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1 ABSTRACT 

In addition to numerous metabolic comorbidities, obesity is associated with several adverse 

neurobiological outcomes, especially learning and memory alterations. Obesity prevalence is rising 

dramatically in youth and is persisting in adulthood. This is especially worrying since adolescence is a 

crucial period for the maturation of certain brain regions playing a central role in memory processes 

such as the hippocampus and the amygdala. We previously showed that periadolescent, but not 

adult, exposure to obesogenic high-fat diet (HFD) had opposite effects on hippocampus- and 

amygdala-dependent memory, impairing the former and enhancing the latter. However, the causal 

role of these two brain regions in periadolescent HFD-induced memory alterations remains unclear. 

Here, we first showed that periadolescent HFD induced long-term, but not short-term, object 

recognition memory deficits, specifically when rats were exposed to a novel context. Using 

chemogenetic approaches to inhibit targeted brain regions, we then demonstrated that recognition 

memory deficits are dependent on the activity of the ventral hippocampus, but not the basolateral 

amygdala. On the contrary, the HFD- induced enhancement of conditioned odor aversion specifically 

requires amygdala activity. Taken together, these findings suggest that HFD consumption throughout 

adolescence impairs long-term object recognition memory through alterations of ventral 

hippocampal activity during memory acquisition. Moreover, these results further highlight the 

bidirectional effects of adolescent HFD on hippocampal and amygdala functions. 
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1 INTRODUCTION 1 

Obesity is one of the most important public health challenges and is linked to the overconsumption 2 

of energy-dense food combined with a sedentary lifestyle. In addition to being associated with 3 

several peripheral comorbidities including cardiovascular and metabolic disorders (Head, 2015; 4 

Malnick & Knobler, 2006; Walls et al., 2012), obesity is also associated with cognitive and 5 

neurobiological dysfunctions (Francis & Stevenson, 2013; Wang et al., 2016). Previous studies have 6 

demonstrated that obesity is associated with deficits in episodic and spatial memory (for reviews see 7 

Francis & Stevenson, 2013; Martin & Davidson, 2014; Sellbom & Gunstad, 2012; Yeomans, 2017) but 8 

also with increased emotional, mood and affective disorders (Mansur et al., 2015). 9 

The prevalence of obesity has also risen in young people (Ogden et al., 2016; Sahoo et al., 2015). 10 

Recent studies indicate indeed that obese adolescents display blunted performance in 11 

geometric/visuospatial problems or relational memory (Khan et al., 2015; Nyaradi et al., 2014; 12 

Øverby et al., 2013). Given that childhood and adolescence are crucial periods for cognitive and brain 13 

development (Spear, 2000), they represent a window of vulnerability to external insults such as the 14 

deleterious impact of various diets (for reviews see Andersen, 2003; Noble & Kanoski, 2016; Reichelt 15 

& Rank, 2017). In rodents, we recently showed that high-fat diet (HFD) exposure from weaning to 16 

adulthood, defined as periadolescent exposure (see Labouesse et al., 2017) induced complex 17 

motivational (Naneix et al., 2017; Tantot et al., 2017) and memory deficits (Boitard et al., 2012, 2014, 18 

2015, 2016; Khazen et al., 2019). Importantly, we found that similar duration of HFD exposure at 19 

adulthood does not have any effect on memory (Boitard et al., 2012, 2014, 2015; Khazen et al., 2019) 20 

and that periadolescent HFD alters relational and spatial memory but enhances emotional memory 21 

(for reviews see Del Olmo & Ruiz-Gayo, 2018; Morin et al., 2017; Murray & Chen, 2019). However, 22 

how these memory alterations are supported by specific neurobiological changes is still unclear.  23 

Relational memory and emotional memory are respectively dependent on the hippocampus (Bunsey 24 

& Eichenbaum, 1996; Hartley et al., 2014) and the amygdala (LeDoux, 2003; McGaugh, 2004; Paré, 25 

2003). In humans, clinical studies have shown that obese patients present hippocampal (Mestre et 26 

al., 2017; Mueller et al., 2012) and amygdala alterations (Connolly et al., 2013; Pasquali et al., 2006; 27 

Widya et al., 2011). It is noticeable that both the hippocampus and the amygdala complete their 28 

development during adolescence (for review see Casey et al., 2010; McCormick & Mathews, 2010; 29 

Saygin et al., 2015; Spear, 2000). Interestingly, overweight/obese children present reduced 30 

hippocampal volumes (Bauer et al., 2015) and increased amygdala activation (Boutelle et al., 2015). 31 

Similar patterns have been reported in HFD animal models (Abbott et al., 2019; Bose et al., 2009). 32 

Therefore, hippocampus and amygdala may then be highly vulnerable to the long-term deleterious 33 
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effects of periadolescent HFD. However, the causal role of these two brain areas in periadolescent 34 

HFD-related memory changes remain to be demonstrated. 35 

Here we investigated the causal role of ventral hippocampus (vHPC) and the basolateral amygdala 36 

(BLA) in memory deficits induced by HFD consumption, from weaning to adulthood (covering 37 

adolescence). We previously assessed spatial and relational memory using aversive (Boitard et al., 38 

2014, 2016) or rewarded (Boitard et al., 2012) learning tasks. Here we used different variations of 39 

non-aversive, non-rewarded, spontaneous learning tasks using objects, i.e. object recognition 40 

memory (ORM). By manipulating the delay between training and test, as well as the arousal levels 41 

during training (through habituation or not to the training context), we used different situations that 42 

could differentially recruit the hippocampus (for review see Cohen & Stackman, 2015) and the BLA 43 

(Maroun & Akirav, 2008; Okuda et al., 2004; Roozendaal et al., 2006), respectively. Regarding 44 

hippocampus, if most of the ORM studies have focused on the role of the dorsal hippocampus 45 

(dHPC), manipulations of both dHPC and vHPC have stronger effect on ORM performance than 46 

similar manipulations restricted to the dHPC suggesting a complementary role of vHPC in ORM 47 

(Broadbent et al., 2004; Hales et al., 2015). Here, we first show that periadolescent HFD decreased 48 

specifically hippocampal-dependent form of long-term ORM in non-habituated rats (high arousal 49 

conditions). Using a chemogenetic DREADD approach (Armbruster et al., 2007; Rogan & Roth, 2011), 50 

we then demonstrate that this ORM deficit is abolished by the inhibition of the vHPC, but not the BLA 51 

projecting neurons during the acquisition. Interestingly, we additionally observed that the HFD-52 

induced enhancement of aversive odor memory is dependent on BLA, but not vHPC, activity.  53 

 54 

2 METHODS 55 

2.1 Animals and diets 56 

Naïve male Wistar rats (Janvier), aged 3 weeks when they arrived, were housed in groups of two to 57 

four individuals in polycarbonate cages (48 x 26 x 21 cm) in an acclimatized (22 ± 1°C) housing room 58 

maintained under a 12 h light/dark cycle (lights on at 8:00 am, lights off at 8:00 pm). They had ad 59 

libitum access to food and water from their arrival until euthanasia day. At their arrival, rats were 60 

maintained either on a control diet (CD; 2.9 kcal/g; 8% lipids, 19% proteins, 73% carbohydrates; A04, 61 

SAFE) or on a high fat diet (HFD; 4.7 kcal/g; 45% lipids, 20% proteins, 35% carbohydrates; D12451, 62 

Research Diet). Animals’ body weight was recorded weekly. Rats were exposed to CD or HFD for 12 63 

weeks (from weaning to adulthood) before the start of the behavioral experiments (Figure 1A). After 64 

the completion of the ORM task, rats were housed individually in identical cages (48 x 26 x 21 cm) to 65 
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measure individual drinking behavior during all phases of the conditioned odor aversion (COA) 66 

procedure. 67 

All procedures were performed in agreement with the French (Directive 2013-118, 1 February 2013) 68 

and international (directive 2010-63, 22 September 2010, European Community) legislations and 69 

received approval from the local Ethics Committee (5012047-A).  70 

 71 

2.2 Viral vector and drugs 72 

An adeno-associated viral vector (AAV) carrying the inhibitory hM4D(Gi) DREADD driven by the 73 

CaMKII promoter (to limit expression to projecting neurons) was obtained from University of North 74 

Carolina Vector core (Chapel Hill, NC, USA). The vector used was an AAV8-CaMKII-hM4D(Gi)-mCherry 75 

(3–4×1012 vp/ml). 76 

The exogenous ligand Clozapine-N-Oxyde (CNO; Enzo Life Sciences) was dissolved in 0.9% saline 77 

containing 0.5% of dimethyl sulfoxide (DMSO; Sigma) at a final concentration of 1 mg/ml. Saline 78 

solution (0.9%) with 0.5% DMSO was used for vehicle injections. Both CNO and vehicle were 79 

prepared fresh for every injection day and injected (i.p.) 45 min before behavioral testing. 80 

 81 

2.3 Surgery 82 

After 7-8 weeks under CD or HFD, rats were anaesthetized under isoflurane (5% induction; 1–2 % 83 

maintenance), injected with the antalgic buprenorphine (Buprecare; 0.05 mg/kg, s.c.) and mounted 84 

on a stereotaxic apparatus (David Kopf Instruments). The scalp was shaved, cleaned and locally 85 

anaesthetized with and local application of xylocaine. The viral vector was infused using repeated 86 

pressure pulses delivered via a glass micropipette connected to a Picospritzer III (Parker, NH, USA). 87 

For the vHPC, 1 µl of the AAV was injected over 5 min (200 nl/min) at 2 sites in each hemisphere (i.e. 88 

2 ul per hemisphere). The vHPC coordinates were AP -5.5 mm, ML ±5.5 mm from Bregma, DV -4 and -89 

6 from the skull surface (Paxinos & Watson, 2007). For the BLA, 1 µl of the AAV was injected over 5 90 

min at 1 site in each hemisphere: AP -3.0 mm, ML ±5.5 mm from Bregma, DV -8 mm from the skull 91 

surface. The pipette was left in place for 5 additional minutes before being slowly removed. Rats 92 

were housed in pairs immediately after surgery and were allowed at least 4 weeks to recover before 93 

the start of behavioral testing to allow ample time for virus expression. 94 

  95 
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2.4 Object recognition memory (ORM) 96 

ORM is a classical procedure to assess non-spatial memory based on the recognition of a familiar 97 

object and rodent’s natural tendency to explore novel, non-threatening, object. ORM requires a 98 

single trial and does not involve any aversive or food reward component (Ennaceur, 2010; Ennaceur 99 

& Delacour, 1988).  100 

ORM task was performed in an arena sized 1.0 m x 1.0 m x 0.80 m (W x L X H), between 9:00 am and 101 

1:00 pm. During the acquisition phase, rats were placed in the apparatus for 10 min and the time 102 

spent exploring two identical unfamiliar objects (either pairs of glass jars or milk cans; 103 

counterbalanced between groups) was recorded. Three or 24 h later, rats were placed back into the 104 

same apparatus containing a familiar and a novel object for 5 min at the same location than during 105 

the acquisition and the time spent exploring each object was recorded. The position of the familiar 106 

and the novel object (left or right) was counterbalanced between animals. Both objects and 107 

apparatus were cleaned with 70% of ethanol between each animal. Naïve rats usually prefer 108 

exploring the novel object, indicating memory for the familiar one, while a failure of recall is 109 

considered as a memory deficit (Cohen & Stackman, 2015; Ennaceur, 2010; Ennaceur & Delacour, 110 

1988). Videos were recorded for each individual rat. Object exploration was analyzed offline in blind 111 

conditions using a video tracking software (Videotrack; Viewpoint, France). Object exploration was 112 

considered when the rat was at a distance of at least 1.0-1.5 cm and moved its whiskers towards the 113 

object. Exploration values were excluded if the animal was not exploring during either the training or 114 

the testing phase, and if one object was moved during the test. Exploration is represented as the 115 

absolute time exploring each object in seconds. ORM was expressed as the percentage of exploration 116 

of the novel object during the testing phase, calculated as following: time spent exploring the novel 117 

object / (time spent exploring the novel object + time spent exploring the familiar object) x 100. A 118 

value above 50% indicates a higher exploration of the new object over the familiar one. In 119 

chemogenetic experiments, rats received either vehicle or CNO (i.p.) 45 min before the acquisition 120 

session. 121 

In some experiments, an initial context habituation phase was performed before the acquisition 122 

session in order to decrease arousal during training (Maroun & Akirav, 2008; Okuda et al., 2004; 123 

Roozendaal et al., 2006). Context habituation consisted of 3 x 5 min daily sessions during which rats 124 

were free to explore the arena without objects. 125 

 126 
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2.5 Conditioned odor aversion (COA) 127 

COA results from the association of an odorized tasteless solution with a visceral malaise. In the 128 

present experiment, COA was evaluated using a previously described procedure (see Boitard et al., 129 

2015). Rats were first acclimated to a water-deprivation regimen for 4 days. Access to water was 130 

provided in a graded bottle (with 0.5 ml accuracy) placed in the rats’ home cage for 15 min each day 131 

between 9am and 11am. Baseline water consumption was obtained by averaging the intake of the 132 

last 3 days. On the fifth day, rats had access for 15 min to almond- (0.01% benzaldehyde; Sigma 133 

Aldrich) or banana-scented (0.01% isopentyl acetate; Sigma Aldrich) water, counterbalanced 134 

between rats. The percentage of odorized solution consumption with respect to water baseline was 135 

used as a measure of neophobia. Thirty minutes after, rats received an intraperitoneal injection of 136 

lithium chloride (LiCl; Sigma Aldrich; 25 mg/kg, 0.075M, 0.75 % of body weight). On days 6 and 7, rats 137 

had access to water for 15 min each day to re-establish baseline water intake. Finally, on day 8, long-138 

term memory of the odor aversion was assessed by providing access to the almond- or banana-139 

odorized water for 15 min, immediately followed by 15 min of water. The percentage of odorized 140 

water consumption with respect to the initial consumption of the same solution during conditioning 141 

was used as a measure of the strength of COA. In chemogenetic experiments, CD and HFD rats 142 

received either vehicle or CNO (i.p.) 45 min before the first presentation of scented water on day 5. 143 

 144 

2.6 Histology 145 

After the completion of behavioral testing, rats were deeply anaesthetized using a pentobarbital 146 

monosodic/lidocaine solution (20 mg/kg) before being transcardially perfused by ice-cold saline 147 

(0.9%) followed by 4% paraformaldehyde in 0.1 M phosphate buffer. Brains were post-fixed 148 

overnight in 4% paraformaldehyde and then switched in 0.1 M phosphate buffer saline (PBS) solution 149 

and stocked at -4 oC before slicing. Serial coronal sections (40 µm) were cut using a vibratome 150 

(VT1200S, Leica Microsystems). Free-floating sections were prepared by rinsing in 0.1 M PBS for 20 151 

min (4 x 5 min rinses), blocked for 1 h (PBS 0.1 M, 0.2% Triton-X, 4% normal goat serum) and placed 152 

in 1:1000 rabbit anti-RFP (red fluorescent protein; PM005, CliniSciences) at 4° C for 48 h. Sections 153 

were then washed in PBS for 20 min (4 x 5 min rinses), incubated in 1:200 AffiniPure rhodamine goat 154 

anti-rabbit (11-025-003; Jackson Immunoresearch) diluted in PBS for 2 h at room temperature and 155 

counterstained with 1:5000 Hoestch solution (bisBenzimide H 33258, Sigma-Aldrich). Sections were 156 

washed for 20 min in PBS (4 x 5 min rinses), mounted, and cover-slipped with Fluoromount-G 157 

(SouthernBiotech). Sections were imaged using a Nanozoomer slide scanner and analyzed with the 158 

NDP.view 2 freeware (Hamamatsu Photonics, Bordeaux Imaging Center). 159 
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 160 

2.7 Data analysis 161 

The data never violated the homogeneity of variance measured with Levene’s test or normality 162 

measured with the Shapiro–Wilk normality test. Weight was analyzed using two-way repeated 163 

measures ANOVA, followed by Bonferroni’s post hoc tests. ORM and COA measures were analyzed 164 

using one- or two-way ANOVA followed by Bonferroni’s post hoc tests (between groups 165 

comparisons) or Dunnet’s post hoc tests (versus the CD-Vehicle group). ORM performance was also 166 

compared against 50% (no significant novel object exploration) using one-sample t-test. In case of 167 

missing values in the behavioral results from the ORM task (e.g. animal excluded for an absence of 168 

exploratory behavior), a Mixed-effect model was used instead for repeated measures analyses. 169 

Planned comparisons restricted to the HFD fed groups were done using multiple t-tests with 170 

Bonferroni’s correction. Statistical analyses were carried out on GraphPad Prism version 7 and SPPS 171 

(IBM SPSS Statistics 25). All values were expressed as mean ± standard error of the mean (SEM). The 172 

alpha risk of rejection of the null hypothesis was 0.05. 173 

 174 

3 RESULTS 175 

3.1 HFD intake significantly induces overweight 176 

Upon arrival, animals were randomly divided to create two groups of similar body weight, and then 177 

exposed to either CD or HFD. HFD rats were significantly heavier than CD animals from 6 weeks of 178 

diet exposure until the completion of the experiments (2-way repeated measures ANOVA: Diet F1,78 = 179 

23.9, p < 0.001; Week x Diet F12,546 = 11.2, p < 0.001; Bonferroni’s post hoc tests: all p<0.001 from 180 

week 6; Supplemental Figure 1) as previously reported (Boitard et al., 2012, 2014, 2015, 2016). 181 

 182 

3.2 HFD intake induces long-term ORM deficits when training takes place in a novel context 183 

Without habituation, CD (n = 11) and HFD-fed (n = 17) rats were placed into a novel arena containing 184 

two novel and identical objects (Figure 1B). During the acquisition phase, all groups similarly 185 

explored the two objects (Supplemental Figure 2A; Diet F1,26 = 1.4, p =0.2; Diet x Retention Time F1,18 186 

= 5.9, p = 0.03). Three or 24 h after training, rats were exposed to a familiar and a novel object. When 187 

tested 3 h after the acquisition phase, CD- and HFD-fed rats exhibited a similar higher exploration of 188 

the novel object (Figure 1B; one-sample t-test versus 50%: CD t9 = 2.7, p = 0.026; HFD t16 = 2.4, p = 189 

0.03). However, when tested 24 h after the acquisition, only CD rats showed a significant preference 190 
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for the novel object (one-sample t-test versus 50%: CD t7 = 2.4, p = 0.047; HFD t13 = 1.2, p = 0.3). 191 

Mixed-effect analysis confirmed a significant Diet x Retention time interaction (F1,18 = 4.9, p = 0.04; 192 

Diet F1,26 = 3.9, p = 0.06). More importantly, post hoc analyses confirmed a significant difference 193 

between the two diet groups when tested at 24 h (p < 0.05) but not at 3 h (p > 0.9; Bonferroni’s post 194 

hoc tests), indicating that HFD consumption during adolescence impairs long-term, but not short-195 

term, ORM when testing occurred without habituation to the arena. 196 

We then evaluated whether previous habituation to the context would alleviate HFD-induced long-197 

term ORM deficits. For this purpose, another batch of CD (n = 6) and HFD-fed (n = 7) rats was first 198 

tested in the ORM task at 24h after training without exposure to the training arena (context A). As 199 

previously observed, HFD rats tested without habituation showed a deficit in long-term ORM (one-200 

sample t-test versus 50%: CD, t5 = 6.0, p = 0.001; HFD, t6 = 1.6, p = 0.2; Figure 1C). The same rats were 201 

then habituated during 3 days to a new training arena (context B) before being trained and tested for 202 

their ORM in this arena. Throughout context exposure, all rats maintained similar levels of locomotor 203 

activity (Supplemental Figure 2B; two-way repeated measures ANOVA: Diet F1,11 = 0.3, p = 0.6; Day 204 

F3,33 = 0.8, p = 0.5; Diet x Day F3,33 = 0.7, p = 0.6) and increased their exploration of the center of the 205 

arena (Entries in the center: Day F3,33 = 3.2, p = 0.04; Diet F1,11 = 3.2, p = 0.1; Diet x Day F3,33 = 0.7, p = 206 

0.6; Time in the center: Day F3,33 = 2.5, p = 0.07; Diet F1,11 = 0.4, p = 0.6; Diet x Day F3,33 = 0.3, p = 0.8) 207 

indicating efficient habituation. Context habituation decreased the time spent exploring novel 208 

objects during training in all rats (Supplemental Figure 2C; two-way repeated measures ANOVA: 209 

Habituation F1,11 = 5.6, p = 0.04) independently of their diet (Diet F1,11 = 0.5, p = 0.5; Diet x 210 

Habituation F1,11 = 1.1, p = 0.3). As a result of habituation, both groups significantly preferred to 211 

explore the novel object than the familiar one during the test (one-sample t-test versus 50%: CD, t5 = 212 

5.5, p = 0.003; HFD, t5 = 4.1, p = 0.007). Two-way repeated measures ANOVA on ORM test with and 213 

without habituation revealed that the time exploring the novel object was increased selectively in 214 

the HFD group after habituation (Figure 1C; Diet F1,11 = 8.8, p = 0.01; Diet x Habituation F1,11 = 5.8, p = 215 

0.04). Indeed, HFD rats tested without habituation presented a lower exploration of the new object 216 

compared to the CD group (p < 0.01; Bonferroni’s post hoc test), whereas, after habituation, HFD and 217 

CD animals similarly preferred to explore the novel object than the familiar one (p = 0.6; Bonferroni’s 218 

post hoc test), demonstrating in this case an intact long-term ORM.  219 

 220 
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3.3 Chemogenetic inactivation of the ventral hippocampus, but not the basolateral amygdala, 221 

rescues HFD-induced recognition memory impairment 222 

We then investigated the contribution of the vHPC and the BLA in periadolescent-HFD-induced 223 

memory alterations, using a chemogenetic approach involving the targeted expression of the 224 

inhibitory DREADD hM4Di (Figure 2). After histological analyses, HFD rats presenting bilateral hM4Di-225 

mCherry expression in either the vHPC (n = 15) or in the BLA (n = 13) were kept for the statistical 226 

analyses. These rats were further divided depending if they received vehicle (vHPC, n = 8; BLA, n = 8) 227 

or CNO injection (HFD-vHPC-CNO, n = 7; HFD-BLA-CNO, n = 5). An additional group of HFD-fed rats 228 

did not receive any virus injection to control for the specificity of the CNO effects on behavioral 229 

measures (n=26). They were either injected with vehicle (n=11) or CNO (HFD-No DREADD-CNO, n = 230 

15). The HFD-fed groups injected with vehicle (with DREADD, n = 16; without DREADD, n= 11) were 231 

pooled to form an HFD group receiving vehicle (HFD-Vehicle, n = 27). Finally, control CD (with or 232 

without DREADD) rats which received vehicle injections were pooled to provide a single CD-Vehicle 233 

group (n = 21). To summarize, the statistical analyses were performed on the following 5 final 234 

groups: CD-Vehicle, n = 21; HFD-Vehicle, n = 27; HFD-No DREADD-CNO, n = 15; HFD-vHPC-CNO, n = 7; 235 

HFD-BLA-CNO, n = 5. 236 

Four weeks after surgery, long-term ORM was tested without habituation using the exact same 237 

procedure as previously described (Figure 3A). All rats received an injection of either CNO or its 238 

vehicle 45 min before the acquisition phase. CNO injection did not alter the exploration of the 239 

objects during this phase (Supplemental Figure 3A; F4,70 = 2.2, p = 0.08). HFD-Vehicle exhibited an 240 

absence of long-term ORM when tested 24 h after acquisition (one-sample t-test versus 50%: t26 = 241 

1.9, p = 0.07), whereas CD-vehicle animals showed a higher exploration of the novel object (Figure 242 

3B; one-sample t-test versus 50%; CD-Vehicle t20 = 7.8, p < 0.001) as all HFD groups receiving CNO 243 

(HFD-No DREADD-CNO t14 = 4.6, p < 0.001; HFD-vHPC-CNO t6 = 6.7, p < 0.001; HFD-BLA-CNO t4 = 4.1, p 244 

= 0.02). 245 

Group comparisons confirmed that only the HFD-Vehicle group exhibited a lower ORM performance 246 

than CD control rats (one-way ANOVA: F4,70 = 9.0, p < 0.001; Dunnett’s post hoc tests versus CD-247 

Vehicle: HFD-Vehicle p < 0.001, all other groups p > 0.3). Further analyses restricted to the HFD 248 

groups showed that both HFD-No DREADD-CNO and HFD-vHPC-CNO groups exhibited a higher ORM 249 

performance than HFD-Vehicle rats (p < 0.05 and  p< 0.001 respectively; t-test with Bonferroni’s 250 

correction), suggesting a potential nonspecific CNO effect. However, the ORM performance of the 251 

HFD-No DREADD-CNO group remained lower than HFD-vHPC-CNO rats (p = 0.05; t-test with 252 

Bonferroni’s correction) indicating that silencing vHPC improved HFD-induced ORM deficits.  253 
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 254 

3.4 Chemogenetic inactivation of the basolateral amygdala, but not the ventral hippocampus, 255 

prevents HFD-induced aversion memory enhancement 256 

The results of the previous experiment raised an issue regarding the efficiency of our BLA silencing 257 

procedure. We therefore investigated in the same rats the impact of chemogenetic silencing of BLA 258 

and vHPC projecting neurons on the enhancement of aversion memory induced by periadolescent 259 

HFD exposure using a COA procedure (Boitard et al., 2015, 2016; Figure 4A; CD-Vehicle, n = 18; HFD-260 

Vehicle, n = 23; HFD-No DREADD-CNO, n = 9; HFD-vHPC-CNO, n = 7; HFD-BLA, n = 5). Neither the diet 261 

nor the injection of CNO/vehicle affected the consumption of odorized water during its first 262 

presentation, i.e. odor-malaise association, compared to their respective water baseline 263 

consumption (Figure 4B; one-way ANOVA Group F4,57 = 0.9, p = 0.5; see also Supplemental Figure 264 

3B), and all groups presented a low level of neophobia toward the new odorized water (all p > 0.09; 265 

one-sample t-test versus 100% water baseline). However, the long-term aversion memory was 266 

differently impacted by HFD and chemogenetic BLA or vHPC silencing during the odor-malaise pairing 267 

(Figure 4C; one-way ANOVA Group F4,57 = 3.9, p = 0.007; see also Supplemental Figure 3C). As 268 

previously observed (Boitard et al., 2015, 2016), there was a stronger aversion memory in HFD-269 

Vehicle group as compared to the control CD group (p = 0.05, Dunnett’s post hoc test). Further 270 

analysis restricted to the HFD groups showed that BLA silencing reduced the aversion memory as 271 

compared to HFD-Vehicle and HFD-No DREADD-CNO groups (p = 0.004 and p = 0.03, respectively; 272 

Bonferroni’s corrected multiple t-tests), whereas vHPC silencing had no effect (p > 0.9). These results 273 

demonstrate that BLA activity controls HFD-induced aversive memory enhancement. 274 

 275 

4 DISCUSSION 276 

Here, we demonstrated that periadolescent HFD consumption (from weaning to adulthood) induced 277 

long term memory alterations. Specifically, we showed that HFD-fed rats presented a deficit in long-278 

term, but not short-term, ORM when they are exposed to a novel context. Using chemogenetic 279 

silencing with high accuracy in anatomical boundaries, we found that manipulation of the vHPC, but 280 

not of the BLA, restored HFD-induced long-term ORM deficit. On the contrary, chemogenetic 281 

silencing of the BLA, but not of the vHPC, prevented the increased aversive memory observed in 282 

HFD-fed animals.  283 

  284 
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4.1 Effects of periadolescent high-fat diet on object recognition memory 285 

 The effects of HFD on object-related memory has led to contradictory results (for reviews see Abbott 286 

et al., 2019; Cordner & Tamashiro, 2015). The present study indicates that 12 weeks of exposure to 287 

HFD, starting at weaning, is sufficient to alter rats’ object memory but only under certain conditions. 288 

Indeed, we observed that periadolescent HFD impaired long-term ORM tested 24h after sampling 289 

novel objects in a novel context but had no effect on short-term ORM tested 3 hours after training. 290 

These results are consistent with previous studies indicating no effect of HFD on short-term ORM 291 

(Beilharz et al., 2014, 2016; Kendig et al., 2019; Kosari et al., 2012; Lavin et al., 2011; McLean et al., 292 

2018; Tran & Westbrook, 2015, 2017, 2018; Tucker et al., 2012), but an impairment of long-term 293 

object memory (Ayabe et al., 2018; de Andrade et al., 2017; Mucellini et al., 2019; Wang et al., 2016; 294 

Zuloaga et al., 2016). This differential impact of diet suggests a specific effect of periadolescent HFD 295 

on memory consolidation processes. Interestingly, we previously reported a similar effect on 296 

consolidation of spatial memories (Boitard et al., 2014, 2016) and emotional memories (Boitard et 297 

al., 2015), but also of object location memory (Khazen et al., 2019), which suggests that HFD 298 

consumption during early life periods could interfere with cellular substrates specifically involved in 299 

memory consolidation. 300 

Importantly, we also identified that habituation to the arena prevented HFD-induced long-term ORM 301 

deficits. This could explain the absence of HFD-induced memory deficits reported in the literature 302 

after habituation and/or repeated tests using ORM or  object location memory (Heyward et al., 2012, 303 

2016; Tran & Westbrook, 2017; Tucker et al., 2012). Prior habituation and exploration of the arena is 304 

known to reduce the processing of contextual information during memory consolidation (Cohen & 305 

Stackman, 2015; Oliveira et al., 2010) and the arousal component of the task (Maroun & Akirav, 306 

2008; Okuda et al., 2004; Roozendaal et al., 2006). Then, the specific diet-induced deficit of long-307 

term ORM reported here may be supported by differential neurobiological substrates involved in 308 

multiple memory systems, particularly the hippocampus and the amygdala. 309 

 310 

4.2 Effects of chemogenetic manipulation of vHPC and BLA on periadolescent HFD-induced object 311 

recognition memory deficits 312 

The hippocampus and the amygdala play a crucial role in long-term ORM (Cohen & Stackman, 2015; 313 

Roozendaal et al., 2008) and are profoundly affected by exposure to HFD during the periadolescent 314 

period (Del Olmo & Ruiz-Gayo, 2018; Morin et al., 2017; Murray & Chen, 2019; Reichelt, 2016; 315 

Reichelt & Rank, 2017). We therefore wondered whether chemogenetic inhibition of projecting, 316 
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putative excitatory, neurons in these two brain regions could alleviate the diet effects on object 317 

memory.  318 

Recent studies have suggested that CNO may be metabolized in vivo to clozapine, an atypical 319 

antipsychotic drug, able to interact with DREADD receptors but also to induce non-DREADD related 320 

effects (Gomez et al., 2017; Ilg et al., 2018; MacLaren et al., 2016). To rule out this possibility, we 321 

included a control group which received CNO at a dose known to induce marginal behavioral effect. 322 

Our results showed a slight improvement in long-term ORM in this group which suggests that 323 

metabolism of CNO to clozapine might induce some behavioral effects as shown following clozapine 324 

administration (Addy et al., 2005; Mutlu et al., 2011). This pattern of results in the control group 325 

cannot however account for the complete restoration of ORM deficits following chemogenetic 326 

inhibition of vHPC, hence highlighting the central role of this brain region in HFD-induced long-term 327 

ORM deficits. 328 

Such results are in agreement with previous research which has demonstrated that long-term ORM, 329 

but not short term ORM, relies on the hippocampus (for review see Cohen & Stackman, 2015). 330 

Moreover, previous studies have shown that hippocampal manipulations have a greater impact on 331 

long-term ORM when performed in an unfamiliar context (Kim et al., 2014; Oliveira et al., 2010), 332 

whereas the perirhinal cortex is crucial in both familiar and unfamiliar contexts (Kim et al., 2014). 333 

These results suggest that, in a novel context, novel objects may be encoded as part of the context 334 

thereby involving the hippocampus, whereas if the novel objects are presented in a familiar 335 

environment they are encoded under a process that probably does not involve contextual 336 

information processing and therefore does not rely on the hippocampus. We could then hypothesize 337 

that HFD-fed animals did not exhibit a memory deficit when they were previously habituated to the 338 

arena, as in that case ORM performance is not dependent on a dysfunctional hippocampus. 339 

Habituation to the training context also greatly influences the impact of emotional arousal and 340 

consequently the BLA involvement in long-term ORM (Maroun & Akirav, 2008; Roozendaal et al., 341 

2006). However, chemogenetic BLA silencing did not have a greater effect than those of CNO alone 342 

on HFD-induced ORM deficit. The amygdala is one of the major target of vHPC projection neurons 343 

(Pitkänen et al., 2000), suggesting that the vHPC-to-BLA pathway is not involved in the beneficial 344 

effect of silencing vHPC projecting neurons on long-term ORM. The vHPC involvement in memory 345 

processes also involves other projections to the nucleus accumbens or the ventromedial prefrontal 346 

cortex (Barker et al., 2019; Hsu et al., 2018; Okuyama et al., 2016; Phillips et al., 2019) and future 347 

studies are warranted to determine the role of these circuits in HFD-induced memory deficits.  348 

 349 
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4.3 Effects of chemogenetic manipulation of BLA and vHPC on periadolescent HFD-induced aversive 350 

memory enhancement 351 

Few studies have examined the effects of HFD on aversive memory. Aversive cue-based memory is 352 

highly dependent on the BLA (LeDoux, 2003; McGaugh, 2004; Paré, 2003). We previously found that 353 

periadolescent HFD enhanced long-term, but not short-term, odor aversion memory as well as long-354 

term auditory fear memory (Boitard et al., 2015, 2016). Here we replicate this finding and we provide 355 

evidence that chemogenetic silencing of the BLA, but not the vHPC, prevented the increased odor 356 

aversion memory observed in the HFD group. It is noticeable that, contrary to the ORM, CNO 357 

injection alone (without any DREADDs) did not have any effect by itself on HFD-induced aversive 358 

memory enhancement. 359 

It is generally considered that during emotional arousal the activity of the BLA is modulated by 360 

glucocorticoids and noradrenaline, and eventually impacts aversive memory via glutamatergic 361 

projections to other structures, including the hippocampus (McEwen et al., 2016; McGaugh, 2004). In 362 

this context, we previously found that blockade of glucocorticoid receptors in the BLA is able to 363 

normalise the enhanced aversive memory of HFD group (Boitard et al., 2015). Taken together, these 364 

data suggest that periadolescent HFD consumption increases the activation of BLA through 365 

glucocorticoids in response to emotional experience, leading to an enhanced odor aversion memory. 366 

Furthermore, a recent study showed that chemogenetic inactivation of the noradrenergic pathway 367 

from the locus coeruleus to the BLA abolished aversive memory enhancement, but not ORM 368 

impairment, induced by chronic pain (Llorca-Torralba et al., 2019). According to the differential effect 369 

of chemogenetic BLA silencing on aversive memory and ORM in HFD-fed rats, a similar impact of 370 

periadolescent HFD on the noradrenergic modulation of BLA may also be involved. 371 

In contrast, chemogenetic inactivation of the vHPC did not modify odor aversion memory in HFD-fed 372 

animals. Even though the BLA is highly connected to the vHPC (Pitkänen et al., 2000) and that the 373 

BLA-to-vHPC pathway plays a central role in emotional processes (Beyeler et al., 2016; Felix-Ortiz et 374 

al., 2013; Rei et al., 2015), our results suggest that the HFD-induced enhancement of aversive 375 

memories may rather involve projections to the nucleus accumbens (Beyeler et al., 2016; Stuber et 376 

al., 2011) or to the ventromedial prefrontal cortex (Burgos-Robles et al., 2017; Felix-Ortiz et al., 377 

2013). 378 

Altogether our results demonstrate in periadolescent HFD-fed rats, that silencing vHPC, but not BLA, 379 

improves long-term ORM deficits, while silencing BLA, but not vHPC, prevents COA enhancement. 380 

This double dissociation suggests that vHPC and BLA, though related structures, can have distinct and 381 

independently-driven functions in HFD-induced memory changes.  382 
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 383 

4.4 Conclusions 384 

The adolescent brain is highly sensitive and prone to cognitive alterations promoted by diets rich in 385 

fat and/or sugar (for reviews see Del Olmo & Ruiz-Gayo, 2018; Morin et al., 2017; Murray & Chen, 386 

2019; Noble & Kanoski, 2016; Reichelt, 2016; Reichelt & Rank, 2017). Our study demonstrates that 387 

periadolescent HFD alters long-term memory processes, impairing recognition memory through 388 

vHPC-dependent processes while enhancing emotional memory through BLA specific effects. Such 389 

bidirectional effect on hippocampal and amygdala memory functions have also been reported in 390 

chronic stress and post-traumatic stress disorder (Elzinga & Bremner, 2002; Kaouane et al., 2012; 391 

Layton & Krikorian, 2002; Mahan & Ressler, 2012). Interestingly, obesity is linked to a higher 392 

prevalence of post-traumatic stress disorder, especially during adolescence (Pagoto et al., 2012; 393 

Perkonigg et al., 2009). Future investigation is necessary to evaluate how HFD consumption during 394 

adolescence impacts preferentially the medial temporal lobe, and how the potential alterations of 395 

specific hippocampal and amygdala circuits may mediate the cognitive impact of juvenile obesity. 396 
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CAPTIONS 779 

Figure 1. Periadolescent HFD exposure altered long-term object recognition memory. (A) Schematic 780 

representation of the experimental design. Rats had ad libitum access to either CD (grey bars) or HFD 781 

(red bars) from weaning to adulthood. All behavioral testing occurred at adulthood after at least 12 782 

weeks of diet. (B) Periadolescent HFD exposure alters long-term (24h testing), but not short-term (3h 783 

testing) object recognition memory (ORM). (C) Diet-induced ORM deficit at 24h is abolished when 784 

the animals were previously habituated to the arena. Data are represented as mean ± SEM and 785 

circles show individual data points. * p < 0.05, ** p < 0.01 (one sample t-test versus 50%), # p < 0.05, 786 

## p < 0.01 (Diet effect, two-way ANOVA followed by Bonferroni’s post hoc tests). 787 

 788 

Figure 2. Chemogenetic targeting of the ventral hippocampus or the basolateral amygdala. Left, 789 

Representative images illustrating the placement of AAV8-CaMKII-hM4Di-mCherry expression in the 790 

ventral hippocampus (vHPC, A) and basolateral amygdala (BLA, B). Insets represent magnification of 791 

the area of interest (white square). Right, Schematics adapted from Paxinos and Watson (2013) 792 

showing the largest (light pink) and smallest (dark pink) viral infection for rats included in behavioral 793 

experiments. 794 

 795 

Figure 3. Chemogenetic inhibition of the ventral hippocampus, but not the basolateral amygdala, 796 

restored long-term ORM induced by periadolescent HFD exposure. (A) Schematic representation of 797 

the experimental design. Rats had ad libitum access to either CD or HFD from weaning to adulthood. 798 

DREADD surgery was performed at adulthood (7-8 weeks of diet) and rats recovered 4 weeks before 799 

the start of behavioral testing. (B) Long-term ORM performance in HFD-fed rats treated with vehicle 800 

(red bars; ± indicating with or without DREADD expression), CNO but without DREADD expression 801 

(orange bars), or CNO with DREADD expressed in the vHPC (dark blue) or the BLA (light blue). 802 

Expression of the inhibitory DREADD hM4Di is depicted by structure (vHPC or BLA), except for the 803 

vehicle group. Data are represented as mean ± SEM and circles show individual data points.  ### p < 804 

0.001 (one-way ANOVA followed by Dunnett’s post hoc test vs. CD-Vehicle), * p ≤ 0.05, *** p < 0.001 805 

(planned t-tests with Bonferroni’s correction). 806 
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 808 
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Figure 4. Chemogenetic inhibition of the basolateral amygdala, but not the ventral hippocampus, 810 

prevented enhanced aversion memory induced by periadolescent HFD exposure. (A) Schematic 811 

representation of conditioned odor aversion (COA) protocol and chemogenetic inhibition of vHPC or 812 

BLA before COA conditioning. (B) Neither HFD or CNO injection impacted the consumption of 813 

odorized water during the conditioning phase (in percentage of water baseline consumption). (C) 814 

Long-term COA memory in HFD-fed rats treated with vehicle (red bars; ± indicating with or without 815 

DREADD expression), CNO but without DREADD expression (orange bars), or CNO with DREADD 816 

expressed in the vHPC (dark blue) or the BLA (light blue). Expression of the inhibitory DREADD hM4Di 817 

is depicted by structure (vHPC or BLA), except for the vehicle group. Data are represented as mean ± 818 

SEM and circles show individual data points.  # p < 0.05 (one-way ANOVA followed by Dunnett’s post 819 

hoc test vs. CD-Vehicle), * p < 0.05, ** p < 0.01 (planned t-tests with Bonferroni’s correction). 820 

 821 






