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Abstract. SimUSanté is one of the biggest European simulating and
training centers, proposing training sessions for all involed in healthcare:
professionals, students, patients. This paper presents the timetabling
problem encountered by SimUSanté with regard to the quality objectives
and the time and resource constraints. To solve it, SimUACO-LS which
is the hybridization of the Min-Max Ants Colony Optimization algorithm
SimUACO with the variable neighborhood search SimULS [3], is pre-
sented. SimULS, SimUACO and SimUACO-LS are compared in a set
of representative instances [2], newly generated and derived from those
of the Curriculum-Based Course Timetabling problem [1]. SimUACO-LS
always improves both results of SimULS and SimUACO by respectively
3.84% and 2.97%.

Keywords: Scheduling · Healthcare training · Timetabling · Opera-
tional research · Optimization

1 Introduction

SimUSanté, located in Amiens, France, is the biggest european healthcare simu-
lation and training center that provides more than 400 different training sessions
in a wide range of healthcare areas. Everyone involved in healthcare can meet
up in training sessions and learn together. A training session corresponds to a
set of activities followed by a group of learners. Such teaching requires equip-
ment and classrooms that are very specific to hospital activities and building a
timetable that take into account all these resource constraints is essential for the
smooth-running of the center. The aim of SimuSanté is then to schedule a max-
imum number of activities while maximizing the timetable compactness of each
session to schedule. So, in this paper, we focus on the Curriculum-Based Course
Timetabling problem (CB-CTT) [6] which is NP-Hard [5] and has similarities
with the SimuSanté problem. Nevertheless, the SimUSanté problem differs in a
major point: the precedence relationships between activities. In addition, 10 out
of the 13 of the CB-CTT constraints are hard in the SimUSanté problem. More-
over in the literature, the solvers of CB-CTT instances, allow to violate hard
constraints, whereas this is prohibited in the SimUSanté problem. Nevertheless,
CB-CTT remains the academic problem closest to that of SimUSanté.
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Over the last ten years, CB-CTT has been widely studied, as can be seen
in many surveys [10, 13]. The best known methods for solving it are the local
search methods and population-based meta-heuristics. The local search meth-
ods are based on neighborhood operators that start from an initial solution and
modify a part of it to switch to another one. In addition, there are a few ways
to avoid being trapped in a local minimum. The population-based methods use
many solutions at the same time and combine them to obtain better ones. The
best known population based methods to solve timetabling are the Ants Colony
Optimization (ACO) [12] and the Genetic Algorithms (GA) [8]. Although ge-
netic algorithms are efficient, most of the solutions obtained require an important
repairing phase after crossover operator which potentially leads to remove the
activities that violate hard constraints. In regards with the objectives of SimU-
Santé, ACO algorithms that always produce feasible solutions seem to be better
suited.

Nevertheless, such methods have the drawback of converging too early in
the search process towards a local optimum. For these reasons, hybrid methods
which combine both approaches are often used [9, 11]. So, in this paper, we pro-
pose SimUACO-LS algorithm that is a combination of SimUACO, a Max-Min
Ant Colony Optimization (MMACO) system [14], with a Variable Neighborhood
Search (VNS) SimULS [3]. ACO algorithms are efficient in exploring the search
space solutions, but the quality of this search relies on the quality of the heuris-
tic information used to guide it. We have therefore developed several specialized
heuristics, which are not redundant with those used in SimULS, to lead ants
in building solutions. Although these heuristics fit the SimuSanté problem, they
can be applied to similar problems, with the same hard constraints by adapting
the heuristics according to the desired qualitative characteristic. SimUACO-LS
have been tested on various instances with results close to optimum solutions.

This paper is organized as follows: in section 2, we formalize both the SimU-
santé problem and the structure of the solutions. Section 3 gives the graph
representation related to the formalization of the problem as an ACO prob-
lem and details our algorithm SimUACO-LS. In section 4, the results provided
by SimUACO-LS are compared to optimal results given by a mathematical
model implemented with CPLEX [4]. Also, the relevance of the combination of
a MMACO system with a VNS algorithm is assessed by comparing SimUACO-
LS with SimULS and SimUACO. Finally, section 5 concludes this paper and
presents some perspectives.

2 The SimUSanté problem

2.1 Data definitions

An instance is composed of a set S of training sessions to schedule over horizon
H, defined by a set of working days D. Each day d ∈ D is composed of a set Td
of 9 time slots of one hour and has a starting time slot startd, an ending one
endd and a set breakd ⊂ Td of potential time slots for the lunch breaks.
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Each session s ∈ S is a subset of activities that must be scheduled in serie.
Any scheduled session must have one lunch break per day. A session s can be
partially scheduled, i.e. some of its activities are unplanned in the final solution.
The makespan of a session s is the number of time slots from the start of the
first activity of s to the end of the last activity of s, including lunch break.

A represents the set of all instance activities and sa is the session to which
activity a belongs. ∀a ∈ A, durationa is the number of consecutive time slots
required to execute a. Some precedence constraints exist between activities and
preda denotes the subset of activities that must be completed before a starts.

The set of resources R represents both employees and rooms and Λ is the set
of resource types. A resource type corresponds to a skill for employees and to a
specific equipment or characteristic for rooms. ∀λ ∈ Λ, we denote Rλ the set of
resources of type λ, and qtavtλ its associated quantity of resources available at
time slot t. To each resource r ∈ R, Λr ⊆ Λ denotes the set of types associated
to r, because employees may have several skills and rooms may have different
equipments. The availability of resource r is given by isavailabletr which is equal
to 1 if r is available at time slot t and 0 otherwise. If resource r is assigned to
activity a, r must be available over durationa. Moreover, all employee timetables
must have one lunch break per day.

In order to be scheduled, activity a needs specific resources over its entire
duration. qtreqaλ is the quantity of resources of type λ ∈ Λ required by a and
Λa = {λ ∈ Λ|qtreqaλ 6= 0} is the set of resource types required by a. The eligibility
of activity a to time slot t is given by iseligibleta which is equal to 1 if there are
enough resources for scheduling a at t, 0 otherwise.

Solving an instance of the SimuSanté problem consists in scheduling as many
activities as possible of A, while minimizing the sum of the makespans of the
sessions of S.

2.2 Solution and evaluation

To build a solution, it is necessary to assign a start date ta (a time slot) and a
set of resources ca ⊆ R to each scheduled activity a. Then, a solution Sol is a set
of triplets {(a1, t1, c1), . . . (ai, ti, ci)}, where ai ∈ A, ti ∈ H and ci ⊆ R. A triplet
(a, t, c) can be added to a solution if it satisfies all constraints of resources (c
perfectly matches the resource requirements of a), of precedence and of operating
rules. We denote UA = A \ {a|(a, t, c) ∈ Sol}, the set of unscheduled activities
and Sols = {(a, t, c) ∈ Sol|a ∈ s}, the set of triplets associated to s.

Once a solution is built, its evaluation relies on two criteria: its compactness
and the number of scheduled activities. The makespan mks = tends − tstarts
represents the total duration of scheduled activities of the session s, with respec-
tively tstarts = min(a,t,c)∈Sols{t} and tends = max(a,t,c)∈Sols{t+ durationa}, the
starting time slot and the ending one of session s. We note that if Sols = ∅, then
mks = 0.

The evaluation of solution Sol denoted Eval(Sol), is established with the
sum of the mks and the sum of penalties α given to each unplanned activity (see
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equation 1). The SimUSanté problem aims to construct a valid solution Sol∗

such that Eval(Sol∗) is minimum.

Eval(Sol) =
∑
s∈S

mks + |UA| × α (1)

3 An ant colony optimization algorithm: SimUACO-LS

An ant colony optimization algorithm (ACO) [7] is a bio-inspired algorithm
which uses ant behavior to find food and return back to the nest. Each ant
leaves pheromones on the trail from their nest to the food source. An ant moves
randomly but when it detects pheromones, it follows the trail and reinforces it by
leaving additional pheromones. The more ants follow a trail, the more attractive
that trail becomes. Pheromones evaporate over time and therefore the least
used or slower paths become the least attractive. Ants can then find the fastest
trail from the nest to a source of food. A Max-Min Ant Colony Optimization
(MMACO) system is derive from the ACO system. Its principle, as described
in [14], is to maintain pheromones between a minimum and a maximum value
in order to keep accessible a maximum of relevant paths.

We propose to solve SimUSanté problem by combining a MMACO system
with a VNS algorithm [3]. Thus, the first step is to turn the problem into a
path search in a graph. Because of the complexity of the SimUSanté problem, a
solution will be defined as a collection of elementary paths rather than a simple
path as detailed below.

3.1 Graph representation

The SimUSanté problem can be modeled by a graph G = ((A,H,R), E). A is
the set of activities, H and R are respectively those of time slots and resources.
E = {A × H} ∪ {(t, r)|t ∈ H, r ∈ R and isavailabletr = 1} ∪ {R × R}. A
triplet (a, t, c) of a valid solution described in section 2.2 is represented by the
path (a, t, r1, r2, . . . , rk) with c = {r1, r2, . . . , rk} ⊆ R. For more convenience,
we also denote it (a, t, c). There are different ways of scheduling a given activity
a, so there are different valid paths (a, ti, ci). Each ant k builds a collection
Πk = ((a1, t1, c1), . . . , (an, tn, cn)), with n ≤ |A|, of paths corresponding to a
valid solution Solk of the problem. Once, path (ax, tx, cx) is constructed, ant k
is guided by a heuristic, as explained in the section 3.2, to jump from R to A in
order to choose the next ax+1 ∈ A.

3.2 SimUACO-LS principle

In SimUACO-LS, each ant builds a valid solution by constructing its collection
of paths. During this construction process, selectActivities() chooses the next
activity a to plan, while selectPath() schedules it at time slot t with resources c.
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Both rely on random proportionality rules which is based only on heuristic infor-
mation for selectActivities and based on heuristic and pheromone information
for selectPath. Once a valid solution is built, the variable neighborhood search
SimULS (see section 3.5) is applied to it with a probability of β%.

The pheromone information is stored in τ , a tridimensional matrix of size
|A|× |H|× |R| such that τa,t,r is the pheromone assigned to the allocation of the
resource r to activity a, at time slot t. To retrieve the pheromone information
of a resource combination c assigned to an activity a at a time slot t, we simply
sum the amount of pheromones of each resource involved in this combination,
i.e: τ(a, t, c) =

∑
r∈c τa,t,r

The update pheromones phase occurs at the end of each iteration, when all
ants have constructed their own solution. All the pheromones of the matrix τ
are first evaporated with coefficient γ (0 < γ ≤ 1): τa,t,r = τa,t,r × (1 − γ).
Next all components (a, t, c) ∈ Solbest are rewarded: ∀r ∈ c, τa,t,r = τa,t,r +
1/Eval(Solbest)

The pheromones represent the ant learning to find better solutions by explor-
ing the search space around the best known solution while heuristic information
is an essential knowledge to guide ants to promising areas of the search space. In
SimUACO different heuristics are used to select both activities and resources.
The following section describes these heuristics and the overall process used to
guide an ant to schedule activities. An ant tries to schedule each activity only
once . Let UAk be the set of not visited activities by the ant k, i.e. the unsched-
uled activities in solution of ant k.

3.3 Choose the next activity: selectActivities()

The aim of selectActivities() is to choose in UAk the next activity to schedule
for ant k according to a random probability rule nextka, described in equation 2.
It is based on the heuristic information possa which represents an estimation of
the remaining scheduling possibilities of a over H. This estimation considers the
number of times there is durationa consecutive time slots with enough resources
to schedule a.

nextka =

1
possa∑

a′∈UAk
1

poss′a

(2)

The objective of this random proportionality rule is twofold: lead ants in se-
lecting one of the more promising activities to schedule and allow a diversification
of the search.

3.4 Choose time slot and resources: selectPath()

From a given vertex activity a, selectPath() chooses a path from a, through
a time slot vertex t to a resource combination vertex c. This selection is made
according to the random proportionality rule p(a, t, c), described at equation 3,
which is based on the heuristic information η(a, t, c) and the pheromone τ(a, t, c).
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p(a, t, c) =
τ(a, t, c)× η(a, t, c)∑

(a,ti,ci)

τ(a, ti, ci)× η(a, ti, ci)
(3)

The higher the value of the heuristic information and the related pheromone,
the more profitable a path becomes. Note that we only consider possible paths
which respect all the constraints of the SimUSanté problem with regard to the
current state of the solution construction process.

The heuristic information η(a, t, c), see equation 4, is based on three indica-
tors: the makespan variation ∆(a, t, c), the number of idle time slots Idle(a, t, c)
and the remaining resources from t to t + durationa and Usage(a, t, c), if the
path (a, t, c) is chosen.

η(a, t, c) =
1

(1 +∆(a, t, c))× (1 + Idle(a, t, c))× (1 + Usage(a, t, c))
(4)

∆(a, t, c) computes Nmksa − mksa , the difference between the new makespan
Nmksa = maxt′∈{t+durationa,tendsa }{t

′}−mint′′∈{t,tstartsa }{t
′′} of session sa,

if a is scheduled at time slot t with the set of resources c, and its current
makespan mksa .

Idle(a, t, c) counts the number of free time slots unusable if path (a, t, c) is se-
lected. A set of contiguous free time slots is considered as unusable if it is
not possible to plan any unscheduled activities of sa over it, because the
duration of each of them exceeds the quantity of free time slots in the set.

Usage(a, t, c) is computed by equation 5. Over the interval [t; t+ durationa[, it
adds up the quantities of resources remaining in Λc =

⋃
r∈c Λr, if the path

(a, t, c) is chosen, with the aim of minimizing the use of more than one type
resources. Let us note that Λa ⊆ Λc.

Usage(a, t, c) =
∑

t′∈[t;t+durationa[

(
∑
λ∈Λc

(
∑
r∈Rλ

isavailablet
′

r )− qtreqaλ) (5)

3.5 A Variable Neighborhood Search : SimULS

The VNS algorithm SimULS [3] is randomly applied with a rate of β% to
the solutions constructed by ants, with the aim of improving them, and also to
diversify the population. To proceed, it relies on the operators saturator, intra,
extra, and extra+. These operators build a set of movements which individually
schedules an activity by removing one or more scheduled activities of the current
solution. The difference between these operators is the target session from which
activities are removed. Thus, they define different neighborhoods.

Moreover, to escape from a local minimum, SimULS regularly uses di-
versificator to destroy a part of the current solution. The condition to use
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Table 1. Result averages between SimULS, SimUACO and SimUACO-LS

Instance family
SimULS SimUACO SimUACO-LS

CPLEX
Eval SD Eval SD Eval SD

Brazil1 87.10 1.68 86.14 1.75 85.01 1.79 83.6

Italy1 109.54 1.77 108.15 1.86 106.03 1.88 102.8

Brazil2 179.10 1.79 179.04 4.20 172.74 4.09 165.6

Finland1 364.30 1.34 354.36 4.95 342.55 4.86 na

Brazil6 430.09 1.01 429.14 4.94 409.49 4.81 na

Finland2 382.08 1.42 380.5 3.91 366.58 3.94 na

StPaul 1427.48 1.03 1427.18 5.42 1402.14 5.20 na

diversificator is reached when all activities are scheduled or when there is
no improvement during a preset number of iterations. diversificator removes
scheduled activities according to two criteria. The first one is the position of the
activity in its session. The second one is the number of resources with multiple
type assigned to the activity.

4 Experimental Results

In this section, we test SimUACO-LS, the combination of SimUACO and SimU-
LS on instances close to the SimUSanté problem. These instances are based
on those of the CB-CTT problem [1] and have been modified to include char-
acteristics inherent in the SimUSanté problem. They vary according to the
following characteristics: D1, the availabilities of employees, C1, the skills of
employees, T1 and T2, the types of the rooms, A1 and A2 the requirements
of activities. For each of the followings CB-CTT instances: Brazil1, Italy1,
Brazil2, Brazil6, FinlandHighSchool (Finland1), FinlandSecondarySchool
(Finland2) and StPaul, we generated an instance family which represents a set
of 16 instances varying the previously presented criteria [2].

SimUACO, SimULS and SimUACO-LS were written in Java and tested
on an Intel i7 8700K processor with a running time limit of two hours. We
implemented the mathematical model [4] with CPLEX solver (version 12.6) and
set a time limit of 7200 seconds. First three columns SimUACO, SimULS
and SimUACO-LS in table 1 are split into sub-columns Eval and SD. Eval
corresponds to the average of the objective function (equation 1, with α = |H|)
computed over all instances of family and over 20 runs for each of them. SD
corresponds to average of the standard deviation. On the CPLEX column are
averages on optimal results when available, or na otherwise. Figure 1 is another
view of these results (without CPLEX ones) where the score of SimUACO-
LS is set to 100%. SimUACO-LS has been used with the following empirically
determined parameters: β = 6 and γ = 0.1. For both algorithms SimUACO and
SimUACO-LS, the quantity of ants is set to the number of activities.
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Fig. 1. Comparison between SimuACO-LS, SimuACO and SimULS

Our experiments show that for all methods here presented, all activities are
scheduled. SimUACO-LS improves the results of SimUACO and SimULS by
respectively 2.97 % and 3.84 %. Some optimal results can be reached on small
instance families (Brazil1, Brazil2 and Italy1) and SimUACO-LS diverges
on average by 3.05% from these optimal results. The standard deviation for
SimUACO-LS remains less than 5.20 for all the tested instances with an av-
erage of 3.80. This standard deviation is lower than that of SimUACO (3.86)
but higher than that of SimULS (1.43). Although the standard deviation of
SimUACO-LS is higher than SimULS one, its average Eval() is better which
means that it better explores the solution space.

5 Conclusion & perspectives

This paper presents the planning problem of the health training and simulation
center SimUSanté. The proposed method SimUACO-LS is a hybridization of
the Max Min Ant Colony Optimization algorithm SimUACO with the Variable
Neighborhood Search SimULS. The combination of both metaheuristics allows
the weaknesses of each to be overcome. Build a feasible solution is a difficult prob-
lem, mainly on the largest instances. Because SimUACO-LS strictly respects all
hard constraints, it always produces feasible solutions for all instances. More-
over, all activities are scheduled. SimUACO-LS always improves the solution
quality of SimUACO and SimULS by respectively 2.97% and 3.84%. The re-
sults of SimUACO-LS have an average gap of 3.05% with optimal when known.
In addition, the schedules obtained are compact and relevant for SimUSanté.
The next step will be to improve the search strategy for SimUACO-LS in the
solution space.
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