) for p = 2k, k = 1, . . . , n, . . . .
Let k ∈ IN\{0}. To obtain (A.4) for p = 2k we use

v := 2kθ2k−1

as a test function in the weak formulation of (A.2). We obtain, for a.e. t ∈ (0, T ),∫
T

2k (∂tθ) θ
2k−1 + 2k(2k − 1)

∫
T
θ2k−2 |∇θ|2 − 2k

∫
T
Wθ2k = 2k

∫
T

Θθ2k−1.

In particular we obtain

∂t

∫
T
θ2k − ‖W‖L∞((0,T )×T)

∫
T
θ2k 6 2k

∫
T
|Θ| · |θ|2k−1.

We bound the right-hand side using Hölder’s inequality:

2k

∫
T
|Θ| · |θ|2k−1 6 2k‖Θ(t, ·)‖L2k(T)

(∫
T
θ2k

) 2k−1
2k

Defining c0 := ‖W‖L∞((0,T )×T) , c1(t) := 2k‖Θ(t, ·)‖L2k(T) and setting

y(t) :=

∫
T
θ2k(t, ·)

we are left with the differential inequality

y′(t)− c0y(t) 6 c1(t)y(t)1− 1
2k ,

which in turn yields
y′y

1
2k−1 − c0y

1
2k 6 c1.

We set z = y
1
2k e−c0t, which leads to

z′(t) 6 c1(t)e−c0t,

and it suffices to integrate this inequality to obtain

yk(t)
1
2k 6 ec0tyk(0)

1
2k + 2kec0t

∫ t

0

e−c0τ‖Θ(τ, ·)‖L2k(T)dτ.

We bound brutally t 6 T in the exponentials, and we obtain, for a constant c3,

yk(t)
1
2k 6 2kc3

(
yk(0)

1
2k +

∫ t

0

‖Θ(τ, ·)‖L2k(T)dτ

)
.

Finally, we use Jensen’s inequality:∫ t

0

‖Θ(τ, ·)‖L2k(T)dτ 6 t1−
2
k

(∫ t

0

∫
T

Θ2k

) 1
2k

6 T 1− 2
k ‖Θ‖L2k((0,T )×T).
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Finally:

‖θ(t, ·)‖Lp(T ) 6 2kc3

(
‖θ0‖L2k(T) + T 1− 2

k ‖Θ‖L2k((0,T )×T)

)
.

To derive (A.3) we differentiate (A.2) with respect to time. It appears that q := ∂tθ solves{
∂tq −∆q −Wq = ∂tΘ + θ∂tW in (0, T )× T ,
q(0, ·) = Wθ0 + ∆θ0 + Θ(0, ·) in T.

(A.5)

We reason once again using only p = 2k , k ∈ IN\{0}. It suffices to apply (A.4) to obtain

sup
t∈(0,T )

‖q(t, ·)‖L2k(T)

6 c3

(
‖Wθ0‖L2k(T) + ‖∆θ0‖L2k(T) + ‖Θ(0, ·)‖L2k(T) + T 1− 2

k ‖∂tΘ + θ∂tW‖L2k((0,T )×T)

)
(A.6)

We bound the first terms as follows:

‖Wθ0‖L2k(T)+‖∆θ0‖L2k(T)+‖Θ(0, ·)‖L2k(T) 6 ‖Wθ0‖L∞((0,T )×T)+‖θ0‖C 2(T)+‖Θ(0, ·)‖L∞((0,T )×T).

It remains to bound
‖∂tΘ + θ∂tW‖L2k((0, T )× T).

To control this term we use the arithmetic-geometric inequality to obtain

‖θ∂tW‖L2k((0,T )×T) 6
1

2
‖θ2 + (∂tW )

2 ‖L2k((0,T )×T)

6
1

2

(
‖θ‖2L4k((0,T )×T) + ‖∂tW‖2L4k((0,T )×T)

)
Thus,

sup
t∈(0,T )

‖∂tθ(t, ·)‖Lp(T) < C

and the constant C only depends on the W 1,p(0, T ;Lr(T)) norms of all the functions involved. To
obtain the uniform W 2,p estimate, we simply observe that for a.e. t ∈ (0, T ) θ(t, ·) solves

−∆θ(t, ·) = G := Θ− ∂tθ +Wθ

and to apply standard W 2,p elliptic regularity estimates.

We can now give the proof of Proposition 16

Proof of Proposition 16. We observe that um solves

∂tum −
∂2um
∂x2

−mum = f(t, x, um).

Now define
q := ∂tum.

As m does not depend on time, we obtain the following equation on q:{
∂q
∂t −

∂2q
∂x2 −

(
m+ ∂f

∂u (t, x, um)
)
q = ∂f

∂t (t, x, um) in (0, T )× T
q(0, ·) = ∆u0 +mu0 + f(0, x, u0).
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As um 6 K, ∂f (t, x, um) , ∂tf(t, x, um) ∈ L∞((0, T )× T). From Lemma A.2 we obtain, for any
p ∈ [1; +∞),

sup
t∈[0,T ]

‖∂tum‖Lp(T) + sup
t∈[0,T ]

‖um‖W 2,p(T) <∞.

In the same way, we derive the desired estimate on pm.

A.3 Proof of lemma 21

Proof of lemma 21. Multiplying the equation by θ, integrating by parts in space and using the fact
that V ∈ L∞((0, T )× T), there exists a constant M > 0 such that

1

2
∂t

∫
T
θ2 +

∫
T
|∇θ|2 − M

2

∫
T
θ2 6

1

2
∂t

∫
T
θ2 +

∫
T
|∇θ|2 −

∫
T
V θ2

=

∫
T
θ∂xf +

∫
T
θqg

= −
∫
T
f∂xθ +

∫
T
θqg

6
∫
T

f2 + (∂xθ)
2

2
+
‖q‖L∞

2

∫
T
g2 +

‖q‖L∞
2

∫
T
θ2.

Thus, there exists two constants M ′ ,M ′′ such that

∂t

∫
T
θ2 +

∫
T
|∇θ|2 −M ′

∫
T
θ2 6M ′′

(∫
T
f2(t, ·) +

∫
T
g2(t, ·)

)
,

so that, for a.e. t, we have

e−Mt

∫
T
θ2(t, ·) +

∫ t

0

e−Mτ

∫
T
|∇θ|2 6M ′′

∫ t

0

e−Mτ

(∫
T
f2(τ, ·) +

∫
T
g2(τ, ·)

)
dτ.

The conclusion follows by the using the inequality e−MT 6 e−Mt 6 1.

B Study of the time-discrete model

B.1 Proof of Lemma 22

Proof of Lemma 22. To derive existence, uniqueness, positivity and regularity, we simply prove
that, for any w0 satisfying the assumptions of Lemma 22, for any m ∈ M(Ω), wm,1 exists, is
unique, positive and enjoys the proper regularity properties, provided δt ∈ (0; δ), where δ only
depends on f and on the upper bound of m1. It then suffices to proceed inductively.

1. Existence and uniqueness of wm,1 We introduce the anti-derivative F of f as

F1(x,w) :=

∫ w

0

f1(x, ·).

As f1 satisfies (H2)-(H3) there exist two constant A0 , A1 such that

∀x ∈ Ω ,∀w > 0 , f1(x,w) 6 A0 −A1w.

Consequently, there exist two constants B0 , B1 such that

∀x ∈ Ω ,∀w ∈ IR , F1(x,w) > −B0w −B1w
2.
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We introduce the energy functional

E : W 1,2(Ω) 3 w 7→ 1

2

∫
Ω

|∇w|2 +
1

2

∫
Ω

(
1

δt
−m1

)
w2 −

∫
Ω

F1(x,w)− 1

δt

∫
Ω

w0w.

If we pick δt > 0 small enough to guarantee that

1

δt
> 1 +B1

then E is a coercive functional, so that a minimiser w1 exists. To prove that it is unique, we
consider two different solutions w1 , w

′
1 of{

w−w0

δt −∆w = f1(x,w) in Ω ,
∂w
∂ν = 0 on ∂Ω.

The function z := w1 − w′1 satisfies

z

δt
−∆z = f1(x,w1)− f1(x,w′1) 6 A|w1 − w′1| 6 A|z|

where A is given by (H3). Multiplying this equation by the positive part z+ of z and
integrating by parts we obtain

1

δt

∫
Ω

(z+)2 +

∫
Ω

|∇z+|2 6 A

∫
Ω

(z+)2.

Taking δt small enough to ensure that

1

δt
> A

we get z+ = 0. As the roles of w1 , w
′
1 are symmetric, we finally get z = 0, and we thus have

existence and uniqueness of wm,1.

2. Upper and lower bounds on wm,1 We define φ ≡ κ. As f1(x, κ) < 0 and w0 6 κ we obtain
in particular

φ− w0

δt
−∆φ > f1(x, κ) = f1(x, φ).

Defining z := φ− wm,1 it appears that z satisfies

z

δt
−∆z > f1(x, φ)− f1(x,wm,1) > −A|wm,1 − Φ| > −A|z|.

We multiply this equation by the negative part z− of z and integrate by parts to obtain

− 1

δt

∫
Ω

(z−)2 −
∫

Ω

|∇z−|2 > −A
∫

Ω

(z−)2.

If δt is small enough that
1

δt
> A

we get z− = 0 and so
wm,1 6 Φ ≡ κ.
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To derive the non-negativity of wm,1 we proceed in the same way: as f1(x, 0) , w0 > 0, wm,1

solves the differential inequality

wm,1

δt
−∆wm,1 > f1(x,wm,1)− f1(x, 0) + f1(x, 0) > f1(x,wm,1)− f1(x, 0) > −A|wm,1|.

The conclusion follows in the same way and for δt > 0 small enough wm,1 > 0.

To obtain
inf
Ω
wm,1 > 0

we simply use the proof of the strong maximum principle.

3. Regularity of wm,1 As 0 6 wm,1 6 κ the W 2,p regularity is a standard application of the Lp

elliptic regularity theory.
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