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Abstract

Within the environmental context, several tools based on simulations have been proposed to analyze
the physical phenomena of heat and mass transfer in porous materials. However, it is still an open
challenge to propose tools that do not require to perform computations to catch the dominant processes.
Thus, this article proposes to explore advantages of using a dimensionless analysis by scaling the governing
equations of heat and mass transfer. Proposed methodology introduces dimensionless numbers and their
nonlinear distortions. The relevant investigation enables to enhance the preponderant phenomena to (i)
compare different categories of materials, (ii) evaluate the competition between heat and mass transfer for
each material or (iii) describe the transfer in multi-layered wall configurations. It also permits to define
hygrothermal kinetic, geometric and dynamic similarities among different physical materials. Equivalent
systems can be characterized in the framework of experimental or wall designs. Three cases are presented
for similarity studies in terms of (i) equivalent material length, (ii) time of heat and mass transfer and
(iii) experimental configurations. All these advantages are illustrated in the given article considering 49
building materials separated in 7 categories.

Key words: similarity analysis; dimensionless numbers; scaling equations; heat and mass transfer;
porous materials;

1 Introduction

Within the environmental issues, modeling the building energy efficiency is an important challenge for
designers and engineers. The governing equations of heat and mass transfer in building porous materials have
been proposed in [1]. Since this early work of Luikov, several numerical models have been developed and
recently reported in [2]. These tools enable to compute accurately the prediction of the physical phenomena
as illustrated in [3]. However, without computational tools, it is an open challenge to catch the dominant
physical phenomena. More precisely, it is still impossible to answer the following questions: which of heat
or mass transfer is preponderant in the material? which material is more exposed to sensible or latent heat
transfer? which material is better to stop the penetration of heat and mass transfer?

The numerical models permit to answer these questions as illustrated, for instance, in [4, 5]. However, the
numerical models can have an important computational cost. Thus, the main issue is to propose tools that
enable to assess easily, i.e. without computations, the main features of the phenomena. For heat transfer
exclusively, the so-called U -value is commonly used to describe the efficiency of a building wall material
such as insulation [6, 7]. For mass transfer, there is an equivalent indicator with the vapor permeability
coefficient µ . However, no similar indicators exist to describe the material behavior regarding both heat
and mass transfer despite the proven impact of latent transfer on building energy efficiency [8–10].
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To tackle this issue, the dimensionless analysis can be carried out. It is based on the scaling of equations
to get a nondimensional formulation of the mathematical model describing the physical phenomena. It
introduces dimensionless numbers and their nonlinear distortions. As successfully presented in [11], those
dimensionless numbers have several important advantages. The most important one is that the scaling
parameters, such as the Biot and Fourier numbers, permit a clear physical understanding of the main
phenomena of heat and mass transfer. An analysis of their order of magnitude produces estimation of the
dominant physical processes. Thus, it can eventually lead to a simplification of the problem [12]. Another
important advantage of those numbers is to define similitude laws useful for the design of walls or even
experimental set-ups.

The dimensionless analysis is broadly used in other domains such as fluid dynamics. Among several stud-
ies, i.e. [13], a sensitivity analysis is carried out for the dimensionless numbers of the problem. Asymptotic
expansion can be performed as in [14]. It can be remarked that the dimensionless equations have been used
recently in [15] for the analysis of heat and mass transfer in a Medium Density Fiberboard. However, this
study focused only on one material. Thus, the present article proposes to extend the methodology to seven
classes of building materials, for a total of nearly 50 materials. The purpose of this study is twofold. First, it
proposes a methodology to enhance and compare the dominant processes of a transfer among the materials.
In this way, it is possible to identify materials which are more subject to heat or mass transfer or have more
inertia. Thereby, the potential behavior of a material can be estimated without any further numerical or
experimental studies. The second purpose is to use the dimensional analysis to determine kinetic, geometric
and dynamic similarities. Such similarities are very useful for scaling up/down experimental designs and
thus reduce time, space, etc.

The article is organized as follows. First, the physical model of heat and mass transfer is presented
together with its dimensionless representation. In Section 3, the advantages of the method are presented
for almost 50 materials. In Section 3.2, the results demonstrate how the dimensionless analysis is used to
analyze the dominant processes of heat and mass transfer. Then, in Section 3.3, the use of similarity analysis
is also shown to determine equal physical systems regarding the phenomena. The investigations are carried
considering the nonlinear behavior of the material properties and multi-layered walls. Last, similitude laws
are established to define an equivalent experimental configuration with a reduced time of investigations.

2 Physical model

2.1 Physical quantities in porous material

The porous media is composed of a solid porous matrix and two species: water vapor and liquid water,
denoted with index i = 1 and i = 2 , respectively. The porous matrix is indexed by i = 0 . The spatial
domain is defined as x ∈ Ω x .The phenomena are investigated over the time domain t ∈

[

0 , t f

]

. The
important quantities are the temperature T

[

K
]

and the vapor pressure P 1

[

Pa
]

. The relative humidity
φ
[

−
]

is related to the vapor pressure through the saturation pressure:

φ =
P 1

P sat ( T )

where the saturation pressure P sat

[

Pa
]

is given by a temperature T
[

K
]

dependent function according to
Antoine’s law:

P sat

(

T
)

= P ◦

sat ·

(

T − T a

T b

)α

, T > T a ,

with P ◦

sat = 997.3 Pa , T a = 159.5 K , T b = 120.6 K and α = 8.275 . The capillary pressure in the
material is denoted as P 2 and the relation with the relative humidity is given by the Kevin equation:

P 2 = ρ 2 · R 1 · T · log
(

φ
)

, (1)

where ρ 2

[

kg . m −3
]

is the liquid water density, R 1

[

J . kg −1 . K −1
]

the gas constant of water vapor. Last,
the moisture content is denoted by ω

[

kg . m −3
]

.
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2.2 Heat and mass transfer in porous material

Based on the original work of Luikov [1], the model of heat and mass transfer is described by a system of
two coupled partial differential equations. From this work, several numerical models have been elaborated
and implemented in software such as EnergyPlus [16], ESP-r [17], BSim [18] or Wufi [19]. An extended
overview of its use and development for research and engineering purposes is given in [2]. Here, the thermal
equilibrium is presumed. In addition, the gradient of total pressure is assumed as negligible [20, 21]. With
this assumption, the heat and mass flows are driven only by diffusion processes. The advection processes,
induced by air velocity through the porous matrix (Darcy law), are thus omitted. Note that this hypothesis
required to be revised for innovative hygroscopic materials as detailed in [22, 23]. The mass transfer is driven
by liquid and vapor flows, while thermo-diffusion process is neglected:

∂ω

∂t
= ∇ ·

(

k 1 · ∇P 1 + k 2 · ∇P 2

)

.

The chosen potential to write the equation is the vapor pressure. Thus, the capillary pressure can be
decomposed as:

∂P 2 =
∂P 2

∂P 1

· ∂P 1 +
∂P 2

∂T
· ∂T .

Using the Kelvin equation (1) and the Clausius-Clapeyron’law, one obtains:

∂P 2

∂P 1

=
ρ 2 · R 1 · T

P 1

,
∂P 2

∂T
= ρ 2 · R 1 · log

(

φ
)

− ρ 2 ·
r 12 ( T )

T
.

Moreover, the differential of the moisture content can be extended as:

∂ω =
∂ω

∂T
· ∂T +

∂ω

∂φ
· ∂φ .

It is assumed that the moisture content does not vary with temperature. Thus,

∂ω =
∂ω

∂φ
·

(

1

P sat ( T )
· ∂P 1 −

P 1

P sat ( T ) 2
·

∂P sat ( T )

∂T
· ∂T

)

.

Using the Clausius-Clapeyron’law the following coefficients can be defined:

c m
def
:=

∂ω

∂φ
·

1

P sat ( T )
, c mq

def
:= c m ·

P 1 · r 12 ( T )

R 1 · T
.

Thus, one gets:

∂ω = c m · ∂P 1 − c mq · ∂T .

In the end, the mass balance equation is written as:

c m ·
∂P 1

∂t
= ∇ ·

(

k m · ∇ P 1 + k mq · ∇ T
)

+ c mq ·
∂T

∂t
, (2)

where the coefficients k m and k mq are given by:

k m
def
:= k 1 + k 2 ·

∂P 2

∂P 1

, k mq
def
:= k 2 ·

∂P 2

∂T
.

The second partial differential is obtained from the energy conservation law:

c q ·
∂T

∂t
= ∇ ·

(

k q · ∇T
)

+ r 12 · ∇ ·
(

k qm · ∇P 1

)

. (3)
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where the heat flux is driven by sensible and latent phenomena. The coefficient k qm

[

s
]

corresponds to the

vapor permeability of the material k qm
def
:= k 1 , while k q

[

W . m −1 . K −1
]

to the thermal conductivity. The
latent heat r 12

[

J . kg −1
]

is temperature dependent according to:

r 12

(

T
) def

:= r 12 , 0 +
(

c 1 − c 2

)

·

(

T − T c

)

,

where c 1

[

J . kg −1 . K −1
]

and c 2

[

J . kg −1 . K −1
]

are the specific heat of vapor and liquid water, respectively.
The numerical values for the physical constants are r 12 , 0 = 2.5 · 10 6 J . kg −1 , c 1 = 1870 J . kg −1 . K −1 ,
c 2 = 4180 J . kg −1 . K −1 and T c = 273.15 K . The heat storage coefficient c q is defined as follows:

c q
def
:= ρ 0 · c 0 + c 2 · ω ,

where ρ 0

[

kg . m −3
]

is the dry heat density and c 0

[

J . kg −1 . K −1
]

is the specific heat of the material.
In terms of boundary conditions, at the interface between the porous material and the ambient air, the

equality of the moisture and heat flows are stated:

k m ·
∂P 1

∂n
+ k mq ·

∂T

∂n
= h m ·

(

P 1 − P ∞

1

)

,

k q ·
∂T

∂n
+ r 12 · k qm ·

∂P 1

∂n
= h q ·

(

T − T ∞
)

+ r 12 · h m ·
(

P 1 − P ∞

1

)

,

where h m

[

s .m −1
]

and h q

[

W . m −1 . K −1
]

are the surface transfer coefficients. The ambient air fields are
denoted by P ∞

1 and T ∞ . It can be remarked that the liquid flows due to wind driven rains or the heat flux
due to radiation transfer are not taken into account in this model. The operator ∂y

∂n
represents the projection

∇ y · n where n is the surface normal. For multi-layer walls, at the interface between two materials, the
continuity of the heat and moisture flows is assumed. Furthermore, the temperature and vapor pressure are
continuous at the interface. As initial conditions, the temperature and vapor pressure are given by:

T = T 0 , P = P 0 , t = 0 ,

where T 0 and P 0 are given functions that can depend on space.

2.3 Porous material properties

Several material properties are introduced. First, the so-called sorption curve gives the relation between
the total amount of water ω

[

kg . m −3
]

as a function of the relative humidity φ
[

−
]

. In this work, the
Oswin model is adopted [24] for the sorption curve:

ω = f osw

(

φ
)

= ω 1 ·

(

φ

1 − φ

)α 1

, (4)

where ω 1

[

kg . m −3
]

and α 1

[

−
]

are defined parameters depending on the material. The derivative of the
sorption curve according to the relative humidity is given by:

∂ω

∂φ
=

∂f osw

∂φ
=

α 1
(

1 − φ
)

· φ
· f osw

(

φ
)

.

The vapor resistance factor µ
[

−
]

is another important property of the material. It is defined as the
ratio between the air permeability and the vapor permeability k 1

[

s
]

of the material [25]. According to
[26], the vapor permeability can be related to µ using the following relation:

k 1 =
2 · 10 −7 · T 0.81

µ · P 3

,
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where P 3 = 10 5 Pa is the air pressure assumed as constant. The liquid permeability k 2

[

s
]

of the material
is given by:

k 2 = D 2 ·
∂ω

∂P 2

,

where D 2

[

m 2 . s −1
]

is the liquid transport coefficient given by the following expression:

D 2 = 3.8 ·

(

A

ω f

) 2

· exp

(

3

ω f

· ln( 10 ) ·

(

ω − ω f

)

)

,

where ω f

[

kg . m −3
]

is the free water content and A
[

kg . m −2 . s −0.5
]

is the water adsorption coefficient.
Using the equation (1) of the capillary pressure P 2 and the sorption equation (4), the liquid permeability
can be expressed as:

k 2 = D 2 ·
∂φ

∂P 2

·
∂ω

∂φ
= D 2 ·

φ

ρ 2 · R 1 · P sat ( T )
·

∂ω

∂φ
.

Last, the dry density and specific heat of the material are denoted by c 0

[

J . kg −1 . K −1
]

and ρ 0

[

kg . m −3
]

,
respectively. These parameters are independent of vapor pressure or temperature. The thermal conductivity
k q

[

W . m −1 . K −1
]

depends on the water content:

k q = k q , 0 + β · ω , (5)

where k q , 0 is the thermal conductivity at the dry state. As a synthesis, 9 material properties are required
for the model: the dry density ρ 0 , the specific heat c 0 , the vapor resistant factor µ , the two coefficients of
the Oswin sorption curve α 1 and ω 1 , the two coefficients of liquid transport ω f and A , the dry thermal
conductivity k q , 0 and its dependency with moisture content through the coefficient β .

2.4 Relation with the coefficients of heat and mass conservation equations

The relation between the coefficients involved in the heat and mass conservation equations (2) and (3)
with the material properties is now introduced. The mathematical formalism is used to underline the
dependency of the coefficients with the field of interests, i.e. temperature and vapor pressure. The heat and
mass capacity coefficients are defined by:

c q :
(

T , P 1

)

7−→ ρ 0 · c 0 + c 2 · f osw

(

T , P 1

)

,

c m :
(

T , P 1

)

7−→
∂f osw

(

T , P 1

)

∂φ
·

1

P sat ( T )
.

The coupling capacity coefficient is given by:

c mq :
(

T , P 1

)

7−→ c m

(

T , P 1

)

·
r 12 ( T )

R 1 · T 2
· P 1 .

The heat and mass permeability coefficients are expressed as:

k m :
(

T , P 1

)

7−→ k 1

(

T
)

+ k 2

(

T , P 1

)

·
ρ 2 · R 1 · T

P 1

,

k q :
(

T , P 1

)

7−→ k q , 0 + β · f osw

(

T , P 1

)

.

The coupling coefficient k qm considering the influence of the latent heat transfer on the heat conservation
equation is:

k qm : T 7−→ k 1

(

T
)

.
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The other coupling coefficient k mq representing the moisture migration under temperature gradient is written
as:

k mq :
(

T , P 1

)

7−→ k 2

(

T , P 1

)

·

(

ρ 2 · R 1 · log

(

P 1

P sat ( T )

)

− ρ 2 ·
r 12 ( T )

T

)

.

In the end, it can be remarked that all coefficients are depending at least on one field and the system of
partial differential equations (2) and (3) is nonlinear.

2.5 Dimensionless representation

To propose a material properties classification, the dimensionless representation of the heat and mass
transfer equations is presented according to [1, 27]. For this, the vapor pressure and temperature are scaled
according to:

u =
P 1 − P ref

1

∆ ref
P 1

, v =
T − T ref

∆ ref
T

,

where T ref and P ref
1 are reference temperature and vapor pressure values, respectively. The quantities ∆ ref

T

and ∆ ref
P 1

are denoted for a temperature and vapor pressure differences. The choice of those parameters
will be discussed in the next sections. In a similar way, the space and time domains are transformed into a
dimensionless representation:

χ =
x

L ref
, τ =

t

t ref
.

The heat and mass transfer coefficients are changed:

c ⋆
q =

c q

c ref
q

, c ⋆
m =

c m

c ref
m

, c ⋆
mq =

c mq

c ref
mq

, r ⋆
12 =

r 12

r ref
12

k ⋆
q =

k q

k ref
q

, k ⋆
m =

k m

k ref
m

, k ⋆
mq =

k mq

k ref
mq

, k ⋆
qm =

k qm

k ref
qm

.

In this way, several dimensionless numbers are introduced. First, the Fourier numbers represent the ease
of heat or mass transfer inside the material:

Fo q def
:=

k ref
q · t ref

c ref
q · ( L ref ) 2

, Fo m def
:=

k ref
m · t ref

c ref
m · ( L ref ) 2

.

The Fourier numbers represent the part of the heat/mass flux that is transmitted through the material
in relation to the heat/mass stored. In other words, it is the ratio of the diffusive transport to the rate of
storage. The greater Fo is, the easier the heat/mass flows inside the material during a given time. Thus,
the overall dynamics of heat and mass transfer is faster. Proportionally, more heat/mass is stored in the
material for low Fo . Note that the Darcy number does not appear here since the transfer by convection
has been neglected in the mathematical model [28–30].

Three other numbers are defined to describe the influence of the heat or mass transfer on each other:

η
def
:=

c ref
mq · ∆ ref

T

c ref
m · ∆ ref

P 1

, γ
def
:=

k ref
qm · ∆ ref

P 1

k ref
q · ∆ ref

T

· r ref
12 , δ

def
:=

k ref
mq · ∆ ref

T

k ref
m · ∆ ref

P 1

.

As it can be remarked in Eq. (6) below, the numbers δ and γ modify the Fourier numbers of mass and heat
transfer, respectively. Thus, δ describes the influence of heat transfer on mass transfer. If δ < 1 , the impact
of heat transfer on mass transfer is minor compared to the mass transfer driven by vapor pressure. Similar
analysis can be carried with γ and the heat transfer equation. The number η is a coupling parameter for
the dynamics of temperature over mass transfer. It arises directly from the perfect gas law and the choice
of vapor pressure as potential.
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For the boundary conditions, the Biot number is introduced for the heat and mass transfer at the
interface between the air and the porous material:

Bi q def
:=

h ref
q · L ref

k ref
q

, Bi qm def
:=

h ref
m · L ref

k ref
qm

, Bi m def
:=

h ref
m · L ref

k ref
m

.

The Biot numbers translate the ratio of heat/mass transfer resistance inside of a material and at the
interface with the air. It quantifies whether the field vary significantly when a drop of temperature or
vapor pressure occurs in the ambient air. For instance, when Bi > 1 , the diffusion inside the material is
slower than the heat arising at the interface. As a consequence, important gradient may occur if combined
with a small Fourier number. The greater the Biot number, the more exchanges happen at the interface
between the air and the material. Note that this number can be referenced as the Nusselt number in fluid
mechanics.

In the end, the dimensionless representation of the model for heat and mass transfer is:

c ⋆
m ·

∂u

∂τ
= Fo m

· ∇ ·
(

k ⋆
m · ∇ u

)

+ Fo m
· δ · ∇ ·

(

k ⋆
mq · ∇ v

)

− η · c ⋆
mq ·

∂v

∂τ
, (6a)

c ⋆
q ·

∂v

∂τ
= Fo q

· ∇ ·
(

k ⋆
q · ∇v

)

+ Fo q
· γ · r ⋆

12 · ∇ ·
(

k ⋆
qm · ∇u

)

. (6b)

The boundary conditions are:

k ⋆
m ·

∂u

∂n
+ δ · k ⋆

mq ·
∂v

∂n
= Bi m

·
(

u − u ∞
)

, (7a)

k ⋆
q ·

∂v

∂n
+ γ · r ⋆

12 · k ⋆
qm ·

∂u

∂n
= Bi q

·
(

v − v ∞
)

+ γ · r ⋆
12 · Bi qm

·
(

u − u ∞
)

. (7b)

It is important to remark that in Eqs. (6) and (7), the space operators, such as divergence and gradient, are
expressed according to the dimensionless space variable χ .

3 Results and discussion

First of all, the material properties and the reference conditions are described. Then, the two advantages
of the dimensionless approach are presented: (i) the physical understanding of the main phenomena of heat
and mass transfer and (ii) the use of similitude laws for practical applications.

3.1 Materials and reference conditions

To compute the dimensionless numbers and their nonlinear distortion, it is required to set the reference
parameters. This choice has to be suitable to get the dimensionless variables scaling with the unity O( 1 ) .
The usual time scale in building physics is the hour, so the reference time is set as t 0 = 1 h . The reference
length of materials varies according to their type. Since different analysis will be carried out in the next
sections, the reference length will be specified thereafter. In addition, the presence of multiple scales and
directional scaling are disregarded for the sake of simplicity. Here, the material reference length corresponds
to its thickness used in a wall configuration. In buildings, the admitted temperature range is

[

5 , 35
]

◦C [15].
The relative humidity range is defined as

[

0.05 , 0.90
]

. By choosing P ref
1 = 43.572 Pa , ∆ ref

P 1
= 5021.5 Pa ,

T ref = 278.15 K and ∆ ref
T = 30 K , the dimensionless variables u and v are both in the range

[

0 , 1
]

.
The material properties are taken from the MASEA database in WUFI [31]. The dimensionless analysis is

carried out for 49 materials, classified in seven categories as illustrated in Figure 2. An identification number
is also defined for each material. Since, discrete data are given for the sorption curve ω as a function of
the relative humidity and for the thermal conductivity k q as a function of the moisture content, a fitting
procedure is realized to estimate the coefficients of the Oswin model, Eq. (4), and the thermal conductivity
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function, Eq. (5). All coefficients used in the definition of the material properties are synthesized in Tables 2
and 3 in Appendix A. Then, the reference coefficient values are defined as follows:

c ref
m = c m

(

T ◦ , P ◦

1

)

, k ref
m = k m

(

T ◦ , P ◦

1

)

, k ref
mq = k mq

(

T ◦ , P ◦

1

)

, c ref
mq = c mq

(

T ◦ , P ◦

1

)

,

c ref
q = c q

(

T ◦ , P ◦

1

)

, k ref
q = k q

(

T ◦ , P ◦

1

)

, k ref
qm = k qm

(

T ◦
)

, r ref
12 = r 12 , 0 ,

where T ◦ = 293.15 K and P ◦

1 = 1166.9 Pa , which corresponds to a relative humidity φ = 0.5 . This
choice permits to compute the dimensionless number for standard conditions in buildings and analyze the
behavior of the material in such references. For the boundary conditions, two reference surface transfer
coefficients are chosen. The first one stands for an interface between the material and the outside air:

h ref , o
m = 10 −7 s .m −1 , h ref , o

q = 15 W . m −2 . K −1 .

The second set of reference values is defined for an interface between the material and the inside air:

h ref , i
m = 5 · 10 −9 s .m −1 , h ref , i

q = 5 W . m −2 . K −1 .

3.2 Mapping the main phenomena

3.2.1 Comparison between material categories

The reference length of the materials is set as a constant equal for all materials. A first analysis is carried
to evaluate the order of magnitudes of the dimensionless numbers for the different categories of materials,
as presented in Figure 1. For the moment, it is not required to set a value to the reference length since the
figures are presented depending on this value.

As a first approximation, it can be stated that the heat and mass transfer are roughly driven by Fo q

and Fo m , respectively. The mass Fourier number, presented in Figure 1(a), varies strongly according
to the different categories of a material. It means that each material category has its own behavior. For
instance, as the Fo m is greater for masonry and stone categories than for wood or finishing ones, it implies
that the dynamics of mass transfer is faster in stones and masonry elements. In addition, almost all the
bars are spread out. Thus, some materials belonging to the same category can have very different behaviors
from each other such as wood or insulation for instance. It demonstrates the important variability between
materials regarding mass transfer.

Looking at Figure 1(b), it can be assumed that all the materials have similar behavior. Nevertheless,
it can be remarked that the heat diffusion is the slowest for the wood and insulation categories. The heat
Fourier numbers are less scattered than the mass ones. It shows that the materials are less different from
each other regarding heat transfer. In Figure 1(a) and 1(b), the mass and heat transfer is easier for the
materials located on the right side of the plots. On the contrary, the mass or heat transfer is the most
difficult, with slower dynamics, for materials on the left side of the plot. Finally, by comparing Figures 1(a)
and 1(b), for the given reference conditions, the heat transfer is around thousand times faster than mass
one for most categories excepting the masonry and stone. This time scale information can be relevant when
assessing the contribution of separate phenomena on a general behavior.

One one hand, the he variations of the dimensionless number δ are illustrated in Figure 1(c). It investi-
gates the coupling effects and more precisely the impact of heat transfer on the mass one. There are some
important differences within the finishing, insulation or cement categories. The coupling parameter δ varies
around six orders of magnitude. It indicates that the behavior of the materials regarding this phenomena is
very fluctuating for these categories. For the stone category, the parameter scales with O( 10 2 ) , revealing
an important impact of heat transfer on the mass one. The analysis is similar for the masonry, but the
impact is lower since the parameter magnitude is around O( 10 1 ) . On the other hand, Figure 1(d) shows
the dimensionless parameter γ , transcribing the impact of mass transfer on the heat one. Here, important
variations are noted for the finishing and cement categories. The insulation category is the one where mass
transfer have the greatest impact on the heat one. Moreover, for this category, the speed of transfer is
similar for latent and sensible heat. These results highlight that dimensionless numbers provides analysis
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of the dominant phenomena for both heat and mass transfer. It is particularly interesting for insulation
materials where mass transfer has a non-negligible impact on heat transfer through latent phenomena. The
number γ can be a useful indicator to assess the impact of mass transfer in insulation material and thus be
a guarantee of their thermal efficiency.

Last, the penetration of heat and mass transfer at the interface between the material and the outside or
inside air can be analyzed in Figures 1(e) and 1(f) through the Biot numbers. The materials located on
the left side of the plots are characterized by the lowest Biot numbers, describing the slowest penetration
of heat/mass transfer. On the opposite, the materials located on the most right part of the plots are
characterized by the fastest penetration of heat/mass transfer. If those materials have a low Fourier then
high gradients can occur. As shown in Figure 1(e), the finishing materials have one of the highest Biot

numbers. They also have a relatively small mass Fourier number. It explains how those materials can
be used to protect from intense moisture content other material placed behind them. Moreover, the Biot

number of all studied materials is higher than one, confirming the hypothesis of a non-negligible gradient of
temperature/vapour pressure within it for the given reference conditions. As expected, the penetration of
heat and mass transfer is more important on the outside interface than on the inside one. The penetration
of mass transfer is the lowest and highest for the insulation and finishing categories, respectively. The
stone category has the slowest heat Biot numbers Bi q , revealing a slow penetration of the heat transfer.
Conversely, important heat passes through the interface for the insulation category. In other words, for such
insulation materials, the thermal resistance is higher in the material than at its edges.

3.2.2 Comparison between heat and mass transfer for each material

To carry out a comparison of the heat and mass transfer properties between the materials, a specified
reference length L 0 is defined for each material according to Figure 2. Figure 3 gives the heat Fourier

number according to the mass one. It analyzes the competition between the heat and mass transfer within
the materials. The dotted line in Figure 3 represents the case where heat transfer is as important as mass
one. Thus, as all the materials are above this line, it can be noted that the heat transfer is always more
important than the mass one. The wood materials have a similar behavior regarding heat transfer with a
heat Fourier number Fo q scaling with O( 1 ) . However, they have strongly different behaviors for mass
transfer since the mass Fourier number Fo m varies by two orders in the range

[

5 ·10 −4 , 5 ·10 −2
]

. Similar
conclusions can be observed for most of the insulation materials. Their heat Fourier number is of the
order O( 10 −1 ), indicating a slow heat transfer process in the material. However, very different nature
arises for the mass transfer. Both heat and mass transfers are the fastest for the mortar category for the
given reference length. On the contrary, for concrete and mineral cementing materials, the transfers are the
slowest since they are located in the bottom left region.

Figure 4 contrasts the competition between sensible and latent heat transfer. Almost all materials are

under the identity function y = x . Thus, since the ratio
Fo q

γ · Fo q scales with O( 10 2 ) , the sensible heat

transfer is around hundred times higher than latent one. An interesting remark is that a group of insulation
materials has an equivalent competition between both transfers. The wood category is grouped in the same
region, where sensible heat transfer is preponderant to latent one. The flat panel is the most vulnerable to
both processes.

Figure 5 shows the mass transfer Fourier number Fo m according to the product Fo m
· δ . This analysis

enables to evaluate the competition between the two mass transfer processes driven by vapor pressure and
temperature gradients, respectively. For most of the materials, the mass transfer is driven by the coupling
with temperature. A few materials, as wood fiber or mineral cementing material, have equivalent impacts
between vapor pressure and temperature gradients.

Figure 6(a) compares the quantity of heat and mass that passes through the interface between the wall
and the outside air. As it can be remarked, the mass transfer through the interface is more important for
the all categories. A few materials such as pumice concrete or anti mold are close to the identity function
y = x , indicating an equivalent balance between the two phenomena. The insulating materials are grouped
in one region near to the bisector. The penetration of heat and mass through the interface is the highest
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Figure 1. Variation of the dimensionless numbers according to materials categories.
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Figure 2. Reference length for each material.
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Figure 3. Comparison of the competition between heat and mass transfer by analyzing their Fourier

numbers.

for this category of materials. Figure 6(b) analyzes the similar quantities for the interface with the inside
building air. The location of the materials is very similar to those in Figure 6(a) since only the surface
transfer coefficients are modified in the Biot numbers. The penetration through the inside interface is more
balanced for the heat and mass transfer. Last, the mass transfer is more preponderant than heat one when
looking only at the phenomena at the interface between the material and the ambient air.

It is important to remark that this analysis is valid for the defined reference lengths for each material.
The question of selecting the best optimum porous media can be raised. However, it is difficult to give the
sole answer since it depends on the objective and conditions of use. Considering only heat transfer, most
of the time, materials are selected to reduce the heat losses of the wall. Thus, materials with low heat
Fourier number can be chosen. However, when considering coupling with mass transfer, the question is
more complex. On the one hand, materials with high mass Fourier numbers are interesting since they do
not block the mass transfer. Thus, moisture disorders (mold, condensation) may not appear. On the other
hand, the latent heat transfer is important for such materials and the wall heat losses are increased. A good
compromise would be materials with a higher mass Fourier number but a low coupling number γ so that
the latent heat transfer is reduced. The question becomes more difficult since walls are composed of several
materials.
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Figure 5. Comparison of the competition between mass transfer under vapor pressure and temperature
gradient by analyzing the mass Fourier number Fo m and the coupling parameter δ .
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of the wall by analyzing the Biot numbers.
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3.2.3 Considering the nonlinear behavior

The previous analysis focused on the dimensionless numbers to indicate the dominant processes at the
given reference conditions. With the scaled equations (6) and (7), the investigations can be carried out
considering the nonlinear aspect of the physical phenomena. For the sake of clarity, only two materials
are compared, namely the concrete and the solid brick, with reference lengths of L ref = 20 cm and
L ref = 12 cm , respectively.

Figures 7(a) and 7(b) give the variation of the heat and mass capacities according to the field u . Those
coefficients enable to analyze the (thermal and mass) inertial behavior of the material. First, the mass
capacity is more important for the solid brick at low levels. In other words, the solid brick has a higher
mass inertia than the concrete. Then, there is an inversion (at u = 0.5 and v = 1 for instance) where
the concrete has a higher mass capacity. Therefore, for higher levels of vapor pressure, the concrete has
a higher mass inertia. A similar analysis can be realized for the heat capacity. At a low level of vapor
pressure, the concrete has a lower thermal inertia. It can be remarked that the heat capacity of the solid
brick almost does not vary with the mass content. This result is related to the adsorption curve of both
materials, illustrated in Figure 8. The heat capacity of the material varies linearly with the moisture content
in the material. Thus, higher magnitude variations in the moisture adsorption curve imply higher variations
in the heat capacity coefficient.

In terms of transfer, Figures 7(c) to 7(f) show the variation of the different permeabilities. The mass
transfer is more important in the brick than in the concrete. By comparing Figures 7(c) and 7(e), for both
materials, the mass transfer is driven mostly by the temperature gradient. It is consistent with the results
obtained previously in Figure 5. The permeability of the material to heat transfer is equivalent for both
materials as remarked in Figure 7(d). It is more impacted by the water content for the concrete while it
remains almost constant for the solid brick. From Figure 7(f), it appears that latent heat transfer has a
very small impact on the total heat process in the material.

The dimensionless analysis shows how the dominant processes of heat and mass transfer can be studied
without disregarding the nonlinear aspect of the phenomena. It also permits to simplify the mathematical
modeling if required. As remarked in Figures 7(b) and 7(d) for the solid brick, the coefficients c ⋆

q

(

u , v
)

and k ⋆
q

(

u , v
)

are almost invariant with u and v . Thus, from a numerical point of view, the mathematical
model can be simplified by disregarding the dependency of the functions c ⋆

q

(

u , v
)

and k ⋆
q

(

u , v
)

to the
two fields. A similar conclusion can be drawn for both materials for the coefficient k ⋆

qm ·r 12 and its variation
with the field v . Thus, the dimensionless analysis can also be used to simplify the governing equations.

3.2.4 Multi-layered walls

The purpose of this section is to illustrate the use of dimensionless scaling for analyzing the general
tendencies of heat and mass transfer in a multi-layer wall. Two wall configurations are considered and
illustrated in Figure 9. The first one is made of concrete, wood fiber and gypsum board. The second is
composed of extruded brick, cellulose and radial spruce.

For both configurations, the dimensionless numbers are given in Figures 10(a) for the mass transfer and
in 10(c) for the coupled mass one. First of all, its is assumed a mass flow directed from the outside to the
inside, driven by a temperature and/or mass gradient. The mass Biot numbers are equivalent and so the
penetration of mass transfer at the outside interface for both configurations. Then, the comparison focuses
on the mass Fourier numbers. They are higher in the layers 1 and 2 for the second configuration. Thus,
the mass transfer is faster in those layers of the configuration. This conclusion cannot be extended for the
three layers since the quantities Fo m and δ · Fo m are higher for the layer 3 in configuration 1 .

One can remark that the magnitudes of Fo m and δ·Fo m are really lower for the layer 3 in the configuration
2 . If the mass transfer reaches this layer in this configuration, they will be blocked compared to configuration
1 . It can be a favorable situation to the development of moisture disorders [10]. The layer 3 in the
configuration 2 is combined with a high inside mass Biot number. If there is a mass flow from the inside
part to the outside, the gradient of mass transfer will be important in this layer. The latter is more protective
from inside moisture loads in configuration 2 than 1 .
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Figure 7. Variation of the nonlinear distorsion coefficients with the fields u and v : mass capacity (a), heat
capacity (b), mass permeability (c), heat permeability (d), coupled mass permeability (e), coupled heat
permeability (f).
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Figure 8. Water adsorption curve for the concrete and the solid brick materials.

The analysis is now carried for the dimensionless numbers for the sensible and latent heat transfer
presented in Figures 10(b) and 10(d), respectively. Both configurations have similar Biot numbers. In the
layer 1 and 3 , the Fourier numbers are higher for the configuration 1 . Thus, the sensible heat transfer
is faster in this configuration in layer 1 or 3 if the heat flux arises from the outside or inside, respectively.
The conclusion does not hold for the whole configuration since the order in the Fourier numbers inverts.
Further investigations, based on simulation programs are required.

For the latent heat, the process differs depending on the direction of the flux. For outside/inside directed
flux, the latent heat transfer is faster in layers 1 and 2 in configuration 2 since the quantity γ · Fo q is
higher. Inversely, for flux coming from the inside, the layer 3 in configuration 1 is more affected by the
latent heat transfer due to its higher dimensionless number. Again, no general conclusions for the whole
configuration can be addressed without further investigations. Note that generally, such constructing type
includes vapor-barriers which modify the proposed analysis.

3.3 The use of similitude to define experimental design

Several similitude laws can be defined for (i) kinetic, (ii) geometric or (iii) transfer dynamics. They
conserve the characteristic time, the reference length and the phenomena of transfer, respectively.

3.3.1 Kinetic similarity analysis for insulation length equivalency

Now, one can observe an illustration of the similarity analysis thanks to the dimensionless analysis.
Figures 11(a) and 11(b) give the equivalent length of three insulation materials to obtain the same mass and
heat Fourier numbers as the wood wool, respectively. Figures 11(c) and 11(d) provide similar analysis for
the coupling parameters. For instance, L = 20 cm of wood wool has an equivalent mass Fourier number
of L = 48 cm of cellulose CPH, L = 30 cm of wood fiber or L = 19 cm of aerated concrete. It can be
remarked that the curves for cellulose and wood fiber are above the identity function y = x for the mass
Fourier number. A higher length is required for those two materials to get similar mass transfer as in
wood wool. It also reveals that for a fixed length, the mass Fourier numbers are lower for the wood wool
than for the cellulose and wood fiber. A similar analysis can be carried with the heat Fourier number
where L = 20 cm of wood wool is equivalent to L = 31 cm of cellulose CPH, L = 21 cm of wood fiber
or L = 28 cm of aerated concrete. In terms of coupling parameters, important differences are remarked
among the materials. Indeed, for the sensible heat transfer, i.e. the coupling parameter γ ·Fo q , L = 20 cm

of wood wool is similar to L = 73 cm of cellulose CPH, L = 49 cm of wood fiber or L = 28 cm of
aerated concrete. Such analysis enables to define physically similar systems, by choosing correspondences
in geometry or dynamics of transfer.
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Figure 9. Illustration of multi-layer configurations.
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Figure 10. Variation of the dimensionless numbers for mass (a,c) and heat (b,d) transfer for two wall
configurations. Black and grey colors correspond to the configuration 1 (concrete / wood fiber / gipsum
board) and to the configuration 2 (extruded brick / cellulose / radial spruce), respectively.
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Figure 11. Kinetic similarities, in terms of equivalent length, for the mass (a,c) and heat (b,d) Fourier

numbers and coupling parameters for four insulating materials.
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3.3.2 Geometric similarity analysis for characteristic time of transfer

Another similarity analysis can be carried out. In the framework of planning experimental design, one can
require to estimate the time of the diffusion processes in materials. This study compares the concrete with
three other materials: extruded brick, granite and sandstone. The four materials have a reference length of
L ref = 10 cm . Figures 12(a) to 12(d) show the similarities in terms of equivalent time of transfer for the
four dimensionless numbers. As can be remarked in Figure 12(a), similar velocity of mass transfer should
be observed for a time observation of 10 h in concrete, 0.6 h in extruded brick, 3.8 h in granite and 1.1 h

in sandstone. In terms of heat transfer, the functions for sandstone and granite are very closed to the unity
one. Thus, it can be deduced that sandstone, granite and concrete have a very similar characteristic time
of heat transfer. However, the heat transfer in extruded brick is around two times slower than in concrete.
Important differences in the behavior of the materials can be remarked in Figure 12(c). The mass transfer
under temperature gradient is slower in granite than in concrete. Lastly, for the latent heat transfer, the
all functions in Figure 12(d) are under the unity function. It indicates that the mechanism is faster for
the three materials than for concrete. A similar experiment in concrete and in brick would take 10 h and
54 min , respectively.

3.3.3 Dynamic similarity analysis between two experimental configurations

The issue is to investigate the aging of hygroscopic material properties under cyclic conditions of heat
and mass transfer. An experimental design can be defined for the analysis. One considers a material with a
characteristic length L ref , as given in Figure 2 for several materials. The characteristic frequency of daily
hygrothermal variations in a building is 24 h , with a given amplitude of temperature and vapor pressure.
To analyze the aging of the properties, the experiment requires to be carried out over a long time, such
as one year. This is an important constraint in the achievement of the investigations. The dimensionless
numbers can be used to find similitude relations and define an equivalent experimental design with a reduced
duration. The equivalent configuration is denoted with a upper bar ¯ and the initial one without. The
similitude relations between equivalent and initial configurations yield to a system of equations among the
dimensionless numbers:
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δ = δ ,

Bi q = Bi q ,

Bi qm = Bi qm ,

Bi m = Bi m .

(8)

Keeping the same initial condition and reference temperature and vapor pressure between the two configu-
rations, the system (8) leads to the following results:

t ref = Π 2
· t ref , L ref = Π · L ref , h q =

1

Π
· h q , h m =

1

Π
· h m (9)

where Π is the proportionality factor between the initial and equivalent configurations. Respecting the
similitude laws (9) ensures that the dimensionless problems between the two configurations are completely
equal. Note that the system (8) induces also the equality between the nonlinear distorsion coefficients since
the same material is considered.

It is proposed to evaluate the reliability of this approach using simulations for a realistic case study as
illustrated in Figure 13. The initial configuration considers a wood fiber material of L ref = 20 cm . To
evaluate the aging of its material properties, the experimental design submits one side of the material to
daily variations of temperature and vapor pressure. The boundary conditions of time period Γ = 24 h

are illustrated in Figure 14(a). The surface coefficients of this side are h ref
m = 5 · 10 −9 s .m −1 and

h ref
q = 5 W . m −2 . K −1 . Another side of the material is set as adiabatic. The total time of the experiment

is t ref = 365 d .
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Figure 12. Geometric similarities, in terms of equivalent time, for the mass (a,c) and heat (b,d) Fourier

numbers and coupling parameters for four materials.
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Figure 13. Illustration of the dynamic similitude problem to plan experimental design.
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The hygrothermal similitude laws (9) with a proportionality factor Π = 0.2 give the following equivalent
configuration. The length of the material is reduced to L ref = 4 cm . The boundary conditions vary with
a shorter time period of Γ = 0.96 h . The surface coefficients are increased to h ref

m = 2.8 · 10 −8 s .m −1 and
h ref

q = 25 W . m −2 . K −1 . The boundary conditions are given in Figure 14(b), highlighting a decrease of
the period cycle from 1 d for the initial configuration to less than 1 h (57.6 min). The experiment requires
also a significantly reduced horizon of t ref = 14.6 d .

It is possible to verify that both configurations lead to the same dimensionless problem with the following
coefficients:

Fo m = 6.89 , Fo q = 94.76 , δ = 0.97 , γ = 0.64 ,

η = 0.43 , Bi q = 25.49 , Bi m = 16.56 , Bi qm = 16.56 .

Therefore the phenomena occurring in the material from the two configurations are similar. Measurements
are equivalent in both configurations. Those results can be proven by carrying simulations, using the
one dimensional numerical model established in [32]. Figures 15(a) and 15(b) compare the time evolution
of temperature and vapor pressure in the material for both configurations. The dimensionless points of
observations, i.e. measurements, are χ =

{

0.1 , 0.5
}

, as reported in Table 1. From a physical point of
view, the observations correspond to sensors placed at x =

{

2 , 10
}

cm and x =
{

0.4 , 2
}

cm in the
initial and equivalent configurations, respectively. Looking at Figures 15(a) and 15(b), the time evolution
during the last two days of the experiment is exactly the same for both configurations. The last two
astronomical days correspond to t ⋆ ∈

[

0.9945 , 1
]

, t ∈
[

362.99 , 365
]

d and t ∈
[

348.48 , 350.4
]

h for the
dimensionless, initial and equivalent configurations, respectively. A similar analysis can be carried for the
profiles of the fields in Figures 15(c) and 15(d). The equivalence chosen time of observation between the
configurations is reported in Table 1. If one could observe with a specific experimental device those profiles
at τ =

{

0.75 , 0.9
}

, there would be a perfect agreement between the initial and equivalent configurations.
As illustrated in Figures 16(a) and 16(b), there is also a perfect concordance between the two experimental
configurations for thermodynamic variables such as the volumetric internal energy and moisture content of
the material. Those results highlight that the dimensionless representations can be used to define transfer
similitude laws between two experimental designs. The laws can be used to define experimental design with
relaxed constraint by reducing, for instance, the time of experiments. Note that the dynamic similarity
could be validated by carrying out an experimental campaign for the two equivalent configurations. Then,
a measurement of temperature and relative humidity inside the material together with mass content can be
compared in order to validate the dynamic similarity between the two configurations.

Table 1. Point of observation of the field according to the similitude laws.

Dimensionless representation Initial configuration Equivalent configuration

Space coordinate

χ
[

−

]

x
[

cm
]

x
[

cm
]

0.1 2 0.4

0.5 10 2

Time coordinate

τ
[

−

]

t
[

d
]

t
[

d
]

0.75 273.75 10.95

0.9 328.5 13.14

4 Conclusion

Within the environmental context, designers and engineers require tools to understand the dominant phe-
nomena of heat and mass transfer without using computation tools. To tackle this issue, the dimensionless
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Figure 14. Time evolution of the boundary conditions over one period cycle for the initial (a) and
equivalent (b) configurations.

analysis of heat and mass transfer in building porous material is proposed. It is based on scaling the gov-
erning equations in order to introduce the so-called dimensionless numbers with their nonlinear distortion.
The analysis of these quantities has several advantages as illustrated in this article.

First advantage is that the dimensionless analysis permits a clear physical understanding of the phenom-
ena of heat and mass transfer in building porous materials as shown in Section 3.2. A first analysis gives the
range of variations of the dimensionless numbers at a fixed reference time and length for seven categories of
materials. Some categories of materials can be highlighted regarding their sensitivity to the processes. It
may help in the modeling of the physical process by simplifying certain phenomena for some materials, and
as a consequence, to reduce the complexity of the numerical model.

In Section 3.2.2, a mapping of the dimensionless numbers for 49 materials is proposed for the given
characteristic lengths. The latter is defined according to a conventional use of a material in buildings.
Some regions of dominant physical processes of the materials are highlighted. The aim is to observe the
competition between heat and mass transfer for each material. The importance of the latent and sensible
heat transfer can also be seen with this mapping.

The dimensionless number gives an overview of the dominant processes in the defined reference conditions.
Since the coefficients of heat and mass transfer are nonlinear, i.e. depending on the fields, the dimensionless
analysis is extended in Section 3.2.3. The so-called distortion of the dimensionless numbers is analyzed for
two materials. The behavior is compared according to vapor pressure and temperature, represented by the
dimensionless variables u and v , respectively.

In Section 3.2.4 the investigations are presented for two wall configurations composed of several layers.
Here, the dimensionless numbers are evaluated for each layer of the wall. The two configurations are then
compared depending on the direction of the heat or mass flows. It is possible to identify the layers where the
transfer is the fastest. Note that general conclusions over the whole configurations is not possible when the
dimensionless numbers are not completely ordered. In such case, further investigations are required using
building simulation programs.

The second advantage is highlighted in Section 3.3. The similarity analysis can be used in the context of
planning experiments or designing the efficiency of walls. The kinetic, geometric and dynamic similarities
are presented. Firstly, the similarity in terms of a material length is presented for a given reference time.
The equivalent length of the wood wool with three other insulation materials is computed according to the
different heat and mass transfer processes. The second case establishes the equivalent time of heat and
mass transfer in the concrete with three other materials. Lastly, the equivalency in terms of heat and mass
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Figure 15. Evolution of the temperature and vapor pressure according to space and time for the initial (a,c)
and equivalent (b,d) configurations.
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Figure 16. Evolution of the volumetric internal energy and water content according time for the initial (a)
and equivalent (b) configurations.

transfer is stated between two experimental configurations.
Other advantages of dimensionless formulation should be underlined, particularly when developing nu-

merical models. The number of variables is reduced in the dimensionless equations compared to the physical
ones. This may be very relevant within the context of determining materials properties using experimental
observations of the field. In [33], the unknown parameters to estimate are reduced from four to two between
the dimensionless and dimensional models. Then, from a numerical point of view, solving one dimensionless
problem is equivalent to solving a whole class of dimensionless problems sharing the same scaling parameters.
It also promotes the share and development of numerical models for efficient, accurate and fast computing
of the equations. Last, the floating point arithmetic is designed to minimize the rounding errors when com-
puter manipulates numbers of the same magnitude [34]. Since the floating point numbers have the highest
density within the interval ( 0, 1 ) , it is wise to carry numerical analysis with dimensionless equations. This
lack of accuracy has been illustrated in [35] where the computation of the equation of heat or mass transfer
in physical and dimensionless forms are compared. When solving the equation in its physical dimension,
the significant digits accuracy of the solution can lose one order.

In the end, the dimensionless analysis is an efficient tool for evaluating the dominant processes in the
framework of modeling or performing experiments of heat and mass transfer. It may also be appropriate for
designers and engineers to operate a first order analysis of wall configurations. It is important to mention
that the proposed dimensionless analysis strongly depends on the nine material properties presented in
Section 2.3. Thus, future works should focus on developing a consolidated database of building materials
properties, integrating also more complex phenomena such as the effect of temperature on isotherm sorption
curve [36]. The analysis also rely on the mathematical model. Here, the model of heat and mass transfer
is written with the temperature and vapor pressure potentials. The scaling of equations can be extended
to any other model, considering other potentials such as moisture content or capillary pressure. Though
it should be noted that it is required to have the material properties in accordance to the mathematical
model. An important link can be done between the macroscopic formulation used here and the microscopic
description of transfer in porous media [37–39]. In this way, the dimensionless number could be linked to
microscopic properties of the material. It would enable to extend the determination of the dimensionless
numbers and their nonlinear distortion.
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Nomenclature and symbols

Latin letters, physical parameters

A water adsorption coefficient
[

kg . m −2 . s −0.5
]

c m mass storage coefficient
[

kg . m −3
]

c mq mass storage coefficient due to temperature
[

kg . Pa . m −3 . K −1
]

c q , c 0 , c 1 , c 2 heat storage coefficient
[

J . m −3 . K −1
]

D 2 liquid diffusion coefficient
[

m 2 . s −1
]

h m surface mass transfer coefficient
[

s .m −1
]

h q surface heat transfer coefficient
[

W . m −2 . K −1
]

k 1 , k 2 , k m , k qm mass permeability coefficient
[

s
]

k mq mass transfer coefficient under temperature gradient
[

kg . m −1 . s −1 . K −1
]

k q heat transfer coefficient
[

W . m −1 . K −1
]

L length
[

m
]

P , P 1 , P 2 , P 3 , P sat , ∆ ref
P 1

pressure
[

Pa
]

R gas constant
[

J . kg −1 . K −1
]

r 12 , r 12 , 0 latent heat of evaporation
[

J . kg −1
]

T , ∆ ref
T temperature

[

K
]

t time
[

s
]

x space coordinate
[

m
]

Greek letters, physical parameters

α 1 Oswin model coefficient
[

−

]

β thermal conductivity variation with water content
[

W . m 2 . kg −1 . K −1
]

µ vapor resistant factor
[

−

]

ω mass content
[

kg . m −3
]

φ relative humidity
[

−

]

ρ , ρ 0 , ρ 1 , ρ 2 specific mass
[

kg . m −3
]
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Dimensionless parameters

Bi q , Bi qm surface heat transfer Biot number

Bi m surface mass transfer Biot number

Fo q heat transfer Fourier number

Fo m mass transfer Fourier number

c ⋆
m , c ⋆

q storage distortion coefficient

k ⋆
q , k ⋆

m , k ⋆
qm , k ⋆

mq permeability distortion coefficient

r ⋆
12 latent heat vapor distortion coefficient

u vapor pressure field

v temperature field

γ , δ , η numbers translating influence of the heat or mass transfer on each other

χ space domain

τ time domain

Subscripts and superscripts

i inside

m mass transfer

o outside

q heat transfer

mq coupled mass coefficient under heat process

qm coupled heat coefficient under mass process

ref reference value

0 initial

∞ air ambient field

⋆ dimensionless parameter

The following symbols are used in the mathematical notation:

• = designates the equality between two scalar numbers. a = b means that the scalars a and b are
the same.

•
def
:= stands for a definition. a

def
:= b means that a is defined to be equal to b .
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Material
ρ 0 c 0 k q , 0 β µ α 1 ω 1 A ω f

[

kg . m −3
] [

J . kg −1 . K −1
] [

W . m −2 . K −1
] [

W . m 2 . kg −1 . K −1
] [

−

] [

−

] [

kg . m −3
] [

kg . m −2 . s −0.5
] [

kg . m −3
]

1. Concrete 2104 776 1.37 0.005 76 0.38 66.47 0.0125 144

2. Pumice concrete 672 850 0.14 0 4 2.04 1.65 0.0467 291

3. Cement Flooring Mid. Lay. 1940 1000 1.4 0 102 0.31 25.54 0.0183 147

4. Cement Flooring Up. Lay. 1940 1000 1.4 0 102 0.31 25.54 0.0183 147

5. Cement Flooring Un. Lay. 1940 1000 1.4 0 138 0.32 26.35 0.012 140

6. Mineral Cementing Material 1436 1000 0.61 0.003 25 1.88 1.38 0.0007 264

7. Mineral Finishing Coat 1482 1000 0.95 0.005 17 1.53 1.07 0.002 321

8. Silicon Resin Finishing Coat 1475 1000 0.69 0.004 74 1.12 0.61 0.0002 303

9. Anti Mold 465 1173 0.11 0 8.41 0.58 27.18 0.0135 105

10. Resin Finishing Coat 1100 850 0.7 0 1000 0.86 3.03 0.0017 100

11. Silicone Resin Final Coat 1475 1000 0.7 0 74 1.12 0.61 0.0002 303

12. Calcium Silicate 270 1162 0.07 0 3.85 0.09 17.56 1.115 793

13. Insulating Plaster 1128 1006 0.37 0 10.9 0.44 47.62 0.0317 298

14. Wood Wool 469 1470 0.07 0 9.4 2.03 1.63 0.0365 329

15. Clay 368 885 0.07 0 7.7 0.49 5.69 0.055 284

16. Cellulose CPH 92.8 2005 0.05 0 2.42 0.56 3.87 0.0583 735

17. Cellulose Blowin 55 2544 0.04 0.001 2 0.45 3.46 0.56 494

18. Cellulose 50 1600 0.04 0 1.8 0.51 2.7 0.157 426

19. Flat Pannel 39 850 0.04 0 1.5 0.59 2.2 0.016 348

20. Wood Fiber 1 168 1700 0.04 0 3.3 0.41 9.76 0.0033 526

21. Wood Fiber 3 165 1700 0.04 0 2.9 0.29 17.78 0.0015 240

22. Wood Fiber 4 159 1700 0.05 0 3.3 0.41 14.78 0.0018 833

23. Wood Chips 65 1500 0.04 0 2.5 0.34 5.63 0.0533 188

24. Aerated Concrete 392.2 1081 0.09 0 7.38 0.88 5.63 0.043 259
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Material
ρ 0 c 0 k q , 0 β µ α 1 ω 1 A ω f

[

kg . m −3
] [

J . kg −1 . K −1
] [

W . m −2 . K −1
] [

W . m 2 . kg −1 . K −1
] [

−

] [

−

] [

kg . m −3
] [

kg . m −2 . s −0.5
] [

kg . m −3
]

25. Straw Clay Brick 1036 1000 0.4 0 7.1 0.68 16.05 0.1117 450

26. Insulation Brick 600 850 0.1 0.001 16 0.96 2.9 0.0983 188

27. Solid Brick 2060 839 0.83 0.003 159 0.19 0.74 0.106 148

28. Old Brick 1800 850 0.6 0 15 0.29 3 0.29 230

29. Extruded Brick 1650 850 0.6 0 9.5 0.53 4.4 0.46 370

30. Gypsum Board 732 1384 0.19 0.002 6.8 0.77 2.55 0.13 353

31. Cement Plaster 2000 850 1.2 0 25 0.87 10.4 0.0083 280

32. Plaster 850 1000 0.3 0 8.3 0.52 3.46 0.29 400

33. Clay Mortar 1568 488 0.48 0.002 11.4 0.41 21.81 0.175 375

34. Clay Plaster 1514 1000 0.65 0 18.8 0.48 9.65 0.0467 294

35. Calcareous Sandstone 1900 1000 1 0 28 0.45 14.44 0.415 250

36. Granite 2453 702 1.66 0.005 54 0.23 5.46 0.0086 50

37. Sandstone 2224 771 1.68 0.006 73 1.44 0.31 0.0816 89

38. Tuff 1450 925 0.34 0.002 10.4 0.13 63.07 0.0983 259

39. Longitudinal Oak 685 1500 0.3 0 8 0.36 70.43 0.0108 500

40. Radial Oak 685 1500 0.13 0 140 0.36 70.43 0.0017 500

41. Old Oak 740 1600 0.15 0 223 0.29 69.92 0.0017 349

42. OSB 595 1700 0.1 0 165 0.23 69.93 0.002 814

43. Plywood 427 1600 0.09 0 188 0.87 20.37 0.0022 573

44. Chipboard 620 1700 0.11 0 44 0.79 35.25 0.033 520

45. Timbered Mortar 960 1000 0.17 0 17.3 1.3 1.71 0.032 360

46. Longitudinal Spruce 455 1500 0.23 0 4.3 0.38 46.57 0.0108 600

47. Radial Spruce 455 1500 0.09 0 130 0.38 46.57 0.0015 600

48. Microstrandboard 664 1700 0.13 0 92.4 0.37 54.41 0.0018 587

49. DWD 528 1700 0.14 0 10 0.25 49.59 0.0017 667
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