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Chapter 1

Event-triggered output feedback control
of traffic flow on cascaded roads

Nicolas Espitia, Jean Auriol, Huan Yu, Miroslav Krstic

Abstract In this chapter, we develop an event-triggered boundary output
feedback controller that guarantees the simultaneous stabilization of traffic
flow on connected roads. The density and velocity traffic dynamics are de-
scribed with the linearized Aw-Rascle-Zhang (ARZ) macroscopic traffic par-
tial differential equation (PDE) model, which results in a coupled hyperbolic
system. The control objective is to simultaneously stabilize the upstream and
downstream traffic to a given spatially uniform constant steady-state that is
in the congested regime. To suppress stop-and-go traffic oscillations on the
cascaded roads, we consider a ramp metering strategy that regulates the traf-
fic flow rate entering from the on-ramp to the mainline freeway. The ramp
metering is located at the outlet with only boundary measurements of flow
rate and velocity. The main idea is that the control signal is only updated
when an event triggering condition is satisfied. Compared with the continu-
ous input signal, the event-triggered boundary output control presents a more
realistic setting to implement by ramp metering on a digital platform. The
event-triggered boundary output control design relies on the emulation of the
backstepping boundary output feedback and on a dynamic event-triggered
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strategy to determine the time instants at which the control value must be
updated. We prove that there is a uniform minimal dwell-time (indepen-
dent of initial conditions), thus avoiding the so-called Zeno phenomenon. We
guarantee the exponential convergence of the closed-loop system under the
proposed event-triggered boundary control. A numerical example illustrates
the results.

1.1 Introduction

Freeway traffic modeling and management have been intensively investigated
due to the increasing demand of traffic mobility over the past decades. Var-
ious traffic control methods have been studied to regulate freeway traffic
systems and mitigate traffic congestion. In particular, we focus on the stop-
and-go traffic, a common phenomenon appearing on congested freeways. In
congested traffic, drivers are forced into the acceleration-and-deceleration cy-
cles. The stop-and-go traffic is characterized by such oscillations and causes
increased consumption of fuel and unsafe driving conditions. We are inter-
ested in developing control strategies to mitigate stop-and-go oscillations.

Among different models for freeway traffic, macroscopic modeling is par-
ticularly suitable to describe the stop-and-go traffic since the propagation of
traffic waves is described in the temporal and spatial domain. The macro-
scopic models predict the evolution of continuous traffic states by employing
hyperbolic PDEs to govern traffic density and velocity dynamics. Among the
models, the second-order Aw-Rascle-Zhang (ARZ) model [3] [20] for the stop-
and-go traffic stands out. Indeed, the ARZ PDE model describes the traffic
density and velocity of a freeway segment with two coupled hyperbolic PDEs.
For more complex road network structures, the traffic network PDE model
is developed in [9] [10] based on the family of ARZ models. Traffic control
strategies are mainly developed and implemented on the traffic management
infrastructures, that is, ramp metering and varying speed limits (VSL). Ramp
metering controls the traffic lights on a ramp such that the inflow traffic is
regulated for the mainline traffic. The VSL regulates traffic velocity by dis-
playing driving velocities that are time-varying and dependent on real-time
traffic. Boundary control algorithms have been developed for traffic control
of a single freeway segment in [4] [12] [19] [21]. If we consider a traffic control
problem on cascaded freeway segments, the application of these control laws
needs to assume road homogeneity. In this chapter, we solve the the con-
trol problem of stop-and-go traffic congestion on cascaded freeway segments.
We adopt the state-of-art second-order macroscopic traffic network models
in [10], and we build on the linearized ARZ model around a steady-state
in the congested regime. The model results in a coupled hyperbolic system
with boundary input. We design the boundary control by the backtepping
method and perform its emulation towards an event-triggered implementa-
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tion. Hence, the boundary control signal is updated according to some policy
while accounting for the information of estimated states (obtained from a
suitable observer) and the error of the sampling scheduling. The triggering
strategy, in turn, relies on a dynamic triggering condition which determines
when the control action has to be updated. In this chapter, we only provide
the results on avoidance of Zeno phenomenon, through the explicit charac-
terization of a minimal inter-sampling time, and on the stability result for
the closed-loop system under the event-triggered output control strategy.

1.2 Preliminaries and problem description

The evolution of traffic density ρ1(t, x) and velocity v1(t, x) (with (t, x) ∈
[0,∞) × [0, L] ) on the downstream road segment and traffic density ρ2(t, s)
and velocity v2(t, s) ((t, s) ∈ [0,∞)×[−L,0]) on the upstream road segment are
modeled by the following ARZ model.

∂t ρi + ∂x (ρivi) = 0, (1.1)

∂t (ρi (vi + pi)) + ∂x (ρivi (vi + pi)) = −
ρi (vi − Vi (ρi))

τi
, (1.2)

where i ∈ {1,2} represents downstream and upstream road respectively. The
labeling of freeway segments is chosen as the reverse direction of traffic flow
but same as the propagation direction of the control signal, which will be
explained later. The traffic pressure pi (ρi) is defined as an increasing function
of the density pi (ρi) = ciρ

γi
i , where γi, ci ∈ R+ = [0,∞) is defined as ci =

vm/ρ
γi
m,i. The coefficient γi represents the overall drivers’ property, reflecting

their change of driving behavior to the increase of density. The changes in γi
may reflect changes in the road properties (e.g. number of lanes). The positive
constant vm represents the maximum velocity and the positive constant ρm,i
is the maximum density defined as the number of vehicles per unit length. The
equilibrium density-velocity relation Vi (ρi) is given by Vi (ρi) = vm − pi (ρi)
for both segments, which assumes the same maximum velocity for the two
segments when there are no vehicles on the road ρi = 0. We define the
following variable

wi = vi + pi (ρi) , (1.3)

which is interpreted as traffic ”friction” or drivers’ property [8]. This property
transports in the traffic flow with vehicle velocity, representing the hetero-
geneity of individual driver with respect to the equilibrium density-velocity
relation Vi (ρi). The maximum velocity vm is assumed to be the same for the
two road segments while the maximum density ρm,i and coefficient γi are al-
lowed to vary. The positive constant τi is the relaxation time that represents
the time scale for traffic velocity vi adapting to the equilibrium density veloc-
ity relation Vi (ρi). We denote the traffic flow rate on each road as qi = ρivi



4 Nicolas Espitia, Jean Auriol, Huan Yu, Miroslav Krstic

Fig. 1.1 Traffic flow on an incoming road and an outgoing road connected with a
junction, actuation is implemented at the outlet with ramp metering.

The equilibrium flow and density relation, also known as the fundamental di-
agram, is then given by Qi (ρi) = ρiV (ρi) = ρivm

(
1 −

(
ρi/ρm,i

)γi ). We assume
that the equilibrium traffic relation is different for the two segments due to
the change of road situations and access to road junction. The illustration
is given in Fig 1.1. The critical density ρc segregates the free and congested
regimes of traffic states. The critical density is given by ρc,i = ρm,i/(1 + γi)

1/γi

such that Q′i(ρ)
��
ρ=ρc

= 0. The traffic is free when the density satisfies ρ < ρc,i .

The traffic is defined as the congested one when the density satisfies ρ > ρc,i.
For the free traffic, oscillations around the steady states will be damped out
fast. For the congested traffic, there are two directional waves on road with
one being the velocity oscillation propagating upstream and the other one
being the density oscillation propagating downstream with the traffic. The
congested traffic can become unstable [18]. We consider the situation that the
upstream road segment 2 for s ∈ [−L,0] has more lanes than the downstream
road segment for x ∈ [0, L], in which congested traffic is usually formed up
from downstream to upstream. Therefore, the maximum density ρm,2 > ρm,1.
The maximum driving speed vm is assumed to be the same for the two seg-
ments. The maximum flow rate of the upstream road Q2 (ρc) is reduced in the
downstream to Q1 (ρc) , due to the change of road conditions from segment 2
to segment 1 .

1.2.1 Actuated boundary

Regarding the boundary conditions connecting the two PDE systems, the
Rankine-Hugoniot condition is satisfied at the junction such that the weak
solution exists for the network (1.1)-(1.2) [14]. This condition implies piece-
wise smooth solutions and corresponds to the conservation of the mass and
of the drivers’ properties defined in (3) at the junction. Thus the flux and
drivers’ property are assumed to be continuous across the boundary condi-
tions at x = 0, that is
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ρ1(t,0)v1(t,0) = ρ2(t,0)v2(t,0), (1.4)

w2(t,0) = w1(t,0). (1.5)

For the open-loop system, we assume a constant inflow q? entering the inlet
boundary s = −L and a constant outflow q? at the outlet boundary for x = L
:

q2(t,−L) = q? (1.6)

q1(t, L) = q? (1.7)

The control problem we solve consists of stabilizing on events the traffic flow
in both the upstream and downstream road segments with a single actuator.
Three possible locations for implementing a ramp metering control input are
either at the inlet x = −L, at the junction x = 0 or at the outlet x = L as
in [17]. However, in this chapter we only present the observer-based event
triggered control results for control input acting on the outlet and that is
updated according to a suitable event-triggering condition. Note that the
other cases could be solved adjusting the proposed techniques.

Ramp metering control Unom(t) from the outlet x = L: The down-
stream outflow at x = L is actuated by Unom(t)

q1(t, L) = q? +Unom(t), (1.8)

where the outflow rate equals the summation of the onramp metering flow and
the constant mainline flow. It should be noted that the designed controller
Unom is the flow rate perturbation around a nominal flow rate. We assume
that the steady-state flow rate consists of a nominal onramp flow rate qr ≥ 0,
which is a component of the steady-state flow rate q?. Then the actual ramp
flow input at an onramp is given by

qramp(t) = qr +Unom(t) ≥ 0. (1.9)

In practice, we only need to guarantee that qramp (t) is nonnegative so that
Unom(t) ≥ −qr . The value of qr depends on the road configuration and real-
time traffic conditions. We assume that there exists qr > 0 such that (1.9)
always holds. Combining the proposed control law with a saturation could
guarantee that the proposed condition is satisfied.

1.2.2 Congested steady states

We are concerned with the congested traffic and assume that the equilibrium
of both segments

(
ρ?1, v

?
1

)
,
(
ρ?2, v

?
2

)
are in the congested regime, which is the

only one of theoretical control interest among all four traffic scenarios in-
cluding free and free, free and congested, congested and free, congested and
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congested. If the traffic of both segments is free, there is no need for ramp
metering control. If the upstream segment 2 is in the free regime and the
downstream segment 1 is congested, then we only need to control the con-
gested downstream traffic with Unom(t) as presented in [19]. The oscillations
propagated from the congested segment to the free regime segment will be
damped out soon. The same applies to the scenario of free traffic in down-
stream segment 1 and congested traffic in upstream segment 2 . The control
objective is to stabilize the traffic flow in the two segments around the steady
states. In practice, the steady states represent the equilibrium state values of
the traffic flow when oscillations are successfully suppressed by our control
design.

The steady states
(
ρ?1, v

?
1

)
,
(
ρ?2, v

?
2

)
are considered to be in the congested

regime and the boundary conditions (1.4) and (1.5) are satisfied, i.e.,

ρ?1v
?
1 = ρ

?
2v
?
2 = q?, (1.10)

w?1 = w?2 = vm, (1.11)

where the steady state velocities satisfy the equilibrium density-velocity rela-
tion v?i = Vi

(
ρ?i

)
. According to (1.3) the constant driver’s property in (1.11)

implies that we have the same maximum velocity vm for the two segments
(which corresponds to our initial assumption):

v?1 + p?1 = v?2 + p?2 = vm, (1.12)

where p?i = pi
(
ρ?i

)
. The steady states can be solved from the above nonlinear

equations (1.10),(1.12) however there are no explicit solutions. Therefore we
show the derivation process for obtaining the steady state values when ρ?1 and
the model parameters vm, ρm,i and γi are given. The functions Vi(ρ), Qi(ρ)
and pi(ρ) are also known. The steady state flow rate in (1.10) is obtained as
q? = Q1

(
ρ?1

)
, and the constant flux Q1

(
ρ?1

)
= Q2

(
ρ?2

)
, yields a relation for the

steady state densities of the two segments
ρ?1ρ

γ1
m,1−(ρ

?
1 )

γ1+1

ρ?2ρ
γ2
m,2−(ρ

?
2 )

γ2+1
=

ρ
γ1
m,1

ρ
γ2
m,2

. Knowing

ρ?1, ρ
?
2 and q?, the steady states velocities are obtained as v?i = q?/ρ?i .

1.2.3 Linearized ARZ model in Riemann coordinates

We linearize the ARZ based traffic network model (ρi, vi) in (1.1),(1.2)
with the boundary conditions (1.4),(1.5),(1.6),(1.7) around the steady states(
ρ?i , v

?
i

)
defined in the previous section. In order to simplify the control de-

sign, the linearized model is then rewritten into the Riemann variables to
which we apply an invertible spatial transformation
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w̄i = exp

(
x

τiv
?
i

) (
γip?i
q?

(
ρivi − ρ

?
i v
?
i

)
+

1

ri

(
vi − v

?
i

) )
, (1.13)

v̄i = vi − v
?
i , (1.14)

where p?i = pi
(
ρ?i

)
and the constant coefficients ri are defined as

ri = −
v?i

γip?i − v
?
i

. (1.15)

For the congested regime we have ρ?i >
ρm,i

(1+γi )
1/γi

so that the characteristic

speed γip?i −v
?
i > 0. The velocity variations v̄1(t, x) v̄2(t, x) transport upstream

which means the action of velocity acceleration or deceleration is repeated
from the leading vehicle to the following vehicle. More precisely, we have p?i =

vm − V
(
ρ?i

)
= vm

(
ρ?i
ρm,i

)γi
> vm, since ρ?i >

ρm,i

(1+γi )
1/γi

Thus, (γi + 2) p?i > 2vm,

which implies γip?i > 2vm − 2p?i = 2v?i . Thus the inequalities −1 < ri < 0 are
satisfied for ri defined in (1.15). The more congested the traffic, the lower
the absolute value of this ratio. The linearized system with the controlled
boundary condition (1.8) is written as

∂t w̄1(t, x) + v?1 ∂xw̄1(t, x) = 0, (1.16)

∂t v̄1(t, x) − (γ1p?1 − v
?
1 )∂x v̄1(t, x) = c̄1(x)w̄1(t, x), (1.17)

∂t w̄2(t, s) + v?2 ∂sw̄2(t, s) = 0, (1.18)

∂t v̄2(t, s) − (γ2p?2 − v
?
2 )∂s v̄2(t, s) = c̄2(x)w̄2(t, s), (1.19)

w̄1(t,0) = w̄2(t,0), (1.20)

v̄1(t, L) = r1 exp

(
−L
τ1v

?
1

)
w̄1(t, L) +

1−r1
ρ?1

Unom(t), (1.21)

w̄2(t,−L) = exp

(
−L
τ2v

?
2

)
1

r2
v̄2(t,−L), (1.22)

v̄2(t,0) = δ
r2
r1
v̄1(t,0) + (1 − δ)r2w̄2(t,0), (1.23)

where s ∈ [−L,0], x ∈ [0, L], and where the spatially varying coefficient c̄i(x)
are defined by c̄i(x) = − 1

τi
exp

(
− x
τiv

?
i

)
. The constant coefficient δ (ratio re-

lated to the traffic pressure of the segments) is defined by δ =
γ2p

?
2

γ1p
?
1

. Although

the cascade structure of the network presents some advantages for the design
of a stabilizing control law (see [17]), it is more convenient for the design of an
event-triggered algorithm to have all the states defined on the same spatial
domain. The control diagram is shown in Fig. 1.2.

To rewrite the states w̄2 and v̄2 as functions defined on [0, L], we consider
the folding transformation x̄ = −s. The variable x̄ belongs to [0, L]. For sake
of simplicity, we will omit the bar and abusively denote w̄2(x̄) = w̄2(x). With
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L−L 0

Unom(t)

v̄2

w̄2

v̄1

w̄1

Fig. 1.2 Traffic flow on an incoming road and an outgoing road connected with a
junction. Actuation is implemented at the outlet with ramp metering.

this transformation, the previous system rewrites

∂t w̄1(t, x) + v?1 ∂xw̄1(t, x) = 0, (1.24)

∂t v̄1(t, x) − (γ1p?1 − v
?
1 )∂x v̄1(t, x) = c1(x)w̄1(t, x), (1.25)

∂t w̄2(t, x) − v?2 ∂xw̄2(t, x) = 0, (1.26)

∂t v̄2(t, x) + (γ2p?2 − v
?
2 )∂x v̄2(t, x) = c2(x)w̄2(t, x), (1.27)

w̄1(t,0) = w̄2(t,0), (1.28)

v̄1(t, L) = r1 exp

(
−L
τ1v

?
1

)
w̄1(t, L) +

1−r1
ρ?1

Unom(t), (1.29)

w̄2(t, L) = exp

(
−L
τ2v

?
2

)
1

r2
v̄2(t, L), (1.30)

v̄2(t,0) = δ
r2
r1
v̄1(t,0) + (1 − δ)r2w̄2(t,0), (1.31)

where x ∈ [0, L], and c1(x) = c̄1(x) and c2(x) = c̄2(−x). The open-loop sys-
tem (1.24)-(1.31) (for which Unom ≡ 0) is well-posed in the sense of the L2

norm (weak solutions) by [4, Theorem A.4], that is, for any initial condi-
tions (v̄0)i, (w̄0)i ∈ (L2([0, L]))2, there is only one L2-solution. It is shown in
[19] that only marginal linear stability holds for the open-loop system of one
segment. The control operator is admissible (i.e. it verifies the so-called ad-
missibility condition as stated in [11]). Consequently, for any UL ∈ L2([0,T])
, and for any initial conditions (v̄0)i, (w̄0)i ∈ (L2([0, L]))2 there is only one
L2-solution to (1.24)-(1.31) . We assume that the available measurement
corresponds to the values of q̄i and v̄i at the left side of the outlet x = L.

Since w̄1(t, L) = exp
(

L
τ1v

?
1

) (
γ1p

?
1

q? q̄1(t, L) − 1
ri
v̄1(t, L)

)
, we can consider that

YL(t) = w̄1(t, L). (1.32)

We make the following non-restrictive assumption so that the proposed feed-
back laws have some (delay)-robustness margins.
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Assumption The boundary couplings of the system (1.24)-(1.31) are such
that

δ <
1+exp( L

τ2v?
2
)

1+exp( −L
τ1v?

1
)

if δ > 1, δ <
1−exp( L

τ2v?
2
)

1−exp( −L
τ1v?

1
)

if δ ≤ 1, (1.33)

If this assumption is not satisfied, then it is not possible to robustly sta-
bilize the system (1.24)-(1.31) when there are input delays (as the open-loop
transfer function would have an infinite chain of poles in the complex right
half-plane) see [17] and [1] for details. Moreover, it can be shown (see [1]) that
this condition implies that the system (1.24)-(1.31) is exponentially stable in
the absence of in-domain couplings and actuation. Thus, this assumption
means that in the absence of in-domain couplings, the system is naturally
dissipative.

The control objective is to simultaneously stabilize the upstream and
downstream traffic to a given spatially uniform constant steady-state. We
propose an output feedback controller located at the outlet of the down-
stream traffic with collocated sensing of flow rate and velocity at the outlet.
The state feedback and observer designs are based on the PDE backstep-
ping methodology. The exponential stability in the sense of L2-norm of the
under-actuated network of two systems of two hyperbolic PDEs is guaran-
teed. Considering the continuous boundary control and estimation designs
need to be implemented into digital platforms, we develop event-triggered
boundary controllers which stabilize the system on events. The proposed
event-triggered controllers are piecewise constant, and the control value is
updated based on a dynamic triggering condition only when needed i.e. once
a given deviation term (that will be defined below) becomes larger that a
Lyapunov functional.

1.3 Output-feedback stabilization and emulation of the
control law

An output-feedback law Unom(t) has been proposed in [17] to stabilize the sys-
tem (1.24)-(1.31). Here, we aim at stabilizing the closed-loop system (1.24)-
(1.31) on events while updating the continuous-time controller Unom(t) at
certain sequence of time instants (tk)k∈N, that will be characterized later on.
The control value is held constant between two successive time instants and
it is updated when some triggering condition is verified. This procedure is
referred to as event-triggering. It is an efficient way to suitably sample the
control value, thus avoiding useless actuation solicitations. To that end, we
need to modify the control law proposed in [17]. More precisely, the con-
trol law Unom(t) will be replaced by Unom(tk) for all t ∈ [tk, tk+1), k ≥ 0.
Consequently, we have Unom(tk) = Unom(t) + d(t), where d can be seen as
a deviation of actuation. In what follows, we recall the observer/controller
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design proposed in [17] using the backstepping transformations since these
transformations will be crucial to prove that our emulated control law still
stabilizes the system (1.24)-(1.31). We define the sets T̄1, T̄2 as follows

T̄1 = {(x, ξ) ∈ [0, L]2, ξ ≥ x}, T̄2 = {(x, ξ) ∈ [0, L]2, ξ ≤ x}. (1.34)

Finally, the set T̄3 is defined as the unit square [0, L]2: T̄3 = {(x, ξ) ∈ [0, L]2}.
The set T̄1 is the upper-part of this square while T̄2 corresponds to its lower
part.

1.3.1 Observer design

The first step for the design of an output-feedback law is the design of a state
estimator. Consider an arbitrary control law Unom(tk) acting on the system
(1.24)-(1.31), for all t ∈ [tk, tk+1). We will defined ŵi and v̂i as the observer
states. The error states are defined as the difference between the real states
and their estimations: w̃i = w̄i− ŵi and ṽi = v̄i− v̂i. A suitable observer system
is defined in [17] by

∂t ŵ1(t, x) + v?1 ∂xŵ1(t, x) = −µ1(x)w̃1(t, L), (1.35)

∂t v̂1(t, x) − (γ1p?1 − v
?
1 )∂x v̂1(t, x) = c1(x)ŵ1(t, x) − ν1(x)w̃1(t, L), (1.36)

∂t ŵ2(t, x) − v?2 ∂xŵ2(t, x) = −µ2(x)w̃1(t, L), (1.37)

∂t v̂2(t, x) + (γ2p?2 − v
?
2 )∂x v̂2(t, x) = c2(x)w̄2(t, x) − ν2(x)w̃1(t, L), (1.38)

ŵ1(t,0) = ŵ2(t,0), (1.39)

v̂1(t, L) = r1 exp

(
−L
τ1v

?
1

)
ŵ1(t, L) +

1−r1
ρ?1

Unom(tk), (1.40)

ŵ2(t, L) = exp

(
−L
τ2v

?
2

)
1

r2
v̂2(t, L), (1.41)

v̂2(t,0) = δ
r2
r1
v̂1(t,0) + (1 − δ)r2ŵ2(t,0), (1.42)

where ŵi, v̂i are the estimates of the state variables w̄i, v̄i in (1.24)-(1.31). The
corresponding initial conditions are L2 functions. The terms µi and νi are the
output injection terms that are given as follows [17]:

µ1(x) = v?1 Nαα
1 (x, L), ν1(x) = v?1 Nβα

1 (x, L), (1.43)

µ2(x) = v?1 Nα(x, L), ν2(x) = v?1 Nβ(x, L), (1.44)

where the kernels Nαα
1 , Nαβ

1 are bounded functions defined on T̄1, the kernels

Nαα
2 , Nαβ

2 are bounded functions defined on T̄2, and the kernels Nα, Nβ are
bounded functions defined on T̄3. They satisfy the following set of equations
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for all (x, ξ) that belong to their respective domain of definition

∂xNαα
i (x, ξ) + ∂ξNαα

i (x, ξ) = 0, (1.45)

(γ1p?1 − v
?
1 )∂xNβα

1 (x, ξ) − v
?
1 ∂ξNβα

1 (x, ξ) = −c1(x)Nαα
1 (x, ξ), (1.46)

(γ2p?2 − v
?
2 )∂xNβα

2 (x, ξ) − v
?
2 ∂ξNβα

2 (x, ξ) = c2(x)Nαα
2 (x, ξ), (1.47)

v?2 ∂xNα(x, ξ) − v?1 ∂ξNα(x, ξ) = 0, (1.48)

(γ2p?2 − v
?
2 )∂xNβ(x, ξ) + v?1 ∂ξNβ(x, ξ) = c2(x)Nα(x, ξ), (1.49)

with the boundary conditions

Nβα
i (x, x) = −

ci(x)
γip?i

, Nαα
1 (0, ξ) = Nα(0, ξ), Nβ(x,0) =

v?2
v?1

Nβα
2 (x,0) (1.50)

Nα(x,0) =
v?2
v?1

Nαα
2 (x,0), Nβ(0, ξ) = δ

r2
r1

Nβα
1 (0, ξ) + (1 − δ)r2Nα(0, ξ), (1.51)

Nα(L, ξ) = exp(−
L

τ2v
?
2

)
1

r2
Nβ(L, ξ), Nαα

2 (L, ξ) = exp(−
L

τ2v
?
2

)
1

r2
Nβα
2 (L, ξ).

(1.52)

Equations (1.45)-(1.52) admit a unique solution, as proved in [17]. It has
been shown in [17] that such an observer guarantees the convergence of the
estimated states to the real states, that is the error states converge to zero.
The error system (that will be useful to design our event-triggered control
law) rewrites as

∂t w̃1(t, x) + v?1 ∂xw̃1(t, x) = µ1(x)w̃1(t, L), (1.53)

∂t ṽ1(t, x) − (γ1p?1 − v
?
1 )∂x ṽ1(t, x) = c1(x)w̃1(t, x) + ν1(x)w̃1(t, L), (1.54)

∂t w̃2(t, x) − v?2 ∂xw̃2(t, x) = µ2(x)w̃1(t, L), (1.55)

∂t ṽ2(t, x) + (γ2p?2 − v
?
2 )∂x ṽ2(t, x) = c2(x)w̃2(t, x) + ν2(x)w̃1(t, L), (1.56)

w̃1(t,0) = w̃2(t,0), (1.57)

ṽ1(t, L) = r1 exp

(
−L
τ1v

?
1

)
w̃1(t, L), (1.58)

w̃2(t, L) = exp

(
−L
τ2v

?
2

)
1

r2
ṽ2(t, L), (1.59)

ṽ2(t,0) = δ
r2
r1
ṽ1(t,0) + (1 − δ)r2w̃2(0) (1.60)

To show that this error system is exponentially stable, we shall consider the
following backstepping transformation
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w̃1(t ,x)
ṽ1(t ,x)
w̃2(t ,x)
ṽ2(t ,x)

)
:=

©«N ©«
α̃1(t ,x)

β̃1(t ,x)
α̃2(t ,x)

β̃2(t ,x)

ª®¬ª®¬ (x) (1.61)

=
©«
α̃1(t ,x)

β̃1(t ,x)
α̃2(t ,x)

β̃2(t ,x)

ª®¬ −
∫ L

0

©«
Nαα
1 (x,ξ)1[x ,L](ξ) 0 0 0

N
βα
1 (x,ξ)1[x ,L](ξ) 0 0 0

Nα (x,ξ) 0 Nαα
2 (x,ξ)1[0,x](ξ) 0

Nβ (x,ξ) 0 N
βα
2 (x,ξ)1[0,x](ξ) 0

ª®®¬
©«
α̃1(t ,ξ)

β̃1(t ,ξ)
α̃2(t ,ξ)

β̃2(t ,ξ)

ª®¬ dξ.

where the different kernels are defined by (1.45)-(1.52). The transforma-
tion (1.61) is invertible. This can be seen, noticing first that the part acting
on the states α̃1 and β̃1 corresponds to a Volterra transformation (which is
always invertible [16]). Then, the part acting on the states α̃2 and β̃2 cor-
responds to Volterra transformation to which is added an affine term that
depends on α̃1 and β̃1. This transformation, maps the error system (1.53)-
(1.60) to the system

∂t α̃i(t, x) + v?i ∂x α̃i(t, x) = 0, (1.62)

∂t β̃i(t, x) − (γip?i − v
?
i )∂x β̃i(t, x) = 0, (1.63)

α̃1(t,0) = α̃2(t,0), (1.64)

β̃1(t, L) = r1 exp

(
−L
τ1v

?
1

)
α̃1(t, L), (1.65)

α̃2(t, L) = exp

(
−L
τ2v

?
2

)
1

r2
β̃2(t, L), (1.66)

β̃2(t,0) = δ
r2
r1
β̃1(t,0) + (1 − δ)r2α̃2(0), (1.67)

This target system is exponentially stable due to Assumption 1. The design of
our event-triggered procedure requires, the inverse transformation of (1.61).
More precisely, we denote R the corresponding inverse transformation. It
satisfies

©«
α̃1(t ,x)

β̃1(t ,x)
α̃2(t ,x)

β̃2(t ,x)

ª®¬ :=

(
R

(
w̃1(t , ·)
ṽ1(t , ·)
w̃2(t , ·)
ṽ2(t , ·)

))
(x) (1.68)

=

(
w̃1(t ,x)
ṽ1(t ,x)
w̃2(t ,x)
ṽ2(t ,x)

)
−

∫ L

0

©«
Rww
1 (x,ξ)1[x ,L](x) 0 0 0

Rvw
1 (x,ξ)1[x ,L](x) 0 0 0

Rw (x,ξ) 0 Rww
2 (x,ξ)1[0,x](x) 0

Rv (x,ξ) 0 Rwv
2 (x,ξ)1[0,x](x) 0

ª®¬
(
w̃1(t ,ξ)
ṽ1(t ,ξ)
w̃2(t ,ξ)
ṽ2(t ,ξ)

)
dξ

Again, the different kernels are bounded functions defined on T̄1 (kernels R · ·1 ),
T̄2 (kernels R · ·2 ) or T̄3 (kernels R ·). They satisfy the following set of equations
on their respective domain of definition
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∂xRww
i (x, ξ) + ∂ξRww

i (x, ξ) = 0, (1.69)

(γip?i − v
?
i )∂xRvw

i (x, ξ) − v
?
i ∂ξRwv

i (x, ξ) = 0, (1.70)

v?2 ∂xRw(x, ξ) − v?1 ∂ξRw(x, ξ) = 0, (1.71)

(γ2p?2 − v
?
2 )∂xRv(x, ξ) + v?2 ∂ξRv(x, ξ) = 0, (1.72)

with the boundary conditions

Rvw
i (x, x) =

ci (x)
γi p

?
i
, Rww

1 (0, ξ) = Rw(0, ξ), (1.73)

Rw(x,0) = v?2
v?1

Rww
2 (x,0), Rv(x,0) = v?2

v?1
Rvw
2 (x,0), (1.74)

Rv(0, ξ) = δ r2r1 Rvw
1 (0, ξ) + (1 − δ)r2Rw(0, ξ), (1.75)

Rw(L, ξ) = exp(− L
τ2v

?
2
) 1r2

Rv(L, ξ), (1.76)

Rww
2 (L, ξ) = exp(− L

τ2v
?
2
) 1r2

Rvw
2 (L, ξ), (1.77)

1.3.2 Output feedback control law (nominal)

Using the proposed observer, we can now design an output-feedback control
law. More precisely, the following control law has been proposed in [17]

Unom(t) =
ρ?1

1−r1

(∫ L

0
Kvw
1 (L, ξ)ŵ1(ξ, t)dξ+Kvv

1 (L, ξ)v̂1(ξ, t)dξ

+

∫ L

0
Kw(L, ξ)ŵ2(ξ, t)dξ

∫ L

0
Kv(L, ξ)v̂2(ξ, t)dξ

)
, (1.78)

where the kernels Kvw
1 and Kvv

1 that are bounded functions defined on T̄2, the
kernels Kvw

2 and Kvv
2 are bounded functions defined on T̄1, and the kernels

Kw and Kv that are bounded functions defined on T̄3. On their corresponding
domain of definition, they verify

(γ1p?1 − v
?
1 )∂xKvw

1 (x, ξ) − v
?
1 ∂ξKvw

1 (x, ξ) = c1(ξ)Kvv
1 (x, ξ), (1.79)

(γ2p?2 − v
?
2 )∂xKvw

2 (x, ξ) − v
?
2 ∂ξKvw

2 (x, ξ) = −c2(ξ)Kvv
2 (x, ξ) (1.80)

∂xKvv
i (x, ξ) + ∂ξKvv

i (x, ξ) = 0, (1.81)(
γ1p?1 − v

?
1

)
∂xKv(x, ξ) −

(
γ2p?2 − v

?
2

)
∂ξKv(x, ξ) = 0, (1.82)(

γ1p?1 − v
?
1

)
∂xKw(x, ξ) + v?2 ∂ξKw(x, ξ) = c2(ξ)Kv(x, ξ), (1.83)

with the boundary conditions
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Kvw
i (x, x) = −

ci(x)
γip?i

,Kvv
1 (x,0) =

v?2
v?1
δKv(x,0), (1.84)

Kv(0, ξ) =
r1
δr2

Kvv
2 (0, ξ),K

v(x, L) = − exp

(
−L
τ2v

?
2

)
Kw(x, L), (1.85)

Kvv
2 (x, L) = − exp

(
−L
τ2v

?
2

)
Kvw
2 (x, L),K

w(0, ξ) =
r1
δr2

Kvw
2 (0, ξ), (1.86)

Kw(x,0) = −(1 − δ)Kv(x,0) +
v?1
v?2

Kvw
1 (x,0). (1.87)

It has been shown in [17] that the kernels equations (1.79)-(1.87) admit a
unique solution. Since the kernels are bounded functions, our control oper-
ator is a linear bounded operator, and the control law Unom is continuous.
It is also strictly proper as it is only composed of integral terms. The expo-
nential stability of the closed-loop system has been shown in [17]. Following
the ideas of [2], we can prove that it is robust with respect to delays in the
actuation and uncertainties on the parameters. For practical implementation
of the ramp metering control input, we need to modulate the changing fre-
quency of the on-ramp traffic light. This is one additional motivation for using
an event-triggered procedure which is a way to implement the continuous-
time controllers into digital forms by updating the input values only when
needed. To show that the closed-loop system (1.24)-(1.31) with the control
law (1.78) is exponentially stable in the sense of the L2 norm, we can use the
backstepping transformation

©«
α̂1(t ,x)

β̂1(t ,x)
α̂2(t ,x)

β̂2(t ,x)

ª®¬ :=

(
K

(
ŵ1(t , ·)
v̂1(t , ·)
ŵ2(t , ·)
v̂2(t , ·)

))
(x) (1.88)

=

(
ŵ1(t , ·)
v̂1(t , ·)
ŵ2(t , ·)
v̂2(t , ·)

)
−

∫ L

0

©«
0 Kvw

1 (x,ξ)1[0,x](ξ) 0 0

0 Kvv
1 (x,ξ)1[0,x](ξ) 0 0

0 Kw (x,ξ) 0 Kvw
2 (x,ξ)1[x ,L](ξ

0 Kv (x,ξ) 0) Kvv
2 (x,ξ)1[x ,L](ξ)

ª®¬
T (

ŵ1(t ,ξ)
v̂1(t ,ξ)
ŵ2(t ,ξ)
v̂2(t ,ξ)

)
dξ

We can show that transformation (1.88) is invertible following the arguments
we have used to show the invertibility of the transformation(1.61). The inverse
transformation (useful to design our event-triggered controller) is given by(

ŵ1(t ,x)
v̂1(t ,x)
ŵ2(t ,x)
v̂2(t ,x)

)
:=

©«L ©«
α̂1(t , ·)

β̂1(t , ·)
α̂2(t , ·)

β̂2(t , ·)

ª®¬ª®¬ (x) (1.89)

=
©«
α̂1(t , ·)

β̂1(t , ·)
α̂2(t , ·)

β̂2(t , ·)

ª®¬ +
∫ L

0

©«
0 L

βα
1 (x,ξ)1[0,x](ξ) 0 0

0 L
ββ
1 (x,ξ)1[0,x](ξ) 0 0

0 Lα (x,ξ) 0 L
βα
2 (x,ξ)1[x ,L](ξ)

0 Lβ (x,ξ) 0 L
ββ
2 (x,ξ)1[x ,L](ξ)

ª®®¬
T ©«

α̂1(t ,ξ)

β̂1(t ,ξ)
α̂2(t ,ξ)

β̂2(t ,ξ)

ª®¬ dξ,
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where the different kernels are bounded functions defined on T̄1 (kernels L · ·2 ),
T̄2 (kernels L · ·1 ) or T̄3 (kernels L ·). They satisfy the following set of equations
on their respective domain of definition

(γip?i − v
?
i )∂xLβαi (x, ξ) − v

?
i ∂ξLβαi (x, ξ) = 0 (1.90)

∂xLββi (x, ξ) + ∂ξLββi (x, ξ) = 0 (1.91)(
γ1p?1 − v

?
1

)
∂xLβ(x, ξ) −

(
γ2p?2 − v

?
2

)
∂ξLβ(x, ξ) = 0 (1.92)(

γ1p?1 − v
?
1

)
∂xLα(x, ξ) + v?2 ∂ξLα(x, ξ) = 0, (1.93)

with the boundary conditions

Lβαi (x, x) = −
ci(x)
γip?i

, Lββ1 (x,0) =
v?2
v?1
δLβ(x,0), (1.94)

Lβ(0, ξ) =
r1
δr2

Lββ2 (0, ξ), Lα(0, ξ) =
r1
δr2

Lβα2 (0, ξ) (1.95)

Lββ2 (x, L) = − exp

(
−L
τ2v

?
2

)
Lβα2 (x, L), (1.96)

Lβ(x, L) = − exp

(
−L
τ2v

?
2

)
Lα(x, L), (1.97)

Lα(x,0) = −(1 − δ)Lβ(x,0) +
v?1
v?2

Lβα1 (x,0). (1.98)

1.3.3 Emulation of the output control law

As aforementioned, we now want to hold the nominal control Unom(t) constant
between two consecutive triggering times. Thus, the emulated version is given
as Unom(tk) = Unom(t) + d(t), for all t ∈ [tk, tk+1). Notice that the output
feedback affects the boundary condition (1.40) and (1.29) when introducing
what we call “deviation of actuation” d(t). Since we need to assess the impact
of the deviation d(t) to the closed-loop system under the event-triggered
implementation, we use transformations (1.88) and (1.98) so that we can work
on a suitable target system exhibiting the deviation d(t) at the boundary, and
from which, we can perform an easier Lyapunov stability analysis. Let us first
apply the backstepping transformation (1.88) on the observer system (1.35)-
(1.42) and compute the corresponding target system. After straightforward
computations, we obtain
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∂t α̂1(t, x) + v?1 ∂x α̂1(t, x) = pµ1 (x)α̃1(t, L) (1.99)

∂t β̂1(t, x) − (γ1p?1 − v
?
1 )∂x β̂1(t, x) = pν1 (x)α̃1(t, L), (1.100)

∂t α̂2(t, x) − v?2 ∂x α̂2(t, x) = pµ2 (x)α̃1(t, L) (1.101)

∂t β̂2(t, x) + (γ2p?2 − v
?
2 )∂x β̂2(t, x) = pν2 (x)α̃1(t, L), (1.102)

α̂1(t,0) = α̂2(t,0), (1.103)

β̂1(t, L) = r1 exp

(
−L
τ1v

?
1

)
α̂1(t, L) +

1−r1
ρ?1

d, (1.104)

α̂2(t, L) exp

(
−L
τ2v

?
2

)
1

r2
β̂2(t, L), (1.105)

β̂2(t,0) = δ
r2
r1
β̂1(t,0) + (1 − δ)r2α̂2(t,0), (1.106)

where

pµ1 (x) = −µ1(x), (1.107)

pν1 (x) = −ν1(x) +
∫ x

0
Kvw
1 (x, ξ)µ1(ξ) + Kvv

1 (x, ξ)ν1(ξ)dξ,

+

∫ L

0
K̄w(x, ξ)µ2(ξ) + Kv(x, ξ)ν2(ξ)dξ, (1.108)

pµ2 (x) = −µ2(x), (1.109)

pν2 (x) = −ν2(x) +
∫ L

x

Kvw
2 (x, ξ)µ2(ξ) + Kvv

2 (x, ξ)ν2(ξ)dξ, (1.110)

Note that the functions pν1 and pν2 are well-defined since they are solutions
of Volterra equations [16]. Using the inverse transformation (1.89), we can
now rewrite the nominal control law Unom defined by (1.78) as a function of
the states α̂i and β̂i

Unom(t) =
ρ?1

1−r1

©«
∫ L

0
( Lβα1 (L,ξ) L

ββ
1 (L,ξ) L

α (L,ξ) Lβ (L,ξ) )
©«
α̂1(t ,ξ)

β̂1(t ,ξ)
α̂2(t ,ξ)

β̂2(t ,ξ)

ª®¬ dξª®¬ (1.111)

an the corresponding emulated version

Unom(tk) =
ρ?1

1−r1

©«
∫ L

0
( Lβα1 (L,ξ) L

ββ
1 (L,ξ) L

α (L,ξ) Lβ (L,ξ) )
©«
α̂1(tk ,ξ)

β̂1(tk ,ξ)
α̂2(tk ,ξ)

β̂2(tk ,ξ)

ª®¬ dξª®¬ (1.112)

for all t ∈ [tk, tk+1). We recall that Unom(tk) = Unom(t) + d(t) where d is given
by
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d(t) = ρ?1
1−r1

©«
∫ L

0
( Lβα1 (L,ξ) L

ββ
1 (L,ξ) L

α (L,ξ) Lβ (L,ξ) )
©«
α̂1(tk ,ξ)−α̂1(t ,ξ)

β̂1(tk ,ξ)−β̂1(t ,ξ)
α̂2(tk ,ξ)−α̂2(t ,ξ)

β̂2(tk ,ξ)−β̂2(t ,ξ)

ª®¬ dξª®¬
(1.113)

The function d (which will be fully characterized along with (tk)k∈N in the
next section) can be viewed as an actuation deviation between the continuous
controller and the event-triggered one. Notice that the nominal control, as
well as its emulated version are expressed in terms of the kernels of transfor-
mation (1.89) and the states of the new target system (1.99)-(1.110). One of
the main advantages of such an expression is that it can be easier to work with
the target system (particularly when considering the input-to-state stability
ISS properties of the system with respect to the deviation d) as well as an
easier study of the growth-in-time of the deviation of actuation d(t) (which is
crucial to prove the avoidance of the so-called Zeno phenomenon). This is of
specific interest when emulating the control law and finding conditions that
guarantee the closed-loop stability under any event-triggered strategy. This
methodology has been used in e.g. [6, 5, 7].

1.4 Observer-based event-triggered boundary control
strategy

In this section we study the observer-based event-triggered boundary con-
trol strategy proposed in this chapter. It encloses an event-trigger mecha-
nism containing a suitable triggering condition (which determines the time
instant at which the controller needs to be updated) and the output back-
stepping feedback controller (1.112). Before we proceed with the definition of
the observer-based event-triggered control, we rewrite first the target systems
(1.62)-(1.67) and (1.99)-(1.106) in the following compact forms:

∂t ỹ(t, x) + Λ∂x ỹ(t, x) = 0, (1.114)

∂t ŷ(t, x) + Λ∂x ŷ(t, x) = F(x)α̃1(t, L), t ∈ R+, x ∈ [0,1] (1.115)

where Λ = diag (Λ+,−Λ−) with

Λ
+ = diag

(
v?1 , (γ2p?2 − v

?
2 )

)
, Λ− = diag

(
(γ1p?1 − v

?
1 ), v

?
2

)
, (1.116)

and F(x) =
(
pµ1 (x), pν2 (x), pν1 (x), pµ2 (x)

)>
. We use the notation ỹ :=

(
ỹ+

ỹ−

)
with ỹ+ :=

(
α̃1
β̃2

)
, ỹ− :=

(
β̃1
α̃2

)
and ŷ :=

(
ŷ+

ŷ−

)
with ŷ+ :=

(
α̂1
β̂2

)
, ŷ− :=

(
β̂1
α̂2

)
. In

addition, the boundary conditions can be rewritten as
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ỹ+(t,0)
ỹ−(t, L)

)
= G

(
ỹ+(t, L)
ỹ−(t,0)

)
,

(
ŷ+(t,0)
ŷ−(t, L)

)
= G

(
ŷ+(t, L)
ŷ−(t,0)

)
+ Bd(t), (1.117)

where B =
(
0,0, 1−r1

ρ?1
,0

)>
, G :=

(
02,2 G+

G− 02,2

)
with G+ =

(
0 1
δ r2r1 (1 − δ)r2

)
and

G− = ©«
r1 exp

(
−L
τ1v

?
1

)
0

0 1
r2

exp
(
−L
τ2v

?
2

)ª®¬.

In addition, using the solutions to (1.94)-(1.98) along with (1.107)-(1.110),
we introduce the following variables:

κα̂1 :=
ρ?1

1−r1

(
v?1 Lβα1 (L, L) − (γ1p?1 − v

?
1 )r1 exp

(
−L
τ1v

?
1

)
Lββ1 (L, L)

)
, (1.118)

κβ̂1 :=
ρ?1

1−r1

(
(γ1p?1 − v

?
1 )L

ββ
1 (L,0) − (γ2p?2 − v

?
2 )δ

r2
r1

Lβ(L,0)
)
, (1.119)

κα̂2 :=
ρ?1

1−r1
(−v?1 Lβα1 (L,0) + v

?
2 Lα(L,0)

− (γ2p?2 − v
?
2 )(1 − δ)r2Lβ(L,0)), (1.120)

κβ̂2 :=
ρ?1

1−r1

(
−v?2

1
r2

exp
(
−L
τ2v

?
2

)
Lα(L, L) + (γ2p?2 − v

?
2 )L

β(L, L)
)
, (1.121)

κα̃1 :=
ρ?1

1−r1

( ∫ L

0
( Lβα1 (L,ξ) L

ββ
1 (L,ξ) Lα (L,ξ) Lβ (L,ξ) )

·
©«
pµ1 (x)

pν1 (x)

pµ2 (x)

pν2 (x)

ª®¬ dξ

)
, (1.122)

ε0 := 2
(
ρ?1

1−r1

)2
max

{ ∫ L

0

(
v?1 ∂ξLβα1 (L, ξ)

)2
,

∫ L

0

(
(γ1p?1 − v

?
1 )∂ξLββ1 (L, ξ)

)2
,∫ L

0

(
v?2 ∂ξLα(L, ξ)

)2 dξ,
∫ L

0

(
(γ2p?2 − v

?
2 )∂ξLβ(L, ξ)

)2
dξ

}
, (1.123)

ε1 := 4
(
(γ1p?1 − v

?
1 )L

ββ
1 (L, L)

)2
, (1.124)

ε2 := 4κ2α̃1 (1.125)

D0 := diag
(
8κ2α̂1,8κ

2
β̂2
,8κ2

β̂1
,8κ2α̂2

)
. (1.126)
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1.4.1 Definition of observer-based event-triggered boundary
controller

The event-triggering condition is based on the evolution of the square of the
actuation deviation (1.113) and of a dynamic variable satisfying a suitable
ODE. It relies, in turn, on a Lyapunov function candidate for the target
systems (1.114)-(1.115) that we define as follows (see [4, Section 5], [15],[13]):

V(ỹ, ŷ) := V1(ỹ) + CV2(ŷ) =

∫ L

0
ỹ>(x)Q(x)ỹ(x)dx + C

∫ L

0
ŷ>(x)Q(x)ŷ(x)dx,

(1.127)
where Q(x) = diag[Q+(x),Q−(x)] = diag[e−µxQ+, eµxQ−] with µ > 0, C >
0, and diagonal positive definite matrices Q− ∈ R2×2 and Q+ ∈ R2×2 and
such that Q(x)Λ = ΛQ(x). Moreover, we use the fact that there exist %, %

(depending on the eigenvalues of Q+, Q− and on µ) such that %‖ ŷ(t, ·)‖2
L2 ≤

V2(ŷ(t, ·)) ≤ %‖ ŷ(t, ·)‖2L2 .

Definition 1 Let θ0, θ1 > 0, η > 0, ν > 0, σ ∈ (0,1). Let ε2 and D0 be
given by (1.125) and (1.126), respectively. Let t 7→ V(ỹ(t, ·), ŷ(t, ·)) be given
by (1.127) with diagonal positive definite matrices Q− ∈ R2×2 and Q+ ∈ R2×2

and C > 0. The observer-based event-triggered boundary control is defined
by considering the following components:
I) (The event-trigger) The times of the events tk ≥ 0 with t0 = 0 form a finite
or countable set of times which is determined by the following rules for some
k ≥ 0:

a) if {t ∈ R+ |t > tk ∧ θ1C
(
1−r1
ρ?1

)2
d2(t) ≥ ν

2σV(t) − 1
θ0

m(t)} = ∅ then the set of

the times of the events is {t0, ..., tk}.

b) if {t ∈ R+ |t > tk ∧ θ1C
(
1−r1
ρ?1

)2
d2(t) ≥ ν

2σV(t) − 1
θ0

m(t)} , ∅, then the next

event time is given by:

tk+1 = inf{t ∈ R+ |t > tk ∧ θ1C
(
1−r1
ρ?1

)2
d2(t) ≥

ν

2
σV(t) −

1

θ0
m(t)}. (1.128)

where the actuation deviation d(t) is given by (1.113) for all t ∈ [tk, tk+1),
and m satisfies the ordinary differential equation,

Ûm(t) = −ηm(t) +

(
θ1C

(
1−r1
ρ?1

)2
d2(t) −

ν

2
σV(t) (1.129)

−2θ0θ1C
(
1−r1
ρ?1

)2 ((
ŷ+(t, L)
ŷ−(t,0)

)>
D0

(
ŷ+(t, L)
ŷ−(t,0)

)
+ ε2α̃

2(t, L)
) )
,

for all t ∈ (tk, tk+1) with η ≥ ν
2 (1 − σ), m(0) = m0 < 0, and m(t−

k
) = m(tk) =

m(t+
k
).
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II) (the control action) The output boundary feedback law is defined by

Unom(tk) =
ρ?1

1−r1

©«
∫ L

0
( Lβα1 (L,ξ) L

ββ
1 (L,ξ) Lα (L,ξ) Lβ (L,ξ) )

©«
α̂1(tk ,ξ)

β̂1(tk ,ξ)
α̂2(tk ,ξ)

β̂2(tk ,ξ)

ª®¬ dξª®¬ ,
(1.130)

for all t ∈ [tk, tk+1).

Remark 1 Although the function V(t) and the function m(t) depend on α̃i(t, ·)
and β̃i(t, ·) (which are a priori unknown), this is not a problem as these func-
tions can be expressed as delayed functions of the measurement y(t) and
of the observer state. Indeed, we have α̃(t, L) = w̃(t, L) = y(t) − ŵ(t, L), which
means that the function α̃(t,1) can be computed from the measurement. From
(1.62)-(1.67), we immediately have for all x ∈ [0,1]

β1(t, x) = r1 exp

(
−L
τ1v

?
1

)
α̃1(t −

(L − x)
γ1p?1 − v

?
1

, L), (1.131)

which means that we can also compute the function β1(t, x) from the mea-
surement. Consider now the function α2(t,0). We have (using the method of
characteristics)

α̃2(t,0) = exp

(
−L
τ2v

?
2

)
(1 − δ)α̃2(t −

1

v?2
−

1

γ2p?2 − v
?
2

,0)

+
δ

r1
exp

(
−L
τ2v

?
2

)
β̃1(t −

1

v?2
−

1

γ2p?2 − v
?
2

,0). (1.132)

Applying the method of characteristics on the term α2(t,0) that appear on
the right side of the above equation, and iterating N times the procedure, we
obtain

α̃2(t,0) = (exp

(
−L
τ2v

?
2

)
(1 − δ))N α̃2(t − N(

1

v?2
+

1

γ2p?2 − v
?
2

),0)

+ F(β̃1(t,0)), (1.133)

where the function F only depends on delayed values of F(β̃−1(t,0)). Choosing
N such that N( 1

v?2
+ 1
γ2p

?
2−v

?
2
) − 1

v?1
and using equation (1.64), we obtain

α̃2(t,0) = (exp

(
−L
τ2v

?
2

)
(1 − δ))N α̃1(t − N(

1

v?2
+

1

γ2p?2 − v
?
2

) +
1

v?1
, L)

+ F(β̃1(t,0)). (1.134)

Thus, we can compute the function α̃2(t,0) using the available measurement.
Using the method of the characteristics, it becomes straightforward to ex-
press α̃i(t, x) and β̃i(t, x) as delayed functions of the available measurements.
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Consequently, the proposed event-triggered strategy is implementable simply
using the available measurement (and the observer state).

We directly have the following lemma.

Lemma 1 Under the definition of the observer-based event triggered bound-
ary control (1.130) with the dynamic trigger condition (1.128), it holds that

θ1C
(
1−r1
ρ?1

)2
d2(t) − ν

2σV(t) + m(t) < 0 and m(t) < 0 for t ∈ [0,T) where

T = limk→∞ (tk).

Proof The proof follows the same lines of [6, Lemma 1].

The following result is useful to analyze the growth-in-time of the actuation
deviation. A suitable characterization is given in the following lemma which
is instrumental to derive the existence of a minimal dwell-time.

Lemma 2 For d(t) given by (1.113), it holds for all t ∈ (tk, tk+1),

( Ûd(t))2 ≤ ε0 1
%CV(t) + ε1d2(t) + ε2α̃2(t, L) +

(
ŷ+(t, L)
ŷ−(t,0)

)>
D0

(
ŷ+(t, L)
ŷ−(t,0)

)
, (1.135)

for some % > 0, and with ε0, ε1, ε2 and D0 given by (1.123), (1.124), (1.125)

and (1.126), respectively.

Proof The proof follows the same lines of [6, Lemma 2].

1.5 Main results

In this section we present our main results: the avoidance of the Zeno phe-
nomenon and the exponential convergence in L2-norm of the closed-loop sys-
tem.

1.5.1 Avoidance of the Zeno phenomenon

We first prove the avoidance of the Zeno phenomenon.

Theorem 1 Under the event-triggered boundary control (1.130)-(1.128) in
Definition 1, with parameters satisfying

θ0θ1 < %
(
ρ?1

1−r1

)2
νσ
4ε0

, (1.136)

there exists a minimal dwell-time τ? > 0 between two triggering times, i.e.
there exists a constant τ? > 0 (independent of the initial conditions) such
that tk+1 − tk ≥ τ?, for all k ≥ 0. Moreover, τ? can be given by
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τ? =

∫ 1

0

1

a0 + a1s + a2s2
ds, (1.137)

with a0 = 1 + ε1 +
1

2θ0
+ η, a1 = 1 + ε1 +

1
2θ0
+ η and a2 = 1

2θ0
.

Proof It follows the methodology employed in [6, 5] and makes uses of esti-
mate (1.135) in Lemma 2.

Remark 2 Since there is a minimal dwell-time (which is uniform and does
not depend on initial conditions), no Zeno solution can appear. This has
a very important consequence as it allows to guarantee the existence and
uniqueness of the closed-loop solution. The solution, can be constructed by
the step method. We omit the details of well-posedness in this chapter, but
we refer to [5, 13] for further details on the notion of the considered solutions.

1.5.2 Lyapunov-based analysis

We perform a Lyapunov-based analysis on the target systems written in com-
pact form i.e. (1.114)-(1.115) and we take into account the proposed event-
triggered control strategy (1.128)- (1.130). In what follows, we define the
following variables

D̄0 = 2θ0θ1

(
1−r1
ρ?1

)2
D0, (1.138)

with D0 given by (1.126);

D1 =

(
Q+(0)Λ+ 02,2

02,2 Q−(L)Λ−

)
, (1.139)

D2 =

(
Q+(L)Λ+ 02,2

02,2 Q−(0)Λ−

)
, (1.140)

for Q(x) as in (1.127), and

D3 =

(
θ2
2 + 2θ0θ1C

(
1−r1
ρ?1

)2
ε2 01,3

03,1 03,3

)
, (1.141)

with some θ2 > 0. The notation 0i, j stands for the matrix with i rows and j
columns whose all components are zero.

Theorem 2 Let θ0 > 0, σ ∈ (0,1), ε0, ε2 be given by (1.123), (1.125),
respectively and D0 be given by (1.138). Let D1, D2 and D3 be given
by (1.139),(1.140) and (1.141), respectively. Let (1.136) hold. If there ex-
ist θ1, θ2 > 0, µ > 0, ν > 0 (thus there exists η ≥ ν

2 (1 − σ)) and diagonal
positive definite matrices Q− ∈ R2×2 and Q+ ∈ R2×2 such that for Q(x) given
in (1.127) the following conditions hold,
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G>D1G − D2 +D3 < 0, (1.142)(
D̄0 + G>D1G − D2 G>D1

(G>D1)
> D1 − θ1I4,4

)
< 0, (1.143)

then, the closed-loop system (1.24)-(1.31) with event-triggered control (1.130),
(1.128) is exponentially convergent in the L2-norm.

Proof It follows by considering the following Lyapunov function candidate
for the target systems (1.114)-(1.115) along with (1.129), defined for all ỹ ∈
L2((0, L);R4), ŷ ∈ L2((0, L);R4) and m ∈ R− by

W(ỹ, ŷ,m) := V(ỹ, ŷ) − m (1.144)

and establishing that the time derivative of (1.144) along the solutions is
upper estimated (after using the sufficient conditions (1.142)-(1.143) and
Lemma 1) as follows:

ÛW(t) ≤ −ν2 (1 − σ)W(t). (1.145)

Using the comparison principle and the bounded invertibility of the backstep-
ping transformations we obtain the exponential convergence in the L2-norm.

Remark 3 In Theorem 2, we have established the exponential convergence
of the closed-loop system to the equilibrium point. We could have obtained
exponential stability if we set m0 = 0. However, if m0 = 0, then m(t) ≤ 0. This
specific issue may affect the conclusion on the existence of a minimal-dwell
as stated in Theorem 1. Hence, we opted to choose m0 strictly negative.

1.6 Numerical simulations

The length of each freeway segment is chosen to be L = 1 km so the to-
tal length of the two connected segments are 2 km. The simulation time
is T = 16 min. The maximum speed limit is vm = 40 m/s = 144 km/h.
We consider 6 lanes for the downstream freeway segment 1. Assuming the
average vehicle length is 5 m plus the minimum safety distance of 50%
vehicle length, the maximum density of the road is obtained as ρm,1 =
6/7.5 vehicles/m = 800 vehicles/km. The upstream segment has less func-
tional lanes thus its maximum density is ρm,2 = 700 vehicles/km. We
take γi = 0.5. The steady states (ρ?1, v

?
1 ) and (ρ?2, v

?
2 ) are chosen respec-

tively as (600 vehicles/km,19.4 km/h) and (488.6 vehicles/km,23.8 km/h),
both of which are in the congested regime. The constant flow rate is
q? = ρ?1v

?
1 = ρ?2v

?
2 = 11640 vehicles/h, same for the two segments. If we

consider the segment 1 with 6 lanes, then the averaged flow rate of each lane
is 1940 vehicles/h/lane. The equilibrium steady state of the downstream road
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Fig. 1.3 Numerical solution of the flow rate and velocity with the ramp meetering
event-triggered output control Unom(tk ) which is updated according to the observer-
based event-triggered output control (1.128) .

has higher density and lower velocity, thus is more congested than the up-
stream road. The relaxation time is τ1 = 90 s and τ2 = 60 s. We use sinusoid
initial conditions for flow rate and velocity field which represent the initial
stop-and-go oscillations on the connected freeway.We perform the simulation
on a time horizon of 16 min.

Event-triggered implementation and closed-loop simulation

The parameters involved in the observer-based event-triggering boundary
controller are r1 = −0.44 , r2 = −0.64, ε0 = 6.4 × 10−3, ε1 = 4.08 × 10−3,
ε2 = 1.73 × 103, κα̂1 = 0.41, κβ̂1 = 3.45, κα̂2 = −1.45, κβ̂2 = −0.94, κα̃1 =
22.19. Then, we select θ0 = 500 , σ = 0.09. Moreover, we perform a line
search on µ while finding θ1, θ2, Q+ and Q− must verify conditions (1.136),
(1.142) and (1.143) (using e.g. semi-definite programming combined with
line search algorithm). We obtain µ = 1.01, θ1 = 0.061, θ2 = 1.3 × 10−3

, Q+ =
(
0.835 0

0 0.476

)
, Q− =

(
1.58 0

0 1.80

)
. We obtain also ν = 5.4 × 10−3,

η = 0.0493, C = 1.76×10−4. Hence, Theorem 2 applies. Moreover, we compute
the minimal dwell-time between two triggering times according to (1.137),
that is τ? = 0.65. We stabilize the system on events under the event-triggered
boundary control (1.130), (1.128). Figure 1.3 shows the numerical solution of
flow rate and velocity with the ramp meetering event-triggered output control
Unom(tk) which is updated according to the observer-based event-triggered
output control (1.128). Figure 1.4 shows the time-evolution of the control
signal (recall that designed controller Unom is the flow rate perturbation
around a nominal flow rate), where we can observe that the updating is
aperiodically, only when needed.
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Fig. 1.4 Time-evolution of the event-triggered output control. The updating is ape-
riodically, according with (1.128).

1.7 Conclusion

In this chapter, we developed an event-triggered boundary output feedback
control for simultaneous stabilization of traffic flow on connected roads. We
built on the linearized ARZ model and designed a ramp metering strategy as
a boundary control, through the backstepping method. The updating of the
control signal is done according to a suitable dynamic triggering condition.
We proved that under this strategy, there exists a uniform minimal dwell-
time (independent of initial conditions), thus avoiding the Zeno phenomenon
and we guaranteed the exponential convergence of the closed-loop system un-
der the proposed event-triggered boundary control. Future work includes the
design of periodic event-triggered control strategy to monitor the triggering
condition periodically, hence, saving computational resources.
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