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Abstract

The sorption curve is an essential feature for the modelling of heat and mass transfer in
porous building materials. Several models have been proposed in the literature to represent
the amount of moisture content in the material according to the water activity (or capillary
pressure) level. These models are based on analytical expressions and few parameters that
need to be estimated by inverse analysis. This article investigates the reliability of eight
models through the accuracy of the estimated parameters. For this, experimental data for a
wood fibre material are generated with special attention to the stop criterion to capture long
time kinetic constants. Among five sets of measurements, the best estimate is computed.
The reliability of the models is then discussed. After proving the theoretical identifiability of
the unknown parameters for each model, the primary identifiability is analysed. It evaluates
whether the parameters influence on the model output is sufficient to proceed the parame-
ter estimation with accuracy. For this, a continuous derivative-based approach is adopted.
Seven models have a low primary identifiability for at least one parameter. Indeed, when es-
timating the unknown parameters using the experimental observations, the parameters with
low primary identifiability exhibit large uncertainties. Finally, an Approximation Bayesian
Computation algorithm is used to simultaneously select the best model and estimate the pa-
rameters that best represent the experimental data. The thermodynamic and Feng–Xing

models, together with a proposed model in this work, were the best ones selected by this
algorithm.

Keywords: sorption models in building porous materials; model reliability; parameter
estimation problem; primary identifiability; ABC algorithm

1 Introduction

Within the environmental context, bio-based materials such as wood fiber have been increas-
ingly used in building constructions due to their reduced ecological footprint and their thermal
performance. The properties of such wood-based materials have a good reproducibility due to
their industrial production. Several recent studies pointed out the importance of modeling ac-
curately the phenomena of adsorption in such materials to predict the phenomena of heat and
mass transfer and assess the moisture disorder risks (Berger et al. 2015). In the Conclusion Sec-
tion of (Patera et al. 2016), the error in the prediction can reach 20 to 30% of moisture content
in the wood without modeling accurately the adsorption phenomena combined with hysteresis
effects. Those results are confirmed by (Zhang et al. 2016a) for a wood fiber material where the
authors highlight the importance of modeling accurately adsorption phenomena to evaluate the
risk of mold growth. Furthermore, the moisture content is a crucial parameter in the modeling
framework since several other properties such as thermal conductivity depend on it (Willems
2014).

1

http://arxiv.org/abs/2104.09609v1


As presented in (Skaar 1988), several phenomenological models have been proposed in the
literature to reproduce the moisture sorption curve. Among them, one can mention the Guggen-

heim–Anderson–de Boer (GAB) model with examples of applications in (Iglesias and Chirife
1995; Singh and Singh 1996). The Brunauer, Emmett and Teller model is employed in
(Colinart and Glouannec 2017) for a hygroscopic material. In (Carmeliet and Roels 2002), the
van Genuchten model is used for several building materials. All these models are based on
a few important parameters that can be estimated using experimental data of moisture content
according to the water activity or capillary pressure. These experimental observations can be
obtained using static gravimetric methods. Then, the unknown parameters can be inferred by
solving an inverse problem. For instance, the parameters of several models are retrieved in
(Iglesias and Chirife 1995), (Ouertani et al. 2014) or (Stolarska and Garbalinska 2017). Those
studies use least square estimator algorithm and the discussion among the models is based only
on the residual between numerical predictions and experimental data. In (Furmaniak 2012;
Karoglou et al. 2005) investigations are carried considering one model. The parameters are
determined for several materials without information on the accuracy of the estimation.

It is essential to have reliable models, which accurately represent the physical phenomena
when compared to experimental observations. Such evaluation has already been done for wood
materials in (Zhang et al. 2015). Nevertheless, the reliability is also based on the capacity of
estimating the important parameters with accuracy. This accurate estimation is also required
to verify the theoretical models based on first principles of physics. This paper proposes to
investigate the reliability of eight models, seven being mainly used for heat and mass transfer
modelling in building materials. The last one is proposed according to the general curve of mois-
ture sorption. To discuss the reliability, experimental measurements in a wood fibre material
are taken using a DVS equipment. Then, using the experimental observations, the parameter
estimation problem can be solved for each model. The accuracy of the retrieved parameters and
the resultant robustness of the models are discussed using two important approaches. First, the
primary identifiability of the parameters is evaluated. It enables to evaluate the sensitivity of
the output models to each unknown parameter, using a continuous derivative-based approach. If
a model is not sensitive to a parameter, it indicates that the latter cannot be retrieved with ac-
curacy. Then, an efficient Approximate Bayesian Computation (ABC) algorithm is employed to
conduct a selection over the eight competing models. The selection is achieved sequentially with
decreasing tolerances. The selected model is the one having the highest probability to minimize
the distance between predictions and experimental observations for the smallest tolerance.

The article is organized as follows. Section 2 presents the eight physical models to predict
the moisture content according to the water activity. Moreover, the methodology is described
to evaluate the robustness of the models in the framework of a parameter estimation problem.
Section 3 introduces the experimental measurements obtained for a wood fibre material. Then,
Section 4 discusses the reliability of the models and Section 5 gives some general remarks on the
results of the study.

2 Physical model

2.1 Models for water adsorption

The sorption model of water in porous material describes the water content u
[

−
]

contained
in the porous matrix for a defined water activity a

[

−
]

. The moisture content u is defined as

u
def
:=

m − m 0

m 0

,

where m 0

[

kg
]

is the dry mass of the material and m
[

kg
]

the mass of the material. In the
literature, several models are proposed to represent the dependency of u on the water activity
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a . From a mathematical point of view, the sorption curve can be formulated as:

u :
N
⋃

n=1

Ω p n
× Ω a −→ R>0 ,

(

p 1 , . . . , p N , a
)

7−→ f
(

p 1 , . . . , p N , a
)

,

where a is the water activity, f
[

−
]

is the sorption model and p n , ∀n ∈
{

1 , . . . , N
}

is an
unknown parameter involved in the model definition. Depending on the model, the parameter
p n may have a physical meaning and specific unit. As presented below, the total number
of parameter N varies from two to four depending on the sorption model. The set of the
parameter p n verifies Ω p n

⊂ R . The water activity a belongs to the interval
[

0 , 1
]

. However,
a is restricted to Ω a =

[

0.05 , 0.95
]

for several reasons. First, some models proposed in the
literature are mathematically not defined for a = 0 . Then, in this study, it is stated that the
moisture content at saturation a = 1 is unknown. Indeed, for this value, moisture content
may cover several definitions like hygroscopic, capillary or complete saturation moisture content
(Nilsson 2018). Moreover, the discussion is carried out with the perspective of using sorption
models for the simulation of heat and mass transfer in porous building materials under normal
conditions. Thus, the fully dry and saturated states are never reached in practice.

A total of eight models are investigated, namely the Brunauer, Emmett and Teller

(BET), the normalized Guggenheim–Anderson–de Boer (GAB), the thermodynamic (TRM),
the empirical Oswin (OSW), the Feng–Xing (FX), the van Genuchten (VG) and the Smith

(SM) one. An additional moisture adsorption (MADS) model is proposed based on the general
shape of the sorption curve. A detailed presentation of each model is now given. The indicator
m ∈

{

1 , . . . , 8
}

is linked to each model u m ≡ f m.
First, the so-called Brunauer, Emmett and Teller (BET) model (Brunauer et al. 1938)

is defined by:

f 1

(

p 1 , p 2 , a
)

=
p 1 p 2

(

1 − a
) (

1 +
(

p 2 − 1
)

a
) · a , (1)

which is not valid for a = 1 . According to (Blahovec and Yanniotis 2008), the model fits well
experimental data for a water activity from 0 to O( 0.6 ) .

The second model is the normalized Guggenheim–Anderson–de Boer (GAB) model:

f 2

(

p 1 , p 2 , p 3 , a
)

=
p 1 p 2 p 3

(

1 − p 2 a
) (

1 − p 2 a + p 2 p 3 a
) a . (2)

The parameter p 1 represents the normalized moisture content to monomolecular layer. In-
vestigations from (Blahovec 2004) suggest that the model may represent well the phenom-
ena for a water activity lower than O( 0.9 ) . It can be remarked that the Hailwood model
(Hailwood and Horrobin 1946) is not investigated here due to its equivalence with the GAB
model.

The thermodynamic (TRM) model is given by (Merakeb et al. 2009):

f 3

(

p 1 , p 2 , p 3 , a
)

= p 1 exp
(

p 2 ln
(

a
)

exp
(

p 3 a
)

)

. (3)

It can be noticed that this model is not defined for a = 0 , justifying again the definition of
Ω a . According to (Merakeb et al. 2009), the model is reliable for the whole domain of water
activity.

The empirical Oswin (OSW) model is defined as (Oswin 1946; Ouertani et al. 2014):

f 4

(

p 1 , p 2 , a
)

= p 1 ·
(

a

1 − a

) p 2

. (4)
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Here, the model is not defined for a = 1 , giving another justification of the restriction of the
range for the water activity a .

The Feng–Xing (FX) model is (Fredlund and Xing 1994):

f 5

(

p 1 , p̃ 2 , p 3 , p 4 , a
)

= p 1 ·
[

ln

(

e +

(

Ψ

p̃ 2

) p 3

)]− p 4

,

where Ψ
[

Pa
]

is the capillary pressure, related to the water activity a according to:

Ψ = −ρ 2 R 1 T ln
(

a
)

, (5)

with ρ 2 = 10 3 kg . m −3 is the liquid water density, R 1 = 462 J . kg −1 . K −1 is the water
vapour gas constant and T = 296.15 K (23 ◦C) is the temperature. Thus, the FX model can
be reformulated as:

f 5

(

p 1 , p̃ 2 , p 3 , p 4 , a
)

= p 1 ·
[

ln

(

e +

( −ρ 2 R 1 T

p̃ 2

ln( a )

) p 3

)]− p 4

.

The model is not defined for a = 0 . Furthermore, it can be noticed that ρ 2 R 1 T = O( 10 8 )
and that p̃ 2 = O( 10 7 ) according to (Zhang et al. 2015). Thus, to avoid rounding errors and
computational difficulties when solving the parameter estimation problem, the parameter p̃ 2 is

replaced by p 2 ←֓
ρ 2 R 1 T

p̃ 2

. The FX model is finally written as:

f 5

(

p 1 , p 2 , p 3 , p 4 , a
)

= p 1 ·
[

ln

(

e +

(

− p 2 ln( a )

) p 3

)]− p 4

.

The van Genuchten (VG) model with the Mualem approach is given by (van Genuchten
1980):

f 6

(

p 1 , p̆ 2 , p 3 , a
)

= p 1 ·
(

1 +
(

p̆ 2 Ψ
) p 3

)−1 + 1

p 3

,

Using equation (5) of the capillary pressure, we obtain:

f 6

(

p 1 , p̆ 2 , p 3 , a
)

= p 1 ·
(

1 +
(

− p̆ 2 ρ 2 R 1 T ln
(

a
)

) p 3

)−1 + 1

p 3

.

Given the magnitude of ρ 2 R 1 T and that p̆ 2 = O( 10 −8 ) according to (Zhang et al. 2015),
the parameter p̆ 2 is replaced by p 2 ←֓ ρ 2 R 1 T p̆ 2 . So the VG model is finally formulated as:

f 6

(

p 1 , p 2 , p 3 , a
)

= p 1 ·
(

1 +
(

− p 2 · ln
(

a
)

) p 3

)−1 + 1

p 3

.

This model is also not defined for a = 0 . Both FX and VG model have been defined for the
capillary domain so that their accuracy for lower water activity require analysis.

The last model from the literature has been proposed by Smith (SM) (Smith 1947) based
on empirical concept:

f 7

(

p 1 , p 2 , a
)

= p 1 + p 2 ln
(

1 − a
)

,

with only two parameters to be estimated.
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A new model is proposed in this work to represent the physical phenomena. The general
expression is the following:

f 8

(

p 1 , . . . , p N , a
)

= u 0 + α tan
(

P N ( a )
)

, (6)

where P N ( a ) is a polynomial of order N , defined for a ∈
[

0 , 1
]

. Thus, the number of unknown
parameters corresponds to the order of polynomial. This proposal is inspired by the shape of
the isotherm sorption for building porous material illustrated in Figure 1 in comparison to the
general function α tan( x ) and its derivative ∀x ∈

]

−π
2

, π
2

[

. Thus, the term u 0 in Eq. (6)
enables to switch the image of the model for positive values. The term α controls the slope of
the model for middle value of water activity a = 0.5 . Now, we consider the derivative of the
model Eq. (6) relatively to a :

∂f 8

∂a
= α P ′

N ( a ) ·
(

1 + tan
(

P N ( a )
) 2
)

. (7)

It can be remarked that the polynomial permits to regulate the positive slope of the sorption

model. Indeed, in Figure 1(a), it can be remarked that the slope of
∂u

∂a
has a specific shape. For

a = 0 , it has a certain value. When a increases, the slope decreases until an almost constant
value. Then, when a > 0.85 , we reach the capillary state and the slopes increase exponentially.
With this in mind, the parameters u 0 and α of the model are defined using the two following
constraints:

f 8

(

p 1 , . . . , p N , a = 0
)

= 0 , (8a)

∂f 8

∂a

(

p 1 , . . . , p N , a = a 0

)

= K , (8b)

where K
[

−
]

is the slope of the sorption curve at a given water activity a 0 :

K =
∂u

∂a

∣

∣

∣

∣

a = a 0

.

Thus, Eq. (8a) enables to switch the image of the model for positive values. The second equa-
tion (8b) forces the slope of the sorption model with a given value. Here, the polynomial
P N = P 2 is assumed of first degree:

P 2 ( a ) = p 1 + p 2 a .

Using the constraints from Eq. (8) and a 0 = 0 , the proposed model has the following formu-
lation:

f 8

(

p 1 , p 2 , a
)

=
K

p 2 ·
(

1 + tan( p 1 ) 2
) ·
(

tan( p 1 + p 2 a ) − tan( p 1 )
)

, (9)

with two unknown parameters to be estimated. Equation (9) will be denoted as the Moisture
ADSorption model (MADS). In the end, four models depend on two parameters, three models
need three parameters and one model have four parameters to be determined.

2.2 Parameter estimation problem

The eight models depend on several parameters that can be determined using experimental
observations of moisture content u according to the water activity a . The procedure to solve the
parameter estimation problem is now detailed. First, some important notations are clarified. It
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(a) (b)

Figure 1. Relation between the sorption curve for building porous materials and the
mathematical functions.

is assumed that measurement, denoted as û , of moisture content in a material is obtained for
different levels of water activity â . The set of model indicator is:

Ω m
def
:=

{

m
∣

∣

∣m ∈
{

1 , . . . , 8
}

}

,

where m is an indicator representing one of the eight investigated models. We denote as

u m
def
:= f m

(

p , â
)

the computed moisture content with the model m for the water activity
â of the experiments (with its respective domain Ω â). In addition, for model m , the set of
unknown parameters is defined as:

Ω p , m
def
:=

{

p =
(

p 1 , . . . , p N

)

∣

∣

∣u m = f m

(

p , â
)

}

.

Several distinctions are made among the unknown parameters. First, the solution of the param-
eter estimation problem is denoted by p

◦ . Then, the so-called a priori parameters, which are
used in the preliminary identifiability investigations, are written as p

apr .

2.2.1 Primary identifiability

The primary identifiability of the unknown parameters is discussed according to (Jumabekova et al.
2019). It aims at carrying a sensitivity analysis of the unknown parameters on the output model
using a continuous derivative-based approach. For this, the sensitivity function θ n of the model
f m relatively to the parameter p n is defined (Saltelli et al. 2004):

θ n :
N
⋃

n=1

Ω p n
× Ω a −→ R ,

(

p 1 , . . . , p N , a
)

7−→ ∂f m

∂p n

, ∀n ∈
{

1 , . . . , N
}

.

The differentiation of sorption model relatively to the parameters is performed analytically.
Then, the following sensitivity metrics are defined (Dickinson and Gelinas 1976; Kucherenko and Song
2016; Sobol 1990; Sobol and Kucherenko 2009):

ν n :
N
⋃

n=1

Ω p n
× Ω a −→ R ,

(

p 1 , . . . , p N , a
)

7−→
∫

Ω p n

θ 2
n dp n , ∀n ∈

{

1 , . . . , N
}

.
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and

ν ⊺
n :

N
⋃

n=1

Ω p n
× Ω a −→ R ,

(

p 1 , . . . , p N , a
)

7−→
∫

Ω a

∫

Ω p

θ 2
n da dp , ∀n ∈

{

1 , . . . , N
}

.

The quantities ν n and ν ⊺
n translate how changes of parameter p n impact the sorption model

f m . The first one is local and depends on the value of the water activity a , while the second is
global over the whole range of a . A large value of those metrics reveals an important influence
of the parameter. For the analysis, it is transformed into a dimensionless metric to get the
derivative-based sensitivity indexes γ n and γ ⊺

n :

γ n :
N
⋃

n=1

Ω p n
× Ω a −→ R ,

(

p 1 , . . . , p N , a
)

7−→ ν n

N
∑

n=1

ν n

, ∀n ∈
{

1 , . . . , N
}

.

and

γ ⊺
n :

N
⋃

n=1

Ω p n
× Ω a −→ R ,

(

p 1 , . . . , p N , a
)

7−→ ν ⊺
n

N
∑

n=1

ν ⊺
n

, ∀n ∈
{

1 , . . . , N
}

.

Both metrics ν n and γ n assess the sensitivity of the parameter over its whole domain of variation
Ω p n

. The metrics γ n and γ ⊺
n are local and global according to the water activity, respectively.

With the computation of the sensitivity functions, the so-called Fisher information matrix
F (Karalashvili et al. 2015; Ucinski 2004) is defined as:

F :
N
⋃

n=1

Ω p n
×Ω a −→ M

(

R
N×N

)

,

(

p 1 , . . . , p N , a
)

7−→
[

F n 1 n 2

]

, ∀ ( n 1 , n 2 ) ∈
{

1 , . . . , N
} 2

,

F n 1 n 2

def
:=

∫

Ω a

θ n 1
· θ n 2

da .

The matrix relates the total sensitivity of the system. From its computation using the estimated
parameters p

◦, a relative error estimator η n can be obtained for the parameter retrieved p ◦

n

(Walter and Lecourtier 1982; Walter and Pronzato 1990):

η n
def
:=

√

(

F −1
)

n n

p ◦

n

, ∀n ∈
{

1 , . . . , N
}

.

High values of η n mean a high error during the estimation process.

2.2.2 Solving the inverse problem combined with model selection

The Approximate Bayesian Computation (ABC) algorithm is an efficient tool to infer the
posterior distributions when the likelihood function is computationally too expensive to eval-
uate. It has been successfully implemented in various fields of research (da Costa et al. 2018;
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Liepe et al. 2014; Loiola et al. 2020; Toni et al. 2009). With the ABC technique, the prior in-
formation about the parameters is taken into account. In this way, it limits the variability of
the estimated parameters in the inverse analysis. Within the Bayesian framework, the objective
is to approximate the posterior distribution π

(

p
∣

∣ û
)

using Bayes’ theorem:

π
(

p
∣

∣ û
)

=
π
(

û
∣

∣p
)

· π
(

p
)

π
(

û
) ,

where π
(

p
)

is the a priori density of the parameters p
apr , π

(

û
∣

∣p
)

is the likelihood function
and π

(

û
)

is the marginal probability density of measurements. The ABC algorithm can also
be employed for model selection. An indicator m is defined for each model of interest. Each
model has a prior density π

(

m
)

. The marginal posterior distribution is approximated among
all models and parameter subspaces, such as π

(

m , p
∣

∣ d
(

û , u m

)

6 ε
)

. So, it is useful to
rank the models. Here, to increase the acceptance rate, the ABC method based on Sequential
Monte Carlo sampling (SMC) is used. Before describing the details of the algorithm, several
definitions are introduced.

First, a set of tolerances Ω ε is specified by the user:

Ω ε
def
:=

{

ε i

}

, ∀ i ∈
{

1 , . . . , N ε

}

,

where N ε is the total number of tolerance populations sequentially generated by the method.
The indicator i corresponds to a population associated to tolerance ε i . In this work, the distance
function d m between the moisture content computed with the model m and from experimental
observation is defined as the square root of the sum of squared errors:

d m

(

p , û
)

=

(
∫

Ω â

(

f m

(

p , â
)

− û
) 2

da

)

1

2

. (10)

The nonzero systematic error has been omitted of the distance function due to its very low
magnitude. Note that a discussion on the choice of the distance function is given in (Toni et al.
2009, Section 2.1). With Eq. (10), a Maximum likelihood estimator is obtained. By assuming
the measurement errors as Gaussian (as well as additive, unbiased and of constant variance),
the estimator is unbiased, consistent, efficient and sufficient statistic (Beck and Arnold 1977).

If the distance between a model u m and the experiments û is under tolerance ε i , such model
is a good candidate for being selected. Thus, we define the set of models Ω ◦

m “validating the
distance test” for the selected parameter:

Ω ◦

m

def
:=

{

m
∣

∣

∣ d m

(

p , û
)

6 ε i , ∀ ε i ∈ Ω ε ,
}

.

By analogy, the set of parameters Ω ◦

p of models validating the distance test is:

Ω ◦

p

def
:=

{

p

∣

∣

∣u m , ∀m ∈ Ω ◦

m

}

.

The distance test is verified for a number of particles N ν . Each particle is identified by the
indicator j . The process is described in Algorithm 1. For each population i and particle j , a
model m ⋆ ⋆ is chosen according to its prior probability density. In this work, all the models are
considered equally probable. Then, three main steps are highlighted. The first one handles the
sampling of a candidate parameter p

⋆ ⋆ . It is performed according to a weight computed as:

w
j
i =















1 , j = 1 ,

π
(

p
⋆ ⋆
)

∑

w
j
i−1 · K

(

p
j
i−1 , p ⋆ ⋆

)
, j > 1 ,

(11)
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where p
j
i−1 is the parameter obtained from previous population. Here, the perturbation kernel

K is chosen as a random walk move with a uniform distribution K
(

p , p
⋆
)

= κ · U
(

−1 , 1
)

and κ = κ 0 · max
Ω p

p i (Toni and Stumpf 2009). The second step carries the computation of

the direct model for the water activity â . The third step performs the distance test for the
candidate model and its parameter. If it is successful, then the model m ⋆ ⋆ and parameter p

⋆ ⋆

are stored in their respective subsets. In addition, the algorithm goes on for the next particle.
If one of this three steps fails, it returns to Step 6 by again sampling the model. Before moving
to the next population, the weights are normalized by performing the operation:

w
j
i =

w
j
i

N ν
∑

j=1

w
j
i

. (12)

Last, to evaluate the efficiency of the algorithm, the acceptance rate of the particle is denoted
by τ .

Algorithm 1 ABC SMC Algorithm.

1: Set tolerances vector ε and distance function d

2: Set population indicator i = 1
3: Set particle indicator j = 1
4: while i 6 N ε do

5: while j 6 N ν do

6: Sample the model m ⋆ ⋆ ∈ Ω m from π
(

m
)

7: if j 6= 1 then ⊲ Sampling of a candidate parameter
8: Sample p

⋆ ∈ Ω ◦

p with weight w
j
i−1

9: Perturb the parameter p
,⋆ to obtain p

⋆ ⋆ ∼ K
(

p , p
⋆
)

10: else

11: Sample p
⋆ ⋆ ∈ Ω p , m ⋆ ⋆ from π

(

p , m ⋆ ⋆
)

12: end

13: if π
(

p
⋆ ⋆
)

6= 0 then ⊲ Computation of direct problem
14: Compute u m = f m ⋆ ⋆

(

p
⋆ ⋆ , â

)

15: else

16: Return to step 6

17: end

18: if d m

(

p , û
)

6 ε i then ⊲ Evaluating the distance test
19: Store the candidate model Ω ◦

m ⋆ ⋆ = Ω ◦

m ⋆ ⋆ ∪ {m ⋆ ⋆ }
20: Store the associated parameters Ω ◦

p = Ω ◦

p ∪ { p ⋆ ⋆ }
21: Compute the weight w

j
i using Eq. (11)

22: j = j + 1
23: else

24: Return to step 6

25: end

26: Normalize the weight using Eq. (12)
27: i = i + 1

28: end

29: end

Figure 2 summarizes the ABC algorithm used in this work. It proceeds as follows. At the
beginning, the different models have uniform a priori distributions, so that they have exactly
the same probability of being selected. Uniform priors are also assigned to the parameters of
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Figure 2. Illustration of the principles of the ABC SMC algorithm.

each model. The algorithm runs for successive N ε populations with decreasing tolerances ε .
For the population i , i.e. the tolerance ε i , the algorithm is divided in three main steps. (i)
First, sample a model m ⋆ ⋆ from the prior distribution among the eight competing models. If
it is the first population, a uniform a priori distributions are defined for the competing models
and the unknown parameters. It enables to not favor any of the competing models. For the
other populations, the priors for the parameters are obtained from the weights at the previous
population. (ii) Then, for the candidate model sampled from its prior, the algorithm samples a
candidate parameter p ⋆ ⋆ , using a sequential scheme and a small perturbation to ensure that the
whole parameter space is explored. (iii) For each candidate parameter, the distance d m, i.e. the
error, between the direct model and the experiment is computed. Two cases are distinguished.
If the distance is lower than the tolerance ε i , then both the parameter and model are selected.
It is stated that the particle validated the distance test. If the test is not valid, then the
algorithm comes back to the first step in order to sample a new model from its prior. This
operation is repeated until N particles have been accepted, denoting by τ the acceptance rate.
The tolerance of the last population corresponds to the desired agreement between the model
and measurement data. Among the successive populations, less models validate the distance
test since the tolerances are decreasing. At the end, only the best model(s) remain(s) and
the samples for the parameters approximate their posterior distribution. In other words, the
algorithm provides the best model and corresponding parameters values that minimize the error
between measured and estimated quantities.
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3 Experiments

3.1 Materials and methods

The tested material is wood fibre insulation (Soprema 2019) with density of ρ = 50 kg . m −3.
Due to its low thermal conductivity and vapour permeability, this bio-based material is increas-
ingly used in building envelope. Furthermore, it presents a strong hygroscopic behaviour as
highlighted by the previous sorption isotherm measurement (Vololonirina et al. 2014).

Sorption isotherms are measured with 5 samples with the DVS equipment IGASorp-HT
system (Hiden Isochema, Warrington, UK). The instrument has a microbalance with a resolution
of 0.1 µg on which a stainless-steel mesh basket containing the sample is suspended. The
sample is then placed inside a separate chamber with controlled temperature and water activity,
and sample mass is continuously recorded. Prior to the start of the adsorption measurement,
sample is dried under flow of dry nitrogen at 65 ◦C for 24h (with a flow of 250mL . min −1)
until stabilization (ISO12570 2000). Sample dry mass is recorded after setting the temperature
to 23 ◦C under flow of dry nitrogen. Here, sample dry mass varies between 10.8 and 28.2 mg .
Then, the sample is exposed to increasing humidity from 0.05 to 0.9, with a 0.05 step, the testing
temperature being 23 ◦C . The humidity is controlled by mixing dry and water vapour-saturated
nitrogen streams at a total flow of 250mL . min −1 using electronic mass flow controllers. It is
measured by a sensor placed in the chamber near the sample. The experiment is run at given
temperature and water activity until an user defined stop criterion is reached. Usual stop criteria

are (i) hold time, (ii) final rate of derivative of mass with respect to time
dm

dt
or (iii) accuracy

of asymptotic moisture content from a kinetic model fit to the moisture content versus time
data. While several stop criteria may be found in the literature for cellulosic materials, Glass
et al. (Glass et al. 2017) underlined that the commonly used stop criteria may mischaracterize
equilibrium moisture content up to 1 % of the moisture content. Therefore, the recommendation
is to increase hold times to catch long time constants of sorption kinetic (the order of 500 min or
longer), even if it increases the isotherm measurement time to several weeks for a single replicate
of a single material. Later, the same authors (Glass et al. 2018) proposed a new methodology
to improve measurement accuracy and to reduce measurement times. Based on these previous

works, a slope
dm

dt
= 10 µg . g −1 . min −1 calculated over a 15 min window combined with a

maximum hold time of 24 h was used as stop criterion. When this condition is met, the apparent
equilibrium moisture content is taken as the last measured moisture content.

3.2 Experimental data

The experimental results for the five samples are presented in Figure 3(a). Except for three
points with water activity higher than 0.9, all equilibrium moisture contents are obtained by
meeting the stop criterion. The measurement time increases with water activity, ranging between
2 and 12 h . In the hygroscopic range (i.e. a < 0.8), acquisition could be stopped because of
high signal-to-noise ratio. Nevertheless, the calculated slope over a 60 min window did not
exceed 15 µg . g −1 . min −1 . Therefore, we have good confidence in the results in the hygroscopic
range and the discrepancy is limited. For water activity higher than 0.8, the signal to noise
ratio is better because of the larger mass change. Nevertheless, even if each measurement
lasts for at least 4h, it might not be sufficient for the identification of long time constants of
sorption kinetic. For instance, the calculated slope over a 120 min window did not drop below
45 µg . g −1 . min −1 , which is much higher than the value of 3 µg . g −1 . min −1 suggested by Glass

et al. (Glass et al. 2018). Therefore, we expect measuring moisture content with an accuracy of
at least 0.36 % (Glass et al. 2018). Nevertheless, the sorption at high water activity involves a
complex phenomenon (like polymer softening) that may vary from one sample to another. This
variability is highlighted by the higher discrepancy between the sets for water activity higher
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than 0.8 .
According to Taylor (Taylor 1997), the best estimates of the moisture content is:

û
def
:=

1

N e

N e
∑

i = 1

u i ,

where N e is the number of carried out measurements. In the present case, N e = 5 since
measurement for five samples has been taken. To evaluate the total measurement uncertainty
δ, both the random and the systematic components of the uncertainty are considered:

δ
def
:=

√

δ 2
∼

+ δ 2
Σ .

The random part δ ∼ is computed through the standard deviation of the mean:

δ ∼

def
:=

1√
N e

√

√

√

√

1

N e

N e
∑

i = 1

(

u i − û
) 2

.

The systematic component δ Σ is due to the experimental DVS device and given as follows:

δ Σ = 10 −7 .

Here, it is given by the balance resolution divided by the dry mass. It is assumed that there
is no other systematic error in the measurement design. The best estimate for the moisture
content is given in Figure 3(c) as well as in Table 1. The different uncertainty components
are also indicated. The variation of the relative uncertainty with the water activity is shown in
Figure 3(b). It can be noticed that the random uncertainty component is significant compared to
the systemic one. In Figure 3(c), it seems that the uncertainty increases at high water activity.
However, from a relative point of view, the uncertainty is high for a > 0.8 , of the order of
5% . As samples have different dry masses and shapes, it may explain the observed higher
uncertainty. In Figure 3(c), the measured sorption isotherm is compared to previous results
(Vololonirina et al. 2014) from the literature. The shape in the hygroscopic domain is similar.
For higher water activity, large difference may be observed, probably due to differences in stop
criteria. Indeed, if the measurement is stopped too early, it may lead to an underestimation of
equilibrium moisture content during adsorption (Glass et al. 2017).

3.3 A priori distribution of unknown parameters

The slope of the sorption model MADS in Eq. (9) is K = 0.2416 . Uniform distributions
are considered for the prior density of the unknown parameters. The interval of variation of
each parameter is given in Table 2 for each model. To challenge each of the competing models,
the interval of variation of the prior density is defined to represent a large range of sorption
curves. The interval of variation of the a priori parameters are chosen so that the image of each
model is included in the range of sorption curves illustrated in Figure 3(c). It should be noted
that the magnitude of variation of the parameters is very different among the models. It will
be verified that those differences do not influence the model selection through the choice of the
kernel parameter.

4 Reliability of the models

The purpose is to demonstrate that the unknown parameters of the sorption models are
identifiable. From a theoretical point of view, the Structural Global Identifiability (SGI) property
is evaluated for each model in Appendix A in Electronic Supplementary Material. As a synthesis,
it is demonstrated that all eight models have parameters theoretically identifiable if a set of
observations is obtained. The next section investigates the primary identifiability, i.e. if the
parameters sufficiently influence the output of the model to be estimated with accuracy.
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Figure 3. Measured moisture content in the wood fibre material for the five samples (a).
Variation of the measurement uncertainty according to the water activity (b). Best estimate
for the measured moisture content compared to results from the literature (Vololonirina et al.
2014) (c).
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Table 1. Best estimate for the moisture content according to the water activity in the wood
fibre material.

Water activity Moisture content Total uncertainty Random uncertainty

a
[

−
]

û
[

−
]

δ
[

−
]

δ ∼

[

−
]

0 0 0.01 0

0.05 0.0121 0.0006 0.0005

0.1 0.0208 0.0009 0.0008

0.15 0.0276 0.0012 0.0011

0.2 0.0344 0.0014 0.0014

0.25 0.0402 0.0017 0.0016

0.3 0.0468 0.0019 0.0019

0.35 0.0527 0.0022 0.0021

0.4 0.059 0.0024 0.0024

0.45 0.0652 0.0027 0.0026

0.5 0.072 0.0029 0.0029

0.55 0.0795 0.0032 0.0032

0.6 0.0895 0.0036 0.0036

0.65 0.1013 0.0042 0.0041

0.7 0.1203 0.005 0.0048

0.75 0.1531 0.0064 0.0061

0.8 0.1921 0.008 0.0077

0.85 0.2589 0.0119 0.0143

0.881 0.3568 0.0186 0.012

0.9 0.4647 0.025 0.0186

0.916 0.8113 0.0428 0.0325

Table 2. Prior distribution of the unknown parameters for each model.

Models Parameter p 1 Parameter p 2 Parameter p 3 Parameter p 4

GAB U
(

1.06 · 10 −2 , 5.31 · 10 −2
)

U
(

0.95 , 1.05
)

U
(

5 , 171
)

-

TRM U
(

1.0 , 3.0
)

U
(

1.0 , 1.55
)

U
(

2.0 , 3.0
)

-

OSW U
(

0.013 , 0.14
)

U
(

0.75 , 1.28
)

-

FX U
(

4.9 , 40
)

U
(

18.0 , 18.69
)

U
(

7 , 18.5
)

U
(

1.46 , 1.7
)

BET U
(

0.034 , 0.09
)

U
(

0.20 , 10
)

- -

VG U
(

0.99 , 179
)

U
(

26.6 , 3.73 · 10 3
)

U
(

1.7 , 2.4
)

-

SM U
(

0.0026 , 0.013
)

U
(

0.04 , 0.20
)

- -

MADS U
(

−1.1 , −0.4
)

U
(

2.1 , 2.9
)

- -
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Figure 4. Variation of the sensitivity functions of the GAB (a,b) model.

4.1 Primary identifiability

The sensitivity function is computed for the eight models. An illustration is shown for the
GAB model in Figures 4(a) and 4(b), for two values of parameter p . The latter corresponds
to the lower and upper bounds of each parameter in Ω p for the GAB model, according to
Table 2. It is noticed that over the domain Ω a , the sensitivity functions of parameters p 1 and
p 2 have the highest values. The sensitivity function of the parameter p 3 is at least 2 orders of
magnitude lower than others. These results are consistent with the sensitivity metric γ computed
for each of the three parameters and presented in Figure 5(a). The parameter p 3 has a very
negligible influence on the sorption model. The sensitivity of parameters p 1 and p 2 is higher,
with γ 1 > γ 2 . Thus, the parameter p 1 is the most sensitive of the model. Therefore, it is
the easiest to identify from a practical point of view. As the water activity a increases, the
sensitivity of the parameter p 2 increases. Thus, one could imagine to use some observations for
a ∈

[

0.05 , 0.8
]

to estimate the parameter p 1 and then, some observations for a ∈
[

0.8 , 0.95
]

to retrieve p 2 . Even with this procedure, the parameter p 3 cannot be estimated with accuracy.
The variation of the sensitivity metric γ with a is given for the other models in Figures 5(b)

to 5(f). The results of the primary identifiability are reported in Table 3. A general observation
is that 5 models out of 8 have one parameter with a very high sensitivity, other parameters
having a very low influence on the models output. In other words, these models have param-
eters with sensitivity metrics of the same orders of magnitude. One can conclude that their
primary identifiability is very low for all the domain of a . The accuracy of the results of the
parameter estimation problem might be very low. Three models, namely SM, TRM and MADS,
have parameters with medium sensitivity for two parameters. For the SM and MADS model,
both parameters have a similar influence on the model output. It shows a good primary identifi-
ability for these models. For the TRM, parameters p 2 and p 3 have good primary identifiability.
However, the accuracy of estimation for parameter p 1 might be poor since it has a very small
influence on the model.

4.2 Parameter estimation and model selection

Previous investigations demonstrated that all models have parameters identifiable in theory.
From a practical point of view, it has been shown that not all parameters of the models have
sufficient influence on the model predictions to be retrieved with accuracy. Here, the parameter
estimation problem is first solved to examine the consequence of a bad primary identifiability
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Figure 5. Variation of the global sensitivity metrics for the models according to the water
activity.
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Table 3. Results of the primary identifiability for each model.

Models
Global sensitivity indexes γ ⊺

p 1 p 2 p 3 p 4

GAB 0.89 0.10 O( 10 −6 ) -

TRM 0.06 0.55 0.38 -

OSW 0.975 0.025 - -

FX 3 · 10 −4 3.7 · 10 −3 6.2 · 10 −3 0.98

BET 0.99 3.2 · 10 −4 - -

VG 7.7 · 10 −2 9 · 10 −4 0.99 -

SM 0.48 0.52 - -

MADS 0.54 0.46 - -

on the model reliability. Then, a selection is operated over the competing models to distinguish
the most reliable ones.

4.2.1 Parameter estimation

First, Gauß algorithm is employed in the least squares sense to solve the parameter esti-
mation problem. The estimated parameters and their estimated uncertainties are reported in
Table 4. Figures 6(a), 6(c), 6(e) and 6(g) compare the prediction of the models computed with
the estimated parameters and the experimental observations. Figures 6(b), 6(d), 6(f) and 6(h)
present the residuals between computations and observations. Globally, the discrepancies be-
tween the model and measurements are relatively low for all models in the so-called hygroscopic
state a 6 0.80 . At high water activity a > 0.80 , the discrepancies increase for almost all
models, except the MADS one. This can be clearly noticed from the analysis of the residuals.
The SM and MADS model residuals have a particular pattern which does not vary around zero.
As indicated in Figure 6(h) (and 3(b)), the pattern is similar to the standard deviation δ of
the measurements. Looking at the distance presented in Table 4, the models closest to the
experimental observations are the MADS and FX ones. However, for the latter, as shown in
Figure 6(d), the discrepancy is relatively high for a 6 0.2 . In addition, the model has four
parameters to be estimated, which increases the complexity of the estimation problem.

Thus, in general, we note that the parameters could be estimated and the measurements
could be accurately predicted with all models. Nevertheless, the reliability of the models may
be discussed looking at the relative estimator error η in Table 4. Indeed, some parameters are
estimated with a very high error estimator. Namely, the parameters p 3 for the GAB model,
p 1 for the TRM model,

(

p 1 , p 2 , p 3 , p 4

)

for the FX model, p 2 for the BET model,
(

p 1 , p 2

)

for the VG model and p 1 for the SM model are estimated with a very low accuracy. For the
models FX and VG, the error estimator is higher or equal to half of the standard deviation of
the a priori uniform distribution. These results are consistent with the ones of the primary
identifiability. In other words, parameters with a very low influence on the model prediction
correspond to the ones with a high error estimator. For instance, for the TRM model, a bad
primary identifiability is observed for parameter p 1 . Indeed, the estimation of parameter p 1 is
very inaccurate with almost 70% of relative error. On the contrary, parameters p 2 and p 3 have
good primary identifiability. Consequently, their error estimator is better, around 10% .
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Figure 6. Comparison between the model predictions computed with the estimated parameters
and the experimental observations (a,c,e,g) and residual between both (b,d,f,h).
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Table 4. Results of the parameter estimation problem for each model.

Models
Estimated parameter Relative error estimator η

Distance d m

(

p , û
)

p ◦

1 p ◦

2 p ◦

3 p ◦

4 p ◦

1 p ◦

2 p ◦

3 p ◦

4

GAB 0.035 1.027 15.33 - 0.12 0.04 0.64 - 0.05

TRM 1.156 1.383 2.165 - 0.67 0.15 0.10 - 0.11

OSW 0.069 0.75 - - 0.05 0.09 - - 0.15

FX 7.98 18.39 9.586 1.471 > 1 > 1 > 1 0.48 0.007

BET 0.04 9.18 - - 0.07 0.44 - - 0.12

VG 51.33 2299 1.895 - > 1 > 1 0.12 - 0.14

SM 0.0078 0.099 - - 0.53 0.09 - - 0.38

MADS −0.76 2.47 - - 0.04 0.04 - - 0.005

4.2.2 Model selection

Now, the ABC algorithm is used for model selection and model calibration (estimation of the
model parameters), among the eight competing ones described above, for a kernel κ 0 = 0.01 .
A number of 22 populations are chosen as illustrated in Figure 7(a). The tolerance is decreasing
with the number of population respecting the Morozov’s discrepancy principle at the final
population. The last tolerance scales with the square roots of the sum of the uncertainties for

each measurement ε 22 = 1.4 ·

√

√

√

√

N a
∑

i=1

δ 2
i , N a being the total number of measurements. A total

number N ν = 4000 particles is chosen. Figure 7(b) shows the variation of the acceptance rate
according to each population. It decreases with the population. For the last population, the
acceptance rate is 0.4% .

Figure 10(a) shows the model selection through the 22 populations. Initially, the eight models
have an equal number of particles. Until population 4 , there is no strong selection among the
models. The SM model becomes less selected since it does not succeed in representing the
phenomena for high water activity, as reported in Figure 6(g). At population 5 , no particles
validate the distance test for this model with the candidate parameters. Thus, at population 5 ,
the model SM is no longer selected. At population 9 , it can be noticed that only 3 models are
still competing, namely the MADS, the FX and the GAB. At the final population, the MADS
model is the only one satisfying the distance test for the lowest tolerance.

The model selection can also be discussed by analysing the evolution of estimated parameters
according to the population presented in Figures 8(a) and 8(b). Figure 8(a) shows the dissemi-
nation of the estimated parameters in the plan Ω p 1

× Ω p 2
according to the population, for both

models OSW and MADS. For the first population, the estimated parameters are scattered. At
population 8 , for the OSW model, the estimated parameters still exhibit a large variability. For
the MADS model, the parameters are already concentrated in a narrow region, corresponding
to the final estimated parameters of the model. This analysis is consistent with the evolution
of the standard deviation of the estimated parameters according to the population. Figure 8(b)
shows that the GAB model is not selected anymore after population 11 . Indeed, the standard
deviation of the parameters estimated for this model is large. The algorithm did not find new
candidate parameters that validate the distance test of the GAB model.

At the final population, the parameters are estimated for the selected model. Figure 9 gives
the posterior distribution of the parameters p 1 and p 2 of the MADS model. It can be noticed
that it corresponds to the one estimated in previous section, using the least estimator algorithm,
in Table 4. In addition, the standard deviation of posterior distributions is very low indicating
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Figure 7. Variation of the tolerance (a) and the acceptance rate (b) according to the population.

an accurate estimation.
To confirm the results, the model selection is performed for another kernel κ 0 = 0.1 , while

keeping 22 populations. As noted in Figure 7(b), the acceptance rate τ decreases when κ 0

increases. Thus, the computational time of the algorithm rises significantly (from 15 min for
κ 0 = 0.01 to 30 min for κ 0 = 0.1 in the Matlab environment with a computer equipped
with Intel i7 CPU and 32 GB of RAM). The model selection among the 22 populations is
shown in Figure 10(b). The results are unchanged, while the MADS model being selected. It is
noted that additional simulations have been carried for higher kernel κ 0 = 1 and 400 particles,
also resulting in the selection of the MADS model. However, the acceptance rate was too low
indicating a bad choice for the kernel parameter.

5 Conclusion

The sorption curve is an essential property for wood materials with the objective of modelling
the interaction of wood with ambient moist air. This paper proposes to investigate the reliability
of eight models through their robustness to the identified parameters. Seven have been proposed
in the literature with various examples of applications. The last one is proposed based on the
general shape of moisture sorption curve for porous building material. Experimental measure-
ments are taken for a wood fibre material. Using a DVS equipment, the moisture content is
obtained according to several levels of water activity.

Using the experimental observations, the reliability of the models is discussed in Section 4
through the accuracy of the parameter estimation. The so-called primary identifiability of each
parameter is discussed. It investigates if the parameters sufficiently influence the output of
the model to be estimated with accuracy. For this, a continuous derivative-based approach is
adopted using the sensitivity function of the model. A global sensitivity metric is computed
for each parameter. Seven models have a low primary identifiability for at least one param-
eter. In other words, one parameter is not influencing the model sufficiently to be estimated
with accuracy. These results are confirmed when solving the parameter estimation problem in
Section 4.2. For all models, a set of parameters can be identified to represent accurately the
moisture sorption curve. However, the parameter with low primary identifiability are retrieved
with a large error estimator. Last, an ABC algorithm is used for simultaneously model selection
and model calibration, among eight competing models. The proposed model appears to have
the best reliability based on the distance between measurements and estimation. The so-called
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thermodynamic (Merakeb et al. 2009) and Feng–Xing (Fredlund and Xing 1994) models are
also reliable candidates. The first has a high parametric complexity since it is composed of four
parameters.

Future works should focus on the hysteresis effects. It should be taken into account since it
has a significant influence on the precision of the numerical predictions of heat and mass transfer
(Zhang et al. 2016b).

Nomenclature and symbols

Physical parameters

Latin letters

a , â water activity
[

−
]

K slope of the sorption model
[

−
]

m , m 0 mass
[

kg
]

p parameter of a model
[

−
]

R 1 water vapor gas constant
[

J . kg −1 . K −1
]

T temperature
[

K
]

u , u 0 , û , u m moisture content dry basis
[

−
]

Greek letters

δ measurement uncertainty
[

−
]

δ ∼ random component of measurement uncertainty
[

−
]

δ σ systematic component of measurement uncertainty
[

−
]

Ψ capillary pressure
[

Pa
]

ρ material dry density
[

kg . m −3
]

ρ 2 liquid water specific mass
[

kg . m −3
]
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Mathematical notations

Latin letters

d distance function i

D i polynomial of order i

f sorption model function

F Fisher matrix

K kernel perturbation

N number of parameters of a model

N a number of measurement point for a population

N e number of carried measurement

N ε number of populations

N ν number of particles in each population

N i polynomial of order i

PN polynomial of order N

U uniform distribution

w weight

Greek letters

α i polynomial coefficients

β i polynomial coefficients

ε , ε i tolerance

η n relative error estimator

γ n , γ ⊺ derivative-based sensitivity metric related to parameter p n

Ω set of elements

π probability distribution

ν n , ν ⊺ local derivative-based sensitivity metric related to parameter p n

κ , κ 0 kernel parameter

τ acceptation rate

θ n sensitivity function related to parameter p n

Subscripts and superscripts

a related to water activity

apr a priori parameter

i population indicator

j particle indicator

m model indicator

n parameter indicator

p related to a parameter

0 dry basis property

◦ estimated parameter

⋆ , ⋆⋆ sampled parameter in ABC algorithm

∧ measured quantity obtained from experiments

∼ different member from the same set (SGI property)

⊺ dimensionless metric

24



Acknowledgments

The authors acknowledge the Junior Chair Research program “Building performance assess-
ment, evaluation and enhancement” from the University of Savoie Mont Blanc in collaboration
with The French Atomic and Alternative Energy Center (CEA) and Scientific and Technical
Center for Buildings (CSTB). The authors acknowledge the French and Brazilian agencies for
their financial support through the project CAPES–COFECUB, as well as the CNPQ of the
Brazilian Ministry of Education and of the Ministry of Science, Technology and Innovation, re-
spectively, for co-funding. The support provided by FAPERJ, agency of the Rio de Janeiro state
government is gratefully appreciated. The authors also thank A. Moreau and A. Jumabekova
for the productive discussions on the MADS and GAB models, respectively.

Conflict of interests

Authors have no conflict of interest relevant to this article.

References

Beck, J. V. and Arnold, K. J. (1977). Parameter Estimation in Engineering and Science. John
Wiley and Sons, New York. 8

Berger, J., Guernouti, S., Woloszyn, M., and Buhe, C. (2015). Factors governing the development
of moisture disorders for integration into building performance simulation. Journal of Building
Engineering, 3:1 – 15. 1

Blahovec, J. (2004). Sorption isotherms in materials of biological origin mathematical and
physical approach. Journal of Food Engineering, 65(4):489–495. 3

Blahovec, J. and Yanniotis, S. (2008). Gab generalized equation for sorption phenomena. Food
and Bioprocess Technology, 1(1):82–90. 3

Brunauer, S., Emmett, P., and Teller, E. (1938). Adsorption of gases in multimolecular layers.
Journal of the American Chemical Society, 60(2):309–319. 3

Carmeliet, J. and Roels, S. (2002). Determination of the moisture capacity of porous building
materials. Journal of Thermal Envelope and Building Science, 25(3):209–237. 2

Colinart, T. and Glouannec, P. (2017). Temperature dependence of sorption isotherm of hygro-
scopic building materials. part 1: Experimental evidence and modeling. Energy and Buildings,
139:360–370. 2

da Costa, J., Orlande, H., and da Silva, W. (2018). Model selection and parameter estimation
in tumor growth models using approximate bayesian computation-abc. Computational and
Applied Mathematics, 37(3):2795–2815. 7

Dickinson, R. P. and Gelinas, R. J. (1976). Sensitivity analysis of ordinary differential equation
systems—a direct method. Journal of Computational Physics, 21(2):123–143. 6

Fredlund, D. and Xing, A. (1994). Equations for the soil-water characteristic curve. Canadian
Geotechnical journal, 31(4):521–532. 4, 23

Furmaniak, S. (2012). The alternative model of water vapour sorption in porous building ma-
terials. Transport in Porous Media, 95:21–23. 2

25



Glass, S., Boardman, C., Thybring, E., and Zelinka, S. (2018). Quantifying and reducing errors in
equilibrium moisture content measurements with dynamic vapor sorption (dvs) experiments.
Wood Science and Technology, 52(4):909–927. 11

Glass, S., Boardman, C., and Zelinka, S. L. (2017). Short hold times in dynamic vapor sorption
measurements mischaracterize the equilibrium moisture content of wood. Wood Science and
Technology, 51(2):243–260. 11, 12

Hailwood, A. and Horrobin, S. (1946). Absorption of water by polymers: analysis in terms of a
simple model. Transaction of the Faraday Society, 42:B084–B092. 3

Iglesias, H. and Chirife, J. (1995). An alternative to the guggenheim, anderson and de boer
model for the mathematical description of moisture sorption isotherms of foods. Food Research
International, 28(3):317–321. 2

ISO12570 (2000). Hygrothermal performance of building materials and products — determina-
tion of moisture content by drying at elevated temperature. 11

Jumabekova, A., Berger, J., and Foucquier, A. (2019). Sensitivity analysis in the framework of
parameter estimation problem for building energy performance: a continuous derivative based
approach. submitted, pages 1–31. 6

Karalashvili, M., Marquardt, W., and Mhamdi, A. (2015). Optimal experimental design for
identification of transport coefficient models in convection–diffusion equations. Computers
and Chemical Engineering, 80:101 – 113. 7

Karoglou, M., Moropoulou, A., Maroulis, Z., and Krokida, M. (2005). Water sorption isotherms
of some building materials. Drying Technology, 23(1-2):289–303. 2

Kucherenko, S. and Song, S. (2016). Derivative-based global sensitivity measures and their
link with sobol’ sensitivity indices. In Cools, R. and Nuyens, D., editors, Monte Carlo and
Quasi-Monte Carlo Methods, pages 455–469. Springer International Publishing. 6

Liepe, J., Kirk, P., Filippi, S., Toni, T., Barnes, C., and Stumpf, M. (2014). A framework for
parameter estimation and model selection from experimental data in systems biology using
approximate bayesian computation. NATURE PROTOCOLS, 9:439–456. 8

Loiola, B. R., Orlande, H. R., and Dulikravich, G. S. (2020). Approximate bayesian computation
applied to the identification of thermal damage of biological tissues due to laser irradiation.
International Journal of Thermal Sciences, 151:106243. 8

Merakeb, S., Dubois, F., and Petit, C. (2009). Modeling of the sorption hysteresis for wood.
Wood Science and Technology, 43(7):575–590. 3, 23

Nilsson, L. (2018). Methods of Measuring Moisture in Building Materials and Structures.
Springer-Verlag, Berlin. 3

Oswin, C. R. (1946). The kinetics of package life. iii. the isotherm. Journal of the Society of
Chemical Industry, 65(12):419–421. 3

Ouertani, S., Azzouz, S., Hassini, L., Koubaa, A., and Belghith, A. (2014). Moisture sorption
isotherms and thermodynamic properties of jack pine and palm wood: Comparative study.
Industrial Crops and Products, 56:200–210. 2, 3

Patera, A., Derluyn, H., Derome, D., and Carmeliet, J. (2016). Influence of sorption hysteresis
on moisture transport in wood. Wood Science and Technology, 50:259–283. 1

26



Saltelli, A., Tarantola, S., Campolongo, F., and Ratto, M. (2004). Sensitivity Analysis in
Practice: A Guide to Assessing Scientific Models. Halsted Press, New York, NY, USA. 6

Singh, P. C. and Singh, R. K. (1996). Application of gab model for water sorption isotherms of
food products1. Journal of Food Processing and Preservation, 20(3):203–220. 2

Skaar, C. (1988). Wood-water relations. Springer-Verlag, Berlin. 2

Smith, S. (1947). The sorption of water vapor by high polymers. Journal of the American
Chemical Society, 69(3):646–651. 4

Sobol, I. M. (1990). Sensitivity estimates for nonlinear mathematical models. Matematicheskoe
Modelirovanie, 2:112–118. 6

Sobol, I. M. and Kucherenko, S. S. (2009). Derivative based global sensitivity measures and their
link with global sensitivity indices. Mathematics and Computers in Simulation, 79(10):3009–
3017. 6

Soprema (2019). https://www.soprema.fr/fr/product/isolation/toiture/toiture-en-pente/rampants/pavaflex-confort,
consulted the 23/10/2019. 11

Stolarska, A. and Garbalinska, H. (2017). Assessment of suitability of some chosen functions for
describing of sorption isotherms in building materials. Heat Mass Transfer, 53:1603–1617. 2

Taylor, J. R. (1997). An introduction to error analysis; the study of uncertainties in physical
measurements. University Science Books. 12

Toni, T. and Stumpf, M. (2009). Simulation-based model selection for dynamical systems in
systems and population biology. Bioinformatics, 26(1):104–110. 9

Toni, T., Welch, D., Strelkowa, N., Ipsen, A., and Stumpf, M. (2009). Approximate bayesian
computation scheme for parameter inference and model selection in dynamical systems. Jour-
nal of The Royal Society Interface, 6(31):187–202. 8

Ucinski, D. (2004). Optimal Measurement Methods for Distributed Parameter System Identifi-
cation. CRC Press, New York. 7

van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity
of unsaturated soils. Soil Science Society of America Journal, 44(5):892–898. 4

Vololonirina, O., Coutand, M., and Perrin, B. (2014). Characterization of hygrothermal prop-
erties of wood-based products – impact of moisture content and temperature. Construction
and Building Materials, 63:223–233. 11, 12, 13

Walter, E. and Lecourtier, Y. (1982). Global approaches to identifiability testing for linear and
nonlinear state space models. Mathematics and Computers in Simulation, 24(6):472–482. 7,
29

Walter, E. and Pronzato, L. (1990). Qualitative and quantitative experiment design for phe-
nomenological models; a survey. Automatica, 26(2):195–213. 7, 29

Willems, W. (2014). Hydrostatic pressure and temperature dependence of wood moisture sorp-
tion isotherms. Wood Science and Technology, 48(3):483–498. 1

Zhang, X., Zillig, W., Kunzel, H., Zhang, X., and Mitterer, C. (2015). Evaluation of moisture
sorption models and modified mualem model for prediction of desorption isotherm for wood
materials. Building and Environment, 92:387–395. 2, 4

27

https://www.soprema.fr/fr/product/isolation/toiture/toiture-en-pente/rampants/pavaflex-confort


Zhang, X., Zillig, W., Künzel, H., Mitterer, C., and Zhang, X. (2016a). Combined effects of sorp-
tion hysteresis and its temperature dependency on wood materials and building enclosures-
part ii: Hygrothermal modeling. Building and Environment, 106:181–195. 1

Zhang, X., Zillig, W., Künzel, H., Mitterer, C., and Zhang, X. (2016b). Combined effects of
sorption hysteresis and its temperature dependency on wood materials and building enclosures
– part i: Measurements for model validation. Building and Environment, 106:143–154. 23

28



A Structural identifiability of the sorption models

The purpose is to demonstrate that the unknown parameters of the sorption models are
identifiable from a theoretical point of view. For this, the SGI property is evaluated for each
model.

A.1 Property of structural identifiability

First, the structural identifiability of the unknown parameters should be demonstrated. It
aims at stating if the parameters, according to the sorption model, are theoretically identifiable.
Using the definition provided in (Walter and Lecourtier 1982; Walter and Pronzato 1990), a
parameter p ∈ Ω p , m is Structurally Globally Identifiable (SGI) in the model f if the following
condition is verified:

∀ a ∈ Ω a , f m

(

p , a
)

= f m

(

p̃ , a
)

=⇒ p = p̃ .

This property should be evaluated for each unknown parameter of the eight sorption models.

A.2 GAB model

A first set of observable u is obtained for the GAB model with parameters p =
(

p 1 , p 2 , p 3 ).
A second one is also hold, denoted as ũ , for the parameters p̃ =

(

p̃ 1 , p̃ 2 , p̃ 3 ) . Using the model
definition Eq. (2) and a symbolic computing environment, the operation u − ũ is performed to
obtain an algebraic fraction of the form:

F ( a ) =
N 3( a )

D 4( a )
,

where N 3 and D 4 are third and fourth order polynomials of a , respectively:

N 3 =
3
∑

k = 0

α i a i , D 4 =
4
∑

k = 0

β i a i .

Thus, we have u − ũ ≡ 0 , ∀a ∈ Ω a , if and only if the coefficients of the polynomial N 3 are
equal to zero:

α k = 0 , ∀ k ∈
{

0 , 1 , 2 , 3
}

. (13)

It can be demonstrated that Eq. (13) leads to p n ≡ p̃ n ,∀n ∈
{

1 , 2 , 3
}

. Therefore, the
parameters p =

(

p 1 , p 2 , p 3 ) are SGI.

A.3 TRM model

Two sets of observables u and ũ are admitted for the TRM model with parameters p and p̃ ,
respectively. Using the model definition (3), the equality u ≡ ũ leads to:

p 1

p̃ 1

exp
(

p 2 ln
(

a
)

· exp
(

p 3 a
)

− p̃ 2 ln
(

a
)

exp
(

p̃ 3 a
)

)

= 1 . (14)

If we assume p 1 ≡ p̃ 1 , and thus p 1 being SGI, then from Eq. (14) we must have:

p 2 ln
(

a
)

exp
(

p 3 a
)

− p̃ 2 ln
(

a
)

exp
(

p̃ 3 a
)

≡ 0 ,

which can be rewritten as:
p 2

p̃ 2

exp
(

p 3 a − p̃ 3 a
)

≡ 1 .

Again, if we assume p 2 ≡ p̃ 2 , and thus p 2 being SGI, it follows that:

p 3 ≡ p̃ 3 ,

and parameter p 3 is SGI. By reciprocity, the parameters p 1 and p 2 are SGI.
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A.4 OSW model

It is assumed two sets of observable u and ũ of the OSW model for the same water activity
a and with parameters p and p̃ . The model definition gives for the u ≡ ũ :

p 1

p̃ 1

(

a

1 − a

) p 2 − p̃ 2

≡ 1 .

This equality is true if and only p 1 ≡ p̃ 1 and p 2 ≡ p̃ 2 . Thus, parameters p 1 and p 2 are SGI
for the OSW model.

A.5 FX model

For the FX model, two sets of observable u and ũ are obtained for the parameters p and p̃ ,
respectively. The equality u ≡ ũ gives using the model definition:

p 1

p̃ 1

[

ln

(

e +

(

− p 2 ln( a )

) p 3

)]− p 4

[

ln

(

e +

(

− p̃ 2 ln( a )

) p̃ 3

)]− p̃ 4
≡ 1 .

If we assumed that both parameter p 1 and p 4 are SGI, and thus p 1 ≡ p̃ 1 and p 4 ≡ p̃ 4 , it
follows that:

ln

(

e +

(

− p 2 ln( a )

) p 3

)

ln

(

e +

(

− p̃ 2 ln( a )

) p̃ 3

)
≡ 1 ,

and thus

e +

(

− p 2 ln( a )

) p 3

≡ e +

(

− p̃ 2 ln( a )

) p̃ 3

.

Thus, if parameter p 3 is assumed SGI, we obtain that p 2 ≡ p̃ 2 . So parameter p 2 is also SGI.
In brief, the equality u ≡ ũ admits the solution where parameters p 1 , p 2 , p 3 and p 4 are SGI.

A.6 BET model

Two sets of observable u and ũ are assumed for the parameters p and p̃ , respectively. The
equality u ≡ ũ yields to:

N 1( a )

D 3( a )
≡ 0 , (15)

where N 1 and D 3 are first and third order polynomials of a , where the first is:

N 1 = α 1 a + α 0 , α 0 = − p 1 p 2 + p̃ 1 p̃ 2

α 1 = p 1 p 2 p̃ 2 + p̃ 1 p 2 p̃ 2 + p 1 p 2 − p̃ 1 p̃ 2 .

Thus, Eq. (15) is obtained if

α 1 = α 0 ≡ 0 . (16)

Eq. (16) leads to p 1 ≡ p̃ 1 and p 2 ≡ p̃ 2 so both parameters are SGI.
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A.7 VG model

A first set of observable u is obtained for the model with parameters p =
(

p 1 , p 2 , p 3 ) . A
second one ũ is also hold for the parameters p̃ =

(

p̃ 1 , p̃ 2 , p̃ 3 ) . Writing u − ũ ≡ 0 gives:

p 1

(

1 +
(

− p 2 ln
(

a
)

) p 3

)−1 + 1

p 3

p̃ 1

(

1 +
(

− p̃ 2 ln
(

a
)

) p̃ 3

)−1 + 1

p̃ 3

≡ 1 .

If we assume p 1 ≡ p̃ 1 and p 3 ≡ p̃ 3, then we obtain:

1 +
(

− p 2 ln
(

a
)

) p 3

1 +
(

− p̃ 2 ln
(

a
)

) p 3
≡ 1 .

It follows that p 2 ≡ p̃ 2 and therefore the three parameters are SGI by reciprocity.

A.8 SM model

Two sets of observable are hold u and ũ for the Smith model with parameters p =
(

p 1 , p 2 )
and p̃ =

(

p̃ 1 , p̃ 2 ) . The equality u ≡ ũ provides:

p 1 + p 2 ln
(

1 − a
)

≡ p̃ 1 + p̃ 2 ln
(

1 − a
)

,

which can be rewritten as:

p 1 − p̃ 1 +
(

p 2 − p̃ 2

)

ln
(

1 − a
)

≡ 0 .

Since the therm ln
(

1 − a
)

is linearly independent, then p 1 ≡ p̃ 1 and p 2 ≡ p̃ 2 . So parameters
p 1 and p 2 are SGI.

A.9 MADS model

We assume two sets of observable u and ũ for the MADS model, associated to the parameters
p =

(

p 1 , p 2 ) and p̃ =
(

p̃ 1 , p̃ 2 ) , respectively. Then, with the model definition 9, u ≡ ũ

yields to:

(

tan( p 1 + p 2 a ) − tan( p 1 )
)

· p̃ 2 ·
(

1 + tan( p̃ 1 ) 2
)

p 2 ·
(

1 + tan( p 1 ) 2
) (

tan( p̃ 1 + p̃ 2 a ) − tan( p̃ 1 )
) ≡ 1 .

One solution is that p 2 ≡ p̃ 2 so that parameter p 2 is SGI. Then, it follows that tan( p 1 ≡
tan( p̃ 1 ) which one solution is p 1 ≡ p̃ 1 . Therefore both parameters are SGI.
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