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We investigate the bang-bang property for fairly general classes of L ∞ -L 1 constrained bilinear optimal control problems in two cases: that of the one-dimensional torus, in which case we consider parabolic equations, and that of general d dimensional domains for time-discrete parabolic models. Such a study is motivated by several applications in applied mathematics, most importantly in the study of reaction-diffusion models. The main equation in the onedimensional case writes ∂tum -∆um = mum + f (t, x, um), where m = m(x) is the control, which must satisfy some L ∞ bounds (0 m 1 a.e.) and an L 1 constraint ( m = m0 is fixed), and where f is a non-linearity that must only satisfy that any solution of this equation is positive at any given time. The time-discrete models are simply time-discretisations of such equations. The functionals we seek to optimise are rather general; in the case of the torus, they write J (m) = (0,T )×T j1(t, x, um) + T j2(x, um(T, •)). Roughly speaking we prove in this article that, if j1 and j2 are increasing, then any maximiser m * of J is bang-bang in the sense that it writes m * = 1E for some subset E of the torus. It should be noted that such a result rewrites as an existence property for a shape optimisation problem. We prove an analogous result for time-discrete systems in any dimension. Our proofs rely on second order optimality conditions, combined with a fine study of two-scale asymptotic expansions. In the conclusion of this article, we offer several possible generalisations of our results to more involved situations (for instance for controls of the form mϕ(um)), and we discuss the limits of our methods by explaining which difficulties may arise in other contexts.

Introduction 1.Scope of the paper, informal presentation of our results

In this paper, we offer a theoretical analysis of an ubiquitous constrained optimal control problem, in which one aims at optimising a criteria by acting in a bilinear way on the state of the PDE. Prototypically, the model under consideration reads as follows: for a given non-linearity f = f (t, x, u) and a control m = m(t, x), we let u m be the solution of

∂ t u m -∆u m = mu m + f (t, x, u m )
with variables x ∈ Ω and t ∈ [0, T ] under certain boundary conditions. For a certain time horizon T > 0, we aim at optimising criteria of the form

J (m) = (0,T )×Ω j 1 (t, x, u m ) + Ω j 2 (x, u m (T, •))
under some constraints on the control m. Throughout the paper, the constraints on m will be of L 1 and L ∞ type; in other words, one constraint takes the form ∀t ∈ [0, T ] , Ω m(t, x)dx = V 0 fixed or Ω m(x)dx = V 0 (if m does not depend on time) while the other is of the type α m β a.e.

In this type of setting, one of the salient qualitative features of optimisers is the bang-bang property.

In other words, is it true that any maximiser writes m * = α + (β -α)1 E for some measurable subset E of Ω? This property is linked to (non-)existence results for shape optimisation problems. There were, in recent years, several fine qualitative studies of this property in the elliptic case or in the space-discretised case; we refer to Section 1.6. However, in the context of parabolic models and despite the current activity in the study of parabolic bilinear optimal control problems, this property does not seem to be reachable by the available techniques; we refer to section 1.4 and section 1.6.

In the first part of this paper, we prove that, under reasonable assumptions on the non-linearity f that ensure the well-posedness of the parabolic system, and on the cost functions j 1 , j 2 (roughly speaking, they must both be non-decreasing, and one has to be increasing), the bang-bang property holds if we assume that admissible controls are constant in time and that the domain is onedimensional. This is the main contribution of this article. It hinges on the methods of [START_REF] Mazari | Optimisation of the total population size for logistic diffusive equations: bang-bang property and fragmentation rate[END_REF], coupled with two-scale asymptotic techniques previously used in [START_REF] Mazari | Optimisation of the total population size with respect to the initial condition for semilinear parabolic equations: Two-scale expansions and symmetrisation[END_REF] in the context of the optimal control of initial conditions in reaction-diffusion equations. The reason why we tackle the onedimensional periodic case will be explained later on. It should be noted that we explain in the conclusion how we may cover, with the same type of arguments, higher-dimensional orthotopes. The main explanation behind having to work with time constant controls is a technical one; this allows to gain further regularity on the solutions of the parabolic PDE under consideration. For this reason, section 4.1.2 of the conclusion contains a discussion of possible generalisations and obstructions to generalisations; we explain, for instance, how to deal with the case of controls m writing N i=1 φ i (t)m i (x). As a first side comment, it should also be noted that our analysis cover the case of some tracking-type functionals. This is not the main topic, and we refer to remark 5. As a second side comment, our analysis can encompass more intricate interactions between the control and the state. For instance, we provide, in section 4.1.3 of the conclusion, a generalisation of our results to the case where the control and the state are coupled via a term of the form mϕ(u m ) for a large class of ϕ.

Our second contribution deals with a semi-discretised (in time) parabolic model, where the main system of equation is given by w m,k+1 -w m,k δt -∆w m,k+1 = m k+1 w m,k+1 + f k+1 (x, w m,k+1 ) , k = 0, . . . , N -1 for some time step δt, where m = (m 1 , . . . , m N ) and each m i satisfies L ∞ and L 1 constraints. The optimisation problem is rather, in this case

J(m) = N i=1 j i (x, u m,i ).
For this semi-discrete parabolic model, we prove that, provided the functions j i are increasing, any optimiser m is of bang-bang type. Here, our analysis holds in any dimension, in any smooth bounded domain for Neumann or Robin boundary conditions. The reason we deal with this semidiscretised version is twofold: first, there has recently been some interest in the discretisation of bilinear optimal control problems [START_REF] Nagahara | Maximizing the total population with logistic growth in a patchy environment[END_REF]. Second, this allows us to give more perspective on the proof of the bang-bang property for the parabolic model in general domains.

Our introduction is divided accordingly: section 1.2 is devoted to the study of parabolic problems, while section 1.3 tackles time-discrete parabolic models.

Main model and result for parabolic problems

The parabolic equation

Admissible controls in parabolic models In the case of parabolic models, we are working in the (one-dimensional) torus T. In section 4.2.1, we explain how our methods may extend to the case of higher dimensional tori.

Regarding the time regularity of admissible resources distribution, we shall make a strong assumption: the admissible controls are constant in time. The reason is that the method we introduce and develop hinges on fine regularity properties of solutions of the associated evolution equation that can not be obtained in the case where the control m also depends on time. We also refer to remark 8 for further comments.

In this setting, denoting by u m the state of the equation and by m the control, the only type of interaction we are interested in is bilinear; in other words, the control appears in the model via the term mu m (see Remark 7 and section 4.1.3 for considerations on the case of interactions of the form mϕ(u m )). In terms of constraints, we impose two on the controls, an L ∞ and an L 1 one. Each of these constraints has a natural interpretation in different fields of applications. In spatial ecology for instance, one may think of m as a resources distributions, in which case the L ∞ constraint simply models the fact that, at any given point, there can only be a maximum amount of resources available, while the L 1 constraint accounts for the limitation of the global quantity of resources involved. For the L ∞ constraints, without loss of generality (we also refer to remark 6), we shall consider controls satisfying 0 m 1 a.e. in T.

For the L 1 constraint, we fix a volume constraint V 0 ∈ (0, Vol(T)), and we shall consider controls satisfying

T m = V 0 .
This leads to considering the admissible class M(T) := m ∈ L ∞ (T) : 0 m 1 a.e. in T , T m = V 0 .

(Adm)

Of notable interest in M(T) are bang-bang functions; as they are the central theme of this paper we isolate their definition here.

Definition 1. A function m ∈ M(T) is called bang-bang if there exists E ⊂ T such that m = 1 E .

Nonlinearities under consideration Our choice of nonlinearity in the parabolic model also derives from considerations in mathematical biology or chemistry. Namely, we want the solutions not only to exist but to be uniformly bounded (in time) in the L ∞ norm, as well as to enjoy a strong maximum property (in the sense that, starting from a non-zero initial condition, the solution is positive at any arbitrary positive time). The latter is not only important from a modelling point of view but also in the course of the proof, as it influences the monotonicity of the functional under consideration.

As the right hand side of the reaction-diffusion equation writes mu + f (t, x, u) we shall make the following assumptions that guarantee the well-posedness of the ensuing system: 

f is C 1 in time, L ∞ in x,
∂f ∂t + ∂f ∂u + ∂ 2 f ∂u 2 < ∞. (H 1 )
Assumption (H 1 ) serves to derive the proper regularity of the solutions of the equation. The next assumption is used to obtain upper and lower bounds on the solution:

f (•, •, 0) 0, f (•, •, 0) ∈ L ∞ ((0, T ) × T) and
there exists κ > 0 such that for any u κ, for any t ∈ IR + , for a.e. x ∈ T, f (t, x, u) -u. (H 2 )

In the first condition, if we had f (•, •, 0) = 0 this would simply model that when no individuals are present no reaction is happening. Assuming the general inequality allows to consider non-negative source terms (i.e. one may take f (t, x, u) = ug(t, x, u) + y(t, x) for a certain g and a non-negative source term y). It should be noted that, had we taken -κ 0 m κ 1 as L ∞ constraints, the final inequality in (H 2 ) would rewrite f (t, x, u) -sup{|κ 0 | , |κ 1 |}u.

Finally the last assumption is seemingly the most restrictive one, but we explain, in Remark 2, why it is not problematic for the type of problems we have in mind.

f is, uniformly in (t, x) ∈ (0, T ) × T, uniformly Lipschitz in u ∈ IR: there exists A such that, for any (t, x)

∈ (0, T ) × T , for any u, u ∈ IR, |f (t, x, u) -f (t, x, u )| A|u -u |. (H 3 )
Remark 2 (Comment on (H 3 )). (H 3 ) may seem restrictive, as the typical monostable logistic diffusive equation would involve the non-linearity f (u) = -u 2 , which grossly violates the Lipschitz condition of (H 3 ). However, assumption (H 2 ) ensures that, if we start from a positive bounded initial condition u 0 , then the solution remains positive and bounded uniformly in time by max u 0 L ∞ , κ (see lemma 13) so that it suffices to extend f (t, x, •) outside (0, max u 0 L ∞ , κ ) to a globally uniformly Lipschitz function on IR.

Initial condition

We simply take an initial condition independent of m, say u 0 , satisfying inf T u 0 > 0 , u 0 ∈ C 2 (T).

(1.1)

Parabolic model

We define, for any m ∈ M(T), u m as the unique solution of

∂um ∂t -∆u m = mu m + f (t, x, u m ) in (0, T ) × T , u m (0, •) = u 0 in T. (1.2)
By [45, Theorem 5.2, Chapter 1] there exists a unique solution u m of (1.2) (we also refer to lemma 16 for further regularity information about u m ).

Optimisation problem in the parabolic context: time-constant controls We consider fairly general functionals that we seek to optimise. To define this functional, we consider two functions j 1 , j 2 , a time horizon T > 0 and we define

J : M(T) m → (0,T )×T j 1 (t, x, u m ) + T j 2 (x, u m (T, •)) . (1.3)
We mentioned earlier the crucial role of the monotonicity of the functional J , which hinges on that of j 1 and j 2 ; we refer to section 1.6 for further comments. We thus assume that j 1 , j 2 satisfy j 1 and j 2 are non-decreasing in the second variable on IR + , j 1 is C 1 in its two first variable and C 2 in its third variable,

j 2 is C 2 in its two variables, ∀(t, x) ∈ (0, T ) × T , ∀K ∈ IR * + , sup (t,x)∈(0,T )×T ,u∈[0,K] sup α=0,1,2 ∂j 1 ∂t (t, x, u) + ∂ α j 1 ∂u α (t, x, u) + ∂ α j 2 ∂u α (x, u) < ∞,
and either for any (t, x)

∈ (0, T ) × T, ∂ u j 1 (t, x, •) > 0 in (0; +∞) or for any (t, x) ∈ (0, T ) × T, ∂ u j 2 (t, x, •) > 0 in (0; +∞), (H J )
and we say (with a slight abuse of notation, identifying J with (j 1 , j 2 )) that J satisfies (H J ).

In particular, we may choose j 1 (t, x, u) = u α and j 2 (x, u) = u β for α , β > 0, or j 1 = ϕ 1 (u) , j 2 = ϕ 2 (u) with ϕ 1 , ϕ 2 smooth and non-decreasing and at least one with positive derivative on IR * + , or

j 1 (u) = ψ(x)u , j 2 (u) = ψ 2 (x)u with ψ 1 , ψ 2 0 and sup (inf |ψ 1 | , inf |ψ 2 |) > 0. The parabolic optimisation problem reads max m∈M(T) J (m) (P parab )
Remark 3 (Existence of maximisers). The existence of a solution of the variational problems (P parab ) is a standard consequence of the direct method in the calculus of variations.

Main result for the parabolic problem

We state our main result:

Theorem I. Assume f satisfies (H 1 )-(H 2 )-(H 3 ). Assume J satisfies (H J ).
Any solution m * of (P parab ) is bang-bang: there exists E ⊂ T such that

m * = 1 E .
The proof of this theorem is the core of this paper, and takes up the entire section 2.

An application to a spatial ecology problem We can apply theorem I to the following spatial ecology problem. Consider, for any m ∈ M(T), the logistic-diffusive equation

     ∂θm ∂t -∆θ m = θ m (m -θ m ) in (0, T ) × T , θ m (0, •) = θ 0 ∈ C 2 (T) in T , inf T θ 0 > 0. (1.4)
In this context, the control m accounts for a resources distribution available to a population, the density of which is the function θ m . A relevant query is to solve the optimisation problem sup

m∈M(T) (0,T )×T θ m (t, •) + T θ m (T, •), (1.5) 
for some time horizon T > 0. This problem is the parabolic counterpart of a related elliptic optimisation problem that was intensively studied in the past few years, see section 1.6 and [START_REF] Deangelis | Dispersal and spatial heterogeneity: single species[END_REF][START_REF] Heo | On the fragmentation phenomenon in the population optimization problem[END_REF][START_REF] Inoue | On the unboundedness of the ratio of species and resources for the diffusive logistic equation[END_REF][START_REF] Liang | The optimal distribution of resources and rate of migration maximizing the population size in logistic model with identical migration[END_REF][START_REF] Lou | On the effects of migration and spatial heterogeneity on single and multiple species[END_REF][START_REF] Lou | Some challenging mathematical problems in evolution of dispersal and population dynamics[END_REF][START_REF] Mazari | Optimal location of resources maximizing the total population size in logistic models[END_REF][START_REF] Mazari | Optimisation of the total population size for logistic diffusive equations: bang-bang property and fragmentation rate[END_REF][START_REF] Mazari | A fragmentation phenomenon for a nonenergetic optimal control problem: Optimization of the total population size in logistic diffusive models[END_REF][START_REF] Nagahara | Maximizing the total population with logistic growth in a patchy environment[END_REF][START_REF] Nagahara | Maximization of the total population in a reaction-diffusion model with logistic growth[END_REF]. In the elliptic case, the bang-bang property for optimisers was, in particular, a question that drew a lot of attention [START_REF] Mazari | Optimal location of resources maximizing the total population size in logistic models[END_REF][START_REF] Mazari | A fragmentation phenomenon for a nonenergetic optimal control problem: Optimization of the total population size in logistic diffusive models[END_REF][START_REF] Nagahara | Maximization of the total population in a reaction-diffusion model with logistic growth[END_REF] and was only recently settled in [START_REF] Mazari | Optimisation of the total population size for logistic diffusive equations: bang-bang property and fragmentation rate[END_REF]. In the parabolic setting, i.e. for problem (1.5), we refer, for instance, to the recent [START_REF] Bintz | Optimal resources allocation for a diffusive population model[END_REF] for the derivation of optimality conditions, as well as for some numerical simulations for a close variant of (1.5). Then, as corollary of theorem I we obtain Corollary 4. Any solution m * of (1.5) is of bang-bang type.

The same conclusion holds for the two related problems sup

m∈M(T) T θ m (T, •) , sup m∈M(T) (0,T )×T θ m .
It should be noted that, in [START_REF] Bintz | Optimal resources allocation for a diffusive population model[END_REF], the case m = m(t, x) is also considered. Our results do not hold in this case, as already underlined. We nonetheless refer to section 4.1.2 for generalisation of theorem I to some classes of time-dependent controls.

We conclude this section on parabolic models with some remarks .

Some remarks on theorem I

Remark 5 (Tracking type functionals). Another class of functionals is of particular interest, that of tracking-type functionals. The goal is, in this case, to solve an optimisation problem of the form

inf m∈M(T) Ω |u m (T, •) -y ref | 2 , (1.6) 
where y ref is a target state. We would like to underline that such problems fall in our framework provided y ref is large enough to ensure that, for any m ∈ M(T) and any T > 0,

y ref > u m (T, •).
Indeed, as will be clear throughout the proof, the assumption that ∂ u j 1 (t, x, u) > 0 on IR * + can be restricted to

∀(t, x) ∈ (0, T ) × T , ∂ u j 1 (t, x, u) > 0 in 0, sup m∈M(T) ,T ∈IR * + u m (T, •) L ∞ .
It is the minimum requirement we can make, as we know that the solutions of some tracking-type problems are not bang-bang.

Let us now consider the case of (1.4) with θ 0 < 1 and consider the optimisation problem

min m∈M(T) (0,T )×T |θ m -1| 2 .
This optimisation problem is equivalent to

max m∈M(T) - (0,T )×T |θ m -1| 2 .
As, from the maximum principle, θ m < 1, the map j 1 (x, u) = -|1 -u| 2 is increasing and has a positive derivative in (0; 1), whence we can apply theorem I to conclude that any minimiser of the initial problem is of bang-bang type. This example immediately generalises to the case where the target y ref = 1 is replaced with any target y ref 1 a.e.

Remark 6 (Regarding the L ∞ constraints on m). It should be noted that we may consider constraints of the form κ 0 m κ 1 for two parameters κ 0 , κ 1 ∈ IR (possibly non-positive), without changing the conclusions of the theorems. The only difference would be that a bang-bang m would in that case be of the form m = κ 0 + (κ 1 -κ 0 )1 E . Indeed, the proof relies on a second-order derivative argument that still holds in this case, as the key point is that u m (t, •) is positive whenever t > 0. For an interaction of the type mu m with a sign-changing m, this is still the case.

Remark 7 (Regarding the bilinearity of the control). It is also worth noting that our method is flexible enough to cover the case of other interactions, of the form mϕ(u m ), for suitable nonlinearities ϕ. In the conclusion, see theorem IV, section 4.1.3, we give a sketch of proof for a version of theorem I for this type of interactions. The main condition on ϕ to ensure that the bang-bang property holds is that ϕ /ϕ > 0 in IR * + , which is still sufficient to cover the case of the optimisation of the carrying capacity, where one works with the equation ∂ t y m -∆y m = y m (1 -my m ). This last example is motivated by [START_REF] Deangelis | Dispersal and spatial heterogeneity: single species[END_REF]. Remark 8 (Regarding the time dependency of the control). Our method also allows to cover a form of time-dependency of the control. If we consider, rather than m(x)u m (t, x), an interaction of the form u m (t, x) N i=1 φ i (t)m i (x), where the φ i are bounded, smooth functions of time, then the bang-bang property holds. We refer to theorem III , section 4.1.2. In the conclusion, see section 4.3, we explain the difficulty in obtaining the same results for general time-dependent controls.

Remark 9 (Regarding the one-dimensional setting). The reason we work in the one-dimensional torus is a technical one; while the dimension of the torus is not problematic (see section 4.2.1 of the conclusion), the space periodicity enables us to carry out rigorous two-scale expansions in the following setting: a key part of the proof is the study of the solution u of an equation of the form

∂ t u -∆ u = V (t, x) k 1 α k cos(kx),
and we study u by providing an explicit expansion as all the Fourier indexes k 1 are very large. While, in more general domains, we may replace the right-hand side in the equation above with 1.3 Main model and result for time-discrete problems

The time-discrete model

In this section, we work in any dimension d 1. We consider a bounded, connected C 2 domain Ω ⊂ IR d . Rather than periodicity condition, we shall impose Neumann boundary conditions (Robin boundary conditions would also be suitable for our analysis, see Remark 12). We fix an integer N ∈ IN\{0} as well as a time step δt > 0.

Constraints and admissible controls For the same reasons as in the parabolic model, we fix a volume constraint V 0 ∈ (0, Vol(Ω)) and we define the set

M(Ω) := m ∈ L ∞ (Ω) : 0 m 1 a.e. in Ω , Ω m = V 0 .
The set of admissible controls for the time-discrete system is the set of N -tuples (m 1 , . . . , m N ) where, for any i ∈ {1, . . . , N }, m i ∈ M(Ω).

Remark 10. The fact that we assume all m i (i = 1, . . . , N ) belong to the same set M(Ω) is merely for notational convenience. We may introduce, for any i ∈ {1, . . . , N }, the set M i := {m ∈ L ∞ (Ω) , α i m β i a.e. , Ω m = V i } and replace the conditions " ∀i ∈ {1, . . . , N } , m i ∈ M(T)" with "∀i ∈ {1, . . . , N } , m i ∈ M i (T)". This would not change the conclusion.

We define

M(Ω) := M(Ω) N .
Generically, the notation m stands for such an N -tuple and, m ∈ M(Ω) being given, m k denotes the k-th component of m.

We shall say that m ∈ M(Ω) is bang-bang if, for any i ∈ {1, . . . , N }, m i is a bang-bang function.

Non-linearities under consideration The non-linearities f k (k = 1, . . . , N ) are assumed to satisfy the same assumptions (H 1 )-(H 2 )-(H 3 ) as in the parabolic case (and with uniform constants in the sense that the κ of (H 2 ) and the A of (H 3 ) do not depend on the index k), with the convention that f k (t, x, u) := f k (x, u). We say that {f k } k=1,...,N satisfies (H dis ).

Initial condition

We assume that we are given w 0 ∈ L ∞ (Ω) with 0 w 0 , w 0 = 0. For the sake of simplicity (since this allows us to simply use κ instead of max{κ, w 0 L ∞ }) we further assume that w 0 κ where κ is given by (H 2 ).

Time-discrete model

We define, for any m ∈ M(Ω), w m = {w m,0 . . . , w m,N } as the solution of w m,0 = w 0 and for any k ∈ {0, . . . , N -1},

w m,k+1 -w m,k δt -∆w m,k+1 = m k+1 w m,k+1 + f k+1 (x, w m,k+1 ) in Ω , ∂w m,k+1 ∂ν = 0 on ∂Ω. (1.7)
In lemma 22 we recall (with proofs in appendices) that, provided δt > 0 is small enough, this system is uniquely solvable. Lemma 22 also contains the relevant regularity properties.

Optimisation problem in the time-discrete context We consider N non-linearities j i = j i (x, w) (i = 1 , . . . , N ) and we define the functional

J : M m → N i=1 j i (x, w m,i ).

We assume that

For any i ∈ {1, . . . , N }, j i is L ∞ in its first variable and C 2 in its second variable,

∀x ∈ T , ∀K ∈ IR * + , sup i=1,...,N sup (t,x)∈(0,T )×T ,w∈[0,K] |∂ w j i (x, w)| < ∞, and ∀i ∈ {1, . . . , N } , ∀x ∈ Ω , ∂ w j i (x, •) > 0 in (0; +∞). (H J )
We say that J satisfies (H J ).

The optimisation problem reads max

m∈M(Ω) J(m) (P N dis )
Remark 11 (Existence of maximisers). The existence of a solution of the optimisation problem (P N dis ) is an easy consequence of the direct method in the calculus of variations.

Main result for time-discrete models

The main theorem of this section is the following: 

Theorem II. Assume {f k } k=1,...,
for some β k 0 , β k < ∞ (k = 1, . . . , N ).

Comments on the proofs of Theorems I and II

As mentioned, the starting point of our method is an idea we introduced in [START_REF] Mazari | Optimisation of the total population size for logistic diffusive equations: bang-bang property and fragmentation rate[END_REF] in the elliptic context. Roughly speaking, consider an elliptic bilinear optimal control problem of the form sup m∈M(T) T j(z m )(= J ell (m)) where M(T) is defined in (Adm), subject to -∆z m = mz m + g(x, z m ). We proved that, under suitable assumptions on the non-linearity g and provided j was increasing, any optimiser m * ell was a bang-bang function. The crucial point was the following lower estimate of the second order derivative Jell (m)[h, h] of J ell at an admissible control m in the direction of a perturbation h: if j is increasing, if z m 0 is a stable steady-sate for any m, then for any m there exist two positive constant α , β > 0 such that for any admissible h at m,

Jell (m)[h, h] α T |∇ żm | 2 -β T ż2 m .
(1.8)

In the expression above, żm is the derivative of m → z m at m, in the direction h. It appears that żm solves a linear equation of the form L m żm (: α k ψ k for some large integer K.

= -∆ żm -V m z m ) =
In the case of time-discrete models, this strategy proves efficient as well; however, in the case of parabolic equations, even obtaining such a lower order estimate on the second order derivative of the functional requires some time regularity on the controls m (hence the assumption that m does not depend on time in theorem I). However, even with such an estimate at hand, the problem is still not solved. Indeed, in the parabolic case, the structure of the equation on um (the Gateaux-derivative of the map m → u m at m in an admissible direction h) is rather of the form

∂ t um -∆ um = V m (t, x) um + hu m (t, x)
, with a time-varying potential V m , and the lower estimate assumes the form

J (m)[h, h] α (0,T )×T |∇ um | 2 -β (0,T )×T u2 m -γ T um (T, •) 2 .
We refer to estimate (2.13), proposition 15, for a precise statement. But even in the one-dimensional case, finding a perturbation h such that, for a fixed (and large) integer K ∈ IN, we have um = k K α k φ k (t) cos(kx) proves impossible because the potential V m varies in time. Thus was have to resort to some two-scale asymptotic expansions in order to attain an approximation um ≈ k K α k φ k (t) cos(kx) that is strong enough, see proposition 19. This part, which takes up most of the proof, is in part inspired by [START_REF] Mazari | Optimisation of the total population size with respect to the initial condition for semilinear parabolic equations: Two-scale expansions and symmetrisation[END_REF] and by seminal works on two-scale expansions [START_REF] Allaire | Homogenization and two-scale convergence[END_REF], but requires some fine improvements to be better suited to our needs. The need for these improvements essentially comes from the fact that the potential V m is merely W 2,p in space, and not C 2 , as is customary in such queries.

Relationship with some shape optimisation problems

There is another possible outlook on theorems I and II that relates their conclusions to (non-)existence results for PDE constrained shape optimisation problems. We only detail this for theorem I, as the case of the other results is exactly similar. For any subset E ⊂ T, we may define the shape functional

F(E) := J (1 E ),
and investigate the shape optimisation problem sup E⊂T ,Vol(E)=V0

F(E).

(1.9)

For this type of optimisation problems, it is usually very difficult to obtain an existence property. The most general result is that of Buttazzo and DalMaso, in the seminal [START_REF] Buttazzo | An existence result for a class of shape optimization problems[END_REF], which states that, if the functional F is increasing with respect to the set inclusion, and is moreover upper semi-continuous for the γ-convergence of sets, then an optimal set E * exists. In theorem I, the monotonicity (which in turn hinges on that of (j 1 , j 2 )) plays a crucial role, and we prove that under assumption (H J ), J is indeed increasing. However, F is not continuous for the γ convergence of sets, which thus prevents using the result of [START_REF] Buttazzo | An existence result for a class of shape optimization problems[END_REF]. This is well-known, and usually leads to considering the relaxation of the class of admissible sets A := {1 E , E ⊂ T , Vol(E) = V 0 } in the weak L ∞ - * topology; this relaxation exactly corresponds to (Adm), and the relaxed version of (1.9) is (P parab ). In this way, theorem I states that every solution of (P parab ) belongs to A, and, consequently, that (1.9) has a solution. This remark was also one of the motivation for the present work, which continues a series of papers devoted to establishing existence results for some shape optimisation problems, see [START_REF] Mazari | Qualitative analysis of optimisation problems with respect to nonconstant Robin coefficients[END_REF][START_REF] Mazari | Optimisation of the total population size for logistic diffusive equations: bang-bang property and fragmentation rate[END_REF].

Bibliographical references and comments

Bilinear optimal control problems and the optimal control of semilinear parabolic models are present in a very large number of fields of applied mathematics. It is impossible to give an exhaustive list of contributions, but we single out a few that we think are closely related to our queries.

Elliptic bilinear optimal control problem

Spectral optimisation problems Let us begin with a spectral optimisation problem. In this setting, one aims at minimising the first eigenvalue λ(m) of the operator -∆ -m in a smooth bounded domain Ω ⊂ IR d , endowed with certain boundary conditions, with respect to admissible controls m that satisfy L ∞ and L 1 constraints. The reason this problem is bilinear is that the state equation assumes the form

-∆z m = mz m + λ(m)z m .
The study of the minimisation problem of λ(m) with respect to m originates in spatial ecology consideration see [START_REF] Cantrell | Diffusive logistic equations with indefinite weights: population models in disrupted environments[END_REF][START_REF] Cantrell | Diffusive logistic equations with indefinite weights: Population models in disrupted environments II[END_REF][START_REF] Cantrell | The effects of spatial heterogeneity in population dynamics[END_REF][START_REF] Cantrell | On the effects of spatial heterogeneity on the persistence of interacting species[END_REF][START_REF] Cantrell | Spatial Ecology via Reaction-Diffusion Equations[END_REF][START_REF] Cantrell | Permanence in ecological systems with spatial heterogeneity[END_REF][START_REF] Caubet | Optimal location of resources for biased movement of species: the 1D case[END_REF][START_REF] Jha | Minimization of the principal eigenvalue under Neumann boundary conditions[END_REF][START_REF] Kao | Principal eigenvalue for an elliptic problem with indefinite weight on cylindrical domains[END_REF][START_REF] Lamboley | Properties of optimizers of the principal eigenvalue with indefinite weight and Robin conditions[END_REF][START_REF] Mazari | Shape optimization and spatial heterogeneity in reaction-diffusion equations[END_REF][START_REF] Mazari | Optimization of a two-phase, weighted eigenvalue with dirichlet boundary conditions[END_REF][START_REF] Shigesada | Biological Invasions: Theory and Practice[END_REF] and the references therein. For such problems, the bang-bang property is usually immediate [START_REF] Kao | Principal eigenvalue for an elliptic problem with indefinite weight on cylindrical domains[END_REF] and can be deduced from the concavity of the functional at hand or from classical tools such as the bathtub principle. Similarly, following [START_REF] Berestycki | Analysis of the periodically fragmented environment model : I -species persistence[END_REF], the geometric properties of optimisers have been thoroughly analysed, and are by now well understood; the main tool for this query is that of rearrangements, and a key point is that the functional is energetic. We refer to [START_REF] Lamboley | Properties of optimizers of the principal eigenvalue with indefinite weight and Robin conditions[END_REF] for up to date results in this direction, as well as to the survey [START_REF] Mazari | Handbook of optimal control and numerical analysis, chapter Some challenging optimisation problems for logistic diffusive equations and numerical issues[END_REF].

A non-energetic elliptic bilinear optimal control problem A problem which displays the rich behaviour of elliptic bilinear optimal control problems is that of the total population size in logistic-diffusive equations. In this setting, the PDE writes

-µ∆θ m = θ m (m -θ m ) , θ m 0 , θ m = 0
with Neumann or Robin boundary conditions. The control m is assumed to satisfy L ∞ and L 1 constraints. The functional to optimise is J : m → Ω θ m . For modelling issues, we refer to [START_REF] Lou | On the effects of migration and spatial heterogeneity on single and multiple species[END_REF] and the references therein. Obtaining the bang-bang property for its maximisers is surprisingly difficult. In [START_REF] Mazari | Optimal location of resources maximizing the total population size in logistic models[END_REF][START_REF] Nagahara | Maximization of the total population in a reaction-diffusion model with logistic growth[END_REF] this bang-bang property is proved under several restrictive assumptions. In [START_REF] Mazari | Optimisation of the total population size for logistic diffusive equations: bang-bang property and fragmentation rate[END_REF], we introduced a new method to prove this property without these assumption; we refer to section 1.4 above to see why the method of [START_REF] Mazari | Optimisation of the total population size for logistic diffusive equations: bang-bang property and fragmentation rate[END_REF] does not apply in the parabolic context. Regarding the geometric features of optimisers, it was proved in [START_REF] Heo | On the fragmentation phenomenon in the population optimization problem[END_REF][START_REF] Mazari | A fragmentation phenomenon for a nonenergetic optimal control problem: Optimization of the total population size in logistic diffusive models[END_REF] that the BV -norm of optimisers blows up as µ → 0 + ; in [START_REF] Mazari | Optimisation of the total population size for logistic diffusive equations: bang-bang property and fragmentation rate[END_REF], this blow-up rate is quantified. It would be very interesting, in the context of parabolic models, to obtain such qualitative information about the geometry of maximisers.

A discretised bilinear optimal control problem We refer to [START_REF] Nagahara | Maximizing the total population with logistic growth in a patchy environment[END_REF] for the study of a bilinear optimal control problem for a stationary, space-discrete logistic-diffusive model. What is most surprising in [START_REF] Nagahara | Maximizing the total population with logistic growth in a patchy environment[END_REF] is that the authors achieve a complete description of maximisers in the low dispersal rate. It should be noted that [START_REF] Nagahara | Maximizing the total population with logistic growth in a patchy environment[END_REF] is also a motivation for us to undertake the study of time-discrete problems.

Optimal bilinear control of parabolic equations

Since we adopt, in the present paper, the point of view of optimal control, we merely indicate that there is a branch of research devoted to the question of bilinear controllability (i.e. is it possible to reach an exact state using a bilinear control ?); we refer the interested reader to [START_REF] Boussouira | Bilinear control of evolution equations of parabolic type[END_REF][START_REF] Beauchard | Local controllability of 1D linear and nonlinear Schrödinger equations with bilinear control[END_REF][START_REF] Cannarsa | Multiplicative controllability for semilinear reaction-diffusion equations with finitely many changes of sign[END_REF] and the references therein. In the field of bilinear optimal control problems, let us first point to [START_REF] Fister | Optimal control of a chemotaxis system[END_REF][START_REF] Guillén-González | Optimal bilinear control problem related to a chemo-repulsion system in 2d domains[END_REF] for the study of bilinear control problems in connection with chemotaxis or chemorepulsion; another very interesting example of such a problem is studied in [START_REF] Yousefnezhad | Optimal chemotherapy for brain tumor growth in a reaction-diffusion model[END_REF]. In it, the authors study an optimal control problem for brain tumor growth. Although their bilinear control only depends on time (i.e. their function m satisfies m = m(t), which is exactly the type of case not covered in the present contribution), some emphasis is put, through numerical simulations, on the bang-bang property.

A very relevant reference for the type of problems we are studying is the recent [START_REF] Bintz | Optimal resources allocation for a diffusive population model[END_REF], in which the exact problem of optimisation of the total population size for parabolic logistic-diffusive equations is studied under the same type of constraints we have here. The optimality conditions are derived, and several numerical simulations are carried out.

Proofs of theorems I

We break this section down in several parts: first, we give a basic positivity estimate on u m . Then we compute the first and second order Gateaux derivative of the criterion by the use of an adjoint state. Moreover, we give all the regularity information that are needed, and we use them to obtain a lower estimate on the second-order derivative. Finally, we provide a fine analysis of this second order derivative using two scale asymptotic expansions.

We first have the following basic estimate on u m : Lemma 13. There holds

∀m ∈ M(T) , 0 < inf (0,T )×T u m u m L ∞ ((0,T )×T) max{ u 0 L ∞ , κ}.
As this lemma is a straightforward consequence of the maximum principle, we prove it in appendix A.1.

Computation of first and second order Gateaux derivatives via an adjoint state

In this section we analyse the Gateaux derivatives of the criterion and comment on its monotonicity. It is standard to see that the map m → u m is twice Gateaux differentiable. For a given m ∈ M(T) and an admissible1 perturbation h at m, we call um [h] (resp. üm [h]) the first (resp. the second) order Gateaux derivative in the direction h. When no ambiguity is possible, we use the notation um (resp. üm ) for the first (resp. second) order Gateaux derivative at m in the direction h. It is straightforward to see that um solves

   ∂ um ∂t -∆ um -um m + ∂f ∂u u=um = hu m in (0, T ) × T, um (0, •) ≡ 0 in T.
(2.1)

Similarly we obtain, for the first-order Gateaux derivative of J at m in the direction h the expression J (m

)[h] = (0,T )×T um ∂j 1 ∂u u=um + T um ∂j 2 ∂u u=um(T,•) . (2.2)
We define

V m := m + ∂f ∂u u=um . (2.3)
and introduce the function p m as the solution of the backward parabolic equation

   ∂pm ∂t + ∆p m + V m p m = -∂j1 ∂u u=um in (0, T ) × T , p m (T, •) = ∂j2 ∂u u=um in T.
(2.4) Multiplying (2.4) by um and integrating by parts, we obtain

J (m)[h] = T ∂j 2 ∂u u=um(T,•) um + (0,T )×T ∂j 1 ∂u u=um um = (0,T )×T hu m p m . (2.5) 
Let us now comment on the monotonicity of the functional, which shall play a crucial role in the forthcoming analysis. Of course, none of the computations above require that h be admissible, and we may take, for h, a non-negative function, as the constraints (and hence the admissibility of h) only play a role in the derivation of optimality conditions. By monotonicity we mean the following property:

∀m ∈ M(T) , ∀h ∈ L ∞ (Ω) , h 0 ⇒ J (m)[h] 0.
Given (2.5) and lemma 13, this monotonicity property actually holds if p m itself is positive. This is where assumption (H J ) comes into play:

Lemma 14. If J satisfies (H J ) then p m ∈ W 2,2 ((0, T ) × T) and, for any ε > 0, inf [0,T -ε]×T p m > 0.
Proof of lemma 14. If we set q m (t,

•) := p m (T -t, •) it appears that q m solves    ∂qm ∂t -∆q m -V m q m = ∂j1 ∂u u=um in (0, T ) × T , q m (0, •) = ∂j2 ∂u u=um in T.
If ∂ u j 2 > 0 then, as ∂ u j 1 0 the conclusion follows from the strong maximum principle. Likewise, if on the other hand we merely have ∂ u j 2 0 then, as ∂ u j 1 > 0 in this case, we obtain the conclusion by the maximum principle.

We now move on to the computation of the second order Gateaux derivative of the functional at hand. The second order derivative of m → u m in the direction h solves

   ∂ üm ∂t -∆ü m -V m üm = 2h um + ∂ 2 f ∂u 2 u=um ( um ) 2 in (0, T ) × T, üm (0, •) ≡ 0 in T (2.6)
We also have, for the second order Gateaux derivative of J at m in the direction h, the following expression:

J (m)[h, h] = T u2 m (T, •) ∂ 2 j 2 ∂u 2 u=um(T,•) + T üm (T, •) ∂j 2 ∂u u=um(T,•) + (0,T )×T u2 m ∂ 2 j 1 ∂u 2 u=um + (0,T )×T üm ∂j 1 ∂u u=um(T,•) . (2.7)
We use the adjoint state p m again: multiplying (2.4) by üm and integrating by parts, we obtain

2 (0,T )×T h um p m + (0,T )×T ∂ 2 f ∂u 2 u=um(T,•) ( um ) 2 p m = Ω üm ∂j 2 ∂u u=um(T,•) + (0,T )×T üm ∂j 1 ∂u u=um (2.8) so that J (m)[h, h] = T u2 m (T, •) ∂ 2 j 2 ∂u 2 u=um(T,•) + (0,T )×T u2 m ∂ 2 j 1 ∂u 2 u=um + 2 (0,T )×T h um p m + (0,T )×T p m u2 m ∂ 2 f ∂u 2 u=um . (2.9)
Rearranging the terms, we get

J (m)[h, h] = 2 (0,T )×T h um p m + T u2 m (T, •) ∂ 2 j 2 ∂u 2 u=um(T,•) + (0,T )×T u2 m ∂ 2 j 1 ∂u 2 u=um + ∂ 2 f ∂u 2 u=um p m . (2.10)
Let us focus on the term

(0,T )×T h um p m . (2.11) From (2.1) we rewrite h = ∂ um ∂t -∆ um -um V m u m . Let us define Ψ m := p m u m .
Plugging this expression in (2.11) we obtain

(0,T )×T h um p m = (0,T )×T Ψ m um ∂ um ∂t -∆ um -um V m = 1 2 (0,T )×T Ψ m ∂ u2 m ∂t + (0,T )×T Ψ m |∇ um | 2 + (0,T )×T um ∇Ψ m , ∇ um - (0,T )×T Ψ m V m u2 m = - 1 2 (0,T )×T ∂Ψ m ∂t u2 m + 1 2 T Ψ m (T, •) u2 m + (0,T )×T Ψ m |∇ um | 2 - 1 2 (0,T )×T u2 m ∆Ψ m - (0,T )×T Ψ m V m u2 m = 1 2 T Ψ m (T, •) u2 m + (0,T )×T Ψ m |∇ um | 2 - 1 2 (0,T )×T ∂Ψ m ∂t u2 m - 1 2 (0,T )×T u2 m ∆Ψ m - (0,T )×T Ψ m V m u2 m = 1 2 T Ψ m (T, •) u2 m + (0,T )×T Ψ m |∇ um | 2 + (0,T )×T u2 m - 1 2 ∂Ψ m ∂t - 1 2 ∆Ψ m -Ψ m V m .
With

Z m := - 1 2 ∂Ψ m ∂t - 1 2 ∆Ψ m -Ψ m V m + ∂ 2 j 1 ∂u 2 u=um + ∂ 2 f ∂u 2 u=um p m ,
the second order derivative writes

J (m)[h, h] = T u2 m (T, •) ∂ 2 j 2 ∂u 2 u=um(T,•) + 1 2 T Ψ m (T, •) u2 m + (0,T )×T Ψ m |∇ um | 2 + (0,T )×T Z m u2 m . (2.12)
We analyse this expression further in the next section.

Lower estimate on the second order Gateaux derivative of J

We now prove the following lower estimate on this second order Gateaux derivative:

Proposition 15. Let ε > 0 be arbitrarily small. There exist three positive constants α = α(ε) , β , γ > 0 such that, for any admissible perturbation h at m, there holds

J (m)[h, h] α (0,T -ε)×T |∇ um | 2 -β (0,T )×T u2 m -γ T u2 m (T, •). (2.13)
Proving this proposition requires some additional regularity on u m , p m . This is where the regularity of m in time (here, m is constant in time) is crucial. We gather these regularity properties in the following proposition: Proposition 16. For any m ∈ M(T), for any p ∈ [1; +∞), there exists a constant M m,p such that

sup t∈[0,T ] ∂ t u m (t, •) L p (T) + sup t∈[0,T ] u m (t, •) W 2,p (T) + sup t∈[0,T ] ∂ t p m (t, •) L p (T) + sup t∈[0,T ] p m (t, •) W 2,p (T) M m,p . (2.14)
In particular, by Sobolev embeddings, there exists a constant N such that

sup t∈(0,T ) u m (t, •) C 1 (T) , sup t∈(0,T ) p m (t, •) C 1 (T) N.
The proof of this proposition is standard in the regularity theory of parabolic equations; it can be derived from classical L p estimates (see for instance [START_REF] Lieberman | Second Order Parabolic Differential Equations[END_REF]Theorem 7.32,) but the setting we are working in allows for a quicker proof, that we give in appendix A. [START_REF] Allaire | Homogenization and two-scale convergence[END_REF].

With these regularity estimates we can prove proposition 15

Proof of proposition 15. First off, from lemmas 13 and 14 we have that

∀ε > 0 , inf (0,T -ε]×T Ψ m > 0.
Hence there exists a constant α 0 = α 0 (ε) > 0 such that

(0,T )×T Ψ m |∇ um | 2 α 0 (0,T -ε)×T |∇ um | 2 .
Second, since j 2 is C 2 in u and u m is bounded, there exists a constant γ > 0 such that

T u2 m (T, •) ∂ 2 j 2 ∂u 2 u=um(T,•) -γ T u2 m (T, •).
Estimates on Z m As for Z m , we rewrite it

Z m = - 1 2 ∂Ψ m ∂t - 1 2 ∆Ψ m + Y m with Y m := -Ψ m V m + ∂ 2 j 1 ∂u 2 u=um + ∂ 2 f ∂u 2 u=um p m . Of course, Y m ∈ L ∞ .
Let us focus on the term

- ∂Ψ m ∂t -∆Ψ m .
We compute

∂Ψ m ∂t = 1 u m ∂p m ∂t - p m u 2 m ∂u m ∂t , (2.15) 
and (since we are working in one-dimension, ∆ = ∂ 2 xx ),

∂ 2 Ψ m ∂x 2 = -2 1 u 2 m ∂p m ∂x ∂u m ∂x + 1 u m ∂ 2 p m ∂x 2 - p m u 2 m ∂ 2 u m ∂x 2 + 2 p m u 3 m ∂u m ∂x 2 .
(2.16)

Setting

X m := -2 1 u 2 m ∂p m ∂x ∂u m ∂x + 2 p m u 3 m ∂u m ∂x we have ∂ 2 Ψ m ∂x 2 = 1 u m ∂ 2 p m ∂x 2 - p m u 2 m ∂ 2 u m ∂x 2 + X m .
From Proposition 16 we know that

X m ∈ L ∞ ((0, T ) × T).
Hence,

∂Ψ m ∂t + ∂ 2 Ψ m ∂x 2 = 1 u m ∂p m ∂t - p m u 2 m ∂u m ∂t + 1 u m ∂ 2 p m ∂x 2 - p m u 2 m ∂ 2 u m ∂x 2 + X m = X m + 1 u m ∂p m ∂t + ∂ 2 p m ∂x 2 - p m u 2 m ∂u m ∂t + ∂ 2 u m ∂x 2 = X m + p m u m - ∂j 1 ∂u u=um - p m u 2 m 2 ∂ 2 u m ∂x 2 + mu m + f (t, x, u m ) ,
whence, using the fact that j 1 ∈ C 1 and proposition 16, the function Zm satisfies

∀p ∈ [1; +∞) , sup t∈[0,T ] Z m (t, •) L p (T) =: M(p) < ∞.
(2.17)

This allows to estimate the last term in the second-order Gateaux derivative: from the Sobolev embedding W 1,2 (T) → C 0 (T) with constant C sob and the Cauchy-Schwarz inequality we obtain

(0,T )×T Z m u2 m - T 0 um (t, •) W 1,2 (T) • Z m (t, •) L 2 (T) • um (t, •) L 2 (T) dt = -M(2)C sob T 0 um (t, •) W 1,2 (T) • um (t, •) L 2 (T) dt = -M(2)C sob T 0 ∇ um (t, •) L 2 (T) • um (t, •) L 2 (T) dt -M(2)C sob (0,T )×T u2 m .
Remark 17. It may be argued that here we already use the fact that we are working in the onedimensional setting, when using the Sobolev embedding W 1,2 → C 0 . However, this can be very well extended to the higher dimensional setting, in which case, we would simply have an estimate of the form

Z m u2 m -C sob T 0 um (t, •) W 1,2 • Zm (t, •) L p • um (t, •) L 2 dt
, where we would have used the three exponents' Hölder inequality with 1/p + 1/q + 1/2 = 1, with C sob the constant of the embedding W 1,2 → L q . We obtain

J (m)[h, h] α (0,T -ε)×T |∇ um | 2 -M(2)C sob (0,T )×T u2 -M(2)C sob T 0 ∇ um (t, •) L 2 (T) um (t, •) L 2 (T) dt -γ T u2 (T, •). (2.18)
We perform one last step: from the arithmetic geometric inequality, for any δ > 0,

∇ um (t, •) L 2 (T) • u m (t, •) L 2 (T) δ ∇ um (t, •) 2 L 2 (T) + 1 δ um (t, •) 2 L 2 (T) . (2.19) 
Choosing δ := α0 2M(2)C sob , setting α := α0 2 and defining β := 1 + 1 δ M(2)C sob we have the estimate

J (m)[h, h] α (0,T -ε)×T |∇ um | 2 -β (0,T )×T u2 -γ T u2 (T, •). (2.20)
The proof is now complete.

This proposition indicates that a possibility to derive a proof of theorem I is as follows: first, picking a maximiser m * of (P parab ), we argue by contradiction and assume m * is not bang-bang, so that the set ω = {0 < m * < 1} has positive measure. Thus, for any admissible perturbation h supported in ω, J (m * )[h] = 0. If we can pick an admissible perturbation such that

(0,T -ε)×T |∇ um | 2 (0,T )×T u2 m + T u2 m (T,
•), the second order Gateau derivative is positive, in contradiction with the optimality of m * . To build such an h, we need to choose it highly oscillating; in other words, its Fourier series only has high order modes. Thus, the next sections are, respectively, devoted to the construction of an admissible h that only has high Fourier modes, and to the study of the ensuing um via two-scale asymptotic expansions.

Throughout, we thus consider a non bang-bang maximiser m * and define ω := {0 < m * < 1}.

Construction of an admissible perturbation

The relevant function to study is um , which solves the parabolic equation

∂ um ∂t -∆ um -V m um = hu m .
We want to build h such that, a large integer K being fixed, h is supported in ω and that has the Fourier decomposition

h(x) = ∞ k=K a k cos(kx) + b k sin(kx).
Let us prove that such an admissible perturbation exists: let ω := {0 < m * < 1}. As m * is not bang-bang, Vol(ω) > 0. Consequently the space L 2 (ω) is infinite dimensional. We identify each H ∈ L 2 (ω) with h := H1 ω ∈ L 2 (T). We fix an integer K ∈ IN\{0} and we define, for any 0 k K -1 the linear functionals

T 1 k : L 2 (ω) H → ω H cos(kx)dx , T 2 K : L 2 (ω) H → ω H sin(kx)dx.
Finally, we define

E K := K-1 k=0 ker T 1 k ∩ ker T 2 k E K
, as an intersection of closed hyperplanes, is of finite co-dimension. It is, in particular, infinite dimensional. Hence, we can pick

H K ∈ E K such that H K L 2 (ω) > 0. By definition, h K := H k 1 ω has the Fourier decomposition h K (x) = ∞ k=K a k cos(kx) + b k sin(kx) with, up to renormalisation, ∞ k=K a 2 k + b 2 k = 1.
We now want to study how um [h K ] behaves, for K large. This prompts us to considering, first, the case of single cosines and sines.

Computations for single-mode perturbations

We emphasise once again that the computations of this paragraph are formal; we refer to proposition 19 for the rigorous proof of the expansions.

Case of single cosines Let, for any k ∈ IN\{0}, η k be the solution of

∂ t η k -∆η k -V m η k = u m (t, x) cos(kx) in (0, T ) × T , η k (0, •) = 0 in T. (2.21) 
A natural expansion to look for is of the form

η k (t, x) ≈ 1 k 2 R 1 (x, kx, t, k 2 t) + 1 k 3 R 2 (
x, kx, t, k 2 t) + . . . By convention, we call y and s the second and fourth variables of R 1 and R 2 . Plugging this formal expansion in (2.21) we obtain the following equations:

∂ s R 1 -∂ 2 yy R 1 = cos(y)u m (t, x) , R 1 (x, y, 0, 0) = 0, (2.22) 
and

∂ s R 2 -∂ 2 yy R 2 = 2∂ 2 xy R 1 (x, y, t, s) , R 2 (x, y, 0, 0) = 0.
(2.23)

(2.22) can be solved explicitly and we obtain

R 1 (x, y, t, s) = u m (t, x)(1 -e -s ) cos(y). (2.24) 
This allows to derive the explicit form of (2.23). Namely, R 2 satisfies

∂ s R 2 -∂ 2 yy R 2 = -2 ∂u m ∂x (t, x)(1 -e -s ) sin(y). (2.25)
As a consequence, we look for R 2 under the form

R 2 (x, y, t, s) = -2 ∂u m ∂x (t, x) sin(y)ϕ(s).
The function ϕ satisfies

ϕ + ϕ = 1 -e -s
which can be integrated explicitly as

ϕ(s) = 1 -se -s -e -s .
Finally,

R 2 (x, y, t, s) = -2 ∂u m ∂x (t, x) sin(y)(1 -se -s -e -s ). ( 2 

.26)

Case of single sines We then consider the case of single sines. Let, for any k ∈ IN\{0}, ζ k be the solution of

∂ t ζ k -∆ζ k -V ζ k = u m (t, x) sin(kx) in (0, T ) × T , ζ k (0, •) = 0 in T. (2.27)
Similarly, we look for an expansion in the form

ζ k (t, x) ≈ 1 k 2 S 1 (x, kx, t, k 2 t) + 1 k 3 S 2 (x, kx, t, k 2 t) + . . .
By convention, we call y and s the second and fourth variables of S 1 and S 2 . Plugging this formal expansion in (2.27) we obtain the following equations:

∂ s S 1 -∂ 2 yy S 1 = sin(y)u m (t, x) , S 1 (x, y, 0, 0) = 0, (2.28) 
and

∂ s S 2 -∂ 2 yy S 2 = 2∂ 2 xy S 1 (x, y, t, s) , S 2 (x, y, 0, 0) = 0.
(2.29)

(2.28) can be solved explicitly and we have

S 1 (x, y, t, s) = u m (t, x)(1 -e -s ) sin(y). (2.30)
This allows to derive the explicit form of (2.29). Namely, S 2 satisfies

∂ s S 2 -∂ 2 yy S 2 = 2 ∂u m ∂x (t, x)(1 -e -s ) cos(y). (2.31) 
Proceeding as in the computations of R 2 we derive S 2 (x, y, t, s) = 2 ∂u m ∂x (t, x) cos(y)(1 -se -s -e -s ).

(2.32)

Of course we wish to write an approximation of the type um

≈ ∞ k=K a k 1 k 2 R 1 (x, kx, t, k 2 t) + 1 k 3 R 2 (x, kx, t, k 2 t) + ∞ k=K b k 1 k 2 S 1 (x, kx, t, k 2 t) + 1 k 3 S 2 (x, kx, t, k 2 t) . (2.33)
In order to determine how strong this approximation should be to yield an exploitable result on J , we next study the leading term of (2.13), should the expansion (2.33) hold.

Formal estimate of the leading order term

We work under the assumption that um

≈ ∞ k=K a k η k + ∞ k=K b k ζ k ≈ ∞ k=K a k u m (t, x) 1 k 2 cos(kx)(1 -e -k 2 t ) - ∂u m ∂x + ∞ k=K b k u m (t, x) 1 k 2 sin(kx)(1 -e -k 2 t ) + ∂u m ∂x 2 k 3 cos(kx)(1 -k 2 te -k 2 t -e -k 2 t )
In particular, we have (this is still formal, at this point)

∂ x um ≈ ∞ k=K a k ∂u m ∂x 1 k 2 cos(kx)(1 -e -k 2 t ) - ∂ 2 u m ∂x 2 2 k 3 sin(kx)(1 -k 2 te -k 2 t -e -k 2 t ) + ∞ k=K a k -u m 1 k sin(kx)(1 -e -k 2 t ) - ∂u m ∂x 2 k 2 cos(kx)(1 -k 2 te -k 2 t -e -k 2 t ) + ∞ k=K b k ∂u m ∂x 1 k 2 sin(kx)(1 -e -k 2 t ) + ∂ 2 u m ∂x 2 2 k 3 cos(kx)(1 -k 2 te -k 2 t -e -k 2 t ) + ∞ k=K b k u m 1 k cos(kx)(1 -e -k 2 t ) - ∂u m ∂x 2 k 2 sin(kx)(1 -k 2 te -k 2 t -e -k 2 t ) = u m ∞ k=K -a k sin(kx) + b k cos(kx) k 1 -e -k 2 t (=: L K ) + ∂u m ∂x ∞ k=K a k cos(kx) -b k sin(kx) k 2 -1 + e -k 2 t + 2k 2 te -k 2 t (=: I K ) -2 ∂ 2 u m ∂x 2 ∞ k=K a k sin(kx) -b k cos(kx) k 3 1 -k 2 te -k 2 t -e -k 2 t (=: J K ) .
Thus, we should have

(0,T -ε)×T |∇ um | 2 ≈ (0,T -ε)×T (I K + J K + L K ) 2 .
(2.34)

Given the expressions for I K , J K , L K , we expect (0,T -ε)×T L 2 K to be leading in (2.34). For this reason we first bound the right-hand side of (2.34) from below; we shall use the inequality

|xy| εx 2 + 1 ε y 2 for any x , y ∈ IR , ε > 0 (2.35)
as well as (x + y) 2 2 x 2 + y 2 for any x, y ∈ IR.

(2.36)

We obtain

(0,T -ε)×T (I K + J K + L K ) 2 = (0,T -ε)×T L 2 K + 2 (0,T -ε)×T L K (I K + J K ) (2.37) + (0,T -ε)×T (I K + J K ) 2 (2.38) (0,T -ε)×T L 2 K - 1 2 (0,T -ε)×T L 2 K (2.39) -4 (0,T -ε)×T (I K + J K ) 2 + (0,T -ε)×T (I K + J K ) 2 (2.40) from (2.35) with ε = 1 2 (2.41) = 1 2 (0,T -ε)×T L 2 K -6 (0,T -ε)×T I 2 K -6 (0,T -ε)×T J 2 K .
(2.42)

We recall that from lemma 13 we have

d := inf (0,T )×T u m > 0.
This will prove crucial. We shall estimate the three terms (i.e.

L 2 K , I 2 K , J 2 K ) separately. Estimate of L K We have (0,T -ε)×T L 2 K = (0,T -ε)×T u 2 m (t, x) ∞ k=K -a k sin(kx) + b k cos(kx) k 1 -e -k 2 t 2 dxdt d 2 (0,T -ε)×T ∞ k=K -a k sin(kx) + b k cos(kx) k 1 -e -k 2 t 2 dxdt = d 2 π ∞ k=K a 2 k + b 2 k T -ε 0 1 k 2 1 -e -k 2 t 2 dt 2C 0 ∞ k=K a 2 k + b 2 k k 2
for a positive constant C 0 > 0. We have hence obtained

(0,T -ε)×T L 2 K 2C 0 ∞ k=K a 2 k + b 2 k k 2 for a constant C 0 > 0.
(2.43)

Remark 18. We choose 2C 0 to obtain a cleaner estimate on the second order derivative.

Estimate of I K We first recall that from proposition 16

d := sup t∈[0,T ] u m C 1 (T) < ∞.
We then bound and compute

(0,T -ε)×T I 2 K = 4 (0,T -ε)×T ∂u m ∂x 2 ∞ k=K a k cos(kx) -b k sin(kx) k 2 -1 + e -k 2 t + 2k 2 te -k 2 t 2 dtdx 4d 2 (0,T -ε)×T ∞ k=K a k cos(kx) -b k sin(kx) k 2 -1 + e -k 2 t + 2k 2 te -k 2 t 2 dxdt = 4πd 2 ∞ k=K a 2 k + b 2 k k 4 T -ε 0 -1 + e -k 2 t (2k 2 t + 1) 2 dt = 4πd 2 ∞ k=K a 2 k + b 2 k k 4 T -ε 0 (1 + 4e -2k 2 t k 4 t 2 -2e -k 2 t -4k 2 te -k 2 t + 4k 2 te -2k 2 t + e -2k 2 t )dt.
However, each of the integrals can be computed explicitly:

T -ε 0 t 2 e -2k 2 t dt = - (T -ε) 2 e -2k 2 (T -ε) 2k 2 - (T -ε)e -2k 2 (T -ε) 2k 4 + 1 4k 6 1 -e -2k 2 (T -ε) N 0,I k 6 for some constant N 0,I , T -ε 0 e -2k 2 t dt N 1,I k 2 for some constant N 1,I , T -ε 0 te -k 2 t dt N 2,I k 4 for some constant N 2,I .
Hence, there exists K ∈ IN and a constant N 3,I such that for any k K,

T -ε 0 (1 + 4e -2k 2 t k 4 t 2 -2e -2k 2 t -4k 2 te -k 2 t + 4k 2 te -2k 2 t + e -2k 2 t )dt N 3,I 1 + 1 k 2 . (2.44)
Consequently, there exists a positive constant C 1 such that

(0,T -ε)×T I 2 K C 1 6 ∞ k=K a 2 k + b 2 k k 4 . (2.

45)

Estimate on J K This last term is the trickiest one. Indeed, we do not have

∂ 2 um ∂x 2 ∈ L ∞ , but simply, from proposition 16, ∀p ∈ [1; +∞) , sup t∈[0,T ] ∂ 2 u m ∂x 2 (t, •) L p (T) =: M(p) < ∞.
However, we can use the same trick as in bounding the second order derivative (see the proof of proposition 15). We indeed obtain

(0,T -ε)×T J 2 K = (0,T -ε)×T 4 ∂ 2 u m ∂x 2 2            ∞ k=K a k sin(kx) -b k cos(kx) k 3 1 -k 2 te -k 2 t -e -k 2 t =:W K            2 16M(4) 2 C sob =:D 0,J T -ε 0 W K (t, •) L 2 (T) W K (t, •) W 1,2 (T) dt D 0,J (0,T -ε)×T W 2 K + D 0,J T -ε 0 W K (t, •) L 2 (T) ∇W K (t, •) L 2 (T) dt,
where C sob is the constant of the (one-dimensional) embedding W 1,2 (T) → C 0 (T). We compute, for every t ∈ [0, T ], both

W K (t, •) L 2 (T) and ∇W K (t, •) L 2 (T) . First, T W 2 K (t, •) = T ∞ k=K a k sin(kx) -b k cos(kx) k 3 1 -k 2 te -k 2 t -e -k 2 t 2 dx = π ∞ k=K a 2 k + b 2 k k 6 1 -k 2 te -k 2 t -e -k 2 t 2 .
Second,

T |∇W K | 2 (t, •) = T ∞ k=K -a k sin(kx) -b k cos(kx) k 2 1 -k 2 te -k 2 t -e -k 2 t 2 dx = π ∞ k=K a 2 k + b 2 k k 4 1 -k 2 te -k 2 t -e -k 2 t 2 .
We notice that

T |∇W K | 2 (t, •) K 2 T W 2 K (t, •) (2.46)
or, in other terms, that, for any t ∈ [0, T ],

W K (t, •) L 2 (T) 1 K ∇W K (t, •) L 2 (T) . (2.47) 
Consequently,

(0,T -ε)×T W 2 K + T -ε 0 W K (t, •) L 2 (T) ∇W K (t, •) L 2 (T) dt (0,T -ε)×T W 2 K + T -ε 0 W K (t, •) L 2 (T) ∇W K (t, •) L 2 (T) dt 1 K 2 + 1 K T -ε 0 ||∇W K || 2 L 2 (T) (t, •) 2π K ∞ k=K a 2 k + b 2 k k 4 T 0 (1 -e -k 2 t (k 2 t + 1)) 2 dt.
From the same computations that established (2.44), there exists a constant D 1,J such that, whenever K is large enough, for any k K, there holds

T 0 (1 -e -k 2 t (k 2 t + 1)) 2 dt D 1,J , (2.48) 
and so, finally, for a constant C 2 , 

(0,T -ε)×T J 2 K C 2 6 ∞ k=K a 2 k + b 2 k k 4 . ( 2 
(I K + J K + L K ) 2 C lead ∞ k=K a 2 k + b 2 k k 2 .
(2.50)

Formal estimate of the lower order term

If we assume that um

≈ ∞ k=K a k η k + ∞ k=K b k ζ k = ∞ k=K a k u(t, x) 1 k 2 cos(kx)(1 -e -k 2 t ) - ∂u m ∂x 2 k 3 sin(kx)(1 -k 2 te -k 2 t -e -k 2 t ) + ∞ k=K b k u(t, x) 1 k 2 sin(kx)(1 -e -k 2 t ) + ∂u m ∂x 2 k 3 cos(kx)(1 -k 2 te -k 2 t -e -k 2 t ) ,
then, in the very same way, we obtain the existence of a constant C low such that

(0,T )×T ∞ k=K a k η k + β k ζ k 2 C low ∞ k=K a 2 k + b 2 k k 4 .
(2.51)

Strategy and comment for the proof of the asymptotic expansion

We shall now establish rigorously a strong enough approximation result. Let us define

Z K := ∞ k=K a k u m k 2 cos(kx)(1 -e -k 2 t ) - 2∂ x u m k 3 sin(kx)(1 -k 2 te -k 2 t -e -k 2 t ) + ∞ k=K b k u m k 2 sin(kx)(1 -e -k 2 t ) + 2∂ x u m k 3 cos(kx)(1 -k 2 te -k 2 t -e -k 2 t ) .
From (2.51)-(2.50), we need the following proposition to prove the theorem (see also lemma 20 below, which proves that this proposition is enough): Proposition 19. There exists a constant C cont such that, for any Υ > 0,

T 0 um -Z K (t, •) 2 W 1,2 (T) dt + um (T, •) -Z K (T, •) 2 L 2 (T) C cont Υ ∞ k=K a 2 k + b 2 k k 4 + ΥC cont ∞ k=K a 2 k + b 2 k k 2 . (2.52)
The object of the next lemma is to prove that proposition 19 suffices to obtain theorem I.

Lemma 20. Proposition 19 implies theorem I.

Proof of Lemma 20. We use proposition 15 with the perturbation h K constructed in Section 2.3.

We study the right-hand side of (2.13). On the one-hand, we have

(0,T -ε)×T |∇ um | 2 1 2 (0,T -ε)×T |∇Z K | 2 - (0,T )×T |∇ um -∇Z K | 2 dtdx C lead 2 ∞ k=K a 2 k + b 2 k k 2 - C cont Υ ∞ k=K a 2 k + b 2 k k 4 -ΥC cont ∞ k=K a 2 k + b 2 k k 2 .
On the other hand,

(0,T )×T u2 m 2 (0,T )×T |Z K | 2 + 2 (0,T )×T | um -Z K | 2 dtdx 2C low ∞ k=K a 2 k + b 2 k k 4 + 2C cont Υ ∞ k=K a 2 k + b 2 k k 4 + 2ΥC cont ∞ k=K a 2 k + b 2 k k 2
for K large enough, from (2.51) and Proposition 19, and, in the same way,

T u2 m (T, •) 2C cont Υ ∞ k=K a 2 k + b 2 k k 4 + 2ΥC cont ∞ k=K a 2 k + b 2 k k 2 Consequently, J (m * )[h K , h K ] αC lead 2 ∞ k=K a 2 k + b 2 k k 2 - αC cont Υ ∞ k=K a 2 k + b 2 k k 4 -αΥC cont ∞ k=K a 2 k + b 2 k k 2 -2βC low ∞ k=K a 2 k + b 2 k k 4 -2 βC cont Υ ∞ k=K a 2 k + b 2 k k 4 -2βΥC cont ∞ k=K a 2 k + b 2 k k 2 -2γC low ∞ k=K a 2 k + b 2 k k 4 -2γ C cont Υ ∞ k=K a 2 k + b 2 k k 4 -2γΥC cont ∞ k=K a 2 k + b 2 k k 2 = ∞ k=K a 2 k + b 2 k k 2 αC lead 2 -αΥC cont -2βΥC cont -2γΥC cont - ∞ k=K a 2 k + b 2 k k 4 αC cont Υ -2βC low -2 βC cont Υ -2γC low -2γΥC cont ∞ k=K a 2 k + b 2 k k 2 αC lead 2 -αΥC cont -2βΥC cont -2γΥC cont - ∞ k=K a 2 k + b 2 k k 2 αCcont Υ -2βC low -2 βCcont Υ -2γC low -2γΥC cont K 2
We first pick Υ > 0 small enough so that

α := αC lead 2 -αΥC cont -2βΥC cont -2γΥC cont > 0.
We define

β := αC cont ε -2βC low -2 βC cont Υ -2γC low -2γΥC cont .
Thus we have the lower bound

J (m * )[h K , h K ] α - β K 2 ∞ k=K a 2 k + b 2 k k 2 .
(2.53)

We pick K large enough to ensure that

α - β K 2 α 2 and it follows that J (m * )[h K , h K ] > 0,
in contradiction with the optimality of m * . The conclusion of the Theorem follows: every maximiser must be a bang-bang function.

The rest of this section is devoted to the proof of proposition 19.

Proof of proposition 19

Proof of proposition 19. We recall that, in its expanded form, Z K writes

Z K := ∞ k=K a k u m k 2 cos(kx)(1 -e -k 2 t ) - 2∂ x u m k 3 sin(kx)(1 -k 2 te -k 2 t -e -k 2 t ) + ∞ k=K b k u m k 2 sin(kx)(1 -e -k 2 t ) + 2∂ x u m k 3 cos(kx)(1 -k 2 te -k 2 t -e -k 2 t )
We define the remainder term

R K := um -Z K .
The computations needed in order to determine an explicit equation for R K are rather lengthy. We split them up.

Define

T 1 K := u m ∞ k=K a k cos(kx) + b k sin(kx) k 2 (1 -e -k 2 t ).
We first have

∂T 1 K ∂t = ∂u m ∂t ∞ k=K a k cos(kx) + b k sin(kx) k 2 (1 -e -k 2 t ) + u m ∞ k=K (a k cos(kx) + b k sin(kx)) e -k 2 t .
Second, we have

∂T 1 K ∂x = ∂u m ∂x ∞ k=K a k cos(kx) + b k sin(kx) k 2 (1 -e -k 2 t ) -u m ∞ k=K a k sin(kx) -b k cos(kx) k (1 -e -k 2 t ) so that ∂ 2 T 1 K ∂x 2 = ∂ 2 u m ∂x 2 ∞ k=K a k cos(kx) + b k sin(kx) k 2 (1-e -k 2 t )-u m ∞ k=K (a k cos(kx) + b k sin(kx)) (1-e -k 2 t ) -2 ∂u m ∂x ∞ k=K a k sin(kx) -b k cos(kx) k (1 -e -k 2 t ).
Hence, introducing the differential operator

L Vm : Φ → ∂ t Φ -∆Φ -V m Φ
we obtain

L Vm T 1 K = (L Vm u m ) ∞ k=K a k cos(kx) + b k sin(kx) k 2 (1 -e -k 2 t ) + u m ∞ k=K (a k cos(kx) + b k sin(kx)) + 2 ∂u m ∂x ∞ k=K a k sin(kx) -b k cos(kx) k 1 -e -k 2 t (2.54)
Second, we set

T 2 K := -2 ∂u m ∂x ∞ k=K a k sin(kx) -b k cos(kx) k 3 (1 -k 2 te -k 2 t -e -k 2 t ).
We obtain

∂T 2 K ∂t = -2 ∂ ∂x ∂u m ∂t ∞ k=K a k sin(kx) -b k cos(kx) k 3 (1 -k 2 te -k 2 t -e -k 2 t ) -2 ∂u m ∂x ∞ k=K (a k sin(kx) -b k cos(kx)) kte -k 2 t .
Let us define, in order to alleviate the upcoming computations,

ϕ(s) := 1 -se -s -e -s .
Similarly we obtain

∂T 2 K ∂x = -2 ∂ 2 u m ∂x 2 ∞ k=K a k sin(kx) -b k cos(kx) k 3 ϕ(k 2 t) -2 ∂u m ∂x ∞ k=K a k cos(kx) + b k sin(kx) k 2 ϕ(k 2 t)
as well as (the next equation should be understood in the W -1,2 (Ω) sense)

∂ 2 T 2 K ∂x 2 = -2 ∂ ∂x ∂ 2 u m ∂x 2 ∞ k=K a k sin(kx) -b k cos(kx) k 3 ϕ(k 2 t) -4 ∂ 2 u m ∂x 2 ∞ k=K a k cos(kx) + b k sin(kx) k 2 ϕ(k 2 t) + 2 ∂u m ∂x ∞ k=K a k sin(kx) + b k cos(kx) k ϕ(k 2 t).
Combining these bricks we are left with

L Vm T 2 K = -2 ∂ ∂x (L Vm u m ) ∞ k=K a k sin(kx) -b k cos(kx) k 3 ϕ(k 2 t) -2 ∂u m ∂x ∞ k=K (a k sin(kx) -b k cos(kx)) kte -k 2 t + ϕ(k 2 t) k -4 ∂ 2 u m ∂x 2 ∞ k=K a k cos(kx) + b k sin(kx) k 2 ϕ(k 2 t) = -2 ∂ ∂x (L Vm u m ) ∞ k=K a k sin(kx) -b k cos(kx) k 3 ϕ(k 2 t) -2 ∂u m ∂x ∞ k=K a k sin(kx) -b k cos(kx) k 1 -e -k 2 t -4 ∂ 2 u m ∂x 2 ∞ k=K a k cos(kx) + b k sin(kx) k 2 ϕ(k 2 t),
where, to obtain the last equality, we simply wrote

kte -k 2 t + ϕ(k 2 t) k = kte -k 2 t + 1 k -kte -k 2 t - e -k 2 t k = 1 -e -k 2 t k .
Now, it follows that R K satisfies

L Vm R K = L Vm um -L Vm T 1 K -L Vm T 2 K = u m ∞ k=K a k cos(kx) + b k sin(kx) -(L Vm u) ∞ k=K a k cos(kx) + b k sin(kx) k 2 (1 -e -k 2 t ) -u m ∞ k=K (a k cos(kx) + b k sin(kx)) -2 ∂u m ∂x ∞ k=K a k sin(kx) -b k cos(kx) k 1 -e -k 2 t + 2 ∂ ∂x (L Vm u m ) ∞ k=K a k sin(kx) -b k cos(kx) k 3 ϕ(k 2 t) + 2 ∂u m ∂x ∞ k=K a k sin(kx) -b k cos(kx) k 1 -e -k 2 t + 4 ∂ 2 u m ∂x 2 ∞ k=K a k cos(kx) + b k sin(kx) k 2 ϕ(k 2 t) = -(L Vm u m ) ∞ k=K a k cos(kx) + b k sin(kx) k 2 (1 -e -k 2 t ) + 2 ∂ ∂x (L Vm u m ) ∞ k=K a k sin(kx) -b k cos(kx) k 3 ϕ(k 2 t) + 4 ∂ 2 u m ∂x 2 ∞ k=K a k cos(kx) + b k sin(kx) k 2 ϕ(k 2 t)
We need one more transformation before this is in a workable form: we observe that (still in the W -1,2 (Ω) sense) we have

∂ ∂x (L Vm u m ) ∞ k=K a k sin(kx) -b k cos(kx) k 3 ϕ(k 2 t) = ∂ ∂x L Vm u m ∞ k=K a k sin(kx) -b k cos(kx) k 3 ϕ(k 2 t) -(L Vm u m ) ∞ k=K a k cos(kx) + b k sin(kx) k 2 ϕ(k 2 t),
and the equation we shall be working on is then given by

L Vm R K = -(L Vm u m ) ∞ k=K a k cos(kx) + b k sin(kx) k 2 (1 -e -k 2 t + 2ϕ(k 2 t)) + 2 ∂ ∂x L Vm u m ∞ k=K a k sin(kx) -b k cos(kx) k 3 ϕ(k 2 t) + 4 ∂ 2 u m ∂x 2 ∞ k=K a k cos(kx) + b k sin(kx) k 2 ϕ(k 2 t) (2.

55)

Estimating R K We introduce the notation φ(t) := 1 -e -s + 2ϕ(s).

As ϕ is bounded, so is φ. Let R K,1 , R K,2 , R K,3 be the solutions of

                             L Vm R K,1 = -(L Vm u m ) ∞ k=K a k cos(kx) + b k sin(kx) k 2 φ(k 2 t) , L Vm R K,2 = 2 ∂ ∂x L Vm u m ∞ k=K a k sin(kx) -b k cos(kx) k 3 ϕ(k 2 t) , L Vm R K,3 = -4 ∂ 2 u m ∂x 2 ∞ k=K a k cos(kx) + b k sin(kx) k 2 ϕ(k 2 t).
(2.56)

Obviously, R K = R K,1 + R K,2 + R K,3 ,
and so, up to a multiplicative constant E 1 we have

(0,T )×T |∇R K | 2 + (0,T )×T R 2 K + T R 2 K (T, •) E 1 3 j=1 (0,T )×T |∇R K,j | + (0,T )×T R 2 K,j + T R 2 K,j (T, •) . (2.57)
We shall now estimate each of these three functions. All the upcoming estimates rely on the following, standard, parabolic regularity result (proved in appendix A.3): Lemma 21. Let f ∈ L2 (Ω) and g ∈ L 2 (Ω). Let q ∈ L ∞ ((0, T ) × T). Let θ be the solution of

∂ t θ -∂ 2 xx θ -V θ = ∂ x f + qg in (0, T ) × T , θ(0, •) = 0.
(2.58)

Then (0,T )×T |∂ x θ| 2 + (0,T )×T θ 2 + T θ 2 (T, •) C(V, q) (0,T )×T (f 2 + g 2 ).
(2.59)

We can move back to estimating R K,j , for j = 1, 2, 3. To estimate R K,1 we apply Lemma 21 with

f = 0 , q = -L Vm u m , g = ∞ k=K a k cos(kx) + b k sin(kx) k 2 φ(k 2 t).
Thus we obtain

(0,T )×T |∇R K,1 | 2 + (0,T )×T R 2 K,1 + (0,T )×T R K,1 (T, •) 2 C 1 (0,T )×T ∞ k=K a k cos(kx) + b k sin(kx) k 2 φ(k 2 t)
Since φ is bounded by a constant, which we take equal to 1 up to changing the value of C 1 , we obtain

(0,T )×T |∇R K,1 | 2 + (0,T )×T R 2 K,1 + (0,T )×T R K,1 (T, •) 2 C 1 ∞ k=K a 2 k + b 2 k k 4 . (2.61) 
For R K,2 , it suffices to apply lemma 21 with

f = 2L Vm u m ∞ k=K a k sin(kx) -b k cos(kx) k 3 ϕ(k 2 t) , q = g = 0
and we obtain, since

L Vm u m ∈ L ∞ ((0, T ) × T), the existence of a constant C 2 such that (0,T )×T |∇R K,2 | 2 + (0,T )×T R 2 K,2 + T R K,2 (T, •) 2 C 2 ∞ k=K a 2 k k 6 .
(2.62)

The case of R K,3 is, on the other hand, trickier, but can be handled similarly. We first recall that, from proposition 16, for any p ∈ [1; +∞),

M(p) := sup t∈[0,T ] u m (t, •) W 2,p (T) < ∞.
From standard W 1,2 parabolic estimates, we obtain, for a constant C 3 ,

(0,T )×T |∇R K,3 | 2 + (0,T )×T R 2 K,3 + T R 2 K,3 (T, •) C 3 (0,T )×Ω ∂ 2 u m ∂x 2 2 ∞ k=K a k cos(kx) + b k sin(kx) k 2 ϕ(k 2 t) 2 . (2.63) 
Thus, up to replacing

C 3 with C 3 ϕ L ∞ , we obtain T R 2 K,3 (T, •) + (0,T )×T R 2 K,3 + (0,T )×T |∇R K,3 | 2 C 3 (0,T )×Ω ∂ 2 u m ∂x 2 2 ∞ k=K a k cos(kx) + b k sin(kx) k 2 2 . (2.64) Define Ψ K := ∞ k=K a k cos(kx) + b k sin(kx) k 2 .
From Hölder's inequality, we obtain

T R 2 K,3 (T, •) + (0,T )×T R 2 K,3 + (0,T )×T |∇R K,3 | 2 C 3 (0,T )×T ∂ 2 u m ∂x 2 2 Ψ 2 K C 3 M(4) =:C 3 T 0 ∇Ψ K (t, •) L 2 (T) Ψ K (t, •) L 2 (T) dt 2C 3 Υ (0,T )×T |∇Ψ K | 2 + 1 Υ (0,T )×T Ψ 2 K . However, since ∂Ψ K ∂x = ∞ k=K -a k sin(kx) + b k cos(kx) k
we obtain, on the one-hand, (0,T )×T

Ψ 2 K = 1 2 ∞ k=K a 2 k + b 2 k k 4 ,
and, on the other hand,

(0,T )×T |∇Ψ K | 2 = 1 2 ∞ k=K a 2 k + b 2 k k 2 .
Finally, we obtain the estimate 

T R 2 K,3 (T, •)+ (0,T )×T R 2 K,3 + (0,T )×T |∇R K,3 | 2 ΥC 3 ∞ k=K a 2 k + b 2 k k 2 + C 3 Υ ∞ k=K a 2 k + b 2 k k 4 . (2.
(0,T )×T |∇R K | 2 + (0,T )×T R 2 K + T R 2 K (T, •) C cont Υ ∞ k=K a 2 k + b 2 k k 4 + ΥC cont ∞ k=K a 2 k + b 2 k k 2 ,
thus concluding the proof.

Thus proposition 19 is proved. As, from lemma 20, proposition 19 implies theorem I, theorem I is established.

Proof of Theorem II

The first part of the proof follows the plan of the proof of theorem I: the idea is to obtain a timediscrete analog of proposition 15, see lemma 23 below. The way to use such an estimate then differs from the proof of theorem I and is simpler, as there is no need to carry out two-scale asymptotic expansions.

Preliminary analysis of the system

We recall that the system of equations we work with is w m,0 = w 0 and for any k ∈ {0, . . . , N -1},

w m,k+1 -w m,k δt -∆w m,k+1 = m k+1 w m,k+1 + f k+1 (x, w m,k+1 ) in Ω , ∂w m,k+1 ∂ν = 0 on ∂Ω. (3.1) 
The following Lemma contains all the information we shall need regarding the solvability of (3.4), and the regularity we will use. Since its proof relies on standard techniques in time-discretised systems, we give it in Appendix B.

Lemma 22. Assume {f k } k=1,...,n satisfies (H dis ). Let w 0 ∈ L ∞ (Ω) satisfy 0 < inf Ω w 0 w 0 L ∞ (Ω)
κ where we recall that κ is given by (H 2 ). For any δt > 0 small enough, for any m ∈ M(Ω) the system (3.4) is uniquely solvable. Furthermore,

∀k ∈ {1 , . . . , N } , 0 < inf Ω w m,k w m,k L ∞ (Ω) κ and ∀k ∈ {1 , . . . , N } , ∀p ∈ [1; +∞) , w m,k ∈ W 2,p (Ω).

Computation and estimate on the derivatives of the functional

The Gateaux derivative of the state solves ẇm,0 = 0 and for any k ∈ {0, . . . , N -1},

ẇm,k+1 δt -∆ ẇm,k+1 = ẇm,k+1 (m k+1 + ∂ w f k+1 (x, w m,k+1 )) + ẇm,k δt + h k+1 w m,k+1 in Ω , ∂ ẇm,k+1 ∂ν = 0 on ∂Ω. (3.2) 
The derivative of the criterion under consideration writes

Jdis (m)[h] = N i=1 Ω ẇm,i ∂ w j i (x, w m,i ). (3.3) 
Let us define, for any k ∈ {1, . . . , N },

W k := (m k+1 + ∂ w f k+1 (x, w m,k+1 )) .
We introduce the adjoint state, namely, the solution q m = (q m,0 , . . . , q m,N -1 ) solution of

qm,N-1 δt -∆ qm,N-1 + W N -1 qm,N-1 = ∂ w j N (x, w m,N ) and, for any k ∈ {1, . . . , N -1}, qm,k-1 δt -∆ qm,k-1 = qm,k-1 W k + qm,k δt -∂ w j 1 (x, w m,k ) in Ω , ∂ qm,k+1 ∂ν = 0 on ∂Ω. (3.4) 
Multiplying (3.2) by q m and integrating by parts in space yields

1 δt N -1 k=0 Ω ( ẇm,k+1 -ẇm,k )q m,k + N -1 k=0 Ω ∇ ẇm,k+1 , ∇q m,k + N -1 k=0 Ω W k+1 ẇm,k+1 q m,k = N -1 k=0 Ω h k+1 w m,k+1 q m,k . (3.5) 
We perform an Abel transformation:

N -1 k=0 Ω ( ẇm,k+1 -ẇm,k )q m,k = N -1 k=0 Ω ẇm,k+1 q m,k - N -1 k=0 Ω ẇm,k q m,k 34 = N k=1 Ω ẇm,k q m,k-1 - N -1 k=1 Ω ẇm,k q m,k = Ω ẇm,N q m,N -1 + N -1 k=1 Ω ẇm,k (q m,k-1 -q m,k ) ,
where we used repeatedly the fact that ẇm,0 = 0. As a consequence, we obtain

1 δt Ω ẇm,N q m,N -1 + 1 δt N -1 k=1 Ω ẇm,k (q m,k-1 -q m,k ) + N -1 k=0 Ω ∇ ẇm,k+1 , ∇q m,k + N -1 k=0 Ω W k+1 ẇm,k+1 q m,k = N -1 k=0 Ω h k+1 w m,k+1 q m,k , (3.6) 
which rewrites

1 δt Ω ẇm,N q m,N -1 + 1 δt N -1 k=1 Ω ẇm,k (q m,k-1 -q m,k ) + N k=1 Ω ∇ ẇm,k , ∇q m,k-1 + N k=1 Ω W k ẇm,k q m,k-1 = N k=1 Ω h k w m,k q m,k-1 . (3.7) 
It follows that

J(m)[h] = N i=1 Ω ẇm,i ∂ w j i (w, w m,i ) = N k=1 Ω h k w m,k q m,k-1 . (3.8) 
In the same way, we have the following system for the second-order Gateau derivative ẅm,0 = 0 and for any k ∈ {0, . . . , N -1},

     1 δt ẅm,k+1 -∆ ẅm,k+1 = ẅm,k+1 (m k+1 + ∂ w f k+1 (t, x, w m,k+1 )) + ( ẇm,k+1 ) 2 ∂ 2 ww f k+1 + 1 δt ẅm,k + 2h k+1 ẇm,k+1 in Ω , ∂ ẅm,k+1 ∂ν = 0 on ∂Ω, (3.9) 
as well as the second-order derivative of the criterion

J(m)[h] = N i=1 ẅm,i ∂ w j i (x, w m,i ) + N i=1 ( ẇm,i ) 2 ∂ 2 ww j i (x, w m,i ) = 2 N k=1 Ω h k ẇm,k q m,k-1 + N k=1 Ω ( ẇm,k ) 2 ∂ 2 ww f k+1 q m,k-1 + N i=1 ( ẇm,i ) 2 ∂ 2 ww j i (x, w m,i ). (3.10)
The main lemma is then Lemma 23. Let m ∈ M(Ω). There exist two positive constant α , β > 0 such that for any admissible perturbation h at m there holds

J(m)[h, h] α N -1 k=0 Ω |∇ ẇm,k+1 | 2 -β N -1 k=0 Ω ẇ2 k+1 .
Proof of Lemma 23. Let us focus on

N k=1 Ω h k ẇm,k q m,k-1 = N -1 k=0 Ω h k+1 ẇm,k+1 q m,k .
Let us observe that, for any k ∈ {0, . . . , N -1}, we have

h k+1 = 1 δt ( ẇm,k+1 -ẇm,k ) -∆ ẇm,k+1 -ẇm,k+1 W k+1 w m,k+1
In particular, for any k ∈ {0, . . . , N -1},

Ω h k+1 ẇm,k+1 q m,k = Ω q m,k 1 δt ( ẇm,k+1 -ẇm,k ) -∆ ẇm,k+1 -ẇm,k+1 W k+1 w m,k+1 ẇm,k+1 .
Let us define, for any k ∈ {0, . . . , N -1}, Ψ m,k+1 := q m,k w m,k+1 .

The above expression rewrites

Ω h k+1 ẇm,k+1 q m,k = Ω 1 δt Ψ m,k+1 -W k+1 ( ẇm,k+1 ) 2 + 1 δt Ω Ψ m,k+1 ẇm,k+1 ẇm,k - 1 2 Ω ∆( ẇ2 m,k+1 )Ψ m,k+1 + Ω Ψ m,k+1 |∇ ẇm,k+1 | 2 = Ω 1 δt Ψ m,k+1 -W k+1 - 1 2 ∆Ψ m,k+1 ( ẇm,k+1 ) 2 + Ω Ψ m,k+1 |∇ ẇm,k+1 | 2 + 1 δt Ω Ψ m,k+1 ẇm,k+1 ẇm,k .
However, adapting the arguments of lemma 22 and using the fact that J satisfies (H J ) we easily derive that ∀k ∈ {0, . . . , N } , 0 < inf

Ω q m,k q m,k L ∞ < ∞.
With lemma 22 this implies that there exists a constant α > 0 such that

N -1 k=0 Ω Ψ m,k+1 |∇ ẇm,k+1 | 2 α N -1 k=0 Ω |∇ ẇm,k+1 | 2 (3.11)
Similarly, there exists a constant β 0 ∈ IR such that

N -1 k=0 Ω 1 δt Ψ m,k+1 -W k+1 -∆Ψ m,k+1 ( ẇm,k+1 ) 2 + 1 δt Ω Ψ m,k+1 ẇm,k+1 ẇm,k β 0 N -1 k=0 Ω w 2 m,k+1 . (3.12)
To obtain the estimate above, in particular, we used the fact that ẇm,0 = 0 to derive the bound

N -1 k=0 Ω Ψ m,k+1 ẇm,k+1 ẇm,k 2 sup k=0 ,...,N -1 Ψ m,k+1 L ∞ N -1 k=0 ẇ2 m,k+1 .
Let us also notice that from lemma 22 and explicit computations similar to [39, Estimate (2.14)-(2.15)] that ∀k ∈ {0, . . . , N -1} , ∆Ψ m,k+1 ∈ L ∞ (Ω)

and so there exists β 1 such that

N k=1 Ω ( ẇm,k ) 2 ∂ 2 ww f k+1 q m,k-1 + N i=1 ( ẇm,i ) 2 ∂ 2 ww j i (x, w m,i ) β 1 N -1 k=0 Ω ẇ2 m,k+1 .
Setting β := β 0 + β 1 we obtain the following estimate on J:

J(m)[h, h] α N -1 k=0 Ω |∇ ẇm,k+1 | 2 -β N -1 k=0 Ω ẇ2 k+1 .
With this estimate at hand, we can conclude the proof of theorem II.

Proof of Theorem II. We argue by contradiction and fix a maximiser m * = (m * 1 , . . . , m * N ) that is not bang-bang. In particular, one of the m * i is not bang-bang. Let i * be such that m * i * is not bang-bang, and let

ω * := {0 < m * i * < 1}.

By construction

Vol(ω * ) > 0.

We now construct a perturbation h at m * in order to derive the conclusion. This h has the form h = (0 , . . . , h i * , . . . , 0).

To yield a contradiction, we need to choose h i * such that 1.

Ω h i * = 0 , h i * is supported in ω * and h i * L 2 = 1. (3.13)
2. The associated ẇm must satisfy

α N -1 k=0 Ω |∇ ẇm,k+1 | 2 > N -1 k=0 β Ω ẇ2 k+1 .
First observe that for such an h we have ẇm,i = 0 if i < i * . Let for any k ∈ IN * and any i ∈ {i * , . . . , N } φ k,i be the i-th eigenfunction, associated with the eigenvalue λ k,i , of the operator 

L i := -∆ -W k + 1 δt
then we obtain the lower bound

J(m)[h, h] α ∞ i=i * Ω |∇ ẇm,i | 2 -β N i=i * Ω ẇm,i | 2 α ∞ i=i * Ω |∇ ẇm,i | 2 -W i - 1 δt ẇ2 m,i - N i=i * Ω ẇ2 m,i β + αW i - 1 δt α ∞ k=K N i=i * λ k,i a 2 k,i -β ∞ k=K N i=i * a 2 k,i , for β = β+ 1 δt +α sup i∈{i * ,... ,N } W i L ∞ . For K large enough, this immediately gives J(m)[h, h] > 0.
Thus it suffices to build h such that (3.13)-(3.14) hold simultaneously.

Heuristic We proceed inductively to explain our construction. First, we explain how to build h 0 i * such that, in the spectral basis {φ k,i * } k∈IN we have

h 0 i * w m,i * = ∞ k=K a 0 k,i * φ k,i * . (3.15) 
That such an admissible perturbation exists for any k ∈ IN is guaranteed by the following fact: as Vol(ω * ) > 0, the space E := L 2 (ω * ) is infinite dimensional. Consider the family of functionals

R 0 : E h → ω * h and ∀k ∈ {0, . . . , K -1} , T k,i * : E h → ω * hw m,i * φ k,i * .
Each of this functional is continuous on E and thus if we define

F i * := ker(R 0 ) ∩ K-1 k=0 ker(T k,i * )
then F i * has finite co-dimension. Consequently, there exists 

h 0 i * ∈ F i * \{0} supported in ω such that h 0 i * L 2 (ω * ) =
we obtain

ẇm,i * = ∞ k=K a 0 k,i * λ k,i * φ k,i * . (3.17)
However, if we merely choose h i * like this, we may have problems when considering the spectral decomposition of ẇm,i * +1 . Indeed, since h i * +1 = 0 in our construction, ẇm,i+1 * solves

L i * +1 ẇm,i * +1 = 1 δt ẇm,i * ,
it appears that we must choose h 0 i * such that in the spectral basis {φ k,i * +1 } ẇm,i * has a decomposition of the form

ẇm,i * = ∞ k=K a 0 k,i * +1 φ k,i * +1 .
In other words, we must ensure that ∀k ∈ {0, . . . , K} , T k,i * +1 (h

0 i * ) := Ω ẇm,i * φ k,i * +1 = 0.
Let us first note that for any k ∈ {0, . . . K -1} the map T k,i * +1 is linear in h 0 i * . Furthermore, from standard elliptic regularity, T k,i * +1 is continuous on E. Thus, it would suffice to choose h 0 i * in the set F i * +1 where F i * +1 is defined as

F i * +1 = F i * ∩ K-1 k=0 ker(T k,i * +1 ).
This indicates how to construct the function h i * .

Construction of h i * We define the following family of maps on E = L 2 (ω * ):

1. R 0 : E h → ω h 2. For any k K we define T k,i * : E h → ω * hw m,i * φ k,i * .

For any

i ∈ {i * + 1 , . . . , N }, for any k K, T k,i : E h → Ω ẇm,i-1 φ k,i .
From elliptic regularity, each of these maps is continuous on E. Consequently, the space

F := ker(R 0 ) ∩ N i=i * K-1 k=0 ker(T k,i )
has finite codimension. We pick h i * ∈ F \{0} and up to a rescaling assume that

h i * L 2 (ω * ) = 1.
We extend h i * by 0 outside of Ω * and, by construction, for any i ∈ {i * , . . . N }, (3.14) holds. This concludes the proof.

Conclusion

Possible generalisations of theorem I

General comment about generalisations

Throughout these generalisations, we still assume that we are working with an initial condition u 0 ∈ C 2 (T) with inf T u 0 > 0. Let us draw attention to the fact that the core idea of the proof of theorem I consists in combining two ingredients: the first one is proposition 15, which gives a lower estimate of J , and the second one is a two scale asymptotic expansion. This second part is independent of the functionals j 1 , j 2 , the monotonicity of which are only used in the first step. To generalise our model to other types of interactions, some assumptions will ensure that proposition 15 remain valid. A crucial part in deriving the conclusion however is estimate (2.43). To obtain it, we used the fact that in our bilinear model we have inf (0,T )×T |u m | > 0. This plays a role when using the fact that um solves

∂ um ∂t -∆ um -V m um = u m h.
In other types of model, um solves (generically) an equation of the form

∂ um ∂t -∆ um -V m um = F (u m , m)h,
and other assumptions will thus ensure that inf (0,T )×T F (u m , m) > 0.

Approximations of time dependent controls

Although we can not handle general time-dependencies, see section 4.3, we would nonetheless like to draw attention to the fact that our method covers some approximations of time-varying controls. Consider an integer N and a family of functions {φ i } i=1,...,N satisfying the following conditions:

For any i ∈ {1, . . . , N },

φ i ∈ C 1 ([0, T ], IR) (A 1 )
For any i ∈ {0, . . . , N }, inf where J still satisfies assumption (H J ) of Theorem I. We claim that, up to minor adaptations of our proof, the following result holds:

Theorem III. Assume J satisfies (H J ) and φ = {φ i } i=1 ,...,N satisfies (A 1 )-(A 2 ). Any solution m * of (P N parab ) is bang-bang: there exist E 1 , . . . , E N ⊂ T such that

m * = N i=0 φ i (t)1 Ei .
Sketch of proof of theorem III First of all, we once again have inf (0,T )×T u m > 0 and for any p ∈ [1; +∞) sup

t∈[0,T ] u m (t, •) W 2,p (T) < ∞.
We can compute, for an admissible m ∈ M N (T) and an admissible perturbation h = (h 1 , . . . , h N ) at m, the first and second order derivatives of m → u m in the direction h solve, respectively,

∂ um ∂t -∆ um -V m um = u m N i=1 φ i (t)h i in (0, T ) × T, um (0, •) ≡ 0 in T. (4.2) 
and

   ∂ üm ∂t -∆ü m -V m üm = 2 um N i=1 φ i (t)h i + ∂ 2 f ∂u 2 u=um ( um ) 2 in (0, T ) × T, üm (0•) ≡ 0 in T (4.3) with V m := m + ∂f ∂u u=um .
We introduce the adjoint state p m , solution of

   ∂pm ∂t + ∆p m + V m p m = -∂j1 ∂u u=um in (0, T ) × T , p m (T, •) = ∂j2 ∂u u=um in T. (4.4) 
From the same arguments as in lemma 14 we have For any admissible perturbation h we then have

∀ε > 0 , inf ( 
J (m)[h, h] = 2 (0,T )×T um p m N i=1 φ i (t)h i (t) + T u2 m (T, •) ∂ 2 j 2 ∂u 2 u=um(T,•) + (0,T )×T u2 m ∂ 2 j 1 ∂u 2 u=um + ∂ 2 f ∂u 2 u=um p m . (4.5)
We then use the fact that

N i=1 φ i (t)h i = ∂ um ∂t -∆ um -V m um u m .
From this point on, we can follow all the steps of the proof of proposition 15 to obtain the existence of three positive constants α , β , γ and of a positive ε > 0 such that, for any admissible perturbation h there holds

J (m)[h, h] α (0,T -ε)×T |∇ um | 2 -β (0,T )×T u2 m -γ T u2 m (T, •).
We then argue by contradiction, assuming that there exists a maximiser m and an index j ∈ {1, . . . , N } such that m * j is not bang-bang, so that ω := {0 < m * j < 1} has positive measure.

We fix this index j and henceforth only consider perturbations h of the form (0, . . . , h j , . . . , 0) with h j an admissible perturbation at m j supported in ω j , and admitting the Fourier decomposition

h j = ∞ k=K a k cos(kx) + b k sin(kx).
For such a perturbation, the derivative um solves

∂ um ∂t -∆ um -V m um = u m φ j (t)h j in (0, T ) × T, um (0, •) ≡ 0 in T, (4.6) 
and given that inf (0,T )×T |u m φ j | > 0 we can conclude in exactly the same way.

Other types of interactions: generalisation and obstruction

One may argue that other types of interactions can be relevant. To motivate this point, let us consider another type of model from spatial ecology, were one rather aims at optimising a certain criterion for a state equation of the form

∂ym ∂t -∆y m = f (t, x, y m ) + mϕ(y m ) in (0, T ) × T , y m (0, •) = y 0 in T, (4.7) 
where y 0 ∈ C 2 (T) and inf T y 0 > 0 is a fixed initial condition, f and ϕ are non-linearities that must satisfy that for any m ∈ M(T), y m satisfies inf (0,T )×T

y m > 0 (4.8) and ∀T > 0 , sup t∈[0,T ] y m (t, •) L ∞ < ∞. (4.9) 
We aim at optimising

J : M(T) m → (0,T )×T j 1 (t, x, y m ) + T j 2 (x, y m (T, •)) (4.10) 
and assume that J satisfies (H J ). We claim that, up to minor adaptation of the proof of theorem I, the following result holds: Let us explain why this type of setting is relevant in application: consider the case of the logistic-diffusive equation

Theorem IV. Assume that ϕ is C 2 on IR * + . If, for any K ∈ IR * + , for any ε > 0, inf y∈(0,K) ϕ (y) ϕ(y) = a 1 (K) > 0 , inf y∈(ε;K) |ϕ(y)| = a 2 (ε, K) > 0 ( 4 
∂ym ∂t -∆y m = y m (1 -my m ) in (0, T ) × T , y m (0, •) = y 0 in T, (4.12) 
as well as the functional J (m) := T y m (T, •).

Maximising J with respect to m ∈ M(T) amounts to optimising the total population size with respect to m, the inverse of the carrying capacity (at this stage, one may argue that it would make more sense to consider the case of m satisfying ε m 1 in the definition of M(T); given remark 6, we claim that this would not change anything to the conclusion of theorem IV). Such a problem is inspired by the considerations of [START_REF] Deangelis | Dispersal and spatial heterogeneity: single species[END_REF].

Sketch of proof of theorem IV We start by noticing that inf (0,T )×T y m > 0 and for any p ∈ [1; +∞) sup

t∈[0,T ] y m (t, •) W 2,p (T) < ∞.
Let m ∈ M(T), and consider an admissible perturbation h at m; the first and second order derivatives of m → u m in the direction h solve, We introduce the adjoint state q m , solution of

∂ ẏm ∂t -∆ ẏm -V m ẏm = ϕ(y m )h in (0, T ) × T, ẏm (0, •) ≡ 0 in T. ( 4 
   ∂qm ∂t + ∆q m + V m q m = -∂j1 ∂u u=ym in (0, T ) × T , q m (T, •) = ∂j2 ∂u u=ym in T. (4.15) 
From the same arguments as in lemma 14 we have

∀ε > 0 , inf (0,T -ε)×T q m > 0 and for any p ∈ [1; +∞) sup t∈[0,T ] q m (t, •) W 2,p (T) < ∞.
For any admissible perturbation h we then have

J (m)[h, h] = 2 (0,T )×T ẏm ϕ (y m )q m h + T ẏ2 m (T, •) ∂ 2 j 2 ∂u 2 u=ym(T,•) + (0,T )×T ẏ2 m ∂ 2 j 1 ∂u 2 u=ym + ∂ 2 f ∂u 2 u=ym q m + mϕ (y m ) . (4.16)
We then use the fact that

h = ∂ ẏm ∂t -∆ ẏm -V m ẏm ϕ(y m ) .
Following all the steps of the proof of proposition 15, we obtain the existence of two constants β , γ such that, for any admissible perturbation h at m, there holds

J (m)[h, h] (0,T )×T q m ϕ (y m ) ϕ(y m ) |∇ ẏm | 2 -β (0,T )×T ẏ2 m -γ T ẏ2 m (T, •).
We then use the assumption to obtain the existence of an ε > 0 such that we have, for any admissible perturbation h at m, the estimate

J (m)[h, h] inf (0,T -ε)×T q m a 1 (sup (0,T )×T y m ) a 2 (inf (0,T )×T y m , sup (0,T )×T y m ) (0,T -ε)×T |∇ ẏm | 2 -β (0,T )×T ẏ2 m -γ T ẏ2 m (T, •) α (0,T -ε)×T |∇ ẏm | 2 -β (0,T )×T ẏ2 m -γ T ẏ2 m (T, •)
for a positive α > 0. We then follow exactly the same steps.

Some interactions not covered by our method

However, despite their interest, our generalisations, theorems IV and III, do not cover several cases. A typical example of such an interaction between the state and the control is, typically, of the form mϕ(u m ) with ϕ an increasing, negative function. Indeed, the following is easily checked via the same computations: let ϕ be a smooth function such that ∀K , ε > 0 , sup

(0;K) ϕ ϕ = -a 1 < 0 , inf [ε;K] |ϕ| = a 2 (ε, K) > 0,
and consider the solution

z m of ∂zm ∂t -∆z m = f (t, x, z m ) + mϕ(z m ) in (0, T ) × T , z m (0, •) = z 0 in T, (4.17) 
where inf T z 0 > 0 and ϕ and f are further chosen to satisfy

∀m ∈ M(T) , inf (0,T )×T z m > 0 , sup t∈[0,T ] z m (t, •) W 2,p (T) < ∞.
Then, considering a functional J that satisfies (H J ), there exists a positive constant α > 0 and two constants β , γ > 0 such that

J (m)[h, h] -α (0,T -ε)×T |∇ żm | 2 + β (0,T )×T ż2 m + γ T ż2 m (T, •),
where żm is of course the derivative of m → z m at m in the direction h. In this case, our method fails to provide a bang-bang property for maximisers, but yields a bang-bang property for minimisers.

Generalisations and obstructions for Theorem I

In this section, we present several possible obstructions and generalisations of theorem I and of our methods to other contexts (e.g to the multi-dimensional case or to other geometries), pinpointing what the main difficulties seem to be.

Higher dimensional tori

We believe that our method extends, in a straightforward manner, to the case of d-dimensional tori, for any d ∈ IN\{0}; once again, two steps are crucial in deriving theorem I. The first one, proposition 15, is an estimate on the second order Gateaux derivative of the functional which does not depend on the dimension, see in particular remark 17. The second one is to establish a two-scale asymptotic expansions for solutions of a linear heat equation with a highly oscillating source term. We claim that this step can be extended in a straightforward way to the d dimensional torus, provided the functions cos(k•) and sin(k•) are replaced with products of the form 

Possible obstructions in other domains

It would be extremely interesting and relevant, in many applications, to consider not only the case of bounded domains Ω ⊂ IR d with, for instance, Neumann or Robin boundary conditions (Dirichlet boundary conditions may not be suitable for our needs, as we need, in a crucial manner, a uniform lower bound on solutions of the equation). In this context, we claim that the lower estimate given by proposition 15 still holds, as is clear in the proof and in remark 17. The main difficulty lies elsewhere, namely, in the possibility to attain two-scale asymptotic expansions in order to derive the bang-bang property. A possibility to do so would be to replace the cos It is unclear, in this situation, which asymptotic expansion would yield a result analogous to that of proposition 19.

Possible obstructions for other diffusion operators

A very relevant query, if we keep application to mathematical biology in mind, is the analysis of heterogeneous diffusion operators. In other words, following, for instance, [START_REF] Belgacem | The effect of dispersal along environmental gradients on the dynamics of populations in heterogeneous environment[END_REF], one may rather be interested in state equations assuming the form

∂u m ∂t -∇ • (A∇u m ) = mu m + f (t, x, u)
where A = A(t, x) accounts for some heterogeneity. It is likely that our methods extend to this case, provided A is smooth enough to guarantee uniform (in time) W 2,p (T) (in space) estimates on the solution u m . Although this can be of interest, since our main goal is the analysis of shape optimisation problems in optimal control problems, this is not the most relevant analytical setup for us. Indeed, in the context of spatial ecology, the diffusion matrix A and the resources distribution m are often linked, which will lead to very intricate situations from the regularity point of view.

For an example of such an optimisation problem and of the wealth of qualitative and technical issues it can lead to we refer to the elliptic optimisation problem studied in [START_REF] Mazari | Optimization of a two-phase, weighted eigenvalue with dirichlet boundary conditions[END_REF].

Some possible open questions

Of course, the bang-bang property is one of the many qualitative aspects of bilinear optimal control problems. Even when m does not depend on time, and we know that maximisers are bang-bang, what do theses optimisers look like from a geometric point of view? In other words, considering a maximiser m * = 1 E * , what are the geometric and topological features of E * ? Is it connected, disconnected, and how may we quantify such information? Let us underline here that the functionals under consideration in this paper are non-energetic, which prohibits the use of rearrangement techniques. Such techniques, developed in the context of mathematical biology in [START_REF] Berestycki | Analysis of the periodically fragmented environment model : I -species persistence[END_REF] for instance, although very powerful for energetic or spectral optimisation problems in the elliptic case [START_REF] Lamboley | Properties of optimizers of the principal eigenvalue with indefinite weight and Robin conditions[END_REF] or for the study of concentration phenomena in parabolic models [START_REF] Alvino | A remark on comparison results via symmetrization[END_REF][START_REF] Alvino | Comparison results for elliptic and parabolic equations via symmetrization: a new approach[END_REF][START_REF] Alvino | Comparison results for elliptic and parabolic equations via Schwarz symmetrization[END_REF][START_REF] Bandle | Isoperimetric Inequalities and Applications[END_REF][START_REF] Mazari | Quantitative estimates for parabolic optimal control problems under L ∞ and L 1 constraints in the ball: quantifying parabolic isoperimetric inequalities[END_REF][START_REF] Mossino | Inégalités isopérimétriques et applications en physique[END_REF][START_REF] Mossino | Isoperimetric inequalities in parabolic equations[END_REF][START_REF] Vazquez | Symétrisation pour u t = ∆ϕ(u) et applications[END_REF] can not yield satisfying results for non-energetic problems. As an example, we refer to the elliptic problem of optimising the total population size described in section 1.6 and, more specifically, to the results of [START_REF] Heo | On the fragmentation phenomenon in the population optimization problem[END_REF][START_REF] Mazari | Optimisation of the total population size for logistic diffusive equations: bang-bang property and fragmentation rate[END_REF][START_REF] Mazari | A fragmentation phenomenon for a nonenergetic optimal control problem: Optimization of the total population size in logistic diffusive models[END_REF]: in the elliptic context, depending on the dispersal rate of the population, optimal resources distributions are either concentrated (and when that dispersal rate is high enough we can apply symmetrisation properties) or display hectic oscillations (this corresponds to the low dispersal rate limit, and is clearly a case where it is hopeless to apply rearrangements). The study of these properties in parabolic models seems challenging, and we plan on studying it in further works. and we are studying the maximisation of J over M((0, T ) × T). Two problems rapidly arise. The first one is that, as noted several times, the regularity of u m is crucial in deriving proposition 15; this necessarily requires some a priori assumptions on the regularity of the control m in time.

The difficulty with general time dependent controls

The second difficulty is in defining, for a given maximiser m * that would, arguing by contradiction, not be bang-bang, a highly oscillating perturbation h. One may be tempted to reason in a way analogous to that of theorem II and to choose a perturbation h supported in the right set (i.e. in the set {0 < m * < 1}) by reasoning as follows: define, for a.e. t ∈ [0, T ], ω(t) := {t}×{0 < m * < 1} and consider a function h t supported in ω(t) that only has high (enough) Fourier modes. One would then define the perturbation as h(t, x) = h t (x). The problem here is that there is no guarantee that such a function h is measurable in (t, x).

On the other hand, enforcing strong time regularity constraints on the control m (such as, for instance, m ∈ C 1 ([0, T ]; M(T))) may allow such constructions to work. This is however, beyond the scope of our article, and we plan on investigating the influence of time-regularity constraints on the bang-bang property in the future. In particular we obtain

∂ t T θ 2k -W L ∞ ((0,T )×T) T θ 2k 2k T |Θ| • |θ| 2k-1 .
We bound the right-hand side using Hölder's inequality: We set z = y 1 2k e -c0t , which leads to z (t) c 1 (t)e -c0t , and it suffices to integrate this inequality to obtain

y k (t) 1 2k
e c0t y k (0) We bound brutally t T in the exponentials, and we obtain, for a constant c 3 , y k (t)

1 2k
2kc 3 y k (0)

1 2k + t 0 Θ(τ, •) L 2k (T) dτ .
Finally, we use Jensen's inequality:

t 0 Θ(τ, •) L 2k (T) dτ t 1-2 k t 0 T Θ 2k 1 2k
T 1-2 k Θ L 2k ((0,T )×T) .

M

  N (T) := m ∈ L ∞ ((0, T ) × T) that write m = N i=1 φ i (t)m i where for any i ∈ {1, . . . , N } , m i ∈ M(T) . (4.1)A generic m ∈ M N (T) is identified with the associated N -tuple (m 1 , . . . , m N ) ∈ M(T) N . A function m ∈ M N (T ) is called bang-bang if for any i ∈ {1, . . . , N } m i is a bang-bang function.We can define u m as the solution of (1.2) with m replaced with m, and the optimisation problem is max m∈M N (T) J (m), (P N parab )

  0,T -ε)×T p m > 0 and for any p ∈ [1; +∞) sup t∈[0,T ] p m (t, •) W 2,p (T) < ∞.

. 11 )

 11 then any solution m * ϕ of the optimisation problemsup m∈M(T) J (m)is bang-bang.

V

  ∂t -∆ÿ m -V m ÿm = 2 ẏm hϕ (y m ) + mϕ (y m ) + ∂ 2 m := m + ∂f ∂u u=ym + ϕ (y m ) .

d

  i=1 cos(k i x) sin(k i x) or d i=1 cos(k i x) where (k 1 , . . . , k d , k 1 , . . . , k d ) ∈ IN 2d .

  (k•) , sin(k•) with ψ k , where the {ψ k } k∈IN or the Neumann (if working with Neumann boundary conditions) or Robin (if working with Robin boundary conditions) eigenfunctions of the laplacian in Ω, associated with the (increasing) sequence of eigenvalues {λ k } k∈IN . Let us assume that we are working with Neumann boundary conditions. Then the task at hand would be, if we mimicked our approach, to find an asymptotic expansion for a solution um of∂t -∆ um -V m um = u m (t, x) ∞ k=K a k ψ k (x) in (0, T ) × Ω , ∂ um ∂ν = 0on ∂Ω , um (0, •) = 0 in Ω.

Finally, let us

  underline the core difficulties in reaching the bang-bang property for general timedependent controls. In other words, assume we are working with controls m satisfying m ∈ M((0, T ) × T) = m ∈ L ∞ ((0, T ) × T) : 0 m 1 a.e. and for a.e. t ∈ [0, T ] T m(t, •) = m 0 ,

  Proof of Lemma . Let us first prove that for any p ∈ [1; +∞) there exists a constant C 0 p such that supt∈[0,T ] θ(t, •) L p (T) C 0 p Θ L ∞ ((0,T )×T) + θ 0 L q , (A.4)for q large enough. We first recall the inclusion of Lebesgue spaces: if p 1 > p 0 then L p1 (T) → L p0 (T). By this inclusion of Lebesgue spaces it suffices to prove (A.4) for p = 2k, k = 1, . . . , n, . . . . Let k ∈ IN\{0}. To obtain (A.4) for p = 2k we usev := 2kθ 2k-1as a test function in the weak formulation of (A.2). We obtain, for a.e. t ∈ (0, T ), T 2k (∂ t θ) θ 2k-1 + 2k(2k -1)

2k Twhich in turn yields y y 1 2k - 1 -c 0 y 1 2k c 1 .

 2k111 |Θ| • |θ| 2k-1 2k Θ(t, •) L 2k (T) Defining c 0 := W L ∞ ((0,T )×T) , c 1 (t) := 2k Θ(t, •) L 2k (T) and setting y(t) := T θ 2k (t, •)we are left with the differential inequality y (t) -c 0 y(t) c 1 (t)y(t) 1-1 2k ,

1 2k + 2ke c0t t 0 e

 10 -c0τ Θ(τ, •) L 2k (T) dτ.

  and C 2 in u, and, for any K ∈ IR, sup

x∈T ,u∈[0,K],t∈[0,K]

  N satisfies (H dis ). Assume J satisfies (H J ).

		Any solution
	m * = (m * 1 , . . . , m * N ) of (P N dis ) is bang-bang: there exist E 1 , . . . , E N ⊂ T such that
	∀i ∈ {1, . . . , N } , m * i = 1 Ei .
	Remark 12 (Regarding the boundary conditions). The main reason we consider Neumann bound-
	ary conditions is to ensure the strict positivity of the adjoint function; in other words, the only
	time these boundary conditions come into play is when using a strong maximum principle to obtain
	a positive lower-bound on the state w m . Of course, since we also have such information for Robin
	boundary conditions, we claim that theorem II holds when the Neumann boundary condition is
	replaced by the Robin boundary condition	
	∂w m,k+1 ∂ν	+ β k+1 w m,k+1 = 0

  the spectral eigenvalues and eigenfunctions {λ k , ψ k } k∈IN of the operator L m * ell to build an h such that, in the eigenfunction basis, the only non-zero Fourier modes of żm *

	hz m for some bounded
	potential V m . To obtain that any maximiser m * ell is bang-bang, we argued by contradiction: if m * ell is not bang-bang, then it suffices to build a perturbation h at m * ell supported in {0 < m * ell < 1} such that Jell (m * ell )[h, h] > 0 and, given the bound (1.8), it suffices to have T |∇ żm * ell | 2 T ż2 m * ell .
	We then used ell are high
	order Fourier modes:
	żm =
	k K

  , endowed with Neumann boundary conditions. If we fix a large integer K, if we can choose h i * such that (3.13) holds and such that for every i i * we have, in the spectral basis {φ k,i } k∈IN ,

	∞	
	ẇm,i =	a k,i φ k,i
	k=K	

  1 (which we extend by setting H i * = h i * 1 ω * ) and such that (3.15) holds. As w m,i * solves L i * ẇm,i * = hw m,i

k 1 α k ψ k (x) for some eigenfunctions ψ k of the laplacian operator, it is not yet clear how we may reach the necessary conclusion.

The wording "admissible perturbation" means that h belongs to the tangent cone to the set B(∂Ω) at β. It corresponds to the set of functions h ∈ L ∞ (Ω) such that, for any sequence of positive real numbers εn decreasing to 0, there exists a sequence of functions hn ∈ L ∞ (Ω) converging in L

(Ω) to h as n → +∞, and β + εnhn ∈ B(∂Ω) for every n ∈ IN.

k 3 sin(kx)(1 -k 2 te -k 2 t -e -k 2 t )

dtdx.(2.60) 
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A Study of the parabolic model A.1 Proof of lemma 13

Proof of lemma 13. Given that f satisfies (H 3 ), u m satisfies the inequality

Multiplying this equation by the negative part u - m of u - m and integrating by parts gives

and since u - m (0, •) ≡ 0 we obtain u m 0 in (0, T ) × T.

To derive that inf (0,T )×T u m > 0 it suffices to apply the strong maximum principle.

For the upper bound, let κ be given by (H 2 ). Up to replacing κ with max{ u 0 L ∞ , κ} we may assume that

As z m (0, •) 0, the conclusion follows: z m 0 in (0, T ) × T so that u m κ.

A.2 Regularity results: proof of proposition 16

To prove proposition 16 we need an auxilliary result:

Lemma 24. For any p ∈ [1; +∞) there exists a constant C p such that the following holds: there exists q > 1 such that, for any θ 0 ∈ C ∞ (T), for any Θ , W ∈ W 1,q (0, T ; L q (T)) ∩ L ∞ ((0, T ) × T), if θ be the unique L p (0, T ; W 1,p (T)) solution of

It suffices to take q = 4 p .

Finally:

To derive (A.3) we differentiate (A.2) with respect to time. It appears that q := ∂ t θ solves

We reason once again using only p = 2k , k ∈ IN\{0}. It suffices to apply (A.4) to obtain sup t∈(0,T )

We bound the first terms as follows:

It remains to bound

To control this term we use the arithmetic-geometric inequality to obtain

Thus, sup t∈(0,T )

and the constant C only depends on the W 1,p (0, T ; L r (T)) norms of all the functions involved. To obtain the uniform W 2,p estimate, we simply observe that for a.e. t ∈ (0, T ) θ(t, •) solves

and to apply standard W 2,p elliptic regularity estimates.

We can now give the proof of Proposition 16

Proof of Proposition 16. We observe that u m solves

As m does not depend on time, we obtain the following equation on q:

In the same way, we derive the desired estimate on p m .

A.3 Proof of lemma 21

Proof of lemma 21. Multiplying the equation by θ, integrating by parts in space and using the fact that V ∈ L ∞ ((0, T ) × T), there exists a constant M > 0 such that The conclusion follows by the using the inequality e -M T e -M t 1.

B Study of the time-discrete model B.1 Proof of Lemma 22

Proof of Lemma 22. To derive existence, uniqueness, positivity and regularity, we simply prove that, for any w 0 satisfying the assumptions of Lemma 22, for any m ∈ M(Ω), w m,1 exists, is unique, positive and enjoys the proper regularity properties, provided δt ∈ (0; δ), where δ only depends on f and on the upper bound of m 1 . It then suffices to proceed inductively.

Existence and uniqueness of w m,1

We introduce the anti-derivative F of f as

Consequently, there exist two constants B 0 , B 1 such that

We introduce the energy functional

If we pick δt > 0 small enough to guarantee that

then E is a coercive functional, so that a minimiser w 1 exists. To prove that it is unique, we consider two different solutions w 1 , w 1 of

The function z := w 1 -w 1 satisfies

where A is given by (H 3 ). Multiplying this equation by the positive part z + of z and integrating by parts we obtain

Taking δt small enough to ensure that

we get z + = 0. As the roles of w 1 , w 1 are symmetric, we finally get z = 0, and we thus have existence and uniqueness of w m,1 .

2. Upper and lower bounds on w m,1 We define φ ≡ κ. As f 1 (x, κ) < 0 and w 0 κ we obtain in particular φ -w 0 δt -∆φ f 1 (x, κ) = f 1 (x, φ).

Defining z := φ -w m,1 it appears that z satisfies

We multiply this equation by the negative part z -of z and integrate by parts to obtain

If δt is small enough that 1 δt > A

we get z -= 0 and so w m,1 Φ ≡ κ.

To derive the non-negativity of w m,1 we proceed in the same way: as f 1 (x, 0) , w 0 0, w m,1 solves the differential inequality w m,1 δt -∆w m,1 f 1 (x, w m,1 ) -f 1 (x, 0) + f 1 (x, 0) f 1 (x, w m,1 ) -f 1 (x, 0) -A|w m,1 |.

The conclusion follows in the same way and for δt > 0 small enough w m,1 0.

To obtain inf Ω w m,1 > 0 we simply use the proof of the strong maximum principle.

3. Regularity of w m,1 As 0 w m,1 κ the W 2,p regularity is a standard application of the L p elliptic regularity theory.