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We consider a coupled system of nonlinear Lowest Landau Level equations. We first show the existence of multi-solitons with an exponentially localised error term in space, and then we prove a uniqueness result. We also show a long time stability result of the sum of traveling waves having all the same speed, under the condition that they are localised far away enough from each other. Finally, we observe that these multi-solitons provide examples of dynamics for the linear Schrödinger equation with harmonic potential perturbed by a time-dependent potential.

Introduction and main results

In this paper, we continue the study of a system of coupled Lowest Landau Level (LLL) equations which was initiated in [START_REF] Schwinte | Growth of Sobolev norms for coupled Lowest Landau Level equations[END_REF]. Denote by E the Bargmann-Fock space defined as

E = u(z) = e -|z| 2
2 f (z) , f entire holomorphic ∩ L 2 (C) and consider Π the orthogonal projection on E. The LLL system then reads

     i∂ t u = Π(|v| 2 u), (t, z) ∈ R × C, i∂ t v = σΠ(|u| 2 v), u(0, •) = u 0 ∈ E, v(0, •) = v 0 ∈ E, (1.1) 
where σ ∈ {1, -1} is fixed. Such systems arise in the description of fast rotating Bose-Einstein condensates in interaction: for more details and references on the modeling, see [START_REF] Aftalion | Vortex patterns in a fast rotating Bose-Einstein condensate[END_REF][START_REF] Ho | Bose-Einstein condensates with large number of vortices[END_REF][START_REF] Mueller | Two-component Bose-Einstein condensates with a large number of vortices[END_REF], the introduction of [START_REF] Gérard | On the cubic lowest Landau level equation[END_REF], and references therein. The system (1.1) is Hamiltonian with the structure

     u = -i δH δu , u = i δH δu , v = -iσ δH δv , v = iσ δH δv ,
where the Hamiltonian functional is given by

H(u, v) = C |u| 2 |v| 2 dL,
and where L stands for Lebesgue measure on C. For mathematical results on LLL equations, of the form i∂ t u = Π(|u| 2 u), we refer to [START_REF] Nier | Bose-Einstein condensates in the lowest Landau level: Hamiltonian dynamics[END_REF][START_REF] Aftalion | Lowest Landau level functional and Bargmann spaces for Bose-Einstein condensates[END_REF][START_REF] Biasi | Exact lowest-Landau-level solutions for vortex precession in Bose-Einstein condensates[END_REF][START_REF] Gérard | On the cubic lowest Landau level equation[END_REF][START_REF] Clerck | Time-periodic quantum states of weakly interacting bosons in a harmonic trap[END_REF]. Among other results, in these papers, some dynamical results have been obtained (global well-posedness in E, bounds on the solutions in Sobolev norms) as well as results on stationary solutions (classification of stationary solutions with finite number of zeros, bounds on stationary solutions, and stability results).

In the case σ = -1, we have constructed in [START_REF] Schwinte | Growth of Sobolev norms for coupled Lowest Landau Level equations[END_REF] traveling-waves (solitons) solutions to (1.1) and the aim of the present work is to show the existence of multi-solitons and study some of their properties. When σ = 1, such solutions are excluded, because their existence would contradict the conservation laws of the system (see [START_REF] Schwinte | Growth of Sobolev norms for coupled Lowest Landau Level equations[END_REF]Proposition 1.4]). Therefore, from now on, we assume that σ = -1 and we consider the system

     i∂ t u = Π(|v| 2 u), (t, z) ∈ R × C, i∂ t v = -Π(|u| 2 v), u(0, •) = u 0 ∈ E, v(0, •) = v 0 ∈ E. (1.2)
There are many results concerning the existence of multi-solitons for dispersive equations (including Korteweg-de Vries, Schrödinger, and wave equations) and we refer to the survey [START_REF] Martel | Interaction of solitons from the PDE point of view[END_REF] for references on the subject. More precisely, regarding the construction of multi-solitons for the nonlinear Schrödinger equations we address to the works [START_REF] Martel | Multi solitary waves for nonlinear Schrödinger equations[END_REF][START_REF] Coz | High-speed excited multi-solitons in nonlinear Schrödinger equations[END_REF][START_REF] Côte | Construction of multi-soliton solutions for the L 2 -supercritical gKdV and NLS equations[END_REF] and to the recent survey [START_REF] Coz | Finite and infinite soliton and kink-soliton trains of nonlinear Schrödinger equations[END_REF]. In [START_REF] Krieger | Two-soliton solutions to the three-dimensional gravitational Hartree equation[END_REF][START_REF] Martel | Strongly interacting blow up bubbles for the mass critical nonlinear Schrödinger equation[END_REF], the authors study strong interactions of solitons. We also mention the articles [START_REF] Ianni | Multi-speed solitary wave solutions for nonlinear Schrödinger systems[END_REF][START_REF] Delebecque | Multi-speed solitary waves of nonlinear Schrödinger systems: theoretical and numerical analysis[END_REF] in which solitary waves with different speeds are constructed for Schrödinger systems.

1.1. Symmetries and conservation laws. The system (1.2) is preserved by several symmetries, which induce conservation laws (see [START_REF] Gérard | On the cubic lowest Landau level equation[END_REF]Section 2] for more details). These symmetries are phase rotations T θ 1 ,θ 2 : (u, v)(z) → e iθ 1 u(z), e iθ 2 v(z) for (θ 1 , θ 2 ) ∈ T 2 , space rotations L θ : (u, v)(z) → u(e iθ z), v(e iθ z) for θ ∈ T, and magnetic translations 

R β : (u, v)(z) → u(z + β)e
Q -(u, v) = C z |u(z)| 2 -|v(z)| 2 dL(z).
1.2. Functional spaces. In order to state our results we need to define a few spaces. Namely, for s ≥ 0, we denote by

L 2,s = u ∈ S ′ (C), ⟨z⟩ s u ∈ L 2 (C) , ⟨z⟩ = (1 + |z| 2 ) 1/2
the weighted Lebesgue space and we define L 2,s E = L 2,s ∩ E. It turns out that this latter space coincides with the harmonic Sobolev space. The harmonic oscillator H is defined by

H = -4∂ z ∂ z + |z| 2 = -(∂ 2
x + ∂ 2 y ) + (x 2 + y 2 ). Then for s ≥ 0 we consider

H s (C) = u ∈ S ′ (C), H s/2 u ∈ L 2 (C) ∩ E, (1.3) 
equipped with the natural norm ∥u∥ H s (C) = ∥H s/2 u∥ L 2 (C) . Then, we have H s (C) = L 2,s E and the following equivalence of norms holds true

c∥⟨z⟩ s u∥ L 2 (C) ≤ ∥u∥ H s (C) ≤ C∥⟨z⟩ s u∥ L 2 (C) , ∀ u ∈ L 2,s E , (1.4) 
see [START_REF] Gérard | On the cubic lowest Landau level equation[END_REF]Lemma C.1] for a proof.

Similarly, for κ ≥ 0, we denote by

X κ = u ∈ S ′ (C), e κ|z| u ∈ L 2 (C) ,
and we set X κ E = u ∈ S ′ (C), e κ|z| u ∈ L 2 (C) ∩ E. 1.3. Global existence results for the system (1.2). We first recall the global well-posedness result for (1.2), which is contained in [START_REF] Schwinte | Growth of Sobolev norms for coupled Lowest Landau Level equations[END_REF]Theorem 1.1].

Theorem 1.1 (Theorem 1.1, [START_REF] Schwinte | Growth of Sobolev norms for coupled Lowest Landau Level equations[END_REF]). For every (u 0 , v 0 ) ∈ E × E, there exists a unique solution (u, v) ∈ C ∞ (R, E ×E) to the system (1.2), and this solution depends smoothly on (u 0 , v 0 ). Moreover, (i) for every t ∈ R

M (u) = C |u(t, z)| 2 dL(z) = M (u 0 ), M (v) = C |v(t, z)| 2 dL(z) = M (v 0 ), and 
H(u, v) = C |u(t, z)| 2 |v(t, z)| 2 dL(z) = H(u 0 , v 0 ) ; (ii) if (zu 0 , zv 0 ) ∈ L 2 (C) × L 2 (C), then zu(t), zv(t) ∈ L 2 (C) × L 2 (C) for every t ∈ R, and 
P -(u, v) = C |z| 2 -1 |u(t, z)| 2 -|v(t, z)| 2 dL(z) = P -(u 0 , v 0 ), Q -(u, v) = C z |u(t, z)| 2 -|v(t, z)| 2 dL(z) = Q -(u 0 , v 0 ) ; (iii) if for some s > 0, ⟨z⟩ s u 0 , ⟨z⟩ s v 0 ∈ L 2 (C) × L 2 (C), then ⟨z⟩ s u(t), ⟨z⟩ s v(t) ∈ L 2 (C) × L 2 (C) for every t ∈ R.
We can also prove polynomial bounds on the possible growth of Sobolev norms for (1.2), we refer to [START_REF] Schwinte | Growth of Sobolev norms for coupled Lowest Landau Level equations[END_REF]Theorem 1.5] for details.

It turns out that equation (1.2) is also globally well-posed for exponentially localised functions and we are able to obtain a quantitative estimate on the long time behaviour of the solutions as well as a stability result. Proposition 1.2. Let κ ≥ 0, then the following properties hold true:

(i) assume that (u 0 , v 0 ) ∈ X κ E × X κ E , then the corresponding solution to (1.2) satisfies (u, v) ∈ C ∞ R, X κ E × X κ E . Moreover, for every t ∈ R, ∥e κ|z| u(t)∥ L 2 (C) ≤ ∥e κ|z| u 0 ∥ L 2 (C) e cκ∥v 0 ∥ 2 L 2 |t| ∥e κ|z| v(t)∥ L 2 (C) ≤ ∥e κ|z| v 0 ∥ L 2 (C) e cκ∥u 0 ∥ 2 L 2 |t| , (1.5) 
where the constant c κ > 0 only depends on κ > 0 (notice that c 0 = 0 by the conservation of the L 2 -norm);

(ii) consider two solutions (u, v) ∈ C ∞ R, X κ E × X κ E and ( u, v) ∈ C ∞ R, X κ E × X κ E to (1.2). Then, for all t ∈ R ∥e κ|z| u(t) -u(t) ∥ 2 L 2 (C) + ∥e κ|z| v(t) -v(t) ∥ 2 L 2 (C) ≤ ∥e κ|z| u 0 -u 0 ∥ 2 L 2 (C) + ∥e κ|z| v 0 -v 0 ∥ 2 L 2 (C) e cκ(∥u 0 ∥ 2 L 2 +∥ u 0 ∥ 2 L 2 +∥v 0 ∥ 2 L 2 +∥ v 0 ∥ 2 L 2 )|t| , (1.6)
where the constant c κ > 0 only depends on κ > 0.

The estimate (1.5) is sharp, see (1.11) below.

1.4. Solitons and multi-solitons. Using the invariances induced by phase rotations and magnetic translations, it is natural to look for particular solutions for equation (1.2) of the form

u(t, z), v(t, z) = e -iλt U (z + αt)e 1 2 (zα-zα)t , e -iµt V (z + αt)e 1 2 (zα-zα)t , (1.7) 
that we call progressive or traveling waves. Such solutions do exist, and by [START_REF] Schwinte | Growth of Sobolev norms for coupled Lowest Landau Level equations[END_REF]Theorem 1.6], the progressive waves in E, when α ̸ = 0, which have a finite number of zeros are given by the initial conditions

       U = Ke ia 1 2 φ γ 0 + √ 3 2 ie iθ φ γ 1 V = Ke ib 1 2 φ γ 0 - √ 3 2 ie iθ φ γ 1 , (1.8) 
with γ ∈ C and

φ γ n (z) = 1 √ πn! (z -γ) n e -|z| 2 2 - |γ| 2 2 +γz .
with K ≥ 0, with θ, a, b ∈ R, where

λ = K 2 32π (7 + 2 √ 3Im γe -iθ ) , µ = K 2 32π -7 + 2 √ 3Im(γe -iθ ) , (1.9) 
and with the speed

α = √ 3 32π K 2 e -iθ . (1.10) 
It is interesting to notice that any non trivial traveling wave of the form (1.7) has growing Sobolev norms. Actually, if u(t) = e -iλt R αt U , then

∥⟨z⟩ s u(t)∥ L 2 (C) = ∥⟨z⟩ s R αt U ∥ L 2 (C) = ∥⟨z -αt⟩ s U ∥ L 2 (C) ∼ |α| s |t| s ∥U ∥ L 2 (C) ,
when t -→ ±∞. Moreover, the previous growth of norms is the strongest possible by [START_REF] Schwinte | Growth of Sobolev norms for coupled Lowest Landau Level equations[END_REF]Theorem 1.5]. Similarly, when t -→ ±∞,

∥e κ|z| u(t)∥ L 2 (C) = ∥e κ|z-αt| U ∥ L 2 (C) ∼ e κ|α||t| e -κτ Re(ze -iθ ) U L 2 (C) , (1.11) 
with θ = arg(α) and τ = sign(t). Thus (1.11) shows the sharpness of (1.5).

1.4.1. Existence of multi-solitons. A natural question is the existence of solutions to (1.2) which are a finite sum of such traveling waves. The answer is positive and this is the content of the following result :

Theorem 1.3. Let n ≥ 1. For 1 ≤ j ≤ n, let (K j , a j , b j , θ j , γ j ) ∈ R * + × R × R × R × C and consider the parameters (λ j , µ j , α j ) ∈ R × R × C * given by (1.9) and (1.10). Assume that α j ̸ = α ℓ for j ̸ = ℓ. Denote by α ♯ = min j̸ =ℓ |α j -α ℓ |.
There exists a solution (u, v) to equation

(1.2) such that for all κ > 0, (u, v) ∈ C ∞ R, X κ E × X κ E , and which takes the form              u(t, z) = n j=1 e -iλ j t U j (z + α j t)e 1 2 (zα j -zα j )t + r 1 (t, z) v(t, z) = n j=1 e -iµ j t V j (z + α j t)e 1 2 (zα j -zα j )t + r 2 (t, z), (1.12) 
where the (U j , V j ) take the form (1.8) and where the error terms satisfy : for all

c < 1 4
and all m ∈ N, there exists C m,κ > 0 such that for all t ≥ 0

e κ|z| (∂ m t r 1 )(t) L 2 + e κ|z| (∂ m t r 2 )(t) L 2 ≤ C m,κ e -cα 2 ♯ t 2 . (1.13)
Notice that thanks to the Carlen inequality (1.27) below, the bound (1.13) implies the following pointwise estimate : for all c < 1/4, all m ∈ N and all z ∈ C

(∂ m t r 1 )(t, z) + (∂ m t r 2 )(t, z) ≤ C m,κ e -cα 2 ♯ t 2 e -κ|z| .
The construction of multi-solitons for (1.2) relies on classical arguments, including backwards in time integration and energy estimates. We refer to [START_REF] Martel | Multi solitary waves for nonlinear Schrödinger equations[END_REF][START_REF] Coz | High-speed excited multi-solitons in nonlinear Schrödinger equations[END_REF][START_REF] Côte | Construction of multi-soliton solutions for the L 2 -supercritical gKdV and NLS equations[END_REF][START_REF] Ferriere | Existence of multi-solitons for the focusing logarithmic non-linear Schrödinger equation[END_REF][START_REF] Faou | On weakly turbulent solutions to the perturbed linear harmonic oscillator[END_REF] where these methods were used. The situation here is very favorable since in the space E, any L p norm (p ≥ 2) can be controlled (see (1.27)), namely

∥u∥ L ∞ (C) ≤ C∥u∥ L 2 (C) , ∀u ∈ E.
In particular, this allows to prove that the system (1.2) is globally well-posed in E and to close energy estimates in E.

In (1.13) we observe that the decay depends only on α ♯ and not on the frequencies λ j (resp. µ j ) of the traveling waves. This decay is induced by the Gaussian nature of the traveling waves. Such a phenomenon is in contrast with NLS, where the solitons have an exponential decay and where the speed of convergence depends on the frequencies of the solitons [START_REF] Coz | High-speed excited multi-solitons in nonlinear Schrödinger equations[END_REF]. The same rate of decay as in (1.13) is obtained in [START_REF] Ferriere | Existence of multi-solitons for the focusing logarithmic non-linear Schrödinger equation[END_REF] where multi-Gaussian solutions are constructed for the Schrödinger equation with logarithmic nonlinearity (logNLS). Another interesting similarity with the results in [START_REF] Ferriere | Existence of multi-solitons for the focusing logarithmic non-linear Schrödinger equation[END_REF], is that the convergence to the multi-soliton holds in weighted Sobolev spaces (namely in H 1 ∩ F(H 1 )). In the present case, one can even upgrade to exponential weights, and this is due to the absence of linear part in the equation (1.2) (see Remark 1.4 for the case of LLL with a linear part). We refer to [START_REF] Carles | Universal dynamics for the defocusing logarithmic Schrödinger equation[END_REF] and references therein for more results on the dynamics of logNLS.

The result of Theorem 1.3 actually holds under the weaker assumption that each traveling wave (U, V ) ∈ E × E of the sum (1.12) satisfies a Gaussian bound

|U (z)| + |V (z)| ≤ Ce -c 0 |z| 2 , (1.14) 
for some C, c 0 > 0, and the proof of the Theorem 1.3 is written using only the assumption (1.14). In this latter case, (1.13) is replaced by

e κ|z| (∂ m t r 1 )(t) L 2 + e κ|z| (∂ m t r 2 )(t) L 2 ≤ C m,κ e -cmα 2 ♯ t 2 , (1.15) 
for some c m > 0. However, we do not know if there exist other traveling waves (with α ̸ = 0) than the ones exhibited in (1.8) (such traveling waves would then have an infinite number of zeros by [START_REF] Schwinte | Growth of Sobolev norms for coupled Lowest Landau Level equations[END_REF]Theorem 1.6]).

In the hypotheses of Theorem 1.3, one can also allow for the case where α j = 0 for at most only one 1 ≤ j ≤ n. In this case, (e -iλt U (z), e -iµt V (z)) is a solution to (1.2) if and only if By reversibility of the equation (1.2), similar multi-solitons can be constructed in the regime t -→ -∞. Actually, if (u, v) is a solution to (1.2), then ( u, v) is also a solution where ( u, v)(t) := (v, u)(-t). However, the question whether there exists (r 1 , r 2 ) such that (1.13) holds for all t ∈ R is left open.

λU = Π(|V | 2 U ) µV = -Π(|U | 2 V ). ( 1 
Since the terms in (1.12) decouple when t -→ +∞, it is easy to observe that the solutions of Theorem 1.3 satisfy

M (u) = M (v) = n j=1 K 2 j , H(u, v) = 11 64π n j=1 K 2 j , P -(u, v) = √ 3 n j=1 Im(γ j e -iθ j )K 2 j , Q -(u, v) = - √ 3 2 i n j=1
e -iθ j K 2 j .

(1.17)

Remark 1.4. We can also construct multi-solitons for the system

     i∂ t u -δH u = Π(| v| 2 u), (t, z) ∈ R × C, i∂ t v -δH v = -Π(| u| 2 v), u(0, z) = u 0 (z), v(0, z) = v 0 (z), (1.18) 
where δ ∈ R is a given dispersion parameter. Actually, the change of unknown ( u, v) = e -iδtH (u, v) shows that the system (1.2) is equivalent to (1.18) (see [START_REF] Schwinte | Growth of Sobolev norms for coupled Lowest Landau Level equations[END_REF]Section 1.7.2] for more details). Recall that e iτ H = e 2iτ L 2τ (which can be directly checked by testing on the complete family (φ n ) n≥0 ), then Theorem 1.3 enables the construction of the following multi-solitons for (1.18)

             u(t, z) = n j=1 e -i(λ j +2δ)t L -2δt U j (z + α j t)e 1 2 (zα j -zα j )t + r 1 (t, z) v(t, z) = n j=1 e -i(µ j +2δ)t L -2δt V j (z + α j t)e 1 2 (zα j -zα j )t + r 2 (t, z),
where for all s ≥ 0 and all t ≥ 0

∥⟨z⟩ s (∂ m t r 1 )(t)∥ L 2 + ∥⟨z⟩ s (∂ m t r 2 )(t)∥ L 2 ≤ C s,m e -cs,mt 2 . (1.19)
We refer to paragraph 4.3 for a proof of (1.19).

1.4.2.

A uniqueness result in X κ E . We are able to prove that the multi-soliton constructed in Theorem 1.3 is actually unique in the class X κ E , provided that κ > 0 is large enough :

Theorem 1.5. Let n ≥ 1. For 1 ≤ j ≤ n, let (K j , a j , b j , θ j , γ j ) ∈ R * + × R × R × R × C and consider the parameters (λ j , µ j , α j ) ∈ R × R × C * given by (1.9) and (1.10). Assume that α j ̸ = α ℓ for j ̸ = ℓ. Set δ = max 1≤j≤n K 2 j min 1≤j≤n K 2 j = max 1≤j≤n |α j | min 1≤j≤n |α j | . (1.20)
There exists a universal constant

c 0 > 0 such that if κ > c 0 δ and if ( u, v) ∈ C R, X κ E × X κ E is a solution to equation (1.2) of the form              u(t, z) = n j=1 e -iλ j t U j (z + α j t)e 1 2 (zα j -zα j )t + r 1 (t, z) v(t, z) = n j=1 e -iµ j t V j (z + α j t)e 1 2 (zα j -zα j )t + r 2 (t, z), (1.21) 
where the (U j , V j ) take the form (1.8) and where

e κ|z| r 1 (t) L 2 + e κ|z| r 2 (t) L 2 -→ 0, t -→ +∞, (1.22) then ( u, v) ≡ (u, v), where (u, v) is given in Theorem 1.3.
In particular, if κ > c 0 δ, the solutions constructed in Theorem 1.3 do not depend on κ. The assumption (1.22) is consistent with the result of Theorem 1.3, but this assumption is quite strong. It would be interesting to relax it by asking only decay in L 2,s E for some s ≥ 0, but the situation would be more involved in this case. Actually, the assumption (1.22) implies an exponential decay in time of the error term and as a consequence the interaction terms can quite easily be controlled.

Contrarily to the Theorem 1.3, in the previous result, one needs the assumption α j ̸ = 0 for all 1 ≤ j ≤ n. However, the result of Theorem 1.5 holds true for any traveling waves satisfying the weaker assumption (1.14), but in this latter case, the threshold is

δ = max 1≤j≤n K 2 j min 1≤j≤n |α j | , (1.23) 
where

K j = ∥U j ∥ L 2 = ∥V j ∥ L 2 .
The modification (1.23) comes from the fact that one does no more necessarily have the relation (1.10) for a general traveling wave, but only an inequality

|α j | ≤ K 2 j 2 √ 2π (see [26, Proposition 1.8]).
Notice that the conditions (1.20) and (1.23) are consistent with the symmetries of the problem. In particular, the conditions are invariant by scaling : if (u, v) is a solution to (1.2), then for all A > 0, (u A , v A ) defined by u A (t, z), v A (t, z) = Au(A 2 t, z), Av(A 2 t, z) is also a solution and under this transformation one has (K, α) → (AK, A 2 α).

The multi-soliton enjoys a rigidity property. Consider a multi-soliton of the form (1.21) where the remainder terms satisfy (1.22) with κ = 0. Then either ( u, v) ≡ (u, v), where (u, v) is given in Theorem 1.3 or there exist C, c > 0 such that for all t

∈ R ∥ r 1 (t)∥ L 2 (C) + ∥ r 2 (t)∥ L 2 (C) ≥ Ce -c|t| , see Lemma 2.2.
In other words, there is only one multi-soliton which enjoys a Gaussian decay in time. A similar property holds true for logNLS [START_REF] Ferriere | Existence of multi-solitons for the focusing logarithmic non-linear Schrödinger equation[END_REF]. 1.4.3. Nonlinear superposition principle. The next result shows that if one starts from a sum of traveling waves which all have the same speed but which are localised far away enough, then one has a good description of the dynamics of the solution to (1.2) for long times, depending on the relative distance of the traveling waves.

Theorem 1.6. Let (K, θ) ∈ R * + × R and set α = √ 3 32π K 2 e -iθ . Let n ≥ 1 and for 1 ≤ j ≤ n, let (a j , b j , γ j ) ∈ R × R × C
and consider the parameters (λ j , µ j ) ∈ R × R given by (1.9). Assume that γ j ̸ = γ ℓ for j ̸ = ℓ, and denote by

ϵ = min j̸ =ℓ |γ j -γ ℓ | -1
.

Consider the solution (u, v) ∈ C ∞ R, E × E to equation (1.2) such that u 0 (z) = n j=1 U j (z), v 0 (z) = n j=1 V j (z),
where the (U j , V j ) take the form (1.8). Then

             u(t, z) = n j=1 e -iλ j t U j (z + αt)e 1 2 (zα-zα)t + r 1 (t, z) v(t, z) = n j=1 e -iµ j t V j (z + αt)e 1 2 (zα-zα)t + r 2 (t, z),
and where the error terms satisfy : there exist absolute constants c, C > 0 such that for all t ∈ R

∥e κ|z| r 1 (t)∥ L 2 + ∥e κ|z| r 2 (t)∥ L 2 ≤ CK 2 |t|e -ϵ -2 4 +(cn 2 K 2 +κ|α|)|t| . (1.24)
In particular for |t| ≤ 10

cn 2 K 2 + κ|α| ϵ 2 -1 , then ∥e κ|z| r 1 (t)∥ L 2 + ∥e κ|z| r 2 (t)∥ L 2 ≤ Ce -ϵ -2 8 .
The proof of Theorem 1.6 is in the same spirit as the proof of Theorem 1.3 : in the present case, smallness is obtained thanks to the large distance between the waves (ϵ ≪ 1) instead of considering large times as in Theorem 1.3. This result can be compared with [13, Theorem 1.10] where a similar phenomenon occurs for the logNLS equation. Notice that the estimate (1.24) also holds true in the case κ = 0, namely when the remainder terms are measured in the L 2 -norm.

By a slight modification of our analysis, as in Theorem 1.3, one should also be able to obtain bounds for (∂ m t r 1 , ∂ m t r 2 ) and/or work in X κ E spaces, but we do not write the details here. 

i∂ t ψ -Hψ + V (t, x, y)ψ = 0, (t, x, y) ∈ R × R 2 , ψ(0, •) = ψ 0 ∈ L 2 (R 2 ). (1.25)
Recall the definition (1.3) of the Sobolev space H σ (C). Our result for the equation (1.25) reads as follows :

Theorem 1.7. Let n ≥ 1. For 1 ≤ j ≤ n, let (K j , a j , b j , θ j , γ j ) ∈ R * + × R × R × R × C
and consider the parameters (λ j , µ j , α j ) ∈ R × R × C * given by (1.9) and (1.10). Assume that α j ̸ = α ℓ for j ̸ = ℓ. Then there exists a potential V ∈ C ∞ (R × R 2 ; R) such that for all σ ≥ 0 and all k ∈ N lim t→+∞

∥∂ k t V (t)∥ H σ (C) = 0, (1.26) 
and there exists a solution ψ ∈ C ∞ (R × R 2 ; C) to the equation (1.25) of the form

ψ(t) = n j=1 e -iλ j ln t e -2it L -2t R α j ln t U j + η(t),
where ∥η(t)∥ H 1 (C) -→ 0, when t -→ +∞.

In particular, for all 1 ≤ j ≤ n,

∥e -iλ j ln t e -2it L -2t R α j ln t U j ∥ H 1 (C) = ∥R α j ln t U j ∥ H 1 (C) ∼ c j ln t, t -→ +∞,
for some c j > 0. The previous term has Gaussian decay and is concentrated near the point x + iy ∼ -α j ln t. Therefore, ψ is a sum of space-localised bubbles and

∥ψ(t)∥ H 1 (C) ∼ n j=1 c j ln t, t -→ +∞.
The result of Theorem 1.7 is a direct application of [START_REF] Faou | On weakly turbulent solutions to the perturbed linear harmonic oscillator[END_REF]Proposition 7.1] (see also [11, Theorem 1.1]), using the solutions constructed in Theorem 1.3. 1.6. Analysis in the Bargmann-Fock space and notations. We end this section by recalling a few results and fixing some notations. Recall that the harmonic oscillator H is defined by

H = -4∂ z ∂ z + |z| 2 = -(∂ 2 x + ∂ 2 y ) + (x 2 + y 2
). Denote by (φ n ) n≥0 the family of the special Hermite functions given by

φ n (z) = 1 √ πn! z n e -|z| 2 2 .
The family (φ n ) n≥0 forms a Hilbertian basis of E (see [28, Proposition 2.1]), and the φ n are the eigenfunctions of H, namely Hφ n = 2(n + 1)φ n , n ≥ 0.

For γ ∈ C, we define

φ γ n (z) = R -γ (φ n )(z) = 1 √ πn! (z -γ) n e -|z| 2 2 - |γ| 2 2 +γz .
The kernel of Π, the orthogonal projection on E, is explicitly given by

K(z, ξ) = +∞ n=0 φ n (z)φ n (ξ) = 1 π e ξz e -|ξ| 2 /2 e -|z| 2 /2 , (z, ξ) ∈ C × C,
and therefore we get the formula

[Πu](z) = 1 π e -|z| 2 2 C e wz-|w| 2 2 u(w) dL(w),
where L stands for Lebesgue measure on C. We define the enlarged lowest Landau level space as

E = u(z) = e -|z| 2 2 f (z) , f entire holomorphic ∩ S ′ (C) = u ∈ S ′ (C), ∂ z u + z 2 u = 0 .
By Carlen [START_REF] Carlen | Some integral identities and inequalities for entire functions and their application to the coherent state transform[END_REF], for all u ∈ E the following hypercontractivity estimates hold true

if 1 ≤ p ≤ q ≤ +∞, q 2π 1/q ∥u∥ L q (C) ≤ p 2π 1/p ∥u∥ L p (C) . (1.27) 
In this paper c, C > 0 denote universal constants the value of which may change from line to line. 1.7. Plan of the paper. The rest of the article is organized as follows. In Section 2 we prove the well-posedness result for exponentially localised initial conditions. Section 3 is devoted to technical results, while the next ones contain the proofs of the main theorems.

Well-posedness and stability results

2.1. Continuity results for the projector Π. The next result shows that Π is continuous in X κ E spaces.

Lemma 2.1. Let s ≥ 0 and 1 ≤ p ≤ +∞, then for all F ∈ S ′ (C),

∥⟨z⟩ s Π(F )∥ L p ≤ C∥⟨z⟩ s F ∥ L p , (2.1) 
and for all κ ≥ 0 and e κ|z| ≤ e κ|z-w| e κ|w| we get

∥e κ|z| Π(F )∥ L p ≤ C κ ∥e κ|z| F ∥ L p . ( 2 
e κ|z| |Π(F )(z)| ≤ 1 π C e κ|z-w|-|z-w| 2 2 |e κ|w| F (w)| dL(w) = ψ ⋆ (e κ|•| |F |) (z),
where

ψ(z) = 1 π e κ|z|-|z| 2 /2 ∈ L 1 (C).
Therefore by the Young inequality 

∥e κ|z| Π(F )∥ L p (C) ≤ ∥ψ∥ L 1 (C) ∥e κ|z| F ∥ L p (C) ≤ Ce κ 2 /2 ∥e κ|z| F ∥ L p (C)
∥e κ|z| Π abc ∥ L 2 ≤ C κ ∥e κ|z| a∥ L 2 ∥b∥ L ∞ ∥c∥ L ∞ ≤ C κ ∥e κ|z| a∥ L 2 ∥b∥ L 2 ∥c∥ L 2 . (2.3) 
The estimate (2.3) allows for the construction of a local in time solution with a fixed point argument, and the globalisation is obtained using that the time of existence only depends on the L 2 norm of the solution.

• Proof of (1.5). Let (u 0 , v 0 ) ∈ X κ E ×X κ E and consider (u, v) ∈ C ∞ R, X κ E ×X κ E the corresponding solution to equation (1.2). We compute

d dt C e 2κ|z| |u| 2 dL = 2Re C e 2κ|z| u∂ t udL = 2Im C e 2κ|z| u Π(|v| 2 u)dL ≤ 2∥e κ|z| u∥ L 2 e κ|z| Π(|v| 2 u) L 2 .
Next, by (2.2) we get

d dt C e 2κ|z| |u| 2 dL ≤ C∥e κ|z| u∥ L 2 e κ|z| |v| 2 u L 2 ≤ C∥e κ|z| u∥ 2 L 2 ∥v∥ 2 L ∞ ≤ C∥e κ|z| u∥ 2 L 2 ∥v∥ 2 L 2 ≤ C∥e κ|z| u∥ 2 L 2 ∥v 0 ∥ 2 L 2 , (2.4) 
where we used the Carlen inequality (1.27) and the conservation of the L 2 -norm. We conclude by integration.

• Proof of (1.6). The proof of this inequality is in the same spirit as the previous one. We have

i∂ t (u -u) = Π |v| 2 u -| v| 2 u = Π (u -u)|v| 2 + (v -v) uv + v(v -v) u v .
Then, with the same arguments as in (2.4), we get

d dt C e 2κ|z| |u -u| 2 dL ≤ ≤ C κ ∥e κ|z| (u -u)∥ L 2 ∥e κ|z| (u -u)∥ L 2 + ∥e κ|z| (v -v)∥ L 2 ∥u∥ 2 L ∞ + ∥ u∥ 2 L ∞ + ∥v∥ 2 L ∞ + ∥ v∥ 2 L ∞ ≤ C κ ∥e κ|z| (u -u)∥ L 2 ∥e κ|z| (u -u)∥ L 2 + ∥e κ|z| (v -v)∥ L 2 ∥u 0 ∥ 2 L 2 + ∥ u 0 ∥ 2 L 2 + ∥v 0 ∥ 2 L 2 + ∥ v 0 ∥ 2 L 2 . Therefore, setting θ = ∥e κ|z| (u -u)∥ 2 L 2 + ∥e κ|z| (v -v)∥ 2 L 2
, we get the bound θ ′ (t) ≤ C κ θ(t) and we deduce (1.6) by integration.

A rigidity result.

A direct consequence of (1.6) (with κ = 0) is the following rigidity result for the system (1.2) in L 2 (C) :

Lemma 2.2. Let (u, v) ∈ C ∞ (R, E × E) and ( u, v) ∈ C ∞ (R, E × E) be solutions to (1.2). Then there exists a universal constant c > 0 such that for all t ∈ R ∥u(t) -u(t)∥ 2 L 2 (C) + ∥v(t) -v(t)∥ 2 L 2 (C) ≥ ≥ ∥u 0 -u 0 ∥ 2 L 2 (C) + ∥v 0 -v 0 ∥ 2 L 2 (C) e -c(∥u 0 ∥ 2 L 2 +∥ u 0 ∥ 2 L 2 +∥v 0 ∥ 2 L 2 +∥ v 0 ∥ 2 L 2 )|t| .
In other words, either (u, v) = ( u, v) or there exist c, C > 0 such that

∥u(t) -u(t)∥ L 2 (C) + ∥v(t) -v(t)∥ L 2 (C) ≥ Ce -c|t| .
Notice that a similar property holds true for the Schrödinger equation with logarithmic nonlinearity, see [12, Lemma 6.2].

Preliminary results

3.1.

Interactions of traveling waves. The next result shows that the interactions between the traveling waves have a Gaussian decay with respect to their relative distance.

Lemma 3.1. Assume that U 1 , U 2 ∈ E satisfy for all z ∈ C |U 1 (z)| ≤ C 0 e -c 0 |z| 2 , |U 2 (z)| ≤ C 0 e -c 0 |z| 2 , (3.1) 
for some c 0 , C 0 > 0. Then (i) there exists C > 0 such that for all

α 1 , α 2 ∈ C ∥(R α 1 U 1 ) (R α 2 U 2 )∥ L ∞ ≤ Ce -c 0 2 |α 1 -α 2 | 2 ; (3.2) 
(ii) for all s ≥ 0 and all c 1 < c 0 , there exists C > 0 such that for all

α 1 , α 2 ∈ C ∥⟨z⟩ s (R α 1 U 1 ) (R α 2 U 2 )∥ L 2 ≤ C min ⟨α 1 ⟩ s , ⟨α 2 ⟩ s e -c 1 2 |α 1 -α 2 | 2 ; ( 3.3) 
(iii) for all κ > 0 and all c 1 < c 0 there exists C > 0 such that for all

α 1 , α 2 ∈ C ∥e κ|z| (R α 1 U 1 ) (R α 2 U 2 )∥ L 2 ≤ C min e κ|α 1 | , e κ|α 2 | e -c 1 2 |α 1 -α 2 | 2 ; (iv) there exists C > 0 such that for all L > 0 and α 1 ∈ C ∥e -L|z| R α 1 U 1 ∥ L ∞ ≤ Ce -L|α 1 |/2 + Ce -c 0 |α 1 | 2 /4 .
(3.4)

Proof. (i) First, we observe that we have the relation

|z + α 1 | 2 + |z + α 2 | 2 = 2 z + α 1 + α 2 2 2 + 1 2 |α 1 -α 2 | 2 .
Therefore by (3.1)

(R α 1 U 1 )(z)(R α 2 U 2 )(z) ≤ Ce -c 0 |z+α 1 | 2 -c 0 |z+α 2 | 2 = Ce -c 0 |α 1 -α 2 | 2 2 e -2c 0 |z+ α 1 +α 2 2 | 2 , (3.5) 
hence the estimate (ii) Assume for instance |α 2 | ≤ |α 1 |. In order to prove (3.3) we write

∥⟨z⟩ s (R α 1 U 1 ) (R α 2 U 2 )∥ L 2 = ∥⟨z -α 2 ⟩ s (R α 1 -α 2 U 1 ) U 2 ∥ L 2 ≤ C⟨α 2 ⟩ s ∥(R α 1 -α 2 U 1 ) U 2 ∥ L 2 + C∥(R α 1 -α 2 U 1 ) ⟨z⟩ s U 2 ∥ L 2 .
Observe that ⟨z⟩ s |U 2 (z)| ≤ C 0 e -c 1 |z| 2 for all c 1 < c 0 and therefore by (3.5) we obtain

∥⟨z⟩ s (R α 1 U 1 ) (R α 2 U 2 )∥ L 2 ≤ C⟨α 2 ⟩ s e -c 1 2 |α 1 -α 2 | 2
, which was to prove.

(iii) Similarly, for all c 1 < c 0 , we have

∥e κ|z| (R α 1 U 1 ) (R α 2 U 2 )∥ L 2 = ∥e κ|z-α 2 | (R α 1 -α 2 U 1 ) U 2 ∥ L 2 ≤ e κ|α 2 | ∥(R α 1 -α 2 U 1 ) (e κ|z| U 2 )∥ L 2 ≤ Ce κ|α 2 | e -c 1 2 |α 1 -α 2 | 2 , hence the result.
(iv) By hypothesis (3.1) 

|e -L|z| R α 1 U 1 | ≤ Ce -L|z|-c 0 |z+α 1 | 2 . (3.6) Then observe that L|z| + c 0 |z + α 1 | 2 ≥ L|α 1 |/2 if |z| ≥ |α 1 |/2 c 0 |α 1 | 2 /4 if |z| ≤ |α 1 |/2,
T (t, z) = e -itλ (R αt U )(z), ∀ (t, z) ∈ R × C.
(i) There exists U ∈ E such that for all c 1 < c 0 1+2c 0 , there exists

C 1 > 0 | U (z)| ≤ C 1 e -c 1 |z| 2 (3.7)
and

(∂ t T )(t, z) = e -itλ (R αt U )(z), ∀ (t, z) ∈ R × C. (ii)
In the particular case where U takes the form (1.8), then any c 1 < 1/2 can be chosen in (3.7).

Proof. We set U (z) = f (z)e -|z| 2 2 , thus

T (t, z) = e -iλt U (z + αt)e 1 2 (zα-zα)t = e -iλt f (z + αt)e -zαt-|z| 2 2 - |α| 2 t 2 2
.

A direct computation gives (∂ t T )(t, z) = e -iλt U (z + αt)e 1 2 (zα-zα)t where 

U (z) = -iλf (z) + α∂ z f (z) -αzf (z) e -
z f (z)|e -|z| 2 2 ≤ Ce -c 1 |z| 2 . Observe that (∂ z f )(z)e -|z| 2 2 = ∂ z - z 2 U (z) + zU (z), hence it is enough to show that ∂ z -z 2 U (z) ≤ Ce -c 1 |z| 2 . Writing U (z) = Π(U )(z) = e -|z| 2 2 π C e wz-|w| 2 2 U (w) dL(w),
we obtain

∂ z - z 2 U (z) = e -|z| 2 2 π C (w -z)e wz-|w| 2 2 U (w) dL(w).
This in turn implies

∂ z - z 2 U (z) ≤ C e c 0 |z| 2 U L ∞ C |z -w|e -|z-w| 2 2
e -c 0 |w| 2 dL(w).

(3.9)

Now let us show that there exists ϵ > 0 such that for all w, z ∈ C

1 2 |z -w| 2 + c 0 |w| 2 ≥ ϵ|z -w| 2 + c 1 |z| 2 . (3.10)
We can assume that w, z ∈ R and by homogeneity we can reduce to the case w = 1. Define the polynomial

P (z) = 1 2 (z -1) 2 + c 0 -ϵ(z -1) 2 -c 1 z 2 = ( 1 2 -c 1 -ϵ)z 2 -(1 -2ϵ)z + ( 1 2 + c 0 -ϵ).
The discriminant of P is ∆ = 2(c 1 -c 0 )(1 -2ϵ) + 4c 0 c 1 which is negative for ϵ > 0 small enough, since c 1 < c 0 1+2c 0 . As a consequence, P ≥ 0 for ϵ > 0 small enough, which implies (3.10). From (3.9) and (3.10) we deduce that

∂ z - z 2 U (z) ≤ C e c 0 |z| 2 U L ∞ e -c 1 |z| 2 C
|z -w|e -ϵ|z-w| 2 dL(w)

≤ Ce -c 1 |z| 2 ,
which concludes the proof.

(ii) In the particular case where

U = Ke ia 1 2 φ γ 0 + √ 3 2 ie iθ φ γ 1 , the result directly follows from (3.8), since |f (z)| ≤ C(1 + |z|)e |γ||z| . □ 4. Proof of Theorem 1.3 We recall the system      i∂ t u = Π(|v| 2 u), (t, z) ∈ R × C, i∂ t v = -Π(|u| 2 v), u(0, •) = u 0 ∈ E, v(0, •) = v 0 ∈ E. (4.1) 
Assume that for each 1 ≤ j ≤ n, (U j , V j ) ∈ E × E is a traveling wave solution to (4.1) in the sense (1.7), and that there exist c 0 , C > 0 such that

|U j (z)| + |V j (z)| ≤ Ce -c 0 |z| 2 . (4.2)
One can have α j = 0 for at most one 1 ≤ j ≤ n, and in this case, (4.2) is automatically satisfied for any c 0 < 1/2, by Theorem A.1. We denote by K j = ∥U j ∥ L 2 = ∥V j ∥ L 2 (notice that one always has ∥U j ∥ L 2 = ∥V j ∥ L 2 for a traveling wave, see [26, Proposition 1.8]), and we set

X j (t, z) = e -iλ j t U j (z + α j t)e 1 2 (zα j -zα j )t Y j (t, z) = e -iµ j t V j (z + α j t)e 1 2 (zα j -zα j )t , (4.3) 
and

u = j=1 X j + r 1 := X + r 1 , v = n j=1 Y j + r 2 := Y + r 2 , (4.4) 
a solution of (4.1).

For M > 0, let (u M , v M ) ∈ C ∞ (R, E × E) be the solution to (4.1) such that r M 1 (M ), r M 2 (M ) = (0, 0). By Proposition 1.2, we also have (u

M , v M ) ∈ C ∞ (R, X κ E × X κ E ) for all κ ≥ 0, and hence (r M 1 , r M 2 ) ∈ C ∞ (R, X κ E × X κ E ).
4.1. The nonlinear analysis. The next result shows that the remainder term has an explicit Gaussian decay, with uniform constants with respect to M > 0.

Lemma 4.1. Let κ ≥ 0 and c 1 < c 0 2 . There exists a constant C > 0 such that for all M > 0 and all 0 < t ≤ M

e κ|z| r M 1 (t) L 2 + e κ|z| r M 2 (t) L 2 ≤ Ce -c 1 α 2 ♯ t 2 .
Proof. Fix M > 0. In the sequel, we write r 1 = r M 1 , r 2 = r M 2 and we denote by

η(t) := ∥e κ|z| r 1 (t)∥ 2 L 2 + ∥e κ|z| r 2 (t)∥ 2 L 2 .
We stress that all the constants C, c 0 , c 1 , c 2 > 0 below will be independent of M > 0.

Step 1 : A first L 2 -bound. To begin with, let us prove that

∥r M 1 (t)∥ L 2 ≤ 2 n j=1 K j ∥r M 2 (t)∥ L 2 ≤ 2 n j=1 K j . (4.5) 
By the conservation of the L 2 norm for (u M , v M ) and the triangle inequality, for all t ∈ R

∥r M 1 (t)∥ L 2 ≤ ∥u M (t)∥ L 2 + n j=1 ∥X j (t)∥ L 2 ≤ ∥u M (M )∥ L 2 + n j=1 ∥X j (t)∥ L 2 ≤ n j=1 ∥X j (M )∥ L 2 + ∥X j (t)∥ L 2 ≤ 2 n j=1 K j ,
uniformly with respect to t ∈ R and M > 0.

Step 2 : A differential inequality. In this paragraph we show that, for all c 1 < c 0 2 , there exists a constant C > 0 independent of M > 0 such that for all 0

< t ≤ M d dt η(t) ≤ Cη(t) + Ce -2c 1 α 2 ♯ t 2 . (4.6)
By (4.4), the relation i∂ t u = Π(|v| 2 u) reads

i∂ t r 1 = Π |Y + r 2 | 2 (X + r 1 ) -i∂ t X := 3 j=0 q j , (4.7) 
where

q 0 := Π |Y | 2 X -i∂ t X q 1 := Π |Y | 2 r 1 + Π Y Xr 2 + Π Y Xr 2 q 2 := Π X|r 2 | 2 + Π Y r 1 r 2 + Π Y r 1 r 2 q 3 := Π |r 2 | 2 r 1 , (4.8) 
where

X = n j=1 X j and Y = n j=1 Y j . Next we compute d dt C e 2κ|z| |r 1 | 2 dL = 2Re C e 2κ|z| r 1 ∂ t r 1 dL = 2Im C e 2κ|z| r 1 3 j=0 q j dL ≤ C∥e κ|z| r 1 ∥ L 2 3 j=0 ∥e κ|z| q j ∥ L 2 , (4.9) 
and we now have to estimate each term ∥e κ|z| q j ∥ L 2 .

• Control of ∥e κ|z| q 0 ∥ L 2 . For all 1 ≤ j ≤ n, i∂ t X j = Π |Y j | 2 X j , thus

q 0 = 1≤j,k,ℓ≤n (j,k,ℓ)̸ =(j,j,j) Π Y j Y k X ℓ . (4.10) 
Assume for instance that j ̸ = k, so that α j ̸ = α k . Then by (2.2)

∥e κ|z| Π Y j Y k X ℓ ∥ L 2 ≤ C∥e κ|z| Y j Y k X ℓ ∥ L 2 = C∥e κ|z| (R α j t V j )(R α k t V k )(R α ℓ t U ℓ )∥ L 2 = C∥e κ|z-α ℓ t| (R (α j -α ℓ )t V j )(R (α k -α ℓ )t V k )U ℓ ∥ L 2 ≤ Ce κ|α ℓ |t ∥(R (α j -α ℓ )t V j )(R (α k -α ℓ )t V k )∥ L ∞ ∥e κ|z| U ℓ ∥ L 2 .
Next by (3.2), for all c 1 < c 0 2 we have

∥e κ|z| Π Y j Y k X ℓ ∥ L 2 ≤ Ce κ|α ℓ |t-c 0 2 |α j -α k | 2 t 2 ∥e κ|z| U ℓ ∥ L 2 ≤ Ce -c 1 |α j -α k | 2 t 2 .
The other terms are treated similarly. As a consequence, for all

c 1 < c 0 2 ∥e κ|z| q 0 ∥ L 2 ≤ Ce -c 1 α 2 ♯ t 2 . ( 4 

.11)

• Control of ∥e κ|z| q 1 ∥ L 2 . From (2.2) we have

∥e κ|z| q 1 ∥ L 2 ≤ C∥e κ|z| |Y | 2 r 1 ∥ L 2 + C∥e κ|z| Y Xr 2 ∥ L 2 ≤ C∥Y ∥ 2 L ∞ ∥e κ|z| r 1 ∥ L 2 + C∥X∥ L ∞ ∥Y ∥ L ∞ ∥e κ|z| r 2 ∥ L 2 ≤ C ∥e κ|z| r 1 ∥ L 2 + ∥e κ|z| r 2 ∥ L 2 ≤ Cη 1/2 .
• Control of ∥e κ|z| q 2 ∥ L 2 . The estimation of this contribution is in the same spirit as the previous one. Firstly,

∥e κ|z| q 2 ∥ L 2 ≤ C ∥Y ∥ L ∞ ∥r 1 ∥ L ∞ + ∥X∥ L ∞ ∥r 2 ∥ L ∞ ∥e κ|z| r 2 ∥ L 2 . (4.12)
Then by the estimate (1.27) and by (4.5),

∥r 1 ∥ L ∞ ≤ C∥r 1 ∥ L 2 ≤ C,
and ∥r 2 ∥ L 2 ≤ C as well. Thus from (4.12) we deduce

∥e κ|z| q 2 ∥ L 2 ≤ Cη 1/2 .
• Control of ∥e κ|z| q 3 ∥ L 2 . Similarly,

∥e κ|z| q 3 ∥ L 2 ≤ C∥r 2 ∥ 2 L ∞ ∥e κ|z| r 1 ∥ L 2 ≤ Cη 1/2 .
Putting all the previous estimates together, from (4.9) we obtain

d dt ∥e κ|z| r 1 (t)∥ 2 L 2 ≤ Cη 1/2 (t) η 1/2 (t) + Ce -c 1 α 2 ♯ t 2 ≤ Cη(t) + Ce -2c 1 α 2 ♯ t 2 .
The estimate for d dt ∥e κ|z| r 2 (t)∥ 2 L 2 is similar, hence we get (4.6).

Step 3 : Backward Grönwall. Now, by integrating (4.6) on [t, M ] we get that for all 0

< t < M η(t) ≤ C +∞ t e -2c 1 α 2 ♯ σ 2 dσ + C M t η(σ)dσ ≤ Ce -2c 1 α 2 ♯ t 2 + C M t η(σ)dσ.
By the backward Grönwall inequality (Lemma B.1) this implies that for all 0

< t < M η(t) ≤ Ce -2c 1 α 2 ♯ t 2 + C M t e -2c 1 α 2 ♯ σ 2 exp σ t Cdτ dσ ≤ Ce -2c 1 α 2 ♯ t 2 + C M t e -2c 1 α 2 ♯ σ 2 +Cσ dσ ≤ Ce -2c 2 α 2 ♯ t 2 ,
for any c 2 < c 1 , and where the previous constant C > 0 does not depend on M > 0, which was the claim. □

We now prove that for all T > 0, the sequence

r M 1 , r M 2 M ≥0 is a Cauchy sequence in the space C [0, T ]; X κ E × X κ E ) : Lemma 4.2. Let κ ≥ 0. For all c 1 < c 0
2 , there exists a constant C > 0 such that for all 0 < N < M and all

0 < t ≤ N e κ|z| (r M 1 -r N 1 )(t) L 2 + e κ|z| (r M 2 -r N 2 )(t) L 2 ≤ Ce -c 1 α 2 ♯ N 2 .
Proof. By (4.7),

i∂ t (r M 1 -r N 1 ) = 3 j=1 (q M j -q N j ),
and we observe that the term q 0 does not depend on N or M , thus q M 0 = q N 0 . We compute

d dt C e 2κ|z| |r M 1 -r N 1 | 2 dL = 2Re C e 2κ|z| (r M 1 -r N 1 )∂ t (r M 1 -r N 1 )dL ≤ C e κ|z| (r M 1 -r N 1 ) L 2 3 j=1 ∥e κ|z| (q M j -q N j )∥ L 2 .
Denote by

θ(t) = e κ|z| (r M 1 -r N 1 )(t) 2 L 2 + e κ|z| (r M 2 -r N 2 )(t) 2 L 2 ,
then we can prove that θ satisfies the inequation

d dt θ(t) ≤ Cθ(t), (4.13) 
where C > 0 does not depend on N, M > 0. To do this, we can proceed as in the proof of Lemma 4.1 : the estimates are the same, simply using

∥r M 1 ∥ L ∞ + ∥r N 1 ∥ L ∞ + ∥r M 2 ∥ L ∞ + ∥r N 2 ∥ L ∞ ≤ C. Next by Lemma 4.1, we have, for any c 1 < c 0 2 θ(N ) = e κ|z| r M 1 (N ) 2 L 2 + e κ|z| r M 2 (N ) 2 L 2 ≤ Ce -2c 1 α 2 ♯ N 2
.

By integration of (4.13) on [t, N ] we deduce that for all 0

≤ t ≤ N θ(t) ≤ θ(N ) + C N t θ(σ)dσ ≤ Ce -2c 1 α 2 ♯ N 2 + C N t θ(σ)dσ.
Therefore, by Lemma B.1, for all 0

≤ t ≤ N θ(t) ≤ Ce -2c 1 α 2 ♯ N 2 + Ce -2c 1 α 2 ♯ N 2 N t e Cσ dσ ≤ Ce -2c 2 α 2 ♯ N 2 ,
for any c 2 < c 1 , which was the claim. □ 4.2. Conclusion of the proof of Theorem 1.3. For κ > 0, we denote by

X κ = u ∈ S ′ (C), e κ|z| u ∈ L 2 (C) .
By Lemma 4.2, for all T > 0, the sequence

r M 1 , r M 2 M ≥0 is a Cauchy sequence in the space C [0, T ]; X κ × X κ ), hence it converges in C [0, T ]; X κ × X κ ). By Lemma 4.1, its limit satisfies the bound ∥e κ|z| r 1 (t)∥ L 2 + ∥e κ|z| r 2 (t)∥ L 2 ≤ Ce -c 1 α 2 ♯ t 2
, for any c 1 < c 0 2 and for all t ≥ 0. Now let us prove that for all t ∈ [0, T ] we have (r 1 (t), r 2 (t) ∈ E × E, so that we will deduce that (r

1 , r 2 ) ∈ C [0, T ]; X κ E × X κ E ). Fix t ∈ [0, T ].
In the next lines, we do not mention the dependence on t. For j = 1, 2, write r M j (z) = f M j (z)e -|z| 2 /2 , where f M j is entire. By the Carlen inequality (1.27), for all z ∈ C and M ≥ 1

|f M j (z)e -|z| 2 /2 | ≤ ∥r M j ∥ L ∞ (C) ≤ C∥r M j ∥ L 2 (C) ≤ C. Therefore, for all K > 0 and M ≥ 1, we get |f M j (z)| ≤ C K , |z| ≤ K.
By the Montel theorem, there exists an entire function f j such that, when M -→ +∞, up to a subsequence f M j -→ f j , uniformly on any compact of C, and by uniqueness of the limit we have r j (z) = f j (z)e -|z| 2 /2 ∈ E.

To complete the proof of Theorem 1.3, it remains to show that (1.13) holds for all k ∈ N. We proceed by induction on k ≥ 0. The case k = 0 has just been proven. Let k ≥ 0 such that

∥e κ|z| (∂ j t r 1 )(t)∥ L 2 + ∥e κ|z| (∂ j t r 2 )(t)∥ L 2 ≤ Ce -c 1 α 2 ♯ t 2 , (4.14) 
holds true for all 0 ≤ j ≤ k, and where the constant c 1 < 1/4 can be chosen arbitrarily close to 1/4. Then by (4.7),

i∂ k+1 t r 1 = 3 j=0 ∂ k t q j .
We write

e (∂ k+1 t r 1 )(t) L 2 ≤ e κ|z| (∂ k t q 0 )(t) L 2 + 3 j=1 e κ|z| (∂ k t q j )(t) L 2 . (4.15) 
Using the Leibniz rule and (4.10), we observe that ∂ k t q j is a trilinear term in (∂ j t r ℓ ) 0≤j≤k , (∂ j t X ℓ ) 0≤j≤k , and (∂ j t Y ℓ ) 0≤j≤k . Next, we have

X j = e -itλ j t R α j t U j , Y j = e -itλ j t R α j t V j ,
and we assume that for all 0 ≤ j ≤ n, (U j , V j ) take the form (1.8). Hence by Lemma 3.2 (ii) applied k-times we get that for all k ∈ N there exists

U (k) j , V (k) j ∈ E such that ∂ k t X j = e -itλ j t R α j t U (k) j , ∂ k t Y j = e -itλ j t R α j t V (k) j , (4.16) 
and so that for all c 0 < 1/2 there exists C k > 0 such that

|U (k) j (z)| ≤ C k e -c 0 |z| 2 , |V (k) 
j (z)| ≤ C k e -c 0 |z| 2 . (4.17) 
Let us bound the first term in (4.15). By (4.10) we have

q 0 = 1≤j 1 ,j 2 ,j 3 ≤n (j 1 ,j 2 ,j 3 )̸ =(j 1 ,j 1 ,j 1 ) Π Y j 1 Y j 2 X j 3 , then ∂ k t q j is a sum of terms of the form Π (∂ k 1 t Y j 1 )(∂ k 2 t Y j 2 )(∂ k 3 t X j 3 ) with 0 ≤ k 1 , k 2 , k 3 ≤ k.
Then we can apply the bounds (4.17) and the same arguments as for (4.11) to get

e κ|z| Π (∂ k 1 t Y j 1 )(∂ k 2 t Y j 2 )(∂ k 3 t X j 3 ) L 2 ≤ Ce -c 1 α 2 ♯ t 2 ,
for any c 1 < 1/4. This in turn, by taking the sum over the indexes

j 1 , j 2 , j 3 , k 1 , k 2 , k 3 , implies e κ|z| (∂ k t q 0 )(t) L 2 ≤ Ce -c 1 α 2 ♯ t 2
, for any c 1 < 1/4.

Let us bound the term in (4.15) corresponding to j = 1. Recall from (4.8) that q 1 = Π |Y | 2 r 1 + Π Y Xr 2 + Π Y Xr 2 . Let us treat for example the contribution of the first term, which will be a sum of terms of the form Π (∂

k 1 t Y j 1 )(∂ k 2 t Y j 2 )(∂ k 3 t r 1 ) with 0 ≤ k 1 , k 2 , k 3 ≤ k. By (2.2) we get e κ|z| Π (∂ k 1 t Y j 1 )(∂ k 2 t Y j 2 )(∂ k 3 t r 1 ) L 2 ≤ C e κ|z| (∂ k 1 t Y j 1 )(∂ k 2 t Y j 2 )(∂ k 3 t r 1 ) L 2 ≤ C (∂ k 1 t Y j 1 )(∂ k 2 t Y j 2 ) L ∞ e κ|z| ∂ k 3 t r 1 L 2 .
Then by (4.16) and (4.17) we deduce (∂ 

k 1 t Y j 1 )(∂ k 2 t Y j 2 ) L ∞ ≤ C,
e κ|z| Π (∂ k 1 t Y j 1 )(∂ k 2 t Y j 2 )(∂ k 3 t r 1 ) L 2 ≤ Ce -c 1 α 2 ♯ t 2
, which implies the desired bound by summing over all the indexes The bounds on the terms corresponding to j = 2, 3 are obtained similarly.

By the same manner, when one of the traveling waves satisfies the bound (4.2) for some c 0 < 1/2, one can establish (1.15), by using Lemma 3.2 (i). In this latter case, the constant c k > 0 giving the rate of the Gaussian decay may depend on k ∈ N.

The relations (1.17) are obtained by plugging the expressions (1.12) in the conservation laws and using Lemma 3.1, together with the values given in [26, equation (1.15)].

4.3.

Proof of the bound (1.19). By the change of unknown ( u, v) = e -iδtH (u, v), we have ( r 1 , r 2 ) = e -iδtH (r 1 , r 2 ). For s ≥ 0, ∥⟨z⟩ s (∂ k t r 1 )∥ L 2 = ∥⟨z⟩ s ∂ k t (e -iδtH r 1 )∥ L 2 , and by the Leibniz rule, we are reduced to bound terms of the form ∥⟨z⟩ s H j e -iδtH (∂ ℓ t r 1 )∥ L 2 for 0 ≤ j, ℓ ≤ k. By (1.4),

∥⟨z⟩ s H j (∂ ℓ t r 1 )∥ L 2 ≤ C∥H j e -iδtH (∂ ℓ t r 1 )∥ H s ≤ C∥∂ ℓ t r 1 ∥ H s+2j ≤ C∥⟨z⟩ s+2j ∂ ℓ t r 1 ∥ L 2 ≤ Ce -c ℓ t 2 ,
where in the last line we used (1.15).

5.

Proof of Theorem 1.5

Consider ( u, v) = (X + r 1 , Y + r 2 ) ∈ C R, X κ E × X κ
E a multi-soliton as given in Theorem 1.5. We stress that for all j ̸ = ℓ, we have α j ̸ = α ℓ and that for all 1 ≤ j ≤ n, α j ̸ = 0.

Similarly to (4.3), we assume that

X(t, z) = n j=1 e -iλ j t U j (z + α j t)e 1 2 (zα j -zα j )t Y (t, z) = n j=1
e -iµ j t V j (z + α j t)e 1 2 (zα j -zα j )t , and we set K j := ∥U j ∥ L 2 = ∥V j ∥ L 2 .

Step 1 : Exponential decay of the error. In this paragraph only, we write r 1 = r 1 and r 2 = r 2 . Assume that, when t -→ 0, ∥e κ|z| r 1 (t)∥ L 2 + ∥e κ|z| r 2 (t)∥ L 2 -→ 0.

(5.1)

Let us show that for all t ≥ 0

∥r 1 ∥ 2 L 2 (C) + ∥r 2 ∥ 2 L 2 (C) ≤ C κ e -κα min t . (5.2) 
Starting from the relation

i∂ t r 1 = 3 j=0 q j ,
similarly to (4.9) we compute

d dt C |r 1 | 2 dL = 2Im C r 1 3 j=0 q j dL ≤ 2∥r 1 ∥ L 2 2 j=0 ∥q j ∥ L 2 ,
and we observe that the contribution of q 3 cancels in the previous line. We now control each term ∥q j ∥ L 2 , for 0 ≤ j ≤ 2.

• Control of ∥q 0 ∥ L 2 . We have already controlled this term, namely by (4.11) (with κ = 0)

∥q 0 ∥ L 2 ≤ Ce -cα 2 ♯ t 2 . • Control of 1 ∥ L 2 .
We directly obtain

∥q 1 ∥ L 2 ≤ C∥r 1 Y 2 ∥ L 2 + C∥r 2 XY ∥ L 2 ≤ C ∥e κ|z| r 1 ∥ L 2 + ∥e κ|z| r 2 ∥ L 2 ∥e -κ|z| Y ∥ L ∞ ∥Y ∥ L ∞ + ∥X∥ L ∞ ≤ C ∥e κ|z| r 1 ∥ L 2 + ∥e κ|z| r 2 ∥ L 2 ∥e -κ|z| Y ∥ L ∞ . (5.3) 
We now use the expression of Y and (3.4), and we rely on the crucial fact that α j ̸ = 0 for all 1 ≤ j ≤ n : denote by α min = min 1≤j≤n |α j |, then there exists a universal constant c 1 > 0 such that

∥e -κ|z| Y ∥ L ∞ ≤ C e -κα min t/2 + e -c 1 α 2 min t 2 /4 ≤ Ce -κα min t/2 .
Therefore, from (5.3) and (5.1) we deduce

∥q 1 ∥ L 2 ≤ Ce -κα min t/2 ∥e κ|z| r 1 ∥ L 2 + ∥e κ|z| r 2 ∥ L 2 ≤ Ce -κα min t/2 .
• Control of ∥q 2 ∥ L 2 . Similarly we get

∥q 2 ∥ L 2 ≤ C ∥e κ|z| r 1 ∥ L 2 + ∥e κ|z| r 2 ∥ L 2 ∥e -κ|z| X∥ L ∞ + ∥e -κ|z| Y ∥ L ∞ ∥r 1 ∥ L ∞ + ∥r 2 ∥ L ∞ ≤ C ∥e κ|z| r 1 ∥ L 2 + ∥e κ|z| r 2 ∥ L 2 ∥e -κ|z| X∥ L ∞ + ∥e -κ|z| Y ∥ L ∞ ≤ Ce -κα min t/2 .
Putting the previous estimates together we get

d dt ∥r 1 ∥ 2 L 2 (C) + ∥r 2 ∥ 2 L 2 (C) ≤ C ∥r 1 ∥ 2 L 2 (C) + ∥r 2 ∥ 2 L 2 (C) 1/2 e -κα min t/2
and by integration on [t, +∞), using (5.1), we deduce (5.2).

Step 2 : An explicit L ∞ bound. Consider two multi-solutions

(u, v) = (X + r 1 , Y + r 2 ), ( u, v) = (X + r 1 , Y + r 2 ),
where the remainder terms satisfy (5.1). Then by (4.7), the errors satisfy the equations

i∂ t r 1 = 3 j=0 q j , i∂ t r 1 = 3 j=0 q j .
Denote by ρ j = r j -r j and set

θ(t) = ∥ρ 1 (t)∥ 2 L 2 (C) + ∥ρ 2 (t)∥ 2 L 2 (C) .
Observe that, thanks to (5.2), we already have the bound θ(t) ≤ C κ e -κα min t .

(5.4)

Denote by

G(t) = ∥X(t)∥ 2 L ∞ + ∥Y (t)∥ 2 L ∞ + ∥r 1 (t)∥ 2 L ∞ + ∥r 2 (t)∥ 2 L ∞ + ∥ r 1 (t)∥ 2 L ∞ + ∥ r 2 (t)∥ 2
L ∞ , and set K max = max 1≤j≤n K j . We now show that there exists a universal constant c 0 > 0 and t 0 > 0 such that for all t ≥ t 0 , G(t) ≤ c 0 K 2 max .

(5.5) Since α j ̸ = α ℓ , one has ∥X(t)∥ L ∞ -→ max 1≤j≤n ∥U j ∥ L ∞ , when t -→ +∞. Besides, by (1.27), ∥U j ∥ L ∞ ≤ C∥U j ∥ L 2 = CK j . Therefore, for t large enough, ∥X(t)∥ L ∞ ≤ 2CK max . We proceed similarly for Y and we can use (1.22) to conclude that (5.5) holds true.

Step 3 : A differential inequality. Let us show that there exists an universal constant C 0 > 0 such that for all t ≥ t 0 d dt θ(t) ≤ C 0 K 2 max θ(t).

(5.6)

As in (4.9) we compute

d dt ∥ρ 1 ∥ 2 L 2 ≤ C∥ρ 1 ∥ L 2 3 j=1 ∥q j -q j ∥ L 2 , (5.7) 
where we observe that q 0 = q 0 . Using the expressions (4.8) we bound the previous terms. In the sequel, we assume that t ≥ t 0 .

• Control of ∥q 1 -q 1 ∥ L 2 . Using (5.5) we directly obtain

∥q 1 -q 1 ∥ L 2 ≤ C∥ρ 1 Y 2 ∥ L 2 + C∥ρ 2 XY ∥ L 2 ≤ C ∥ρ 1 ∥ L 2 + ∥ρ 2 ∥ L 2 ∥X∥ 2 L ∞ + ∥Y ∥ 2 L ∞ ≤ C ∥ρ 1 ∥ L 2 + ∥ρ 2 ∥ L 2 K 2 max .
• Control of ∥q 2 -q 2 ∥ L 2 . Similarly we get

∥q 2 -q 2 ∥ L 2 ≤ C ∥ρ 1 ∥ L 2 + ∥ρ 2 ∥ L 2 ∥X∥ L ∞ + ∥Y ∥ L ∞ ∥r 1 ∥ L ∞ + ∥r 2 ∥ L ∞ + ∥ r 1 ∥ L ∞ + ∥ r 2 ∥ L ∞ ≤ C ∥ρ 1 ∥ L 2 + ∥ρ 2 ∥ L 2 K 2 max .
• Control of ∥q 3 -q 3 ∥ L 2 . By the same manner, we have

∥q 3 -q 3 ∥ L 2 ≤ C ∥ρ 1 ∥ L 2 + ∥ρ 2 ∥ L 2 ∥r 1 ∥ L ∞ + ∥r 2 ∥ L ∞ + ∥ r 1 ∥ L ∞ + ∥ r 2 ∥ L ∞ 2 ≤ C ∥ρ 1 ∥ L 2 + ∥ρ 2 ∥ L 2 K 2 max .
Therefore, by (5.7) and the previous estimates

d dt ∥ρ 1 ∥ 2 L 2 ≤ C(∥ρ 1 ∥ 2 L 2 + ∥ρ 2 ∥ 2 L 2 K 2 max .
The same bound holds for d dt ∥ρ 2 ∥ 2 L 2 , and we deduce (5.6).

Step 4 : Backward Grönwall. Let t 0 ≤ t ≤ M . We integrate (5.6) 

on [t, M ] θ(t) ≤ θ(M ) + C 0 K 2 max M t θ(s)ds.
We are able to apply Lemma B.1 and get for all 0

≤ t ≤ M θ(t) ≤ θ(M ) + C 0 K 2 max θ(M ) M t exp C 0 K 2 max σ t dτ dσ ≤ θ(M ) + C 0 K 2 max θ(M ) M t e C 0 K 2 max σ dσ ≤ θ(M ) 1 + e C 0 K 2 max M .
Next, by (5.4) θ(t) ≤ Ce -κα min M 1 + e C 0 K 2 max M , which tends to 0 when M -→ +∞, provided that κ > C 0 K 2 max /α min . As a conclusion θ(t) = 0 for all t ≥ t 0 which in turn implies that θ ≡ 0 on R, since equation (4.1) is globally well-posed on R. In the case where the traveling waves take the form (1.8), one has |α| = √ 3 32π K 2 , and (1.20) follows.

Proof of 1.6

The proof of this result is in the same spirit as the proof of Theorem 1.3, but here the error estimate will be done starting from t = 0 instead of considering times t ≫ 1.

Assume that (U 0 , V 0 ) ∈ E × E is a traveling wave solution to (4.1) in the sense (1.7), and that there exist c 0 , C > 0 such that

|U 0 (z)| + |V 0 (z)| ≤ Ce -c 0 |z| 2 .
We moreover assume that ∥U 0 ∥ L 2 = ∥V 0 ∥ L 2 = 1, and we denote by α 0 ∈ C the speed of this traveling wave and consider (λ 0 , µ 0 ) the phase parameters. Next, for a j , b j , γ j ∈ C, K ≥ 0, and θ ∈ R, we define

U j = Ke ia j R γ j L θ U 0 , V j = Ke ib j R γ j L θ V 0 . By [26, Proposition 1.8 (iv)], each couple (U j , V j ) defines a traveling wave X j (t, z) = e -iλ j t U j (z + αt)e 1 2 (zα-zα)t Y j (t, z) = e -iµ j t V j (z + αt)e 1 2 (zα-zα)t ,
with speed α = α 0 K 2 e -iθ and where (λ j , µ j ) = K 2 λ 0 + 2Im(α 0 γ j e iθ ), µ 0 + 2Im(α 0 γ j e iθ ) . We consider the solution (u, v) to (1.2)

u = n j=1 X j + r 1 := X + r 1 , v = n j=1 Y j + r 2 := Y + r 2 ,
such that (r 1 (0), r 2 (0)) = (0, 0). We now have to estimate the error term (r 1 , r 2 ) and by reversibility of the equation it is enough to consider the case t ≥ 0.

We write the expansion (4.7)-(4.8), and similarly to (4.9) we obtain

d dt C e 2κ|z| |r 1 | 2 dL ≤ C∥e κ|z| r 1 ∥ L 2 2 j=0
∥e κ|z| q j ∥ L 2 .

We now estimate each term ∥q j ∥ L 2 . Denote by η(t)

:= ∥e κ|z| r 1 (t)∥ 2 L 2 (C) + ∥e κ|z| r 2 (t)∥ 2 L 2 (C) . • Control of ∥e κ|z| q 0 ∥ L 2 . For all 1 ≤ j ≤ n, i∂ t X j = Π |Y j | 2 X j , thus q 0 = 1≤j,k,ℓ≤n (j,k,ℓ)̸ =(j,j,j) Π Y j Y k X ℓ .
Assume for instance that j ̸ = k, so that γ j ̸ = γ k . Then by (2.2)

∥e κ|z| Π Y j Y k X ℓ ∥ L 2 ≤ C∥e κ|z| Y j Y k X ℓ ∥ L 2 = CK 3 ∥e κ|z| (R αt+γ j V 0 )(R αt+γ k V 0 )(R αt+γ ℓ U 0 )∥ L 2 = CK 3 ∥e κ|z-αt-γ ℓ | (R γ j -γ ℓ V 0 )(R γ k -γ ℓ V 0 )U 0 ∥ L 2 ≤ CK 3 e κ|α|t ∥(R γ j -γ ℓ V 0 )(R γ k -γ ℓ V 0 )∥ L ∞ ∥e κ|z| U 0 ∥ L 2 .
Next by (3.2) • The controls of ∥e κ|z| q j ∥ L 2 for 1 ≤ j ≤ 3 are obtained as in the proof of Theorem 1.3, and we get ∥e κ|z| q j ∥ L 2 ≤ Cn 2 K 2 η 1/2 .

∥e κ|z| Π Y j Y k X ℓ ∥ L 2 ≤ CK 3 e κ|α|t e -
Putting the previous estimates together we can write d dt η(t) ≤ Cη(t) 1/2 n 2 K 2 η(t) 1/2 + K 3 e -c 0 2 ϵ -2 +κ|α|t ≤ Cn 2 K 2 η(t) + CK 4 e -c 0 ϵ -2 +2κ|α|t , and by integration η(t) ≤ Cn 2 K 2 t 0 η(s)ds + CK 4 te -c 0 ϵ -2 +2κ|α|t .

Finally, the Grönwall estimate implies η(t) = ∥e κ|z| r 1 (t)∥ 2 L 2 (C) + ∥e κ|z| r 2 (t)∥ 2 L 2 (C) ≤ CK 4 te -c 0 ϵ -2 +(Cn 2 K 2 +κ|α|)t . In particular, when c 0 = 1/2 we obtain (1.24).

Proof of Theorem 1.7

We will adopt the formalism of [START_REF] Faou | On weakly turbulent solutions to the perturbed linear harmonic oscillator[END_REF]Section 7] so that the result of Theorem 1.7 will be a direct application of [START_REF] Faou | On weakly turbulent solutions to the perturbed linear harmonic oscillator[END_REF]Proposition 7.1].

As in [START_REF] Faou | On weakly turbulent solutions to the perturbed linear harmonic oscillator[END_REF] we denote by T the CR trilinear operator which was first defined in [START_REF] Faou | The weakly nonlinear large box limit of the 2D cubic NLS[END_REF] and further studied in [START_REF] Germain | On the continuous resonant equation for NLS. I. Deterministic analysis[END_REF][START_REF] Germain | On the continuous resonant equation for NLS. II. Statistical study[END_REF]. This operator T is defined by (u 1 , u 2 , u 3 ) → T (u 1 , u 2 , u 3 )(w) := R 2 R u 1 (x + w)u 2 (x + λx ⊥ + w)u 3 (λx ⊥ + w)dλdx, where for x = (x 1 , x 2 ) ∈ R 2 we have set x ⊥ = (-x 2 , x 1 ). By [START_REF] Germain | On the continuous resonant equation for NLS. I. Deterministic analysis[END_REF]Lemma 8.2], when it is restricted to the Bargmann-Fock space E, the operator T can be simply expressed using Π : for all u 1 , u 2 , u 3 ∈ E, T (u 1 , u 2 , u 3 ) = π 2 Π u 1 u 2 u 3 .

Next, following [START_REF] Faou | On weakly turbulent solutions to the perturbed linear harmonic oscillator[END_REF], we define T [F ]u := T (F, F, u), so that T [F ]u = π 2 Π |F | 2 u when F, u ∈ E. Consider the solution (u, v) given by Theorem 1.3, define u(s, z) := u(e s , z) and F (s, z) := e s/2 π v(e s , z). Then

i∂ s u = π 2 Π(|F | 2 u) = T [F ] u,
for all s ∈ R. Recall the definition (1.3) of the Sobolev space H s (C). Using the explicit representation (1.12), we observe that for all σ ≥ 0 and k ≥ 0 we have the bounds e -iλ j ln t R α j ln t U j + e -itH r 1 (ln t) + r 0 (t) = n j=1 e -iλ j ln t e -2it L -2t R α j ln t U j + η(t),

∥∂ k s F (s)∥ H σ (C) + ∥∂ k s u(s)∥ H σ (C) ≤
where η(t) := e -itH r 1 (ln t) + r 0 (t) satisfies

∥η(t)∥ H 1 (C) -→ 0, t -→ +∞.
This completes to proof of Theorem 1.7.

Appendix A. On the decay of stationary solutions

In this section, we show that any stationary solution (u(t), v(t)) = (e -iλt U, e -iµt V ) to (1.1) with (U, V ) ∈ E × E has a Gaussian decay. Let λ, µ ∈ R, σ ∈ {-1, 1} and consider the system 
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 21 zβ-zβ) , v(z + β)e (zβ-zβ) for β ∈ C.The corresponding conservation laws are: the massM (u) = C |u(z)| 2 dL(z), M (v) = C |v(z)| 2 dL(z),the angular momentumP -(u, v) = C |z| 2 -1 |u(z)| 2 -|v(z)| 2 dL(z),and the magnetic momentum

1. 5 .

 5 Unbounded dynamics for 2D linear harmonic oscillator. The result of Theorem 1.3 allows us to give new examples of unbounded trajectories to the 2D linear harmonic oscillator

which implies the result by ( 3 . 6 ). □ 3 . 2 .Lemma 3 . 2 .

 363232 Stability of traveling waves under time derivation. The next lemma shows that the Gaussian decay of the traveling waves is stable under time derivation. Let c 0 ≤ 1/2. Assume that U ∈ E satisfies a Gaussian bound |U (z)| ≤ C 0 e -c 0 |z| 2 and assume that T ∈ C R; E takes the form

  Let us first treat the general case where |U (z)| ≤ C 0 e -c 0 |z| 2 . Let c 1 < c 0 1+2c 0 , then it remains to check that U satisfies a Gaussian bound with constant c 1 . Since c 1 < c 0 , it is clear that |zU (z)| ≤ Ce -c 1 |z| 2 , and let us prove that |∂

c 0 2

 2 |γ j -γ k | 2 ∥U 0 ∥ L 2 = CK 3 e κ|α|t e -c 0 2 |γ j -γ k | 2 .The other terms are treated similarly, as a consequence∥e κ|z| q 0 ∥ L 2 ≤ CK 3 e -c 0 2 ϵ -2 +κ|α|t .
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 113 λU = Π(|V | 2 U ) µV = σΠ(|U | 2 V ). (A.1)Then we have a natural extension of[START_REF] Gérard | On the cubic lowest Landau level equation[END_REF] Theorem 5.3] :Theorem A.1. Let (U, V ) ∈ E be a solution of (A.1). Then, for any 226 . . . , the following estimates hold true,|U (z)| ≤ C η e |z| η -1 2 |z| 2 , |V (z)| ≤ C η e |z| η -1 2 |z| 2 , ∀z ∈ C. (A.2)It is classical that a bound of the form (A.2) gives an estimate of the number of zeros of the corresponding function. More precisely, as proven in [14, Corollary 5.5], if one denotes byN (R) = # z ∈ C such that U (z) = 0 and |z| < R , then for any η > η 0 , N (R)R η -→ 0 as R -→ +∞, and similarly for V .Proof. The argument follows the main lines of[START_REF] Gérard | On the cubic lowest Landau level equation[END_REF] Theorem 5.3] where a similar result is established for the solutions U 0 ∈ E of the equationλU 0 = Π(|U 0 | 2 U 0 ).There are very few changes in the proof, and we just give the main steps of the argument.We write the expansion U = +∞ n=0 c n φ n and V = +∞ n=0 d n φ n . Step 1 (Step 1 in [14, paragraph 5.3.]): For 0 < κ < 1, we set M n = sup |w|>κ -n |U (w)|+|V (w)| and we prove M n ≤ C 0 e -(1-κ) 2 -2n + C 0 M 3 n-1 ,

  ), for any A 1 , A 2 , γ ∈ C and n 1 , n 2 ∈ N, by [26, Theorem 1.6] ; • (U, V ) = (U, U ) and µ = -λ where U ∈ E is any solution of λU = Π(|U | 2 U ). We refer to [14, Appendix A] for explicit examples.

	.16)
	By Theorem A.1, any solution (U, V ) ∈ E × E to (1.16) satisfies the bound (1.14) for all c 0 < 1/2.
	Examples of solutions of (1.16) are for instance :
	• (U, V ) = (A 1 φ γ n 1 , A 2 φ γ n 2

  The bound (2.1) is proved in [14, Proposition 3.1]. Let us show (2.2). For F ∈ S ′ (C) we have

	Π(F )(z) =	e -|z| 2 2 π	C	e wz-|w| 2 2 F (w) dL(w),
	and therefore, using that |e -|z| 2 2 +wz-	|w| 2 2 | = e -|z-w| 2 2

.2)

Proof.

  Proof of Proposition 1.2. The proof of Proposition 1.2 follows the lines of the proof of[START_REF] Schwinte | Growth of Sobolev norms for coupled Lowest Landau Level equations[END_REF] Theorem 1.1]. We also refer to[START_REF] Gérard | On the cubic lowest Landau level equation[END_REF] Section 3] for other well-posedness results for the LLL equation.

	which is (2.2).	□
	2.2.	

• Proof of the global existence in X κ E . By (2.2) and (1.27) we obtain

  and from (4.14) we conclude

  Ce cs , ∀s ≥ 0. Moreover, when s -→ +∞ ∥ u(s)∥ H 1 (C) ∼ Ce s .is solution to equation(1.25). Let us give a better description of ψ. By (1.12) we have u(ln ln t) = u(ln t) = -iλ j ln t R α j ln t U j + r 1 (ln t),

		n	
	j=1 e thus
	n		
	ψ(t) = e -itH		
	j=1		
	Therefore, [11, Proposition 7.1] can be applied: we set
	V (t) :=	1 t ln t	e -itH F (ln ln t)

2 

, which satisfies

(1.26)

. Next by

[START_REF] Faou | On weakly turbulent solutions to the perturbed linear harmonic oscillator[END_REF] Proposition 7.1]

, there exists r 0 ∈ C R; H 1 (C) which satisfies

∥r 0 (t)∥ H 1 (C) -→ 0, t -→ +∞,

and such that ψ(t) := e -itH u(ln ln t) + r 0 (t) = e -itH u(ln t) + r 0 (t)
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for some constant C 0 > 0. By an induction argument we show that there exists σ > 0 such that

Step 2 (Step 2 in [14, paragraph 5.3.]): The estimate (A.3) implies that there exists 0 < r < 1 such that

Step 3 (Steps 1 and 2 in [14, paragraph 5.2.]): In the coordinates (c n ), (d n ), the system (A.1) reads

ℓ,m,n≥0 k+ℓ=m+n

With a bootstrap argument, starting from (A.4), we show that for any γ < γ 0 = log 2 2 log 3 we have

Step 4 (Step 3 in [14, paragraph 5.3.]): The estimate (A.5) implies that for all γ < γ 0

We reproduce a backward Grönwall estimate taken from [START_REF] Faou | On weakly turbulent solutions to the perturbed linear harmonic oscillator[END_REF]Lemma B.1].

Lemma B.1. Let t 0 > 0 and M > 0. Assume that β > 0 and α > 0 are functions defined on (t 0 , M ), and that F satisfies for all t ∈ (t 0 , M )

Then for all t ∈ (t 0 , M )