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Abstract:  
Terahertz (THz) time-of-flight tomography (TOFT), a nondestructive-evaluation technique for 

the stratigraphic characterization of structures with layers on the micron-to-millimeter scales, 

has proven to be challenging to apply to samples containing both micron-scale and millimeter-

scale layers.  In THz TOFT, echoes reflected from distant interfaces and defects are often 

obscured as they may be immersed in a noisy background as such features in the reflected signal 

may be weak due to attenuation and dispersion, leading to the loss of valuable information. 

Moreover, overlapping echoes from any optically thin layers, such as thin coatings on thick 

specimens, are likely to be mistaken for a single interface in reconstructing the stratigraphy. 

Thus, layered structures containing both thick and thin layers have proven problematic for THz 

TOFT characterization.  In this paper, a sparse-deconvolution (SD) technique, based on an 

interior-point method, and including a propagation model accounting for dispersion is 

demonstrated. The method is shown to be successful in extracting the impulse response of 

samples that combine the challenges of both thick and thin layers. The robustness and 

effectiveness of this method are verified numerically and experimentally.  While the SD 

approach does not perform quite as well as cross-correlation (CC) techniques in terms of 

maximum thickness, it can provide a clearer and more accurate reconstruction of moderately 

thick samples incorporating thin layers. 

Keywords:  Nondestructive testing; Terahertz imaging; Sparse deconvolution; Preconditioned 

conjugate gradient; Dispersion.  
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I. Introduction:  

Nondestructive-evaluation (NDE) techniques are in demand across a range of industries for 

monitoring product quality and structure. Terahertz (THz) electromagnetic probes are attractive 

for electrically insulating materials due to their nondestructive, non-ionizing, and contactless 

nature also providing information down to the micron scale with conventional resolution limits 

down to tens of microns. The frequency range of THz electromagnetic waves—conventionally 

100 GHz to 10 THz—lies at the border between microwaves and the infrared; in some cases, 

THz waves penetrate deeper than infrared light and may provide structural information about 

materials and components that may offer little x-ray contrast. Moreover, as non-ionizing 

radiation, in contrast to ultraviolet light and x-rays, THz waves at the relevant powers present 

no known health risks to biological tissue. Due to these advantages, THz-based techniques have 

achieved success in a variety of fields, such as heritage science [1-5], steel industry [6-9], as 

well as biomedical applications [10-11]. 

     One such technique to acquire qualitative and quantitative information concerning the 

internal layer structure, or stratigraphy, of optically opaque, electrically insulating objects is 

THz time-of-flight tomography (TOFT). In principle, after the generation of a quasi-single-

cycle THz pulse typically based on nonlinear-optical interactions or photoconductive 

conversion of femtosecond near-infrared laser pulses, due to dielectric discontinuities in depth, 

the reflected THz pulses—or echoes—associated with the Fresnel coefficients between various 

interfaces are recorded as a function of transverse position in amplitude and time delay.  The 

thickness of an individual layer can be estimated based on the optical delay between successive 

echoes and the dielectric properties of the corresponding layer within the THz range. A 

schematic diagram is shown in Fig. 1.        

      Visual examination of raw THz TOFT data is often inadequate to reconstruct the 

stratigraphy.  Figure 1 shows a simple example of a THz TOFT experiment on a transmissive 

layer on top of a reflective metal in this example.  Depending on the thickness w of the layer, 

however, there are two problematic situations to consider that place often conflicting demands 

on the reconstruction algorithm. When w is optically thin in THz regime (physical thickness 

divided by the refractive index n is less than about half the minimum wavelength within the 

usable bandwidth of the incident THz pulses), the reflected THz echoes from the front and back 

surfaces will strongly overlap, and thus visually distinct echoes from the two surfaces are not 

Fig.  1. Schematic diagram of THz TOFT.  
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observed. When, however, w is sufficiently large, the echo from the back surface may be close 

to or immersed within the noise floor due to attenuation and/or dispersion (pulse 

spreading/amplitude reduction). Clearly, a reconstruction technique that simultaneously has 

axial super-resolution capability, large dynamic range, and that can account in a straightforward 

fashion for dispersion is demanded. 

       Let us consider how these conflicting demands have been met.  For the former case of 

optically thin layers, vast effort has been exerted to separate overlapping echoes, such as 

frequency wavelet-domain deconvolution (FWDD) [1,6,12], sparse deconvolution (SD) based 

on iterative shrinkage/thresholding (SD/IST) algorithm [2,13,14], autoregressive spectral 

extrapolation [8,15,16], numerical fitting combined with a rigorous one-dimensional 

electromagnetic model [17], advanced regression with a self-calibration model [18], and Hilbert 

transform together with multiple-signal spectrum estimation [19]. The second case, viz. a thick 

layer, however, has attracted only limited attention. In this case, we are not faced with the issue 

of temporally overlapping echoes; however, absorption and dispersion in the thick sample 

attenuates and distorts the echo coming from the back surface making it difficult to resolve. In 

reference [20], we proposed a cross-correlation (CC) approach (essentially a matched-filter-

inspired approach) in conjunction with a quasi-Dirac -function dispersion model in THz TOFT 

thickness measurement of polycarbonate (PC) and polymethyl methacrylate (PMMA) plastic 

sheets in the few-mm range.  Indeed, we found that such an approach theoretically enables us 

to measure sheets twice as thick as would be possible exploiting more naïve approaches. 

      Although the aforementioned CC-based method used in [20] succeeds in characterizing 

thick PC and PMMA plastic sheets,  there are still some points that deserve to be mentioned:  

(1) Due to the dispersion as well as attenuation as a THz signal propagates through the material, 

echoes following the main pulse associated with the front air/plastic interface are reduced in 

amplitude and may have a low signal-to-noise ratio (SNR) for thick objects; therefore, errors 

may be introduced when estimating the pulse amplitude as well as the width. (2) In order to 

overcome the effect of noise, the calibration set must be large enough to upgrade the prediction 

accuracy of the quasi-Dirac -function model utilized to simulate dispersion. (3) The dispersion 

model and CC-based approach fail when echoes overlap partially or entirely. (4) Even though 

the CC-based approach is a robust tool that is less sensitive to background fluctuations, the 

obtained results are not suitable for direct post signal-processing due to the residual noise, in 

particular when the SNR of the reflected THz signal is not high enough. In the following, we 

propose an approach to tackle these shortcomings.  

      In this paper, we address how THz TOFT data can be used to reconstruct the stratigraphy 

of complex structures possessing both optically thin and thick layers.  We employ an interior-

point method, which is one type of second-order SD approach, to sparsely reconstruct the 

impulse response function of specimens which contain both optically thick and thin layers. The 

performance of the method is compared with two common THz signal-processing techniques, 

FWDD and CC. The preconditioned conjugate-gradient (PCG) algorithm is incorporated with 

the interior-point method to compute the search step for reducing the computational cost at each 

iteration. To balance pulse spreading, a dispersive propagation model is also utilized. The 

analysis enables the successful identification of various layer thicknesses.  For example, in this 

study, we focus on a several-mm thick plastic sheet (for which dispersion plays a major rôle) 

with optically thin airgaps on the side of incidence and the opposite side created by a sheet of 

paper with a thin spacer on both sides of the plastic sheet.  While the maximum determinable 

thickness by THz TOFT is less than that with SD compared with CC, SD with the interior-point 
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method can provide a more reliable and clearer signal reconstruction of a complex sample even 

in the absence of structural information of the materials.    

      In the following, we present the principles and implementation of the approach in Sec. II; 

in Sec. III, we present results and a discussion based on a case study of thick PMMA sheets 

with optical thin copy paper layer and air gap on both sides.  We conclude in Sec. IV. 

II. Principle:  

In the time domain, the measured THz reflected signal r(t) can be expressed as a convolution 

of the incident signal i(t) and the impulse-response function h(t) associated with the structure 

and properties of the measured sample, plus noise n(t) originating in the THz generation, the 

environment, and the detection,  

𝑟(t)  = 𝑖(t)⨂ℎ(t)  +  𝑛(t).     ⑴. 

The simplest approach of distinguishing signals reflected from samples embedded in noise is 

CC, which is expressed as [20] 

𝜔(𝑡) = 𝑟(𝑡)⨂ℎ(t) = ∫ 𝑟(𝑡)ℎ(𝑡 + 𝜏)
∞

−∞

𝑑𝜏 . ⑵. 

Even though the SNR of 𝜔(𝑡) is enhanced compared with r(t) by reducing the noise’s spectral 

bandwidth, CC fails to separate two overlapping signals reflected from an optical thin layer. 

Therefore, inaccurate reconstruction of the sample might result, especially in the absence of 

prior information about the structure (such as number of layers).  

      The other technique we frequently use to retrieve h(t) is called FWDD, which first applies 

a bandpass filter F(f) to eliminate anomalous spikes that might otherwise appear in the high-

frequency region of the transfer function after the direct division between the Fourier 

transforms of r(t) and i(t),  

ℎ′(t) = 𝐼𝐹𝐹𝑇(𝐹(𝜈) ∗
𝐹𝐹𝑇(𝑟(𝑡))

𝐹𝐹𝑇(ℎ(𝑡))
  ) ⑶. 

where FFT and 𝐼𝐹𝐹𝑇  denote the Fourier transform and the inverse Fourier transform, 

respectively. Wavelet denoising is employed next further to improve the SNR of ℎ′(𝑡), and the 

criterion of selecting an appropriate wavelet basis is determined by the similarity of mother 

wavelets and i(t) Error! Reference source not found.. Based on the nature of FWDD, it 

strongly relies on the waveform of i(t) and fails to address the dispersion effect [19]. Thus, in 

some practical situations, its performance is quite limited.  

     Mathematically, the convolution model of the reflected THz signal r(t) can be expressed as 

a matrix multiplication and formulated as 

𝒓 = 𝑰𝒉 +  𝒏     ⑷.

I is the convolution Toeplitz matrix whose rows are delayed version of the discretized incident 

signal, r and h are the vectors of THz reflected signal r(t), impulse-response function h(t), and 

noise n(t), respectively; n accounts for noise originating in the THz generation, the environment, 

and the detection.  

      One long-standing approach for problem (1) is the classical least-squares method, expressed 

as 

𝐦𝐢𝐧
𝒙

1

2
‖𝑰𝒉 − 𝒓‖2

2 . ⑸.

where ‖. ‖2 stands for the l2-norm. In practice, the least-square solution ignores the ill-posed 
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character of the deconvolution problems, and requires numerous iterations to recover 𝒉 ; 

therefore, regularization methods are required to stabilize the least-square solution.   

      One popular regularization technique, the l1-norm regularized optimization, is employed to 

force the retrieval of a sparse vector h, and expressed as 

𝐦𝐢𝐧
𝒙

1

2
‖𝑰𝒉 − 𝒓‖2

2 + 𝜆‖𝒉‖1        ⑹. 

where ‖𝒉‖1 = ∑ |𝒉𝑚|𝑚 , which stands for the sum of the absolute value of h. The regularization 

parameter  𝜆  controls the trade-off between sparsity and reconstruction fidelity. The most 

impressive advantages of l1-norm regularized optimization over the lo- and l2- norm regularized 

optimization, are that it is not NP-hard [21], and can achieve sparse solution of Eq. (3). To date, 

this SD-based approach has been applied to process seismic and ultrasonic signals, speech 

recognition, and image reconstruction. 

      One of the standard algorithms for solving l1-norm regularized optimization is the iterative 

shrinkage algorithm (IST), which involves a matrix multiplication of 𝑰𝚻 and I and a shrink/soft 

threshold operation in each iteration, and is given by 

𝒉𝑘+1 = Ψ𝜏𝜙 (𝒉𝑘 − 𝜏𝑰
𝚻(𝑰𝒉𝑘 − 𝒓))  ⑺. 

where 𝜏 is the step size and the soft-threshold operator Ψ𝜏𝜙(y) =soft (y, 𝜏), which is defined as 

soft (y, 𝜏)=sign(y)max{|y|- 𝜏,0}. Notice that 𝑰Τ(𝑰𝒉𝑘 − 𝒓) is the gradient of the data-fidelity 

term 
1

2
‖𝑰𝒉 − 𝒓‖2

2, demonstrating that each iteration takes a step 𝜏 along the direction given by 

the negative gradient of the data-fidelity term. Due to its simplicity and the low cost of each 

iteration, the first-order IST method is an attractive choice to address the l1-norm regularized 

least square problem. One typical example is that Dong et al. extracted the quantitative 

stratigraphy of a 17th century oil painting Madonna in Preghiera successfully using this 

approach [1].   

      Even though the SD/IST algorithm has been widely and straightforwardly implemented, 

many iterations are generally required to achieve high accuracy results, leading to large 

computation costs of SD/IST algorithm especially when addressing signals comprised of a large 

numbers of data points. A more detailed discussion can be found in Refs. [22,23]. 

      Several refined approaches have been proposed to accelerate the IST algorithm, such as the 

fast IST algorithm (FISTA) [22], The two-step IST algorithm (TwIST) [24], and split 

augmented Lagrangian shrinkage algorithm (SALSA) [25]. In this project, an interior point 

method that utilizes PCG algorithm to compute the search direction, is utilized to solve l1-norm 

regularization. Compared with the SD/IST algorithm, super-linear convergence can be 

guaranteed and less iterations are demanded to achieve convergence, even though the 

computational cost of each iteration is significant. Therefore, a higher accuracy of the signal 

reconstruction can be achieved in some cases. Moreover, several approaches have been 

proposed to accelerate the PCG process, such as rank-one approximation of the matrix 

multiplication 𝑰𝚻𝑰 [26]. Balancing the complexity with performance, an approximation of the 

Hessian matrix (which contains the matrix multiplication of 𝑰𝚻𝑰) by its diagonal elements is 

employed in this work ion and presentation of the technique can be found in Ref. [27]. 
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III. Results & Discussion:  

Numerical simulation: 

As mentioned above, we will show the effectiveness of SD for the characterization of a complex 

structure that contains both thick and thin layers.  These two requirements place what appear to 

be conflicting demands on approaches employed in the literature to analyze THz TOFT data.  

To bring out the key issues, numerical simulations based on synthetic data (see schematic cross 

section in Fig. 1) are performed first to show the problems presented by typical approaches, 

such as the FWDD algorithm and the CC-based approach, and then to verify the potential 

advantages of SD for structural characterization on complex layered structures.  

      Considering the THz TOFT experiment as a linear time-invariant system, the reflected 

signal r(t) is thus the convolution of the known THz pulse i(t) (reference signal) [we use a 

typical experimentally measured reference signal, see inset in Fig. 2] and the impulse-response 

function h(t). An ideal impulse response function h0(t) of a simple three-layer structure, 

represented in Fig. 2, is assumed,   

ℎ0(𝑡) =

{
 
 

 
 
    0.3         𝑡 = 11.6
      0.2         𝑡 = 11.89
−0.02      𝑡 = 34.8

   −0.1          𝑡 = 40.89
   −0.05     𝑡 = 41.47
        0        otherwise

⑻. 

where the time t is in picoseconds; time-domain signals are discretized with the sampling period 

Ts = 0.0116 ps utilized later in experiments (t = nTs with n the discrete index). Nonzero values 

at a given time are related to the Fresnel coefficient from a given interface and determine the 

amplitude of the respective echoes.  The time intervals (optical delays) between the 1st echo 

and 2nd echo, 2nd echo and 4th echo, and 4th echo and 5th echo are 0.29 ps, 29 ps, and 0.58 ps, 

respectively, corresponding to the thickness of the layer I, II, and III. Assuming that the first 

and third layers are Teflon, and the second layer is amorphous silica, based on the 

corresponding averaged refractive index of Teflon and silica within the THz frequency regime, 

which are 1.45 [28] and 1.95 [29], respectively, the thicknesses of layers I, II, and III are 30 

µm, 2230 µm, and 60 µm, respectively. In addition, a thin air layer is present in layer II at time 

Fig. 2. The assumed impulse response function h0(t) (red) and the simulated reflected THz signal r(t) (black). Inset shows an 

experimentally measured reference pulse i(t) produced by our apparatus.  Also shown is a schematic cross section of the simulated 
three-layered sample. The layers I and III (green) are Teflon of thicknesses 30 µm and 60 µm, respectively, while layer II (blue) 

is silica with thickness of ~2230 µm. A thin air layer exists around the central region of layer II.  
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delay t = 34.8 ps. The discussion above holds in the absence of noise.  In order to simulate the 

reflected signal r(t) obtained in the actual noisy environment, additive Gaussian white noise 

with SNR 10 dB is included in the reflected signal r(t) as shown in Fig. 2.   

     We expect five peaks (two positive peaks and three negative peaks) in r(t). On account of 

the optical thin thicknesses of layers I and III, the echoes reflected from the front and back of 

these two layers almost entirely overlap. One may then erroneously conclude that the sample 

consists solely of a single layer. Furthermore, the amplitude of reflected echo from the small 

airgap is comparable to the noise background and difficult to be distinguished directly in the 

raw reflected signal r(t). Further signal processing is thus necessary to obtain the thickness 

information of layers I, II, and III, as well as resolve the reflected echo from the small air layer 

that is drowned in noise.  

      Our first attempt is solely to apply a frequency-domain windowing filter, the conventional 

and simplest approach to denoise experimental signals. The frequency-domain filters must be 

used with caution, as meaningful information can be discarded along with the noise. In order 

to guarantee a satisfactory SNR of the deconvolved signal, the preferred approach is a time-

localized filtering approach cascaded with mild filtering of the type above.  Here we use wavelet 

denoising due to the high similarity between the wavelet basis functions and the typical THz 

signal [30].  How to select the optimal wavelet base function and to evaluate the decomposition 

level is discussed in detail in Refs. [31,32]. For this work, balancing the denoising performance 

of FWDD with the SNR of the simulated reflected signal r(t), Wiener filtering with noise 

desensitizing factor 0.2 max(|I(ν)|2), where I(ν) is the Fourier transform of the reference signal 

i(t), is selected and the sym4 wavelet function with decomposition level 10 are set for wavelet 

decomposition. We note that the performance of the Wiener filter is largely determined by the 

selection of noise desensitizing factor. Owing to the relatively low amplitude of the reflected 

signal from the thin air layer within layer II, a larger noise desensitizing factor will lead to the 

elimination of the subtle features in the reflected signal r(t).  

      The FWDD deconvolved signal for the synthetic reflected signal r(t) is displayed in Fig. 3. 

Compared with the raw reflected signal r(t) (black), the SNR of the deconvolved signal is 

Fig. 3. Comparison between the raw reflected signal r(t) (black) and the corresponding deconvolved signal by FWDD (red) 

based on the synthetic data. Results obtained with simulated data for the assumed impulse response function h0(t) of Eq. 5. Layer 

III is resolved successfully, while layer I and the air layer locations fail to be identified. 

Fig.  4. Comparison between the raw reflected signal r(t) (black) and the corresponding deconvolved result by CC (red) based on 

synthetic data. The arrow indicates the echo from the airgap at t =34.67 ps. Results obtained with simulated data for the assumed 

impulse response function h0(t) of Eq. 5. 
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significantly enhanced. Owing to the presence of residual noise even after FWDD as well as to 

its relatively low amplitude of the signal, the echo corresponding to the thin air layer is difficult 

to be identified clearly in the deconvolved result. Importantly, the thin layer III is resolved 

successfully, while layer I fails be resolved. Owing to the narrow effective bandwidth of the 

impulse response function h(t), the axial resolution of FWDD is moderate. According to the 

numerical simulation presented in Ref. [15], the minimum time delay that is reconstructed by 

FWDD for our setup is ~0.35 ps when SNR = 10 dB, corresponding to a thickness for layers I 

and III of ~36 µm, which is larger than the assumed optical thicknesses for layers I and III in 

h0(t). Moreover, the appearance of extraneous peaks as well as the pulse broadening in the 

impulse response function recovered by FWDD, resulting from the application of the low-pass 

filter, are also observed in the deconvolved result, and might deteriorate the resolution in turn 

[19].  

      Because we have succeeded in identifying weak echoes from a noisy background using CC 

in Ref. [20], we next attempt that approach. Unlike FWDD that improves SNR mainly by 

narrowing the bandwidth of impulse response function h(t), CC enhances SNR by reducing the 

noise’s spectral bandwidth to that of the reference signal. Superior to FWDD, because of the 

absence of signal truncation, there is no risk of losing valuable information when applying CC. 

Therefore, in some cases, the results of CC may be more reliable than FWDD, in particular in 

the absence of prior knowledge of the structure and low SNR in the reflected signal r(t). Figure 

4 presents the comparison between r(t) and h(t) deconvolved by CC. The ability of CC to 

identify real echoes is higher than FWDD. The echo reflected from the thin air layer, as 

indicated by the blue arrow, is easily identified even with small amplitude, validating the 

superior capability of CC to pick out weak echoes in a low-SNR environment. Because CC is 

less sensitive to SNR, theoretically, it can even detect signals buried below the noise floor as 

opposed to FWDD. However, based on the nature of CC that extracts a known signal from a 

reflected signal contaminated by noise, it is not designed to separate overlapped echoes 

associated with optically thin layers. As a result of which, the echoes reflected from layers I 

and III cannot be distinguished. Due to these disadvantages, CC is not suitable for samples 

containing thin layers.  

      Having considered difficulties encountered in implementing FWDD and CC, we now 

Fig. 5. Comparison between the raw reflected signal r(t) (black) and the corresponding deconvolved result by SD (red) based on 

synthetic data. All interfaces are observed successfully in the deconvolved result. The blue arrow indicates the position of the echo 

from the airgap in layer II, which is identified in the SD reconstruction.  
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employ SD.  In contrast to CC and FWDD, SD looks for a series of nonzero spikes 

(corresponding to echoes or reflections from material interfaces) in the reconstructed impulse-

response function h(t). That is, h(t) is assumed to be sparse in the time domain, i.e., zero almost 

everywhere. The approach proves convenient for subsequential signal processing, such as peak-

detection, as discussed in Refs. [2,13]. SD can provide axial super-resolution while also 

performing well on thick layers, and is thus more suitable to investigate samples including thin 

layers or even in the absence of other information on the layer structure. Figure 5 is the 

reconstructed signal based on SD.  Four nonzero peaks (two positive peaks and two negative 

peaks) associated with the interfaces of layers I, II, and III, and one weak peak reflected from 

the thin air layer hidden in layer II, are found in the SD reconstructed impulse response function 

h(t), confirming the higher resolution compared to FWDD and CC. The thickness of layers I, 

II, and III are calculated based on the corresponding optical distances Δt and listed in Table 1. 

The minimum thickness that can be resolved by SD, based on our numerical simulation, is ~15 

Ts with an SNR of 10 dB, corresponding to a Teflon layer with thickness of 18 µm. Of note, the 

SD/IST algorithm, another type of SD our group has previously employed [2], has also been 

tested.  Even though similar results are obtained, it involves a larger computational cost to 

achieve convergence and may not be well-suited for applications in which computational 

efficiency is required. 

Table 1. Thickness comparison of layer I-III between SD results and nominal value. 

 LAYER I LAYER II LAYER III 

Nominal thickness (µm) 30 ~2230 60 

SD results (µm) ~33 ~2224 ~58 

 

Experimental verification: 

Fig.  6. Schematic diagram of experimentally measured samples, composed of two paper layers (yellow), two air gaps (white), 

and one thick PMMA plastic sheet (blue) in between. The papers are standard copy paper and the airgaps are produced by a 

suitable spacer layer. The thickness of PMMA ranges from 2 mm to 12 mm.  
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In the above numerical demonstration based on synthetic data, SD exhibited better performance 

in addressing a sample having both thick and thin layers. In this section, actual multi-layered 

structures are designed to evaluate the performance of SD experimentally. The experimental 

data is then analyzed based on FWDD, CC, and SD. A schematic diagram of the sample is 

shown in Fig. 6. It is a five-layer structure with a layer of standard copy paper on each side of 

a thick PMMA plastic sheet. Airgaps are introduced intentionally between standard copy paper 

and the PMMA with a spacer. The paper thickness is ~90 µm measured with a high-resolution 

caliper. The thickness of airgap is roughly 150 µm. Six solid PMMA plastic sheets of various 

thicknesses w=2, 4, 6, 8, 10, and 12 mm are utilized. Relevant physical properties of the PMMA 

sheets can be found in Ref. [20]. In order to prevent scattering in nonspecular directions, the 

top and bottom surfaces of the PMMA are diamond polished and shaped after fabrication.  

      THz transmission measurements were employed first to characterize the optical constants 

of PMMA. THz transmission measurements were employed first to characterize the optical 

constants of PMMA. Based on linear fitting of n(ν) for a 2-mm-thick PMMA sheet, shown in 

Fig. 7(a), the refractive index of PMMA at 1 THz is ~1.62, and a negative dispersion between 

0.2 and 2 THz, viz. dn/dν≈ −0.01 THz-1, is found after linear fit. A good fit between the 

measured n(ν) and the linearly modeled n(ν), is found. Similar results are also found for PMMA 

sheets of other thicknesses, and not presented here. The observation of negative dispersion at 

low frequency and the corresponding refractive index of PMMA in a good agreement with Ref. 

[33]. The optical constants of copy paper between 0.2 and 2 THz is also measured and presented 

in Fig. 7(b). A relatively frequency-independent refractive index is found (albeit the paper is 

Fig.  7. (a). Comparison between 1.62–0.01ν (red diamond line) with n measured in THz and the frequency-dependent refractive 

indices n(𝜈) (blue solid line) for PMMA.  (b). the frequency-independent of refractive indices n(ν) for copy paper.  
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rather thin) with n ~ 1.56 at 1 THz.       

After characterizing PMMA and copy paper in transmission measurements, THz TOFT 

experiments were carried out next for stratigraphic characterization of these samples. It is noted 

that the bandwidth of the setup (TeraView Ltd. THz-TDS Spectra 3000) extends to 3 THz, 

corresponding to wavelength ~100 µm; however, in practice, accounting for the SNR of the 

reflected signal, the usable bandwidth in r(t) in these experiments is limited to about 2 THz.  

Any layer thickness ≲100 µm is thus considered optically thin. The spot size of the generated 

THz beam is frequency-dependent, and is about 300 µm at 1 THz and the depth of focus far 

exceeds the sample thickness, so that we can treat the beam as collimated in its interaction with 

the sample. A typical reflected temporal signal (normalized) from the front and back of the 

sample with 6-mm PMMA is shown in Fig. 8. Two positive and one negative echo are seen in 

Fig. 8(a). The first two positive echoes correspond to the air/ paper and airgap/PMMA 

interfaces. The sign of the second echo is negative due to the Fresnel coefficient from a high- 

to low- refractive index medium. However, when it comes to the signal reflected from the back 

of sample, the situation becomes complex owing to the low SNR ensuing attenuation during 

propagation. Moreover, even though dispersion in PMMA is weak in Fig. 7(a), the cumulative 

effect of the dispersion on r(t) in thick samples could not be ignored. The reduction in the 

amplitudes of echoes following long-distance propagation inevitably contributes to the 

introduction of errors when seeking to locate the peak position as well as estimating the full 

width at half maximum (FWHM) of the echo.  

Fig.  8. Typical reflected temporal signal from the front and back of sample whose thickness of PMMA sheet is 6 mm. Notice the 

different vertical scales for (a) and (b). 
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      According to our previous experience with synthetic data (see above), we directly employed 

SD to reconstruct h(t). For thick PMMA, because of dispersion and attenuation, pulse-spreading 

and amplitude reduction occur in echoes associated with echoes that travel substantial distances 

in the sample, as shown in Fig. 9. Based on the nature of time-invariant systems, the reflected 

signal is the superposition of THz reference signals with suitable time-shifts and scaled 

amplitudes. The pulse broadening, if not taken into consideration, degrades the ability of the 

deconvolution techniques to reconstruct the stratigraphy. Specifically, to achieve an accurate 

structural representation of the back of sample, the transmitted signal through the back 

PMMA/airgap interface is used as the reference signal when investigating the echo reflected 

from the back of sample. This signal is estimated using the dispersive propagation model 

presented in Ref. [34]. Different from the quasi-Dirac -function dispersion model in Ref. [20] 

as well as the novel dispersion compensation strategy based on the double Gaussian mixture 

model (DGMM) in Ref. [35], because it does not involve a cumbersome parameter tuning 

process all relevant parameters are obtained from the transmission measurement, it is thus 

simpler and more straightforward to implement. High similarity between the extrapolated signal 

accounting for dispersion and the raw reflected signal at the back PMMA/air gap interface, is 

found and shown in Fig. 9.  

      A deconvolved h(t) only with several nonzero points to represent the structural features, is 

presented clearly in Fig. 10(a) and (b), and six sharp peaks, corresponding to echoes 1 through 

6, are clearly observed. The thickness of the paper and airgap on both sides of the sample, as 

well as that of the thick PMMA plastic itself, can be estimated based on SD results. The 

Fig.  9. Comparison of the raw reflected echoes from the back of the sample whose thickness of PMMA sheet is 6 mm (black), 

the reference signal (blue), and the signal propagated through back PMMA/airgap interface extrapolated based on the dispersion 

model (red).  

Fig.  10. The comparison between the deconvolved results by SD (red) and the raw reflected signal (black) from the front of sample 

(a), and the back of sample (b). The thickness of the PMMA sheet is 6 mm. 
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determined thicknesses are 87 µm, 167 µm, and 5.92 mm, respectively, showing excellent 

agreement with the independently measured values. It is also worth mentioning that dispersion 

is a crucial factor that cannot be ignored when analyzing the reflected signals from coatings on 

the back of the thick PMMA; if dispersion were neglected in the analysis, the broadened peak 

would be treated as the sum of several erroneous peaks by the algorithm of sparse deconvolution. 

Moreover, we find that when the thickness of PMMA larger than 8 mm, the 6th echo fails to be 

distinguished entirely.  

      The performance of FWDD and CC is also tested and the corresponding deconvolved 

results are presented in Fig. 11. Figures 11 (a) and (b) represent the reflected signals from the 

front and back of the PMMA sample when FWDD is employed. We observe some level of 

improvement in the SNR. In the case of the back reflections [Fig. 11(b)], however, the 

interpretation is arduous as the amplitudes of the postprocessed echoes are comparable to the 

noise floor and, further, side-peak oscillations are present. The deconvolved signal by FWDD 

are thus insufficient to provide a reliable reconstruction. Figures 11(c)-(d) show the signals 

reflected from the front and back of the PMMA sample when CC is employed. Pulse spreading 

is taken into consideration to overcome the severe waveform distortion of echoes from the back 

of sample. It is clear that the SNR of the reconstructed signal is greater than that yielded by 

FWDD and interface positions on the backside of the sample can be more easily identified. 

Interpretation is still not as clear as with the quasi-ideal impulse response provided by the SD 

technique; in particular, the width of the deconvolved echoes leads to estimation uncertainty 

and additional oscillations observed in the signal could be wrongly interpreted as interfaces. 

Even though CC performs well for thick samples on the ground that CC maximizes SNR when 

an identical waveform (echo) is immersed in noise, CC performs poorly and unreliable when 

thin layers are also involved.  

      The axial resolution of the SD algorithm also merits quantitative study. Considering the 

maximum dynamic range > 50 dB of the reference THz signal h(t) generated by the 

experimental apparatus we observe through simulation that the maximum thickness w of 

PMMA plastic sheet that can be resolved by SD is ~17 mm, which is lower than the value for 

CC (~36 mm [19]). Even through the maximum resolvable thickness is lower than for CC, SD 

provides a clearer and more accurate assessment of the complex structure of samples with 

intermediate thickness and thin layers since CC fails to identify the thin layers. We last note 

Fig.  11. Comparison between the deconvolved result (red) and the raw reflected signal (black) from the front of the sample by 

(a) FWDD and (c) CC. Comparison between the deconvolved result (red) and the raw reflected signal (black) from the back of 

sample by (b) FWDD and (d) CC. The thickness of the PMMA sheet is 6 mm.  
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that multiple reflections are quite weak and have been ignored, even though for our axially 

symmetric structure, there are features arising from single echoes from the back surface and 

multiple echoes from the structure on the front surface that coincide with single echoes from 

the back surface. As the multiple echoes are quite weak, they do not significantly affect the 

analysis. 

IV. Conclusion:  

In this paper, SD based on an interior-point method in conjunction with a propagation model 

accounting for dispersion is demonstrated to be successful in reconstructing the stratigraphy of 

a complex sample incorporating both optically thick and thin layers. The use of an interior-

point method with the preconditioned conjugate-gradient algorithm significantly decreases the 

computational cost of the SD technique compared to the standard iterative soft-thresholding 

algorithm. The dispersion model is used to take into account the significant attenuation and 

distortion endured by the THz signal in a thick sample. The proposed technique is compared to 

two other post-processing techniques, namely FWDD and CC. FWDD faces severe limitations 

as it is ill-suited to resolve thick samples [19] and can also fail to identify optically thin layers. 

CC has the advantage of performing well for thicker samples than SD, but is shown to fail to 

resolve additional thin layers in otherwise thick samples.  We demonstrate that the inclusion of 

a dispersion model in the SD procedure increases the maximum sample thickness than can be 

resolved while maintaining a significantly better axial resolution than FWDD and CC. As 

illustrated by the experimental results, SD may be the preferred option for stratigraphic 

reconstruction of moderately thick samples with complex structure. For example, such an 

approach will be of value to characterize coatings on electrically insulating materials when 

there are constraints requiring access from the back side. 
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