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Event-triggered output feedback control of traffic flow on cascaded roads

In this chapter, we develop an event-triggered boundary output feedback controller that guarantees the simultaneous stabilization of traffic flow on connected roads. The density and velocity traffic dynamics are described with the linearized Aw-Rascle-Zhang (ARZ) macroscopic traffic partial differential equation (PDE) model, which results in a coupled hyperbolic system. The control objective is to simultaneously stabilize the upstream and downstream traffic to a given spatially uniform constant steady-state that is in the congested regime. To suppress stop-and-go traffic oscillations on the cascaded roads, we consider a ramp metering strategy that regulates the traffic flow rate entering from the on-ramp to the mainline freeway. The ramp metering is located at the outlet with only boundary measurements of flow rate and velocity. The main idea is that the control signal is only updated when an event triggering condition is satisfied. Compared with the continuous input signal, the event-triggered boundary output control presents a more realistic setting to implement by ramp metering on a digital platform. The event-triggered boundary output control design relies on the emulation of the backstepping boundary output feedback and on a dynamic event-triggered

Introduction

Freeway traffic modeling and management have been intensively investigated due to the increasing demand of traffic mobility over the past decades. Various traffic control methods have been studied to regulate freeway traffic systems and mitigate traffic congestion. In particular, we focus on the stopand-go traffic, a common phenomenon appearing on congested freeways. In congested traffic, drivers are forced into the acceleration-and-deceleration cycles. The stop-and-go traffic is characterized by such oscillations and causes increased consumption of fuel and unsafe driving conditions. We are interested in developing control strategies to mitigate stop-and-go oscillations.

Among different models for freeway traffic, macroscopic modeling is particularly suitable to describe the stop-and-go traffic since the propagation of traffic waves is described in the temporal and spatial domain. The macroscopic models predict the evolution of continuous traffic states by employing hyperbolic PDEs to govern traffic density and velocity dynamics. Among the models, the second-order Aw-Rascle-Zhang (ARZ) model [START_REF] Aw | Resurrection of "second order" models of traffic flow[END_REF] [START_REF] Zhang | A non-equilibrium traffic model devoid of gas-like behavior[END_REF] for the stopand-go traffic stands out. Indeed, the ARZ PDE model describes the traffic density and velocity of a freeway segment with two coupled hyperbolic PDEs. For more complex road network structures, the traffic network PDE model is developed in [START_REF] Garavello | Traffic flow on a road network using the aw-rascle model[END_REF] [START_REF] Herty | Coupling conditions for a class of second-order models for traffic flow[END_REF] based on the family of ARZ models. Traffic control strategies are mainly developed and implemented on the traffic management infrastructures, that is, ramp metering and varying speed limits (VSL). Ramp metering controls the traffic lights on a ramp such that the inflow traffic is regulated for the mainline traffic. The VSL regulates traffic velocity by displaying driving velocities that are time-varying and dependent on real-time traffic. Boundary control algorithms have been developed for traffic control of a single freeway segment in [START_REF] Bastin | Stability and Boundary Stabilization of 1-D Hyperbolic Systems[END_REF] [START_REF] Karafyllis | Feedback control of scalar conservation laws with application to density control in freeways by means of variable speed limits[END_REF] [19] [START_REF] Zhang | Pi boundary control of linear hyperbolic balance laws with stabilization of arz traffic flow models[END_REF]. If we consider a traffic control problem on cascaded freeway segments, the application of these control laws needs to assume road homogeneity. In this chapter, we solve the the control problem of stop-and-go traffic congestion on cascaded freeway segments. We adopt the state-of-art second-order macroscopic traffic network models in [START_REF] Herty | Coupling conditions for a class of second-order models for traffic flow[END_REF], and we build on the linearized ARZ model around a steady-state in the congested regime. The model results in a coupled hyperbolic system with boundary input. We design the boundary control by the backtepping method and perform its emulation towards an event-triggered implementa-tion. Hence, the boundary control signal is updated according to some policy while accounting for the information of estimated states (obtained from a suitable observer) and the error of the sampling scheduling. The triggering strategy, in turn, relies on a dynamic triggering condition which determines when the control action has to be updated. In this chapter, we only provide the results on avoidance of Zeno phenomenon, through the explicit characterization of a minimal inter-sampling time, and on the stability result for the closed-loop system under the event-triggered output control strategy.

Preliminaries and problem description

The evolution of traffic density ρ 1 (t, x) and velocity v 1 (t, x) (with (t, x) ∈ [0, ∞) × [0, L] ) on the downstream road segment and traffic density ρ 2 (t, s) and velocity v 2 (t, s) ((t, s) ∈ [0, ∞) × [-L, 0]) on the upstream road segment are modeled by the following ARZ model.

∂ t ρ i + ∂ x (ρ i v i ) = 0, (1.1) 
∂ t (ρ i (v i + p i )) + ∂ x (ρ i v i (v i + p i )) = - ρ i (v i -V i (ρ i )) τ i , (1.2) 
where i ∈ {1, 2} represents downstream and upstream road respectively. The labeling of freeway segments is chosen as the reverse direction of traffic flow but same as the propagation direction of the control signal, which will be explained later. The traffic pressure p i (ρ i ) is defined as an increasing function of the density p i (ρ i ) = c i ρ

γ i
i , where γ i , c i ∈ R + = [0, ∞) is defined as c i = v m /ρ γ i m,i . The coefficient γ i represents the overall drivers' property, reflecting their change of driving behavior to the increase of density. The changes in γ i may reflect changes in the road properties (e.g. number of lanes). The positive constant v m represents the maximum velocity and the positive constant ρ m,i is the maximum density defined as the number of vehicles per unit length. The equilibrium density-velocity relation

V i (ρ i ) is given by V i (ρ i ) = v m -p i (ρ i )
for both segments, which assumes the same maximum velocity for the two segments when there are no vehicles on the road ρ i = 0. We define the following variable

w i = v i + p i (ρ i ) , (1.3) 
which is interpreted as traffic "friction" or drivers' property [START_REF] Fan | Data-fitted first-order traffic models and their secondorder generalizations: Comparison by trajectory and sensor data[END_REF]. This property transports in the traffic flow with vehicle velocity, representing the heterogeneity of individual driver with respect to the equilibrium density-velocity relation V i (ρ i ). The maximum velocity v m is assumed to be the same for the two road segments while the maximum density ρ m,i and coefficient γ i are allowed to vary. The positive constant τ i is the relaxation time that represents the time scale for traffic velocity v i adapting to the equilibrium density velocity relation V i (ρ i ). We denote the traffic flow rate on each road as q i = ρ i v i The equilibrium flow and density relation, also known as the fundamental diagram, is then given by 

Q i (ρ i ) = ρ i V (ρ i ) = ρ i v m 1 -ρ i /ρ m,i γ i .
+ γ i ) 1/γ i such that Q i (ρ) ρ=ρ c = 0.
The traffic is free when the density satisfies ρ < ρ c,i .

The traffic is defined as the congested one when the density satisfies ρ > ρ c,i .

For the free traffic, oscillations around the steady states will be damped out fast. For the congested traffic, there are two directional waves on road with one being the velocity oscillation propagating upstream and the other one being the density oscillation propagating downstream with the traffic. The congested traffic can become unstable [START_REF] Yu | Varying speed limit control of Aw-Rascle-Zhang traffic model[END_REF]. We consider the situation that the upstream road segment 2 for s ∈ [-L, 0] has more lanes than the downstream road segment for x ∈ [0, L], in which congested traffic is usually formed up from downstream to upstream. Therefore, the maximum density ρ m,2 > ρ m,1 .

The maximum driving speed v m is assumed to be the same for the two segments. The maximum flow rate of the upstream road Q 2 (ρ c ) is reduced in the downstream to Q 1 (ρ c ) , due to the change of road conditions from segment 2 to segment 1 .

Actuated boundary

Regarding the boundary conditions connecting the two PDE systems, the Rankine-Hugoniot condition is satisfied at the junction such that the weak solution exists for the network (1.1)-(1.2) [START_REF] Smoller | Shock waves and reaction-diffusion equations[END_REF]. This condition implies piecewise smooth solutions and corresponds to the conservation of the mass and of the drivers' properties defined in (3) at the junction. Thus the flux and drivers' property are assumed to be continuous across the boundary conditions at x = 0, that is

ρ 1 (t, 0)v 1 (t, 0) = ρ 2 (t, 0)v 2 (t, 0), (1.4) w 2 (t, 0) = w 1 (t, 0). (1.5)
For the open-loop system, we assume a constant inflow q entering the inlet boundary s = -L and a constant outflow q at the outlet boundary for x = L :

q 2 (t, -L) = q (1.6) q 1 (t, L) = q (1.7)
The control problem we solve consists of stabilizing on events the traffic flow in both the upstream and downstream road segments with a single actuator. Three possible locations for implementing a ramp metering control input are either at the inlet x = -L, at the junction x = 0 or at the outlet x = L as in [START_REF] Yu | Simultaneous downstream and upstream outputfeedback stabilization of cascaded freeway traffic[END_REF]. However, in this chapter we only present the observer-based event triggered control results for control input acting on the outlet and that is updated according to a suitable event-triggering condition. Note that the other cases could be solved adjusting the proposed techniques.

Ramp metering control U nom (t) from the outlet x = L: The downstream outflow at x = L is actuated by U nom (t)

q 1 (t, L) = q + U nom (t), (1.8) 
where the outflow rate equals the summation of the onramp metering flow and the constant mainline flow. It should be noted that the designed controller U nom is the flow rate perturbation around a nominal flow rate. We assume that the steady-state flow rate consists of a nominal onramp flow rate q r ≥ 0, which is a component of the steady-state flow rate q . Then the actual ramp flow input at an onramp is given by q ramp (t) = q r + U nom (t) ≥ 0.

(1.9)

In practice, we only need to guarantee that q ramp (t) is nonnegative so that U nom (t) ≥ -q r . The value of q r depends on the road configuration and realtime traffic conditions. We assume that there exists q r > 0 such that (1.9) always holds. Combining the proposed control law with a saturation could guarantee that the proposed condition is satisfied.

Congested steady states

We are concerned with the congested traffic and assume that the equilibrium of both segments ρ 1 , v 1 , ρ 2 , v 2 are in the congested regime, which is the only one of theoretical control interest among all four traffic scenarios including free and free, free and congested, congested and free, congested and congested. If the traffic of both segments is free, there is no need for ramp metering control. If the upstream segment 2 is in the free regime and the downstream segment 1 is congested, then we only need to control the congested downstream traffic with U nom (t) as presented in [START_REF] Yu | Traffic congestion control for Aw-Rascle-Zhang model[END_REF]. The oscillations propagated from the congested segment to the free regime segment will be damped out soon. The same applies to the scenario of free traffic in downstream segment 1 and congested traffic in upstream segment 2 . The control objective is to stabilize the traffic flow in the two segments around the steady states. In practice, the steady states represent the equilibrium state values of the traffic flow when oscillations are successfully suppressed by our control design.

The steady states ρ 1 , v 1 , ρ 2 , v 2 are considered to be in the congested regime and the boundary conditions (1.4) and (1.5) are satisfied, i.e.,

ρ 1 v 1 = ρ 2 v 2 = q ,
(1.10)

w 1 = w 2 = v m , (1.11) 
where the steady state velocities satisfy the equilibrium density-velocity relation v i = V i ρ i . According to (1.3) the constant driver's property in (1.11) implies that we have the same maximum velocity v m for the two segments (which corresponds to our initial assumption):

v 1 + p 1 = v 2 + p 2 = v m , (1.12) 
where p i = p i ρ i . The steady states can be solved from the above nonlinear equations (1.10),(1.12) however there are no explicit solutions. Therefore we show the derivation process for obtaining the steady state values when ρ 1 and the model parameters v m , ρ m,i and γ i are given. The functions V i (ρ), Q i (ρ) and p i (ρ) are also known. The steady state flow rate in (1.10) is obtained as q = Q 1 ρ 1 , and the constant flux Q 1 ρ 1 = Q 2 ρ 2 , yields a relation for the steady state densities of the two segments

ρ 1 ρ γ 1 m,1 -(ρ 1 ) γ 1 +1 ρ 2 ρ γ 2 m,2 -(ρ 2 ) γ 2 +1 = ρ γ 1 m,1 ρ γ 2 m,2
. Knowing ρ 1 , ρ 2 and q , the steady states velocities are obtained as v i = q /ρ i .

Linearized ARZ model in Riemann coordinates

We linearize the ARZ based traffic network model

(ρ i , v i ) in (1.1),(1.2)
with the boundary conditions (1.4),(1.5),(1.6),(1.7) around the steady states ρ i , v i defined in the previous section. In order to simplify the control design, the linearized model is then rewritten into the Riemann variables to which we apply an invertible spatial transformation

wi = exp x τ i v i γ i p i q ρ i v i -ρ i v i + 1 r i v i -v i , (1.13) vi = v i -v i , (1.14) 
where p i = p i ρ i and the constant coefficients r i are defined as

r i = - v i γ i p i -v i . (1.15)
For the congested regime we have

ρ i > ρ m, i (1+γ i ) 1/γ i so that the characteristic speed γ i p i -v i > 0.
The velocity variations v1 (t, x) v2 (t, x) transport upstream which means the action of velocity acceleration or deceleration is repeated from the leading vehicle to the following vehicle. More precisely, we have

p i = v m -V ρ i = v m ρ i ρ m, i γ i > v m , since ρ i > ρ m, i (1+γ i ) 1/γ i Thus, (γ i + 2) p i > 2v m , which implies γ i p i > 2v m -2p i = 2v i .
Thus the inequalities -1 < r i < 0 are satisfied for r i defined in (1.15). The more congested the traffic, the lower the absolute value of this ratio. The linearized system with the controlled boundary condition (1.8) is written as

∂ t w1 (t, x) + v 1 ∂ x w1 (t, x) = 0, (1.16) 
∂ t v1 (t, x) -(γ 1 p 1 -v 1 )∂ x v1 (t, x) = c1 (x) w1 (t, x), (1.17) 
∂ t w2 (t, s) + v 2 ∂ s w2 (t, s) = 0, (1.18) 
∂ t v2 (t, s) -(γ 2 p 2 -v 2 )∂ s v2 (t, s) = c2 (x) w2 (t, s), (1.19) w1 (t, 0) = w2 (t, 0), (1.20) v1 (t, L) = r 1 exp -L τ 1 v 1 w1 (t, L) + 1-r 1 ρ 1 U nom (t), (1.21) w2 (t, -L) = exp -L τ 2 v 2 1 r 2 v2 (t, -L), (1.22) v2 (t, 0) = δ r 2 r 1 v1 (t, 0) + (1 -δ)r 2 w2 (t, 0), (1.23) 
where s ∈ [-L, 0], x ∈ [0, L], and where the spatially varying coefficient ci (x) are defined by ci

(x) = -1 τ i exp -x τ i v i
. The constant coefficient δ (ratio related to the traffic pressure of the segments) is defined by δ =

γ 2 p 2 γ 1 p 1
. Although the cascade structure of the network presents some advantages for the design of a stabilizing control law (see [START_REF] Yu | Simultaneous downstream and upstream outputfeedback stabilization of cascaded freeway traffic[END_REF]), it is more convenient for the design of an event-triggered algorithm to have all the states defined on the same spatial domain. The control diagram is shown in Fig. 1.2.

To rewrite the states w2 and v2 as functions defined on [0, L], we consider the folding transformation x = -s. The variable x belongs to [0, L]. For sake of simplicity, we will omit the bar and abusively denote w2 (x) = w2 (x). With this transformation, the previous system rewrites 

∂ t w1 (t, x) + v 1 ∂ x w1 (t, x) = 0, (1.24) ∂ t v1 (t, x) -(γ 1 p 1 -v 1 )∂ x v1 (t, x) = c 1 (x) w1 (t, x), (1.25) ∂ t w2 (t, x) -v 2 ∂ x w2 (t, x) = 0, (1.26) ∂ t v2 (t, x) + (γ 2 p 2 -v 2 )∂ x v2 (t, x) = c 2 (x) w2 (t, x), (1.27) w1 (t, 0) = w2 (t, 0), (1.28) v1 (t, L) = r 1 exp -L τ 1 v 1 w1 (t, L) + 1-r 1 ρ 1 U nom (t), (1.29) 
w2 (t, L) = exp -L τ 2 v 2 1 r 2 v2 (t, L), (1.30) v2 (t, 0) = δ r 2 r 1 v1 (t, 0) + (1 -δ)r 2 w2 (t, 0), ( 1 
(v 0 ) i , ( w0 
) i ∈ (L 2 ([0, L])) 2
, there is only one L 2 -solution. It is shown in [START_REF] Yu | Traffic congestion control for Aw-Rascle-Zhang model[END_REF] that only marginal linear stability holds for the open-loop system of one segment. The control operator is admissible (i.e. it verifies the so-called admissibility condition as stated in [START_REF] Coron | Stabilization and controllability of firstorder integro-differential hyperbolic equations[END_REF]). Consequently, for any

U L ∈ L 2 ([0,T])
, and for any initial conditions

(v 0 ) i , ( w0 
) i ∈ (L 2 ([0, L]))
2 there is only one L 2 -solution to (1.24)-(1.31) . We assume that the available measurement corresponds to the values of qi and vi at the left side of the outlet

x = L. Since w1 (t, L) = exp L τ 1 v 1 γ 1 p 1 q q1 (t, L) -1 r i v1 (t, L) , we can consider that Y L (t) = w1 (t, L). (1.32)
We make the following non-restrictive assumption so that the proposed feedback laws have some (delay)-robustness margins.

Assumption The boundary couplings of the system (1.24)-(1.31) are such that

δ < 1+exp( L τ 2 v 2 ) 1+exp( -L τ 1 v 1 ) if δ > 1, δ < 1-exp( L τ 2 v 2 ) 1-exp( -L τ 1 v 1 ) if δ ≤ 1, (1.33)
If this assumption is not satisfied, then it is not possible to robustly stabilize the system (1.24)-(1.31) when there are input delays (as the open-loop transfer function would have an infinite chain of poles in the complex right half-plane) see [START_REF] Yu | Simultaneous downstream and upstream outputfeedback stabilization of cascaded freeway traffic[END_REF] and [START_REF] Auriol | An explicit mapping from linear first order hyperbolic PDEs to difference systems[END_REF] for details. Moreover, it can be shown (see [START_REF] Auriol | An explicit mapping from linear first order hyperbolic PDEs to difference systems[END_REF]) that this condition implies that the system (1.24)-(1.31) is exponentially stable in the absence of in-domain couplings and actuation. Thus, this assumption means that in the absence of in-domain couplings, the system is naturally dissipative.

The control objective is to simultaneously stabilize the upstream and downstream traffic to a given spatially uniform constant steady-state. We propose an output feedback controller located at the outlet of the downstream traffic with collocated sensing of flow rate and velocity at the outlet. The state feedback and observer designs are based on the PDE backstepping methodology. The exponential stability in the sense of L 2 -norm of the under-actuated network of two systems of two hyperbolic PDEs is guaranteed. Considering the continuous boundary control and estimation designs need to be implemented into digital platforms, we develop event-triggered boundary controllers which stabilize the system on events. The proposed event-triggered controllers are piecewise constant, and the control value is updated based on a dynamic triggering condition only when needed i.e. once a given deviation term (that will be defined below) becomes larger that a Lyapunov functional.

Output-feedback stabilization and emulation of the control law

An output-feedback law U nom (t) has been proposed in [START_REF] Yu | Simultaneous downstream and upstream outputfeedback stabilization of cascaded freeway traffic[END_REF] to stabilize the system (1.24)-(1.31). Here, we aim at stabilizing the closed-loop system (1.24)-(1.31) on events while updating the continuous-time controller U nom (t) at certain sequence of time instants (t k ) k ∈N , that will be characterized later on. The control value is held constant between two successive time instants and it is updated when some triggering condition is verified. This procedure is referred to as event-triggering. It is an efficient way to suitably sample the control value, thus avoiding useless actuation solicitations. To that end, we need to modify the control law proposed in [START_REF] Yu | Simultaneous downstream and upstream outputfeedback stabilization of cascaded freeway traffic[END_REF]. More precisely, the control law U nom (t) will be replaced by

U nom (t k ) for all t ∈ [t k , t k+1 ), k ≥ 0. Consequently, we have U nom (t k ) = U nom (t) + d(t)
, where d can be seen as a deviation of actuation. In what follows, we recall the observer/controller design proposed in [START_REF] Yu | Simultaneous downstream and upstream outputfeedback stabilization of cascaded freeway traffic[END_REF] using the backstepping transformations since these transformations will be crucial to prove that our emulated control law still stabilizes the system (1.24)-(1.31). We define the sets T1 , T2 as follows

T1 = {(x, ξ) ∈ [0, L] 2 , ξ ≥ x}, T2 = {(x, ξ) ∈ [0, L] 2 , ξ ≤ x}. (1.34)
Finally, the set T3 is defined as the unit square [0, L]

2 : T3 = {(x, ξ) ∈ [0, L] 2 }.
The set T1 is the upper-part of this square while T2 corresponds to its lower part.

Observer design

The first step for the design of an output-feedback law is the design of a state estimator. Consider an arbitrary control law U nom (t k ) acting on the system (1.24)-(1.31), for all t ∈ [t k , t k+1 ). We will defined ŵi and vi as the observer states. The error states are defined as the difference between the real states and their estimations: wi = wiŵi and ṽi = vivi . A suitable observer system is defined in [START_REF] Yu | Simultaneous downstream and upstream outputfeedback stabilization of cascaded freeway traffic[END_REF] by

∂ t ŵ1 (t, x) + v 1 ∂ x ŵ1 (t, x) = -µ 1 (x) w1 (t, L), (1.35) 
∂ t v1 (t, x) -(γ 1 p 1 -v 1 )∂ x v1 (t, x) = c 1 (x) ŵ1 (t, x) -ν 1 (x) w1 (t, L), (1.36) ∂ t ŵ2 (t, x) -v 2 ∂ x ŵ2 (t, x) = -µ 2 (x) w1 (t, L), (1.37) 
∂ t v2 (t, x) + (γ 2 p 2 -v 2 )∂ x v2 (t, x) = c 2 (x) w2 (t, x) -ν 2 (x) w1 (t, L), (1.38) ŵ1 (t, 0) = ŵ2 (t, 0), (1.39) v1 (t, L) = r 1 exp -L τ 1 v 1 ŵ1 (t, L) + 1-r 1 ρ 1 U nom (t k ), (1.40) ŵ2 (t, L) = exp -L τ 2 v 2 1 r 2 v2 (t, L), (1.41) v2 (t, 0) = δ r 2 r 1 v1 (t, 0) + (1 -δ)r 2 ŵ2 (t, 0), (1.42) 
where ŵi , vi are the estimates of the state variables wi , vi in (1.24)-(1.31). The corresponding initial conditions are L 2 functions. The terms µ i and ν i are the output injection terms that are given as follows [START_REF] Yu | Simultaneous downstream and upstream outputfeedback stabilization of cascaded freeway traffic[END_REF]:

µ 1 (x) = v 1 N αα 1 (x, L), ν 1 (x) = v 1 N βα 1 (x, L), (1.43) µ 2 (x) = v 1 N α (x, L), ν 2 (x) = v 1 N β (x, L), (1.44) 
where the kernels N αα 1 , N αβ 1 are bounded functions defined on T1 , the kernels N αα 2 , N αβ 2 are bounded functions defined on T2 , and the kernels N α , N β are bounded functions defined on T3 . They satisfy the following set of equations for all (x, ξ) that belong to their respective domain of definition

∂ x N αα i (x, ξ) + ∂ ξ N αα i (x, ξ) = 0, (1.45) (γ 1 p 1 -v 1 )∂ x N βα 1 (x, ξ) -v 1 ∂ ξ N βα 1 (x, ξ) = -c 1 (x)N αα 1 (x, ξ), (1.46) 
(γ 2 p 2 -v 2 )∂ x N βα 2 (x, ξ) -v 2 ∂ ξ N βα 2 (x, ξ) = c 2 (x)N αα 2 (x, ξ), (1.47) v 2 ∂ x N α (x, ξ) -v 1 ∂ ξ N α (x, ξ) = 0, (1.48) (γ 2 p 2 -v 2 )∂ x N β (x, ξ) + v 1 ∂ ξ N β (x, ξ) = c 2 (x)N α (x, ξ), (1.49) 
with the boundary conditions

N βα i (x, x) = - c i (x) γ i p i , N αα 1 (0, ξ) = N α (0, ξ), N β (x, 0) = v 2 v 1 N βα 2 (x, 0) (1.50) N α (x, 0) = v 2 v 1 N αα 2 (x, 0), N β (0, ξ) = δ r 2 r 1 N βα 1 (0, ξ) + (1 -δ)r 2 N α (0, ξ), (1.51) N α (L, ξ) = exp(- L τ 2 v 2 ) 1 r 2 N β (L, ξ), N αα 2 (L, ξ) = exp(- L τ 2 v 2 ) 1 r 2 N βα 2 (L, ξ). (1.52)
Equations (1.45)-(1.52) admit a unique solution, as proved in [START_REF] Yu | Simultaneous downstream and upstream outputfeedback stabilization of cascaded freeway traffic[END_REF]. It has been shown in [START_REF] Yu | Simultaneous downstream and upstream outputfeedback stabilization of cascaded freeway traffic[END_REF] that such an observer guarantees the convergence of the estimated states to the real states, that is the error states converge to zero.

The error system (that will be useful to design our event-triggered control law) rewrites as

∂ t w1 (t, x) + v 1 ∂ x w1 (t, x) = µ 1 (x) w1 (t, L), (1.53) 
∂ t ṽ1 (t, x) -(γ 1 p 1 -v 1 )∂ x ṽ1 (t, x) = c 1 (x) w1 (t, x) + ν 1 (x) w1 (t, L), (1.54) ∂ t w2 (t, x) -v 2 ∂ x w2 (t, x) = µ 2 (x) w1 (t, L), (1.55) 
∂ t ṽ2 (t, x) + (γ 2 p 2 -v 2 )∂ x ṽ2 (t, x) = c 2 (x) w2 (t, x) + ν 2 (x) w1 (t, L), (1.56) w1 (t, 0) = w2 (t, 0), (1.57) ṽ1 (t, L) = r 1 exp -L τ 1 v 1 w1 (t, L), (1.58) w2 (t, L) = exp -L τ 2 v 2 1 r 2 ṽ2 (t, L), (1.59) ṽ2 (t, 0) = δ r 2 r 1 ṽ1 (t, 0) + (1 -δ)r 2 w2 (0) (1.60)
To show that this error system is exponentially stable, we shall consider the following backstepping transformation

w1 (t,x) ṽ1 (t,x) w2 (t,x) ṽ2 (t,x) := N α1 (t,x) β1 (t,x) α2 (t,x) β2 (t,x) (x) (1.61) = α1 (t,x) β1 (t,x) α2 (t,x) β2 (t,x) - ∫ L 0 N αα 1 (x,ξ)1 [x , L] (ξ) 0 0 0 N β α 1 (x,ξ)1 [x , L] (ξ) 0 0 0 N α (x,ξ) 0 N αα 2 (x,ξ)1 [0, x] (ξ) 0 N β (x,ξ) 0 N β α 2 (x,ξ)1 [0, x] (ξ) 0 α1 (t,ξ) β1 (t,ξ) α2 (t,ξ) β2 (t,ξ)
dξ.

where the different kernels are defined by (1.45)-(1.52). The transformation (1.61) is invertible. This can be seen, noticing first that the part acting on the states α1 and β1 corresponds to a Volterra transformation (which is always invertible [START_REF] Yoshida | Lectures on differential and integral equations[END_REF]). Then, the part acting on the states α2 and β2 corresponds to Volterra transformation to which is added an affine term that depends on α1 and β1 . This transformation, maps the error system (1.53)-(1.60) to the system

∂ t αi (t, x) + v i ∂ x αi (t, x) = 0, (1.62) ∂ t βi (t, x) -(γ i p i -v i )∂ x βi (t, x) = 0, (1.63) α1 (t, 0) = α2 (t, 0), (1.64) β1 (t, L) = r 1 exp -L τ 1 v 1 α1 (t, L), (1.65) α2 (t, L) = exp -L τ 2 v 2 1 r 2 β2 (t, L), (1.66) β2 (t, 0) = δ r 2 r 1 β1 (t, 0) + (1 -δ)r 2 α2 (0), (1.67) 
This target system is exponentially stable due to Assumption 1. The design of our event-triggered procedure requires, the inverse transformation of (1.61).

More precisely, we denote R the corresponding inverse transformation. It satisfies

α1 (t,x) β1 (t,x) α2 (t,x) β2 (t,x) := R w1 (t, •) ṽ1 (t, •) w2 (t, •) ṽ2 (t, •) (x) (1.68) = w1 (t,x) ṽ1 (t,x) w2 (t,x) ṽ2 (t,x) - ∫ L 0 R w w 1 (x,ξ)1 [x , L] (x) 0 0 0 R v w 1 (x,ξ)1 [x , L] (x) 0 0 0 R w (x,ξ) 0 R w w 2 (x,ξ)1 [0, x] (x) 0 R v (x,ξ) 0 R w v 2 (x,ξ)1 [0, x] (x) 0 w1 (t,ξ) ṽ1 (t,ξ) w2 (t,ξ) ṽ2 (t,ξ)
dξ Again, the different kernels are bounded functions defined on T1 (kernels

R •• 1 ), T2 (kernels R ••
2 ) or T3 (kernels R • ). They satisfy the following set of equations on their respective domain of definition

∂ x R ww i (x, ξ) + ∂ ξ R ww i (x, ξ) = 0, (1.69) (γ i p i -v i )∂ x R vw i (x, ξ) -v i ∂ ξ R wv i (x, ξ) = 0, (1.70) v 2 ∂ x R w (x, ξ) -v 1 ∂ ξ R w (x, ξ) = 0, (1.71) (γ 2 p 2 -v 2 )∂ x R v (x, ξ) + v 2 ∂ ξ R v (x, ξ) = 0, (1.72)
with the boundary conditions

R vw i (x, x) = c i (x) γ i p i , R ww 1 (0, ξ) = R w (0, ξ), (1.73) R w (x, 0) = v 2 v 1 R ww 2 (x, 0), R v (x, 0) = v 2 v 1 R vw 2 (x, 0), (1.74) R v (0, ξ) = δ r 2 r 1 R vw 1 (0, ξ) + (1 -δ)r 2 R w (0, ξ), (1.75) R w (L, ξ) = exp(-L τ 2 v 2 ) 1 r 2 R v (L, ξ), (1.76) R ww 2 (L, ξ) = exp(-L τ 2 v 2 ) 1 r 2 R vw 2 (L, ξ), (1.77) 

Output feedback control law (nominal)

Using the proposed observer, we can now design an output-feedback control law. More precisely, the following control law has been proposed in [START_REF] Yu | Simultaneous downstream and upstream outputfeedback stabilization of cascaded freeway traffic[END_REF] U nom (t) =

ρ 1 1-r 1 ∫ L 0 K vw 1 (L, ξ) ŵ1 (ξ, t)dξ +K vv 1 (L, ξ)v 1 (ξ, t)dξ + ∫ L 0 K w (L, ξ) ŵ2 (ξ, t)dξ ∫ L 0 K v (L, ξ)v 2 (ξ, t)dξ , (1.78) 
where the kernels K vw 1 and K vv 1 that are bounded functions defined on T2 , the kernels K vw 2 and K vv 2 are bounded functions defined on T1 , and the kernels K w and K v that are bounded functions defined on T3 . On their corresponding domain of definition, they verify

(γ 1 p 1 -v 1 )∂ x K vw 1 (x, ξ) -v 1 ∂ ξ K vw 1 (x, ξ) = c 1 (ξ)K vv 1 (x, ξ), (1.79) 
(γ 2 p 2 -v 2 )∂ x K vw 2 (x, ξ) -v 2 ∂ ξ K vw 2 (x, ξ) = -c 2 (ξ)K vv 2 (x, ξ) (1.80) ∂ x K vv i (x, ξ) + ∂ ξ K vv i (x, ξ) = 0, (1.81) γ 1 p 1 -v 1 ∂ x K v (x, ξ) -γ 2 p 2 -v 2 ∂ ξ K v (x, ξ) = 0, (1.82) γ 1 p 1 -v 1 ∂ x K w (x, ξ) + v 2 ∂ ξ K w (x, ξ) = c 2 (ξ)K v (x, ξ), (1.83) 
with the boundary conditions

K vw i (x, x) = - c i (x) γ i p i , K vv 1 (x, 0) = v 2 v 1 δK v (x, 0), (1.84) K v (0, ξ) = r 1 δr 2 K vv 2 (0, ξ), K v (x, L) = -exp -L τ 2 v 2 K w (x, L), (1.85) 
K vv 2 (x, L) = -exp -L τ 2 v 2 K vw 2 (x, L), K w (0, ξ) = r 1 δr 2 K vw 2 (0, ξ), (1.86) K w (x, 0) = -(1 -δ)K v (x, 0) + v 1 v 2 K vw 1 (x, 0). (1.87)
It has been shown in [START_REF] Yu | Simultaneous downstream and upstream outputfeedback stabilization of cascaded freeway traffic[END_REF] that the kernels equations (1.79)-(1.87) admit a unique solution. Since the kernels are bounded functions, our control operator is a linear bounded operator, and the control law U nom is continuous.

It is also strictly proper as it is only composed of integral terms. The exponential stability of the closed-loop system has been shown in [START_REF] Yu | Simultaneous downstream and upstream outputfeedback stabilization of cascaded freeway traffic[END_REF]. Following the ideas of [START_REF] Auriol | Robust output feedback stabilization for two heterodirectional linear coupled hyperbolic PDEs[END_REF], we can prove that it is robust with respect to delays in the actuation and uncertainties on the parameters. For practical implementation of the ramp metering control input, we need to modulate the changing frequency of the on-ramp traffic light. This is one additional motivation for using an event-triggered procedure which is a way to implement the continuoustime controllers into digital forms by updating the input values only when needed. To show that the closed-loop system ( 

:= K ŵ1 (t, •) v1 (t, •) ŵ2 (t, •) v2 (t, •) (x) (1.88) = ŵ1 (t, •) v1 (t, •) ŵ2 (t, •) v2 (t, •) - ∫ L 0 0 K v w 1 (x,ξ)1 [0, x] (ξ) 0 0 0 K v v 1 (x,ξ)1 [0, x] (ξ) 0 0 0 K w (x,ξ) 0 K v w 2 (x,ξ)1 [x , L] (ξ 0 K v (x,ξ) 0) K v v 2 (x,ξ)1 [x , L] (ξ) T ŵ1 (t,ξ) v1 (t,ξ) ŵ2 (t,ξ) v2 (t,ξ) dξ
We can show that transformation (1.88) is invertible following the arguments we have used to show the invertibility of the transformation(1.61). The inverse transformation (useful to design our event-triggered controller) is given by

ŵ1 (t,x) v1 (t,x) ŵ2 (t,x) v2 (t,x) := L α1 (t, •) β1 (t, •) α2 (t, •) β2 (t, •) (x) (1.89) = α1 (t, •) β1 (t, •) α2 (t, •) β2 (t, •) + ∫ L 0 0 L β α 1 (x,ξ)1 [0, x] (ξ) 0 0 0 L β β 1 (x,ξ)1 [0, x] (ξ) 0 0 0 L α (x,ξ) 0 L β α 2 (x,ξ)1 [x , L] (ξ) 0 L β (x,ξ) 0 L β β 2 (x,ξ)1 [x , L] (ξ) T α1 (t,ξ) β1 (t,ξ) α2 (t,ξ) β2 (t,ξ) dξ,
where the different kernels are bounded functions defined on T1 (kernels L •• 2 ), T2 (kernels L •• 1 ) or T3 (kernels L • ). They satisfy the following set of equations on their respective domain of definition

(γ i p i -v i )∂ x L βα i (x, ξ) -v i ∂ ξ L βα i (x, ξ) = 0 (1.90) ∂ x L ββ i (x, ξ) + ∂ ξ L ββ i (x, ξ) = 0 (1.91) γ 1 p 1 -v 1 ∂ x L β (x, ξ) -γ 2 p 2 -v 2 ∂ ξ L β (x, ξ) = 0 (1.92) γ 1 p 1 -v 1 ∂ x L α (x, ξ) + v 2 ∂ ξ L α (x, ξ) = 0, (1.93)
with the boundary conditions 

L βα i (x, x) = - c i (x) γ i p i , L ββ 1 (x, 0) = v 2 v 1 δL β (x, 0), (1.94) L β (0, ξ) = r 1 δr 2 L ββ 2 (0, ξ), L α (0, ξ) = r 1 δr 2 L βα 2 (0, ξ) (1.95) L ββ 2 (x, L) = -exp -L τ 2 v 2 L βα 2 (x, L), (1.96) L β (x, L) = -exp -L τ 2 v 2 L α (x, L), (1.97) L α (x, 0) = -(1 -δ)L β (x, 0) + v 1 v 2 L βα 1 (x, 0). ( 1 
∂ t α1 (t, x) + v 1 ∂ x α1 (t, x) = p µ 1 (x)α 1 (t, L) (1.99) ∂ t β1 (t, x) -(γ 1 p 1 -v 1 )∂ x β1 (t, x) = p ν 1 (x)α 1 (t, L), (1.100) ∂ t α2 (t, x) -v 2 ∂ x α2 (t, x) = p µ 2 (x)α 1 (t, L) (1.101) ∂ t β2 (t, x) + (γ 2 p 2 -v 2 )∂ x β2 (t, x) = p ν 2 (x)α 1 (t, L), (1.102) α1 (t, 0) = α2 (t, 0), (1.103) β1 (t, L) = r 1 exp -L τ 1 v 1 α1 (t, L) + 1-r 1 ρ 1 d, (1.104) α2 (t, L) exp -L τ 2 v 2 1 r 2 β2 (t, L), (1.105) β2 (t, 0) = δ r 2 r 1 β1 (t, 0) + (1 -δ)r 2 α2 (t, 0), (1.106)
where

p µ 1 (x) = -µ 1 (x), (1.107) p ν 1 (x) = -ν 1 (x) + ∫ x 0 K vw 1 (x, ξ)µ 1 (ξ) + K vv 1 (x, ξ)ν 1 (ξ)dξ, + ∫ L 0 Kw (x, ξ)µ 2 (ξ) + K v (x, ξ)ν 2 (ξ)dξ, (1.108) 
p µ 2 (x) = -µ 2 (x), (1.109) 
p ν 2 (x) = -ν 2 (x) + ∫ L x K vw 2 (x, ξ)µ 2 (ξ) + K vv 2 (x, ξ)ν 2 (ξ)dξ, (1.110)
Note that the functions p ν 1 and p ν 2 are well-defined since they are solutions of Volterra equations [START_REF] Yoshida | Lectures on differential and integral equations[END_REF]. Using the inverse transformation (1.89), we can now rewrite the nominal control law U nom defined by (1.78) as a function of the states αi and βi

U nom (t) = ρ 1 1-r 1 ∫ L 0 ( L β α 1 (L,ξ) L β β 1 (L,ξ) L α (L,ξ) L β (L,ξ) ) α1 (t,ξ) β1 (t,ξ) α2 (t,ξ) β2 (t,ξ) dξ (1.111)
an the corresponding emulated version

U nom (t k ) = ρ 1 1-r 1 ∫ L 0 ( L β α 1 (L,ξ) L β β 1 (L,ξ) L α (L,ξ) L β (L,ξ) ) α1 (t k ,ξ) β1 (t k ,ξ) α2 (t k ,ξ) β2 (t k ,ξ) dξ (1.112) for all t ∈ [t k , t k+1 ). We recall that U nom (t k ) = U nom (t) + d(t)
where d is given by

d(t) = ρ 1 1-r 1 ∫ L 0 ( L β α 1 (L,ξ) L β β 1 (L,ξ) L α (L,ξ) L β (L,ξ) ) α1 (t k ,ξ)-α1 (t,ξ) β1 (t k ,ξ)-β1 (t,ξ) α2 (t k ,ξ)-α2 (t,ξ) β2 (t k ,ξ)-β2 (t,ξ) dξ (1.
113) The function d (which will be fully characterized along with (t k ) k ∈N in the next section) can be viewed as an actuation deviation between the continuous controller and the event-triggered one. Notice that the nominal control, as well as its emulated version are expressed in terms of the kernels of transformation (1.89) and the states of the new target system (1.99)-(1.110). One of the main advantages of such an expression is that it can be easier to work with the target system (particularly when considering the input-to-state stability ISS properties of the system with respect to the deviation d) as well as an easier study of the growth-in-time of the deviation of actuation d(t) (which is crucial to prove the avoidance of the so-called Zeno phenomenon). This is of specific interest when emulating the control law and finding conditions that guarantee the closed-loop stability under any event-triggered strategy. This methodology has been used in e.g. [START_REF] Espitia | Event-based boundary control of a linear 2x2 hyperbolic system via backstepping approach[END_REF][START_REF] Espitia | Observer-based event-triggered boundary control of a linear 2 x 2 hyperbolic systems[END_REF][START_REF] Espitia | Event-triggered varying speed limit control for stop-and-go traffic[END_REF].

Observer-based event-triggered boundary control strategy

In this section we study the observer-based event-triggered boundary control strategy proposed in this chapter. It encloses an event-trigger mechanism containing a suitable triggering condition (which determines the time instant at which the controller needs to be updated) and the output backstepping feedback controller (1.112). Before we proceed with the definition of the observer-based event-triggered control, we rewrite first the target systems (1.62)-(1.67) and (1.99)-(1.106) in the following compact forms:

∂ t ỹ(t, x) + Λ∂ x ỹ(t, x) = 0, (1.114) 
∂ t ŷ(t, x) + Λ∂ x ŷ(t, x) = F(x)α 1 (t, L), t ∈ R + , x ∈ [0, 1] (1.115) 
where Λ = diag (Λ + , -Λ -) with

Λ + = diag v 1 , (γ 2 p 2 -v 2 ) , Λ -= diag (γ 1 p 1 -v 1 ), v 2 , (1.116) 
and

F(x) = p µ 1 (x), p ν 2 (x), p ν 1 (x), p µ 2 (x)
. We use the notation ỹ := ỹ+ ỹwith ỹ+ := α1 β2 , ỹ-:= β1 α2 and ŷ := ŷ+ ŷ-with ŷ+ := α1 β2 , ŷ-:= β1 α2 . In addition, the boundary conditions can be rewritten as

ỹ+ (t, 0) ỹ-(t, L) = G ỹ+ (t, L) ỹ-(t, 0) , ŷ+ (t, 0) ŷ-(t, L) = G ŷ+ (t, L) ŷ-(t, 0) + Bd(t), (1.117) 
where B = 0, 0,

1-r 1 ρ 1 , 0 , G := 0 2,2 G + G -0 2,2 with G + = 0 1 δ r 2 r 1 (1 -δ)r 2
and

G -= r 1 exp -L τ 1 v 1 0 0 1 r 2 exp -L τ 2 v 2 .
In addition, using the solutions to (1.94)-(1.98) along with (1.107)-(1.110), we introduce the following variables:

κ α1 := ρ 1 1-r 1 v 1 L βα 1 (L, L) -(γ 1 p 1 -v 1 )r 1 exp -L τ 1 v 1 L ββ 1 (L, L) , (1.118) κ β1 := ρ 1 1-r 1 (γ 1 p 1 -v 1 )L ββ 1 (L, 0) -(γ 2 p 2 -v 2 )δ r 2 r 1 L β (L, 0) , (1.119) 
κ α2 := ρ 1 1-r 1 (-v 1 L βα 1 (L, 0) + v 2 L α (L, 0) -(γ 2 p 2 -v 2 )(1 -δ)r 2 L β (L, 0)), (1.120) 
κ β2 := ρ 1 1-r 1 -v 2 1 r 2 exp -L τ 2 v 2 L α (L, L) + (γ 2 p 2 -v 2 )L β (L, L) , (1.121) 
κ α1 := ρ 1 1-r 1 ∫ L 0 ( L β α 1 (L,ξ) L β β 1 (L,ξ) L α (L,ξ) L β (L,ξ) ) • p µ 1 (x) p ν 1 (x) p µ 2 (x) p ν 2 (x) dξ , (1.122) 
ε 0 := 2 ρ 1 1-r 1 2 max ∫ L 0 v 1 ∂ ξ L βα 1 (L, ξ) 2 , ∫ L 0 (γ 1 p 1 -v 1 )∂ ξ L ββ 1 (L, ξ) 2 , ∫ L 0 v 2 ∂ ξ L α (L, ξ) 2 dξ, ∫ L 0 (γ 2 p 2 -v 2 )∂ ξ L β (L, ξ) 2 dξ , (1.123) 
ε 1 := 4 (γ 1 p 1 -v 1 )L ββ 1 (L, L) 2 , (1.124) 
ε 2 := 4κ 2 α1
(1.125)

D 0 := diag 8κ 2 α1 , 8κ 2 β2 , 8κ 2 β1 
, 8κ 2 α2 .

(1.126)

Definition of observer-based event-triggered boundary controller

The event-triggering condition is based on the evolution of the square of the actuation deviation (1.113) and of a dynamic variable satisfying a suitable ODE. It relies, in turn, on a Lyapunov function candidate for the target systems (1.114)-(1.115) that we define as follows (see [4, Section 5], [START_REF] Vazquez | Collocated output-feedback stabilization of a 2 × 2 quasilinear hyperbolic system using backstepping[END_REF], [START_REF] Prieur | Stability of switched linear hyperbolic systems by Lyapunov techniques[END_REF]):

V(ỹ, ŷ) := V 1 (ỹ) + CV 2 (ŷ) = ∫ L 0 ỹ (x)Q(x)ỹ(x)dx + C ∫ L 0 ŷ (x)Q(x)ŷ(x)dx, (1.127) where Q(x) = diag[Q + (x), Q -(x)] = diag[e -µx Q + , e µx Q -] with µ > 0, C > 0, and diagonal positive definite matrices Q -∈ R 2×2 and Q + ∈ R 2×2 and such that Q(x)Λ = ΛQ(x)
. Moreover, we use the fact that there exist , (depending on the eigenvalues of Q + , Q -and on µ) such that ŷ(t,

•) 2 L 2 ≤ V 2 (ŷ(t, •)) ≤ ŷ(t, •) 2 L 2
. Definition 1 Let θ 0 , θ 1 > 0, η > 0, ν > 0, σ ∈ (0, 1). Let ε 2 and D 0 be given by (1.125) and (1.126), respectively. Let t → V(ỹ(t, •), ŷ(t, •)) be given by (1.127) with diagonal positive definite matrices Q -∈ R 2×2 and Q + ∈ R 2×2 and C > 0. The observer-based event-triggered boundary control is defined by considering the following components: I) (The event-trigger) The times of the events t k ≥ 0 with t 0 = 0 form a finite or countable set of times which is determined by the following rules for some k ≥ 0:

a) if {t ∈ R + |t > t k ∧ θ 1 C 1-r 1 ρ 1 2 d 2 (t) ≥ ν
2 σV(t) -1 θ 0 m(t)} = ∅ then the set of the times of the events is {t 0 , ...,

t k }. b) if {t ∈ R + |t > t k ∧ θ 1 C 1-r 1 ρ 1 2 d 2 (t) ≥ ν
2 σV(t) -1 θ 0 m(t)} ∅, then the next event time is given by:

t k+1 = inf {t ∈ R + |t > t k ∧ θ 1 C 1-r 1 ρ 1 2 d 2 (t) ≥ ν 2 σV(t) - 1 θ 0 m(t)}. (1.128)
where the actuation deviation d(t) is given by (1.113) for all t ∈ [t k , t k+1 ), and m satisfies the ordinary differential equation,

m(t) = -ηm(t) + θ 1 C 1-r 1 ρ 1 2 d 2 (t) - ν 2 σV(t) (1.129) -2θ 0 θ 1 C 1-r 1 ρ 1 2 ŷ+ (t, L) ŷ-(t, 0) D 0 ŷ+ (t, L) ŷ-(t, 0) + ε 2 α2 (t, L) , for all t ∈ (t k , t k+1 ) with η ≥ ν 2 (1 -σ), m(0) = m 0 < 0, and m(t - k ) = m(t k ) = m(t + k ).
II) (the control action) The output boundary feedback law is defined by

U nom (t k ) = ρ 1 1-r 1 ∫ L 0 ( L β α 1 (L,ξ) L β β 1 (L,ξ) L α (L,ξ) L β (L,ξ) ) α1 (t k ,ξ) β1 (t k ,ξ) α2 (t k ,ξ) β2 (t k ,ξ)
dξ ,

(1.130) for all t ∈ [t k , t k+1 ).

Remark 1 Although the function V(t) and the function m(t) depend on αi (t, •) and βi (t, •) (which are a priori unknown), this is not a problem as these functions can be expressed as delayed functions of the measurement y(t) and of the observer state. Indeed, we have α(t, L) = w(t, L) = y(t) -ŵ(t, L), which means that the function α(t, 1) can be computed from the measurement. From (1.62)-(1.67), we immediately have for all x ∈ [0, 1]

β 1 (t, x) = r 1 exp -L τ 1 v 1 α1 (t - (L -x) γ 1 p 1 -v 1 , L), (1.131) 
which means that we can also compute the function β 1 (t, x) from the measurement. Consider now the function α 2 (t, 0). We have (using the method of characteristics)

α2 (t, 0) = exp -L τ 2 v 2 (1 -δ)α 2 (t - 1 v 2 - 1 γ 2 p 2 -v 2 , 0) + δ r 1 exp -L τ 2 v 2 β1 (t - 1 v 2 - 1 γ 2 p 2 -v 2 , 0). (1.132)
Applying the method of characteristics on the term α 2 (t, 0) that appear on the right side of the above equation, and iterating N times the procedure, we obtain

α2 (t, 0) = (exp -L τ 2 v 2 (1 -δ)) N α2 (t -N( 1 v 2 + 1 γ 2 p 2 -v 2 ), 0) + F( β1 (t, 0)), (1.133) 
where the function F only depends on delayed values of F( β-1(t, 0)). Choosing N such that N(

1 v 2 + 1 γ 2 p 2 -v 2 ) -1 v 1
and using equation (1.64), we obtain

α2 (t, 0) = (exp -L τ 2 v 2 (1 -δ)) N α1 (t -N( 1 v 2 + 1 γ 2 p 2 -v 2 ) + 1 v 1 , L) + F( β1 (t, 0)).
(1.134) Thus, we can compute the function α2 (t, 0) using the available measurement.

Using the method of the characteristics, it becomes straightforward to express αi (t, x) and βi (t, x) as delayed functions of the available measurements.

Consequently, the proposed event-triggered strategy is implementable simply using the available measurement (and the observer state).

We directly have the following lemma.

Lemma 1 Under the definition of the observer-based event triggered boundary control (1.130) with the dynamic trigger condition (1.128), it holds that

θ 1 C 1-r 1 ρ 1 2 d 2 (t) -ν 2 
σV(t) + m(t) < 0 and m(t) < 0 for t ∈ [0,T) where T = lim k→∞ (t k ).

Proof The proof follows the same lines of [6, Lemma 1].

The following result is useful to analyze the growth-in-time of the actuation deviation. A suitable characterization is given in the following lemma which is instrumental to derive the existence of a minimal dwell-time.

Lemma 2 For d(t) given by (1.113), it holds for all t ∈ (t k , t k+1 ),

( d(t)) 2 ≤ ε 0 1 C V(t) + ε 1 d 2 (t) + ε 2 α2 (t, L) + ŷ+ (t, L) ŷ-(t, 0) D 0 ŷ+ (t, L) ŷ-(t, 0) , (1.135) 
for some > 0, and with ε 0 , ε 1 , ε 2 and D 0 given by (1.123), (1.124), (1.125) and (1.126), respectively.

Proof The proof follows the same lines of [6, Lemma 2].

Main results

In this section we present our main results: the avoidance of the Zeno phenomenon and the exponential convergence in L 2 -norm of the closed-loop system.

Avoidance of the Zeno phenomenon

We first prove the avoidance of the Zeno phenomenon.

Theorem 1 Under the event-triggered boundary control (1.130)-(1.128) in Definition 1, with parameters satisfying

θ 0 θ 1 < ρ 1 1-r 1 2 νσ 4ε 0 , (1.136) 
there exists a minimal dwell-time τ > 0 between two triggering times, i.e. there exists a constant τ > 0 (independent of the initial conditions) such that t k+1t k ≥ τ , for all k ≥ 0. Moreover, τ can be given by

τ = ∫ 1 0 1 a 0 + a 1 s + a 2 s 2 ds, (1.137) with a 0 = 1 + ε 1 + 1 2θ 0 + η, a 1 = 1 + ε 1 + 1 2θ 0 + η and a 2 = 1 2θ 0 .
Proof It follows the methodology employed in [START_REF] Espitia | Event-based boundary control of a linear 2x2 hyperbolic system via backstepping approach[END_REF][START_REF] Espitia | Observer-based event-triggered boundary control of a linear 2 x 2 hyperbolic systems[END_REF] and makes uses of estimate (1.135) in Lemma 2.

Remark 2 Since there is a minimal dwell-time (which is uniform and does not depend on initial conditions), no Zeno solution can appear. This has a very important consequence as it allows to guarantee the existence and uniqueness of the closed-loop solution. The solution, can be constructed by the step method. We omit the details of well-posedness in this chapter, but we refer to [START_REF] Espitia | Observer-based event-triggered boundary control of a linear 2 x 2 hyperbolic systems[END_REF][START_REF] Prieur | Stability of switched linear hyperbolic systems by Lyapunov techniques[END_REF] for further details on the notion of the considered solutions.

Lyapunov-based analysis

We perform a Lyapunov-based analysis on the target systems written in compact form i. 

= 2θ 0 θ 1 1-r 1 ρ 1 2 D 0 , (1.138) 
with D 0 given by (1.126);

D 1 = Q + (0)Λ + 0 2,2 0 2,2 Q -(L)Λ -, (1.139) 
D 2 = Q + (L)Λ + 0 2,2 0 2,2 Q -(0)Λ -, (1.140) 
for Q(x) as in (1.127), and

D 3 = θ 2 2 + 2θ 0 θ 1 C 1-r 1 ρ 1 2 ε 2 0 1,3 0 3,1 0 3,3 , (1.141) 
with some θ 2 > 0. The notation 0 i, j stands for the matrix with i rows and j columns whose all components are zero.

Theorem 2 Let θ 0 > 0, σ ∈ (0, 1), ε 0 , ε 2 be given by (1.123), (1.125), respectively and D 0 be given by (1.138). Let D 1 , D 2 and D 3 be given by (1.139),(1.140) and (1.141), respectively. Let (1.136) hold. If there exist θ 1 , θ 2 > 0, µ > 0, ν > 0 (thus there exists η ≥ ν 2 (1 -σ)) and diagonal positive definite matrices Q and establishing that the time derivative of (1.144) along the solutions is upper estimated (after using the sufficient conditions (1.142)-(1.143) and Lemma 1) as follows:

-∈ R 2×2 and Q + ∈ R 2×2 such that for Q(x) given in (1.127) the following conditions hold, G D 1 G -D 2 + D 3 < 0, (1.142) D0 + G D 1 G -D 2 G D 1 (G D 1 ) D 1 -θ 1 I 4,4 < 0, ( 1 
W(t) ≤ -ν 2 (1 -σ)W(t). (1.145)
Using the comparison principle and the bounded invertibility of the backstepping transformations we obtain the exponential convergence in the L 2 -norm.

Remark 3 In Theorem 2, we have established the exponential convergence of the closed-loop system to the equilibrium point. We could have obtained exponential stability if we set m 0 = 0. However, if m 0 = 0, then m(t) ≤ 0. This specific issue may affect the conclusion on the existence of a minimal-dwell as stated in Theorem 1. Hence, we opted to choose m 0 strictly negative.

Numerical simulations

The length of each freeway segment is chosen to be L = 1 km so the total length of the two connected segments are 2 km. The simulation time is T = 16 min. The maximum speed limit is v m = 40 m/s = 144 km/h. We consider 6 lanes for the downstream freeway segment 1. Assuming the average vehicle length is 5 m plus the minimum safety distance of 50% vehicle length, the maximum density of the road is obtained as ρ m,1 = 6/7.5 vehicles/m = 800 vehicles/km. The upstream segment has less functional lanes thus its maximum density is ρ m,2 = 700 vehicles/km. We take γ i = 0.5. The steady states (ρ 1 , v 1 ) and (ρ 2 , v 2 ) are chosen respectively as (600 vehicles/km, 19.4 km/h) and (488.6 vehicles/km, 23.8 km/h), both of which are in the congested regime. The constant flow rate is q = ρ 1 v 1 = ρ 2 v 2 = 11640 vehicles/h, same for the two segments. If we consider the segment 1 with 6 lanes, then the averaged flow rate of each lane is 1940 vehicles/h/lane. The equilibrium steady state of the downstream road , Q + = 0.835 0 0 0.476 , Q -= 1.58 0 0 1.80 . We obtain also ν = 5.4 × 10 -3 , η = 0.0493, C = 1.76×10 -4 . Hence, Theorem 2 applies. Moreover, we compute the minimal dwell-time between two triggering times according to (1.137), that is τ = 0.65. We stabilize the system on events under the event-triggered boundary control (1.130), (1.128). Figure 1.3 shows the numerical solution of flow rate and velocity with the ramp meetering event-triggered output control U nom (t k ) which is updated according to the observer-based event-triggered output control (1.128). Figure 1.4 shows the time-evolution of the control signal (recall that designed controller U nom is the flow rate perturbation around a nominal flow rate), where we can observe that the updating is aperiodically, only when needed. 

Conclusion

In this chapter, we developed an event-triggered boundary output feedback control for simultaneous stabilization of traffic flow on connected roads. We built on the linearized ARZ model and designed a ramp metering strategy as a boundary control, through the backstepping method. The updating of the control signal is done according to a suitable dynamic triggering condition. We proved that under this strategy, there exists a uniform minimal dwelltime (independent of initial conditions), thus avoiding the Zeno phenomenon and we guaranteed the exponential convergence of the closed-loop system under the proposed event-triggered boundary control. Future work includes the design of periodic event-triggered control strategy to monitor the triggering condition periodically, hence, saving computational resources.
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 11 Fig. 1.1 Traffic flow on an incoming road and an outgoing road connected with a junction, actuation is implemented at the outlet with ramp metering.

  We assume that the equilibrium traffic relation is different for the two segments due to the change of road situations and access to road junction. The illustration is given in Fig 1.1. The critical density ρ c segregates the free and congested regimes of traffic states. The critical density is given by ρ c,i = ρ m,i /(1

Fig. 1 . 2

 12 Fig. 1.2 Traffic flow on an incoming road and an outgoing road connected with a junction. Actuation is implemented at the outlet with ramp metering.

  .31) where x ∈ [0, L], and c 1 (x) = c1 (x) and c 2 (x) = c2 (-x). The open-loop system (1.24)-(1.31) (for which U nom ≡ 0) is well-posed in the sense of the L 2 norm (weak solutions) by [4, Theorem A.4], that is, for any initial conditions

  .143) then, the closed-loop system (1.24)-(1.31) with event-triggered control (1.130), (1.128) is exponentially convergent in the L 2 -norm. Proof It follows by considering the following Lyapunov function candidate for the target systems (1.114)-(1.115) along with (1.129), defined for all ỹ ∈ L 2 ((0, L); R 4 ), ŷ ∈ L 2 ((0, L); R 4 ) and m ∈ R -by W(ỹ, ŷ, m) := V(ỹ, ŷ)m (1.144)

Fig. 1 . 3

 13 Fig. 1.3 Numerical solution of the flow rate and velocity with the ramp meetering event-triggered output control U nom (t k ) which is updated according to the observerbased event-triggered output control (1.128) .

Fig. 1 . 4

 14 Fig. 1.4 Time-evolution of the event-triggered output control. The updating is aperiodically, according with (1.128).
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