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Abstract

A novel sensing system was designed for pH measurements based on the enhanced and quenched photoluminescence (PL) 

and UV–Vis absorption of the diluted water solutions of F-, O-, and N-containing carbon nanoparticles (FON-CNPs). These 

FON-CNPs were solvothermally synthesized, dissolved, ultra-iltrated, and separated by thin-layer chromatography. The total 

luorine content in them was found to be 1.2–1.5 mmol per gram. Their TGA showed a total weight loss of 52.7% because 

of the thermal decomposition and detachment of the surface groups and the partial burning of the functionalized shell on 

the carbon core at temperatures below 1200 °C. TEM and Raman data conirmed the presence of graphitic structures in the 

carbon core. From the results of ATR FTIR and UV–Vis spectroscopies, we showed that a carbon shell incorporates diferent 

functional groups covering the carbon core. The surface groups of the carbon shell include carboxyl, phenolic, and carbonyl 

groups. Heterocyclic N-containing and amino groups and triluoromethyl groups supporting the hydrophobicity were also 

found. We suggested the possible reasons for the pH responses obtained with the sensing system considering them dependent 

on the de-protonation of functional groups with pH change.

Keywords F-,O- · and N-containing carbon NPs · Solvothermal synthesis · Photoluminescence · pH nanosensors
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Introduction

Carbon nanoparticles (CNPs), including carbon dots (CDs), 

are of special attention in a broad range of applications because 

of their tunable optical properties and excellent biocompatibil-

ity (Xia et al. 2019; Sun et al. 2020; Nevar et al. 2020; Tara-

senka et al. 2017; Zuo et al. 2018; Pal et al. 2020). These green 

and nontoxic carbonic nanomaterials were used as the luo-

rophores and absorbers. In case of an increase in the spectral 

overlap between absorbing species and luorophore, one can 

see a decrease in luorescence/photoluminescence intensity of 

NPs. This decrease is considered as a response and enables 

quantitative measurement of the adsorbents. Today, numerous 

publications are devoted to the application of CNPs as selec-

tive photoluminescence on–of–on probes (Novoa De León 

et al. 2019; Feng et al. 2019 Zan et al. 2020; Wang et al. 2019).

On the other hand, many semiconductors showed the pho-

toluminescence (PL) intensity and decay lifetime strongly 

dependent on the value of pH. This pH dependence, in the case 

of porous Si, is explained by competition between UV-induced 

hydrogen efusion, hydrogen adsorption from the bufer solu-

tion, and surface oxidation. Within the phenomenon, pH sen-

sors were already proposed (Benilov et al. 2007). Besides, 

when diferent luminescent NPs are storage in the porous Si 

and nanosilicas, they can be used as speciic probe units in 

multicomponent sensors (Serdiuk et al. 2011; He et al. 2020).

Despite a wide variety of CNPs, the luorine and nitrogen-

containing CNPs have rarely been used as efective pH sensors 

(Long et al. 2018; Su et al. 2019) and for other application 

until nowadays (Sim Y et al. 2019; Wang et al. 2019; Liu et al. 

2019; Jiang et al. 2019).

In this work, we report on new luorine-, oxygen-, and nitro-

gen-containing carbon nanoparticles (FON-CNP). They were 

obtained by a one-stage solvothermal method from citric acid, 

urea, and 3-(triluoromethyl) aniline. The latter was applied 

as a source of luorine and nitrogen. Here, citric acid and urea 

were pyrolyzed to form the carbon matrix. The resulting FON-

CNPs have excellent water solubility and bright PL in aqueous 

solutions. Remarkably, the PL intensity and UV absorption of 

FON-CNP showed pH-dependent responses. The PL intensity 

maintains certain stability over a wide pH range of 1.0–11, 

showing good reversibility. Based on the pH-dependent behav-

ior of FON-CNPs, one can create a sensor system for accurate 

pH measurements.

Experimental

Materials

3-(Triluoromethyl)aniline (> 99%, CAS#98–16–8) provided 

by Merck was used for the preparation of the FON-CNPs. 

Pharmaceutical-grade anhydrous citric acid and pro-analysis 

quality urea were supplied by LLC Himlaborreaktiv (Bro-

vary, Ukraine). LLC Himlaborreaktiv solvents, acids, bases, 

and reagents in the present study were of analytical purity 

and were used as received. For dilution, Millipore deionized 

water was used in the experiments. Phosphate-bufered (PB) 

solutions of diferent pH levels were prepared by titrating 

0.01 mol L–1 phosphoric acid solution with 1 M NaOH solu-

tion to the required pH values. The preparation was carried 

out under control with a pH electrode (InLab Routine Pro, 

Mettler Toledo).

Synthesis of FON-CNPs

The samples of FON-CNPs were synthesized by the sol-

vothermal method (Zaderko 2020). In a typical synthesis 

procedure, we had composed a mixture of 10 g of urea 

(0.167 mol), 16 g of anhydrous citric acid (0.083 mol), and 

3.35 g of 3-(triluoromethyl) aniline (0.021 mol). The mix-

ture was placed in a glass reactor and left it open. The reac-

tor with the mixture within was placed in an electric oven, 

which was heated from 25 to 135 °C for 30 min, and held 

at this temperature for the next 30 min to get a yellow melt 

from the stored mixture. After that, the reactor temperature 

was increased from 135 to 165 °C for 10–13 min. After 2 h 

of heat treatment at this temperature, the melt was trans-

formed into a dark brown shining solid. 75 ml of an ethanol/

water solution (50/50) was added to the reactor after the 

synthesis to dissolve the solid. The resulting dark brown 

solution was then iltered through Whatman ilter paper and 

acidiied by adding 20 ml of concentrated HCl. When HCl 

was added, FON-CNP locks began to form in the solution. 

After holding for an hour, the precipitate was separated by 

vacuum iltration, and the resulting brownish powder was 

dried in the air.

Instrumentation

Fourier-transform infrared attenuation total reflectance 

(FTIR ATR) spectra were collected on a Shimadzu IRPres-

tige 21 instrument. A MIRacle module (Pike Technol-

ogy), with a ZnSe crystal plate for the sample contact, 

was used during FTIR ATR measurements. Transmis-

sion electron microscopy (TEM) images were captured 

on an electronic microscope (Jeol JEM-2100F, 200 kV). 

Energy-dispersive X-ray (EDX) analysis of TEM imaged 

samples was carried out on an AZtec X-MAX energy-dis-

persion spectrometer from Oxford Instruments. Ultravio-

let–visible (UV–vis) absorption spectra were recorded by a 

UV–vis spectrophotometer (Varian Cary 50) at an UV–Vis 

scan rate of 600 nm min–1. PL spectra of the solutions of 

FON-CNPs were measured at 20 °C on the Agilent Cary 

Eclipse luorescence spectrophotometer (Xe lash lamp). 
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Thermogravimetric analysis (TGA) of dried samples was 

carried out in an argon gas low with a custom instrument 

reported elsewhere (Tsapyuk et al. 2020). Measurements 

of the total luoride content (CF) were done in an aqueous 

solution prepared by pyrolytic decomposition of samples 

(Zaderko et al. 2019). The Mettler Toledo (SevenExcel-

lence™) pH meter was used to measure pH levels with 

maximum measurement accuracy.

Raman spectrum of FON-CNPs was collected in back-

scattered mode with a HORIBA Jobin Yvon-LabRAM ARA-

MIS integrated confocal micro-Raman system equipped with 

a microscope (BX41, Olympus, Japan) and a diode-pumped 

solid-state laser. A 633 nm laser was focused by an Olympus 

100 × objective lens (UPLSAPO, NA = 0.95) on the sample 

placed in an open-air environment at room temperature. The 

excited Raman scattering signal was collected by a Labram 

ARAMIS (Jobin–Yvon) spectrometer.

Results and discussion

EDX analysis conirms the presence of luorine, oxygen, car-

bon, and nitrogen in the FON-CNPs. According to the chem-

ical analysis, the luorine content CF equals 1.2–1.5 mmol 

per gram. Figure 1a shows the formation of polydisperse 

agglomerates of monodisperse primary particles. Although 

the pseudo-spherical NPs are showed a wide range of size 

distribution, from 25 to 80  nm, the mean agglomerate 

diameter is about 55 ± 5 nm. The SAED pattern conirms 

the amorphous structure of the prepared agglomerated NPs 

(Fig. 1b).

The alcohol–water solutions of FON-CNPs (3 ml, 46 g 

of dry FON-CNPs/L in 37 wt/v% alcohol solution diluted 

with 2 mL of water) were subjected to ultrailtration. Giving 

a brown solution, the ultra-iltration with 10 kDa membrane 

centrifugal ilters showed that the FON-CNPs could be com-

pletely iltered for 3 h at 5500 g. To prepare the solution of 

FON-CNPs of the smallest molecular weight range, the pre-

pared ultra-iltrate was diluted three times with water and il-

tered in sequence with centrifugal ilters from Vivaspin and 

Microsep Omega, equipped with membranes with molecular 

weight cut-ofs of 5 and 1 kDa, at 5000 g. The iltrates of 

0.03 mass% solutions of FON-CNPs after iltering with a 

1 kDa membrane showed yellow and white luminescence 

under 254 nm and 365 nm excitations, respectively (Fig. 1d). 

This conirms a bimodal luminescence nature in the alco-

hol–water solutions of FON-CNPs similar to that observed 

by Yang et al. (2020) for green–yellow emitting CDs derived 

from xylose and applied in the pH sensing.

After ultrailtration, the resulting yellow solution to be 

used in subsequent experiments was subjected to thin-layer 

chromatography (TLC) with a silica layer (6 nm silica, 

15 mkm). On the TLC plate after chromatographing, one 

can see two components, which exhibit blue and yellow 

luminescence under UV light (see insert in Fig. 1c).

FTIR ATR spectrum (Fig. 2a) of FON-CNPs was reg-

istered for the sample, which was dried on a Parailm™ M 

substrate. This spectrum conirmed the formation of difer-

ent functional groups forming a shell on the surface. For 

all benzene derivatives containing  CF3 groups, an asym-

metric C–F stretching vibration at 1330 cm–1 appears with 

very strong intensity (Yadav and Singh 1985). A band at 

1553 cm–1 (C=N) and bands at 1611 and 1666 cm–1 (C=C) 

can be assigned to stretching vibrations in the aromatic rings 

of the carbon (N) skeleton (Rap et al. 2020). According to 

Singh and Yadav (2001), three mid-intensity bands peaked at 

697 cm–1, 797 cm–1, and 890 cm–1 are due to the C–C–C in-

plane bending mode, the symmetric C–F stretching vibration 

in the  CF3 group that mixed with the ring-breathing mode 

vibrations, and the out-of-plane C–H bending vibrations, 

correspondingly.

A band at 1128 cm–1 could be assigned to the N−H and 

C−H stretching vibrations. Unless otherwise stated, here 

and below the group frequencies are assigned according to 

Socrates (1994) and Coates (2006). Some spectral features 

are consistent with the formation of oxygen-containing 

groups. Two peaks centered at 1708 cm–1 and 1666 cm–1 

are from C=O stretching vibrations of carbonyl groups (Bel-

lamy 1980). A band at 1449 cm–1 corresponds to the C–N 

stretching vibrations or the overlapping bands assigned to 

the  CH2 scissoring and C–O–H bending vibrations.

Fig. 1  a TEM image and b SEAD pattern of FON-CNPs agglom-

erated with HCl, c Suggested structure of NPs, d Photographs of 

FON-CNPs after 10 and 1 kDa iltering under 254 nm and 365 nm 

UV light (from left to right), Insert in c Completed chromatograms 

of FON-CNPs dissolved in 2:1 isopropanol-water solution on TLC 

plates photographed under UV lamp excitation
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The complex of spectral bands observed between 1500 

and 1800 cm–1 includes the contribution of the  NH2 and 

CHN bending vibrations and that of CNH stretching vibra-

tions. According to Larkin (2011), the quadrant ring and 

semi-circle stretching vibrations in heterocycles absorb in 

this spectral region. Broadband absorption in the region of 

1000–1320 cm–1 covers the whole range of frequencies in 

which the C−OH, C−C, C−N, and C−O stretching vibra-

tions are registered. A peak at 1071 cm–1 is from C−O 

stretching vibrations, and it can contain the isopropanol 

contribution (Coblentz Soc., Inc. 2018). While the broad-

band at 3200–3600 cm–1 could be assigned to the O−H 

stretching vibrations overlapped with N‒H vibrational fre-

quencies in aromatic and heterocyclic groups, and those of 

imino groups (Lin 2018). The reversed Christiansen peaks 

at 2916 cm–1 and 2846 cm–1 are attributed to asymmetri-

cal and symmetrical stretching vibrations of –  CH2. These 

peaks are from isopropanol solvent (Shahravan et al. 2012) 

and Parailm™ M substrate. According to Kaufman et al. 

(2011), three bands at 2312 cm–1, 2345 cm–1, and 2376 cm–1 

are from adsorbed  CO2 surface species. Broadband with a 

peak at 3564 cm–1 could also include the contribution from 

defects forming hydroxyl and from isopropanol conform-

ers (Coblentz Soc., Inc. 2018). In the highest wavenumber 

region, presumably, a peak at 3730 cm–1 could be assigned 

to free hydroxyl ions or the hydroxyl coverage of FON-

CNPs. Besides, according to Larkin (2011), the combination 

band deriving from the bands involving the  CO2 in-phase 

stretching and out-of-phase stretch could be observed as two 

doublets in the 3730−3500 cm–1 range. Presumably, the rea-

son for increasing the PL eiciency is the constitutional and 

shell nitrogen-containing groups.

Figure 2b shows the Raman spectrum of the sample, 

where the D, G, and D′ bands are seen. In the present study, 

the width of the D band is very wide, relecting the wide 

distribution of crystallite sizes. One should note that the 

ratio ID/IG equals 0.98, so by Cancado’s general formula 

(Cancado et al. 2006), which allows the determination of 

the crystallite size L
a
 by Raman spectroscopy, the L

a
 value of 

39.3 nm was calculated. A Raman peak at 1569 cm–1, which 

is assigned to the G band of graphitic structures, can overlap 

with the abundant Raman bands, those vibrations most likely 

assigned to the bending – OH vibrations, deformation N–H 

vibrations, ring C=C vibrations, and C=O and C–N stretch-

ing vibrations (Lin-Vien et al. 1991; Mochalin et al. 2009; 

Mermoux et al. 2014; Tarasenka et al. 2017). The result-

ing broad asymmetric peak showed a low signal-to-noise 

ratio. In fact, the reason for this observation is rather strong 

luorescence, which agrees with the results of PL studies 

on nanocolloids. An analysis of the Raman spectrum shows 

a typical feature of nanostructured materials, which is the 

redshift of the D band, by 50 cm–1, as compared with the 

literature data (Smith and Godard 2009).

According to TGA data (Fig. 2c), the FON-CNPs are 

stable below 200 °C, and the total weight loss of 52.7% is 

because of the thermal decomposition and detachment of the 

surface groups and the partial burning of the carbon shell. 

The content of physisorbed molecules, which are desorbed 

below 140 °C, is negligible, only 0.4%. The diferential ther-

mal gravimetric (DTG) curve revealed three main weight 

loss peaks at 365 °C, 533 °C, and 1096 °C. Here, the efect 

at 533 °C has a complex nature, and one can see the shoulder 

on the DTG curve between 650 °C and 800 °C. Actually, the 

Fig. 2  Spectra a FTIR ATR and b Raman, and c TG analysis of FON-

CNPs
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irst and second weight loss efects are diicult to separate 

precisely. If they are separated by the temperature corre-

sponding to the smallest weight change (of about 476 °C), 

the efect peaked at 365 °C will give 19.6% weight loss, 

while the efect at 533 °C–23.3% weight loss. The third 

efect at 1096 °C corresponds to 9.4% weight loss. From the 

above consideration, the schematic of the synthesis and the 

suggested products are depicted in Fig. 3.

At the irst stage of the synthesis, aniline reacts with 

urea and citric acid, as a result, thermolysis products are 

formed and water is split of (Fig. 3a). It is likely that het-

erocyclic nitrogen-containing compounds are formed due 

to thermolytic condensation when citric acid reacts with 

urea (Fig. 3b). At a further stage, thermolysis products can 

participate in the construction of a growing carbon particle, 

enriching it with nitrogen atoms and triluoromethyl groups.

**The aqueous solution of the FON-CNPs is yellow-

ish and transparent under sunlight illumination. Figure. 4a 

shows two speciic absorption peaks at 246 and 350 nm 

(Fig. 4a), attributed to the π–π* (aromatic C=C) and n–π* 

(the C=O bond) transitions according to Wang et al. (2017). 

Furthermore, according to Shen et al. (2013), Xiang et al. 

(2018), and Ding et al. (2016), the observed short- and long-

wavelength absorption bands, at ca. 277 nm and at 435 nm 

and ca. 511 nm, can be attributed to the π → π* (aromatic 

C=C) and n → π* (C–N) transitions of nitrogen-containing 

groups in the FON-CNPs, respectively. To consider the 

efect of constitutional (structural heterocyclic) nitrogen 

and the active surface functional groups, we examined the 

response of FON-CNPs to various pH conditions in the 

PB bufer with variable pH values (Fig. 4b). At a wave-

length of 212 nm, the FON-CNPs have a good response 

Fig. 3  Schematic illustration 

of FON-CNPs synthesis a 

thermolysis and b thermolytic 

condensation
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to the pH range from 1 to 6. In the absorbance (D) range 

from 0.55 to 0.75, pH = (31.87 ± 2.1) D—16.89 ± 1.3 with 

R
2 = 0.99. At the same wavelength, the UV–vis spectra of 

FON-CNPs solutions also showed a linear response, in 

the D range of 0.71–0.8, to the pH ranged from 8 to 11: 

pH = (28.11 ± 1.56)D – 11.65 ± 1.2 with R2 = 0.99.

The prepared FON-CNPs in solutions showed high toler-

ance to possible changes in the ionic strength. In fact, the 

PL intensity showed good stability in solutions with up to 

1.0 mol L–1 NaCl. These solutions have good resistance to 

photobleaching, and the PL intensity remains constant under 

continuous irradiation for 2 h. We suggest that FON-CNPs 

can ind potential applications in bio-labeling/bio-imaging. 

Moreover, the hydrogen bonds of the shell and steric protec-

tion of C–F bonds reduce photoluminescence quenching at 

room temperature.

On the other hand, the PL features of the prepared FON-

CNPs are highly pH-dependent (Fig. 5). This observation 

indicates that PL species in the FON-CNPs should have 

basic/acidic sites taking part in reversible protonation and 

responsible for the PL intensity variation. We assume that 

the pH level increasing caused the negative surface charging; 

the de-protonation can dissociate hydrogen bonds. It will be 

a reason for the dissociation of both amide groups and car-

boxylic groups, in the background of possible deprotonating 

of nitrogen-containing groups (Long et al. 2018).

As shown in Fig. 4, as pH increased from 3.0 to 10.0, a 

gradient increase of the PL intensity of FON-CNPs cen-

tered at 510–525 nm can be seen. This increase of the PL 

intensity remained relatively steady in the 9.0–10.0 pH range 

(Fig. 5a–e). However, the PL signal peak is slightly red-

shifted from 510 to 525 nm when the pH values increased 

from 3.0 to 11.0. The speciic features, the blue shift to 

475 nm and the PL signal quenching was registered when pH 

values in the colloid solutions increased from 10.0 to 12.0 

(see Fig. 5e–g). As can be seen from Fig. 5, the prepared 

FON-CNPs could be sensitive pH indicators due to their 

pH-dependent PL intensity. Additionally, there is a good 

linear relationship between the PL intensity and the pH of 

solutions in the range of 3.0–9.0, the relationship between 

the PL intensity and pH values was itted as a linear equation 

of PL(a.u.) = (16.76 ± 2.2)[pH] + 769.0 ± 20 with R2 = 0.99. 

But the PL response deviates from linearity in the higher 

and lower ranges.

An alternative view on the pH-sensing mechanism could 

be formulated considering the chemistry of FON-CNPs. If 

judging by the TG data, the prepared FON-CNPs are rich in 

carboxyl groups and other oxygen functionality (phenolic 

and carbonyl groups).

With an increase in pH, the carboxyl groups are irst 

deprotonated. This de-protonation can increase the lumi-

nescence with the concentration of ionized particles in the 

solution. At high basic pH levels, we observe some quench-

ing of luminescence. One can explain this observation by 

the ionization of the carbonyl functional group. The latter 

is typical for dyes at such high pH values. Apparently, the 

ionization of the carbonyl groups leads to the destruction 

of conjugated systems inside the matrix and, accordingly, 

results in the quenching of the PL signal.

Conclusion

The core–shell FON-CNPs prepared using triluoromethyl-

ated derivatives were found to be excellent PL probes for 

pH measurements. We consider possible reasons for the pH-

sensitive PL enhancement and PL subsequent quenching in 

the solutions of FON-CNPs. It has been demonstrated that 

the FON-CNPs have a good linearity range in the detection 

of pH levels. The reported sensing system based on the PL 

response of FON-CNPs shows many advantages, includ-

ing rapid detection, high sensitivity, and medium–low pro-

duction costs of the probe FON-CNPs. Potentially, as high 

Fig. 4  a UV–Vis spectrum of FON-CNPs in water solution (0.03 

mass%) and b pH-dependent response of FON-CNPs in diferent pHs 

(from top to bottom)
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selective probes, they can be applied to measure pH levels 

in aqueous solutions and cells.
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