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Abstract

We construct a publicly verifiable, non-interactive delegation scheme for any polyno-
mial size arithmetic circuit with proof-size and verification complexity comparable to those
of pairing based zk-SNARKS. Concretely, the proof consists of 𝑂(1) group elements and
verification requires 𝑂(1) pairings and 𝑛 group exponentiations, where 𝑛 is the size of the
input. While known SNARK-based constructions rely on non-falsifiable assumptions, our
construction can be proven sound under any constant size (𝑘 ≥ 2) 𝑘-Matrix Diffie-Hellman
(𝑘-MDDH) assumption. However, the size of the reference string as well as the prover’s
complexity are quadratic in the size of the circuit. This result demonstrates that we can
construct delegation from very simple and well-understood assumptions. We consider this
work a first step towards achieving practical delegation from standard, falsifiable assump-
tions.

Our main technical contributions are first, the introduction and construction of what we
call “no-signaling, somewhere statistically binding commitment schemes”. These commit-
ments are extractable for any small part 𝒙𝑆 of an opening 𝒙, where 𝑆 ⊆ [𝑛] is of size at most
𝐾. Here 𝑛 is the dimension of 𝒙 and 𝒙𝑆 = (𝑥𝑖)𝑖∈𝑆. Importantly, for any 𝑆′ ⊆ 𝑆, extracting
𝒙𝑆′ can be done independently of 𝑆 \ 𝑆′. Second, we use these commitments to construct
more efficient “quasi-arguments” with no-signaling extraction, introduced by Paneth and
Rothblum (TCC 17). These arguments allow extracting parts of the witness of a statement
and checking it against some local constraints without revealing which part is checked. We
construct pairing-based quasi arguments for linear and quadratic constraints and combine
them with the low-depth delegation result of González et. al. (Asiacrypt 19) to construct
the final delegation scheme.
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1 Introduction

In a delegation scheme, a verifier with limited computational resources (a mobile device for
example) wishes to delegate a heavy but still polynomial computation to an untrusted prover.
The prover, with more computational power but still of polynomial time, computes a proof
which the verifier accepts or rejects. Given the limitations of the verifier, the proof should
be as short as possible and the verification process should consume as few computational
resources as possible. Additionally, the construction of the proof should not be much costlier
than performing the computation itself.

A delegation scheme can be easily constructed from a zero-knowledge Succinct Non-
Interactive Argument of Knowledge (zk-SNARK) for NP. Schemes like [GGPR13; Gro16] are
very appealing in practice because a proof consists of only a constant number of group elements
and verification requires the evaluation of a constant number of pairings.1 The downside is that
these zk-SNARKs are based on strong and controversial assumptions such as the knowledge of
exponent assumption or the generic group model.

Such assumptions are called non-falsifiable because there is no way of efficiently deciding
whether an adversary breaks the assumption or not. In such assumptions, the adversary is
treated in a non black box way and the assumption argues about how an adversary performs
a computation instead of what computation it cannot perform. Since zk-SNARKs can handle
even NP computations, soundness becomes an essentially non-falsifiable property where one
needs to decide whether an adversary produces a true or false statement without any witness
but only with a very short proof. Gentry and Wichs [GW11] proved that zk-SNARKs for NP
are (in a broad sense) impossible to construct without resorting to non-falsifiable assumptions.

While this impossibility result justifies the use of such assumptions for non-deterministic
computation, this is not the case for delegation of computation which only considers determin-
istic computation. Indeed, in this case, soundness becomes an efficiently falsifiable statement:
determining whether the adversary breaks soundness simply requires to evaluate the dele-
gated polynomial computation on some input 𝑥 and check whether it is accepting or rejecting.
Actually, getting delegation from falsifiable assumptions is easy in general: let Π be a SNARK
for NP. For a binary relation 𝑅, the assumption “Π is sound for 𝑅” is in general non-falsifiable
since checking membership in the corresponding language is hard and the SNARK proof does
not help as shown by [GW11]. On the contrary, for a relation 𝑅 in P, the assumption becomes
falsifiable since one can efficiently compute 𝑅(𝑥). Nevertheless, the important issue is to con-
sider the quality of the assumption in place since the assumption “the proof system is sound”
is tautological. Ideally, we should rely on simple and well understood assumptions without
sacrificing other desirable properties.

Almost all known constructions that base their soundness on falsifiable assumptions (or
even no assumptions at all) come with some compromises: they (1) are not expressive enough to
capture all polynomial time computation [KPY18; GR19; CCH+19; JKKZ20] (2) are interactive
[GKR08; RRR16], (3) are designated verifier [KRR13; KRR14; KP16; BHK17; BKK+18] or (4)
rely on strong (yet falsifiable) assumptions related to obfuscation [CHJV15; KLW15; BGL+15;
ACC+16; CCC+16] or multi-linear maps [PR17].

An exception to this is a construction of Kalai et al. [KPY19] of a delegation scheme for any
poly-time computation based on a newly introduced 𝑞-size assumption in bilinear groups. The
size of the assumption is 𝑞 = log𝑇 and 𝑇 is the time needed to perform the computation. As for
efficiency, the size of the proof is polylog(𝑇) group elements which becomes poly(𝜅) if 𝑇 ≤ 2𝜅.

However, in spite of the recent progress, there’s still a gap in the proof size and verification
with respect to the most efficient known constructions, namely those based on paring based

1Note that zero-knowledge is not necessary.
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zk-SNARKs.

1.1 Our results

In this work we consider the question “what are the simplest assumptions that imply publicly
verifiable, non-interactive delegation of computation”? Here “simple” should be interpreted as
falsifiable and well understood. Having practicality in mind as well, we would also want a
delegation scheme that competes in efficiency with the most efficient constructions to date,
namely those that are based on non-falsifiable assumptions.

The main contribution of this work is the construction of a fully-succinct, non-interactive,
publicly verifiable delegation scheme from any 𝑘-Matrix Diffie-Hellman assumption (𝑘-MDDH)
for 𝑘 ≥ 2, as for example the decisional linear assumption (DLin) [BBS04]. In the more efficient
setting of asymmetric groups, soundness can be based on the natural translation of symmetric
DLin where the challenge is encoded in both groups (the SDlin assumption of [GHR15b]).
Here by fully-succinct we mean that the proof size is linear in the security parameter and
verification requires a linear number of operations (whose complexity depends only on the
security parameter) in the size of the input of the computation. We achieve these goals but
with the drawback that the prover computation and the size of the crs are quadratic in the size
of the circuit. Our main contribution is summarized in the next (informal) theorem.
Theorem 1. (Informal). There exists a non-interactive, publicly verifiable delegation scheme for any
polynomial size circuit 𝐶 with 𝑛-size input that is adaptively sound under any 𝑘-MDDH assumption
for 𝑘 ≥ 2 with the following efficiency properties: the crs size is poly(𝜅)|𝐶 |2, prover complexity is
poly(𝜅)|𝐶 |2, proof size is poly(𝜅) and verification complexity is poly(𝜅)𝑛.

Our construction is also concretely efficient as far as proof size and verification complexity
are concerned. The proof comprises of 10+8 group elements of an asymmetric bilinear group
and verification requires 𝑛 exponentiations plus 36 evaluations of the pairing function, where
𝑛 is the size of the input. The attractive concrete efficiency is achieved due to the structure-
preserving nature [AFG+16] of our construction. This notion captures that all algorithms
solely perform group operations, namely they are algebraic, and there is no need to encode
cryptographic primitives such as hash functions or pairings as arithmetic circuits, a process
that is very inefficient in practice.

This result demonstrates two things. First, delegation of computation can be based on very
simple, standard assumptions. Second, its structure preserving nature hints to the plausibility
of practically efficient delegation schemes comparable in efficiency with the ones based on
SNARKs, but under simple, standard assumptions. In table 1 we present a comparison of our
delegation of computation construction with other pairing based schemes.

No-Signaling SSB Commitments and Succinct Pairing-based Quasi-Arguments. We follow
and extend the ideas of Paneth and Rothblum [PR17] and Kalai et al. [KPY19] for construct-
ing delegation schemes for poly-time computations from what they called quasi-arguments of
knowledge with no-signaling extractors. First, we formalize a similar notion for commitment
schemes and show that the somewhere statistically binding (SSB) commitments of [GHR15b;
FLPS20] are no-signaling when they also have what we call an “oblivious trapdoor generator”.
Second, we use the no-signaling SSB commitments to construct more efficient constant-sized
quasi-arguments of knowledge for linear and quadratic relations. We achieve this by combining
SSB commitments with the very efficient quasi-adaptive non-interactive zero-knowledge argu-
ments for linear [JR13; LPJY13; JR14; KW15] and quadratic relations [GHR15b; DGP+19]. To
this aim, we also show that the QA-NIZK arguments can be easily modified to have no-signaling
extractors under standard assumptions.
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Table 1: Comparison between different pairing based delegation schemes and our results.

Language Verification Proof size CRS size Assumption
[GGPR13][Gro16] AC 𝑛e + 𝑂(1)p 𝑂(𝜅) 𝑂(|𝐶 |𝜅) Non Falsifiable

[KPY19] (base case) RM 𝑛e + poly(log 𝑑)p 𝑂(𝜅 log 𝑑) 𝑂((𝑛 + 𝑑)𝜅) log 𝑑-Assumption
[GR19] AC 𝑛e + 𝑂(𝑑)p 𝑂(𝑑𝜅) 𝑂(|𝐶 |𝜅) 𝑠-Assumption

This work AC 𝑛e + 𝑂(1)p 𝑂(𝜅) 𝑂(|𝐶 |2𝜅) DLin/SDLin

Verification is given in number exponentiations (e) and pairings (p). 𝑑 is the circuit depth/num-
ber of steps of a computation, 𝑛 the number of inputs, 𝑠 the circuit width/computation space
and |𝐶 | the circuit size. AC stands for “Arithmetic Circuit” and RM for “RAM Machine”. For
[KPY19] we only consider the “base case” and not the “bootstrapped” constructions, because
bootstrapping adds a considerable overhead and is thus incomparable in terms of group oper-
ations. We stress out, however, that the crs size of the bootstrapped construction is sublinear
in the time of the computation.

Applications to NIZK. Our construction can be turned into a NIZK argument for NP of size
𝑛+𝑂(1) group elements -namely𝑂(𝑛𝜅) proof size- under the same assumptions where 𝑛 is the
number of public an secret inputs of the circuit. In table 2 we provide a comparison of our NIZK
construction and the literature. Using standard techniques, the argument implies compact
NIZK for NP with proof size 𝑂(𝑛) + poly(𝜅). That is, the size of the proof is proportional to the
size of the input and the security parameter only gives an additive overhead. In comparison,
the state of the art is 𝑂(|𝐶 |) + poly(𝜅) for poly-sized boolean circuits and 𝑂(𝑛) + poly(𝜅) for
log-depth boolean circuits [KNYY19; KNYY20]. We note that a similar result can be obtained
by [KPY19], albeit with a stronger assumption.

Table 2: Comparison between different pairing based NIZK schemes and our results.

Language Verification Proof size CRS size Assumption
[GOS06] AC 𝑂(|𝐶 |)p 𝑂(|𝐶 |𝜅) 𝑂(𝜅) SXDH

[GGPR13][Gro16] AC 𝑂(1)p 𝑂(𝜅) 𝑂(|𝐶 |𝜅) Non Falsifiable
[GR19] BC 𝑂(𝑛 + 𝑑)p 𝑂((𝑛 + 𝑑)𝜅) 𝑂(|𝐶 |𝜅) 𝑠-Assumption

[KNYY20] NC1 𝑂(|𝐶 |)poly(𝜅) 𝑛poly(𝜅) poly(|𝐶 |, 𝜅, 2𝑑) DLin
This work BC 𝑂(𝑛)p 𝑛𝑂(𝜅) 𝑂(|𝐶 |2𝜅) DLin/SDLin

Verification is given in number of pairings p. 𝑑 is the circuit depth, 𝑛 the number of (public and
secret) inputs, 𝑠 the circuit width and |𝐶 | the circuit size. AC stands for “Arithmetic Circuit”
and BC for “Boolean Circuit”.

Our argument can be also used to construct zk-SNARKs from quantitatively weaker as-
sumptions than the state of the art. Indeed, the strongest assumption used in zk-SNARKs such
as [GGPR13; Gro16] is a knowledge assumption which states that an adversary computing
some elements of a bilinear group, satisfying a particular relation, must know their discrete
logarithms.2 Such assumption is used to extract an assignment to each of the circuit wires.
The “size” of such assumption is proportional to the number of extracted values, which in this
case is the size of the circuit. Since our argument only requires the reduction to know the
input of the circuit, we can rely on a knowledge assumption only for extracting the input. As
a consequence the size of the assumption is drastically shortened. Since these assumptions are

2Actually, the adversary must know a representation of these values as a linear combination of a set of group
elements that she receives as input.
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stronger as the size of the assumption increases and given that we lack good understanding of
them, it is always safer to rely on shorter assumptions. Also, weaker assumptions translates to
better concrete efficiency by using smaller security parameters.3

2 Technical Overview

To construct the delegation scheme we follow a commit-and-prove approach, which means that
we first commit to the witness (the satisfying assignment of wires in a circuit) and then show
that this witness satisfies some relation. We use somewhere statistically binding (SSB) com-
mitments as those used in [GHR15b; GR16; FLPS20] and show that they satisfy a no-signaling
extraction property. Then, we do the same for the so called quasi-adaptive NIZK arguments
for linear spaces [JR13; LPJY13; JR14; KW15] and for quadratic relations [GHR15b; DGP+19].
From these primitives we can construct delegation for bounded-space computations/bounded
width circuits with proof-size independent of the depth of the computation by following the
techniques of [PR17; KPY19]. To get a succinct proof-size, in addition to the “depth com-
pression” we must also perform a “width compression”. To this end, we use ideas from the
delegation scheme for bounded depth computations of González and Ràfols [GR19] and re-
move the necessity of a 𝑞-assumption to rely solely on constant size assumptions. To combine
both “compressions” efficiently we exploit the fact that [GR19] is structure preserving and the
verifier is a bounded width circuit. In the next sections we present these techniques.

2.1 No-Signaling Somewhere Statistically Binding Commitments/Hashing

Somewhere statistically binding (SSB) hashing/commitments4 were introduced by Hubacek
and Wichs [HW15] and then improved by [OPWW15], and have been used for constructing
efficient NIZK proofs [GHR15b; GR16] as well as ring signatures [BDH+19].

An SSB commitment scheme is a generalization of dual mode commitments [GS08] where
the commitment key can be sampled from many computationally indistinguishable distri-
butions, each of which is making the commitments statistically binding for a number of 𝐾
coordinates of the commited value. That is, when commiting to a vector 𝒎 = (𝑚1 , . . . , 𝑚𝑛)with
a commitment key ck𝑆 associated with a set 𝑆 ⊆ [𝑛] of size at most 𝐾, no (even computationally
unbounded) adversary can compute a commitment 𝑐 and two valid openings 𝒎 ,𝒎′ such that
for some 𝑖 ∈ 𝑆 it holds that 𝑚𝑖 ≠ 𝑚′𝑖 , except with negligible probability. Importantly, the size of
the commitment 𝑐 should be independent of 𝑛 but may depend on the value 𝐾.

Known SSB commitments constructions are also extractable5, that is, there exists an efficient
algorithm that has some trapdoor information associated with ck𝑆 and can efficiently extract
from a commitment 𝑐 a valid opening (𝑚𝑖)𝑖∈𝑆. Note that the notion of a “valid opening” is
well-defined due to the statistical binding property on the set 𝑆.

We argue that the SSB extractor has many similarities with the no-signaling extractors
of [PR17; KPY19]. First, we briefly recall what a no-signaling extractor is in the context of
quasi arguments of knowledge. A quasi argument is a proof system for a relation that defines

3We note, however, that in the case of non-falsifiable assumptions it not clear how an appropriate security
parameter should be chosen.

4Through this paper we will refer to “commitments” while technically they are “hashes”. We do so because in
the context of NIZK proofs is traditional to commit to the witness and then prove that the committed value satisfy
some relation. However, since we are less interested in zero-knowledge, the randomness of such commitments is 0
(or fixed/inexistent) and we end up with hashes.

5In the context of bilinear groups, we can consider 𝑓 -extraction where one only extracts 𝑓 applied to the witness.
In particular, it is usual to consider 𝑓 the (one-way) function that maps elements in Z𝑝 to one of the base groups G1
or G2. This is the notion of extractability we use in this work and is enough to obtain our results.
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some local constraints on the statement/witness pair. The requirement is that there exists a
no signaling extractor that allows extracting a part of the witness from a verifying proof that is
locally correct. Furthermore, each part of the extracted local witness can be in a sense extracted
independently. This is formalized by requiring that extracting local witness 𝑤𝑆 for a set 𝑆 and
restricting it to the variables 𝑆′ ⊆ 𝑆 is computationally indistinguishable from extracting 𝑤𝑆′
for the set 𝑆′. As we shall see shortly, this property is extremely useful when constructing
delegation schemes.

In the case of SSB commitments, extractability of the local opening is just a local soundness
guarantee. Additionally, indistinguishability of the commitment keys is a weaker form of the
no-signaling property. Indeed, a no-signaling extractor must produce commitment keys which
are indistinguishable for the various possible extractable sets. Otherwise a distinguisher for
sets 𝑆, 𝑆′ can be used for wining in the no-signaling game even without the extracted value.
Nevertheless, this alone does not satisfy the no-signaling property: some information about the
positions where the crs is programmed to extract might be revealed by (parts of) the extracted
local openings.

We strengthen the indistinguishability property of the distributions of the commitment
keys of SSB commitments to give them a no-signaling flavour. Roughly speaking, we require
that the distributions of the commitment keys are computationally indistinguishable even if the
adversary has access to local openings associated with a set 𝑆′ of committed values. These local openings
trivially reveal information about the set 𝑆′ but we require that they do not leak information
about the values outside of 𝑆′. That is, for any sets 𝑆′ ⊆ 𝑆 of size at most 𝐾, the commitment
keys ck𝑆 , ck𝑆′ are computationally indistinguishable even if we allow the distinguisher access
to local openings of 𝑆′.

Remark (Connection with PIR). Somewhere statistically binding commitments/hashing is
closely related with single server Private Information Retrieval Schemes (PIR) when the SSB
commitment is also extractable. Indeed, we can think of the commitment key for an index
𝑖 of the SSB as a PIR query and the commitment/hash as the PIR answer. Then, one can
decode the PIR query using the trapdoor associated with the commitment key. In our work,
the SSB commitments we use are different from PIRs in three ways: (1) we do not extract the
PIR answers, but we 𝑓 -extract, specifically we extract encodings of messages in a group but
not their discrete logarithms, (2) we directly use SSBs with locality greater than one instead of
making parallel PIR queries to improve concrete efficiency and (3) the size of the commitment
key is proportional to the size of the commited values, while in PIRs the query should be small
compared to the database size. Furthermore, we exploit in a non-black box way the properties
as well as the algebraic structure of the SSB commitments to compose them with other protocols,
such as group based quasi-adaptive non-interactive zero knowledge arguments.

2.1.1 SSB Commitments with Oblivious Trapdoor Generation.

We define a stronger notion for SSB commitment schemes, oblivious trapdoor generation, which
implies the no-signaling property. This notion is easier to work with in our particular construc-
tions.

Intuitively, this notion captures that there exists a different, oblivious key generation algo-
rithm that can generate the commitment key for 𝑆 and a trapdoor for a subset 𝑆′ ⊆ 𝑆 obliviously
of 𝑆\𝑆′ for any subset 𝑆′ of the larger set 𝑆 of binding coordinates. More concretely, the oblivious
key generation algorithm takes as input a commitment key ck𝑆 binding at 𝑆 and the descrip-
tion of a subset 𝑆′ ⊆ 𝑆 and outputs an identically distributed key together with a trapdoor for
extracting values in the small set 𝑆′. We emphasize that this algorithm does not take as input
neither the description of 𝑆 nor the trapdoor associated with it. Intuitively, the key generation
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algorithm is oblivious of 𝑆 \ 𝑆′ (it might even be that 𝑆 \ 𝑆′ = ∅) due to the indistinguishability
of commitment keys associated with different sets, in this case 𝑆 and 𝑆′.

This property implies no-signaling commitments. Indeed, this follows easily since (1) by the
index set hiding property the commitment key itself does not reveal any information about 𝑆\𝑆′
and (2) we can use the oblivious key generation algorithm to create a trapdoor for extracting
the smaller set without skewing the distribution of the commitment key. The latter property means
essentially that we are given an oracle to extract the smaller set (by computing the trapdoor for
an identically distributed key) which is exactly what the no-signaling property captures.

2.1.2 Constructing Oblivious SSB Commitments.

We next describe how to construct efficient SSB commitments with oblivious trapdoor gener-
ator. A natural way to construct oblivious SSB commitment with locality parameter 𝐾 is to
concatenate 𝐾 SSB commitments with locality parameter 1. Consider a set 𝑆 = {𝑠1 , . . . , 𝑠𝑡}
for some 𝑡 ≤ 𝐾. We can construct a commitment key associated with 𝑆 by computing 𝑡 com-
mitment keys/trapdoor pairs (𝑐𝑘1 , 𝜏1), . . . , (𝑐𝑘𝑡 , 𝜏𝑡) for sets {𝑠1}, . . . , {𝑠𝑡}, complementing with
𝐾 − 𝑡 keys for ∅ if necessary. To commit to some 𝒙 ∈ ℳ𝑛 , whereℳ is the message space of the
commitment, one simply computes 𝑐1 = Com𝑐𝑘1(𝒙), . . . , 𝑐𝐾 = Com𝑐𝑘𝐾 (𝒙). Extraction of each 𝑥𝑠𝑖
is done using 𝑐𝑠𝑖 and the trapdoor 𝜏𝑠𝑖 , independently of the others. The oblivious extractor on
input the commitment keys for some unknown 𝑆 and the description of 𝑆′ ⊆ 𝑆 just re-samples
the commitment keys for 𝑆′.6 Since it doesn’t matter if the trapdoors for positions 𝑖 ∉ 𝑆′ are not
known, this trivial extractor can obliviously generate the trapdoor {𝜏𝑖 : 𝑖 ∈ 𝑆′}.

While this generic construction is enough, we can construct more efficient ones if we
consider specific instantiations. More specifically, as we present next, we can have more
efficient instantiations (roughly half commitment size compared to the generic one) in the case
of commitments derived from the Pedersen commitment scheme.

Notation. We first need to introduce some notation. When 𝑆 ⊆ [𝑛] we denote with 𝑆 the set
[𝑛] \ 𝑆. For a vector 𝒙 (resp. matrix G) we denote 𝒙𝑆 = (𝑥𝑖)𝑖∈𝑆 (resp. G𝑆 = (𝒈𝑖)𝑖∈𝑆 where 𝒈𝑖
is the 𝑖-th column of G). Finally, we use implicit notation for groups. That is, given a group
G and a fixed generator 𝒫 we denote with [𝑟] the element 𝑟𝒫. For vectors and matrices 𝒂 ,A
respectively, we denote with [𝒂], [A] the natural embeddings of 𝒂 ,A to G.

For vectors 𝒂 , 𝒃, we denote 𝒂 ◦ 𝒃 = (𝑎𝑖𝑏𝑖)𝑖 the Hadamard product of them, and for matrices
A = (𝑎𝑖, 𝑗)𝑖, 𝑗 , B we denote A ⊗ B = (𝑎𝑖 , 𝑗B)𝑖, 𝑗 their Kronecker product. We will be using the
mixed-product property of kronecker products, which says that (A ⊗ B)(C ⊗D) = (AC) ⊗ (BD)
whenever A,B,C,D have the appropriate dimensions.

Efficient SSB Commitments. We next present an oblivious SSB construction based on the
Pedersen commitment scheme. This construction was implicit in [GHR15b] and later general-
ized in [FLPS20]. Later we will see that it also satisfies the stronger notion of oblivious trapdoor
generation.

Let G be a group of size 𝑝. For message space Z𝑑𝑝 , locality parameter 𝐾 ∈ N and a subset
𝑆 ⊆ [𝑑] of size 𝑡 ≤ 𝐾, the commitment key is defined as follows: G = (G𝑆 |G𝑆)P and

G𝑆 ← Z(𝐾+1)×𝑡
𝑝 , G0 ← Z(𝐾+1)×(𝐾+1−𝑡)

𝑝 , 7 Γ← Z(𝐾+1−𝑡)×(𝑑−𝑡)
𝑝 , G𝑆 = G0Γ.

6Actually, the oblivious key generation needs to know which of the commitments keys 𝑐𝑘1 , . . . , 𝑐𝑘𝐾 are perfectly
binding for 𝑠′ ∈ 𝑆′. Nevertheless, it should be still oblivious of whether the rest of commitment keys are binding or
not. See section 4.2 for more details.

7It is not always the case that this matrix is uniform. The actual property needed is that this matrix satisfies

6



Matrix P ∈ {0, 1}𝑑×𝑑 is a permutation matrix associated to 𝑆 such that P𝒆𝑠𝑖 = 𝒆𝑖 , for 𝑖 ≤ 𝑡 and
𝒆𝑖 the 𝑖-th vector of the canonical basis. A commitment to 𝒙 ∈ Z𝑑𝑝 is computed as [𝒄] = [G]𝒙 =
[G𝑆 |G𝑆]P𝒙 = [G𝑆]𝒙𝑆 + [G𝑆]𝒙𝑆. Note that the columns of G𝑆 are linearly independent from the
columns of G𝑆 with overwhelming probability, since Im(G𝑆) ⊆ Im(G0) and (G𝑆 |G0) is a basis
of Z𝐾+1

𝑝 w.o.p. since this corresponds to a uniform matrix of dimensions 𝐾 + 1 × 𝐾 + 1.
This distribution of commitment keys implies that the parts of the input indexed by 𝑆 go to

the space spanned by G𝑆 of dimension 𝑡, while the rest is mapped to the space spanned by G0
of dimension 𝐾 + 1− 𝑡. Since rank(G𝑆) = 𝑡 with overwhelming probability, all the information
of 𝒙𝑆 ∈ Z𝑡𝑝 can be retrieved from 𝒄. Even more, there exists an efficiently computable trapdoor
T𝑆 ∈ Z(𝐾+1)×𝑡

𝑝 such that T⊤𝑆G𝑆 = I𝑡×𝑡 and T⊤𝑆G𝑆 = 0𝑡×(𝑑−𝑡), and hence

T⊤𝑆 [𝒄] = T⊤𝑆 [G𝒙] = T⊤𝑆 [G𝑆𝒙𝑆 +G𝑆𝒙𝑆] = [𝒙𝑆].
To compute T𝑆, it is enough to solve the linear system T⊤𝑆 (G𝑆 | G0) = (I𝑆 | 0) which admits a
solution since (G𝑆 | G0) is a basis of Z𝐾+1

𝑝 with overwhelming probability.
Note that this shows also that the commitment is statistically binding in 𝑆. The indistin-

guishability of commitment keys can be shown with a tight reduction to the DDH assumption
as in [FLPS20].

Oblivious Trapdoor Generation. One of the main technical contributions of this work is an
oblivious trapdoor generator for this commitment scheme, which in turns implies that it is
no-signaling. Recall that the property requires that there exists an efficient algorithm, called
the oblivious key generation algorithm, that receives as input the description of a set 𝑆′ of
size 𝑡′ ≤ 𝐾 and a commitment key [G] sampled for being binding at some unknown 𝑆 ⊇ 𝑆′.
The algorithm computes a new commitment key [H] with the following guarantees: (1) it is
statistically close to [G] and (2) we also obtain a trapdoor T𝑆′ that allows us to extract local
openings for the small set 𝑆′.

Since we know that columns in 𝑆′ are uniformly distributed, we could attempt to sample a
uniform matrix H𝑆′ ← Z(𝐾+1)×𝑡′

𝑝 and solve the equation T⊤𝑆′H𝑆′ = I𝑡′×𝑡′ for some T𝑆′. However,
since we don’t know the distribution of [G𝑆

′] the only hope seems to be to define [H𝑆
′] = [G𝑆

′]
and try to find some T𝑆′ such that T⊤𝑆′G𝑆

′ = 0𝑡′×(𝑑−𝑡′). Unfortunately, this amounts to finding
elements in the kernel of [G𝑆

′]⊤ which is in general a computationally hard problem [MRV16].
Instead we make the following observation. Regardless of the distribution of the columns

in 𝑆 \ 𝑆′, the 𝑡′ lower rows of G𝑆 can be always written as a random linear combination of the
first 𝐾 + 1 − 𝑡′ rows. That is

G𝑆
′ =

(
A

RA

)
, where A ∈ Z𝐾+1−𝑡′×𝑑−𝑡′

𝑝 and R← Z𝑡′×𝐾+1−𝑡′
𝑝 .

In this case, if we know the matrix R in the field, it is possible to compute elements in the kernel
of G𝑆

′ by setting

T𝑆′ =
(−R⊤C

C

)
, for any C ∈ Z𝑡′×𝑡′𝑝 .

If additionally, we choose some C that satisfies T⊤𝑆′H𝑆′ = I𝑡′×𝑡′ we have computed a trapdoor
for 𝑆′. This yields a way to compute the rest of the columns: discard the lower 𝑡′ rows of G𝑆,

some hardness assumption. Specifically, the index set hiding property reduces to the 𝒢-MDDH assumption (see
Section 2.2.1 for an informal definition) where 𝒢 is the distributions from which we sample G0. When working with
symmetric groups, we instantiate using the DLIN assumption. For the sake of simplicity we consider the uniform
case in the technical overview.
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sample a uniform matrix R as above and complete the last rows with the elements R[A]. Then,
using R, H𝑆′ (which are known in the field) find some C that satisfies the linear equations and
use it to define the trapdoor T′𝑆.

Lets see in more detail why the previous observation holds. Consider the matrix G0 ∈
Z
(𝐾+1)×(𝐾+1−𝑡)
𝑝 and note that the upper part G0 is a uniformly distributed matrix with more rows

than columns; hence RG0, for R ← Z𝑡′×(𝐾+1−𝑡′)
𝑝 , is uniformly distributed. This is also valid

for all non-binding coordinates since G𝑆 = G0Γ and then the lower rows follow distribution
RG𝑆. Next, consider the columns corresponding to the (unknown) binding coordinates 𝑆 \ 𝑆′.
The same argument holds: for some uniform R′G𝑆\𝑆′ is uniform when R′ ← Z𝑡′×(𝐾+1−𝑡′)

𝑝 . It
remains to show that using the same randomness for both column sets, i.e. setting R = R′,
does not alter the distribution of the commitment key. Indeed, with overwhelming probability,
the columns of G0 ∈ Z(𝐾+1−𝑡′)×(𝐾+1−𝑡)

𝑝 and of G𝑆\𝑆′ ∈ Z(𝐾+1−𝑡′)×(𝑡−𝑡′)
𝑝 form a basis of Z𝐾+1−𝑡′

𝑝 ,
which means that the matrix R⊤ can be decomposed into two independent components: a
random element in Im(G⊥𝑆\𝑆′) and another in Im(G⊥0 ). This shows that RG0 = R2(G⊥𝑆\𝑆′)⊤G0

and RG𝑆\𝑆′ = R1(G⊥0 )⊤G𝑆\𝑆′ are independent and then
(

G𝑆\𝑆′ G0Γ
RG𝑆\𝑆′ RG0Γ

)
is correctly distributed.

2.2 Pairing-based Quasi-Arguments

Paneth and Rothblum [PR17] and then Kalai et al. [KPY19] used a weakened version of an
argument of knowledge called quasi-argument, as an intermediate step for obtaining a delega-
tion scheme. Quasi arguments are defined for languages that can be expressed as a set of local
constraints. Roughly speaking, this means that a witness 𝒘 for membership of a statement 𝑥 in
a language can be decomposed in parts, namely 𝒘 = (𝑤1 , . . . , 𝑤𝑛), and for each subset 𝑆 ⊆ [𝑛],
the partial witness 𝒘𝑆 satisfies some local relations, that is, a predicate ℛ(𝑥,𝒘𝑆) holds. For
example, in the case of a CNF formula of 𝑛 variables, the witness is an accepting assignment
of the formula and a local constraint with respect to some set 𝑆 captures that every clause that
only has variables 𝑤𝑖 , 𝑤 𝑗 , 𝑤𝑘 for 𝑖 , 𝑗 , 𝑘 ∈ 𝑆 is satisfied. Note that it can be the case that even
unsatisfiable formulas can satisfy all local constraints for families of sets of small size (yet, no
global satisfying assignment exists).

Unlike an argument of knowledge, a quasi-argument has only local extraction, meaning
that only a small part of the witness of size at most 𝐾, the locality parameter, is extracted. This
is formalized by means of an extractor which on input a set 𝑆 ⊆ [𝑛] of size at most 𝐾, where
𝑛 is the size of the witness, programs a crs so that it can later extract positions of the witness
defined by 𝑆. Central to quasi-arguments is the notion of no-signaling local extraction which
is aimed to capture a strong local soundness guarantee.

Local soundness requires that the extracted local witness is consistent with the relation and
doesn’t lead to a local contradiction, that is, it satisfies the local constraints associated to some
set 𝑆. The no-signaling requirement is defined for any two sets 𝑆, 𝑆′ where 𝑆′ ⊆ 𝑆 and of size
at most 𝐾. It states that the result of programming extraction for 𝑆 and then output only the
extracted value for 𝑆′, should be indistinguishable from the result of programming extraction
for 𝑆′ and output the extracted value for 𝑆′. Intuitively, this strengthens locality by requiring
that the small parts of the local witness are extracted independently from rest.

We next outline the construction of pairing-based quasi-arguements for two specific lan-
guages of interest, satisfiability of linear and quadratic relations on committed values. For
ease of presentation we do so for symmetric bilinear groups but we streess out that we also
translate these to the more efficient setting of asymetric bilinear groups. We will later rely
on these quasi arguments to construct a delegation scheme for polynomial sized arithmetic
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circuits but we emphasize that these constructions are of independent interest; they capture
a form of “succinct” aggregation of relations and -importantly- they do so under standard
falsifiable assumptions. While full knowledge soundness is not achieved, the weakened notion
of no-signaling extraction might be enough for some applicaitons. Thus, we choose to present
them in full generality.

2.2.1 Preliminaries

In this section we introduce some necessary preliminaries for the construction of the quasi
arguments for linear and quadratic relations. First, we introduce the Matrix and Kernel Diffie-
Hellman [EHK+13; MRV16] assumption families. Then we introduce Quasi-Adaptive NIZK
[JR13] and sketch the QA-NIZK construction for membership in linear spaces of [KW15] and
finally the knowledge transfer arguments introduced in [GR19] which allow to construct QA-
NIZK under falsifiable assumptions in some more restricted setting.

Cryptographic assumptions. We introduce informally the Matrix and Kernel Diffie-Hellman
assumptions [EHK+13; MRV16]. These are natural generalizations of assumptions used
in group based cryptography (either with pairings or not). Both assumption families are
parametrized by distributions over matrices in Z𝑝 , that is, we consider distribution ensembles
𝒟ℓ ,𝑘 that output matrices in Zℓ×𝑘𝑝 . When ℓ = 𝑘 + 1 we simply write𝒟𝑘 .

The𝒟ℓ ,𝑘-Matrix Diffie-Hellman Assumption (𝒟ℓ ,𝑘-MDDH) states that elements in the image
of a matrix A sampled from𝒟ℓ ,𝑘 are computationally indistinguishable from uniformly random
elements.

Assumption. (Informal) 𝒟ℓ ,𝑘-MDDH holds in G if the distributions {[A], [A𝒘]} and {[A], [𝒛]}
are computationally indisthinguishable, where 𝒘 , 𝒛 are random elements of Z𝑘𝑝 and Zℓ𝑝 respec-
tively, and A←𝒟ℓ ,𝑘 .

Consider the uniform distribution𝒰2,1 that outputs random elements in Z2×1
𝑝 . It is easy to

assert that the𝒰2,1-MDDH assumption is equivalent to the Decisional Diffie-Hellman assump-
tion in G.8 In the setting of symmetric bilinear groups -where the DDH assumption does not
hold- we consider a slightly stronger assumption, namely the Decisional Linear assumption
(DLIN) [BBS04]. This assumption can be stated as the ℒ3,2-MDDH assumption, where ℒ3,2 is
the distribution

ℒ3,2 =

©­«
𝑎1 0
0 𝑎2
1 1

ª®¬
����� 𝑎1 , 𝑎2 ← Z𝑝


The 𝒟ℓ ,𝑘-Kernel Diffie-Hellman Assumption is a natural computational analogue of the 𝒟ℓ ,𝑘-
MDDH for bilinear groups. The assumption states that it is infeasible to find non-trivial elements
of the co-kernel of A←𝒟ℓ ,𝑘 given [A].
Assumption. (Informal) 𝒟ℓ ,𝑘-MDDH holds in G if it is computationally hard to find a non-zero
element [𝒛] ∈ Gℓ such that [𝒛⊤A]𝑇 = [0]𝑇 given [A], where A←𝒟ℓ ,𝑘 .

Note that the assumption is efficiently falsifiable since we can check the winning condition
by employing the pairing operation, that is check if 𝑒([𝒛]⊤ , [A]) = [0]𝑇 . This assumption family
abstracts and generalizes various computational assumptions in bilinear group, such as the
Simultaneous Double Pairing Assumption [AFG+10].

8In fact, the assumption is weaker since we implicitly assume a uniformly distributed generator ofG, which need
not be the case for DDH. To show that it is weaker, it is enough to note that one can randomize a DDH instance.
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It is well known that 𝒟ℓ ,𝑘-MDDH implies 𝒟ℓ ,𝑘-Kernel Diffie-Hellman assumption. Intu-
itively, this holds since if we can sample an element 𝒓 in the co-kernel of A, it always holds that
𝒓⊤A𝒘 = 0 while for a uniformly distributed vector 𝒛, with overwhelming probability 𝒓⊤𝒛 ≠ 0,
which translates to an efficient distinguisher for the two distributions defined by 𝒟ℓ ,𝑘-MDDH
assumption.

Quasi-Adaptive NIZK for membership in linear spaces. Quasi-Adaptive NIZK (QA-NIZK)9
arguments are NIZK arguments where the CRS is allowed to depend on the specific language
for which proofs have to be generated [JR13]. We are interested in the specific language of
membership in linear spaces. Specifically, given a matrix M and a description of a group gk,
we consider the language of vectors of group elements that lie in the image of M, that is,

ℒgk,M = {[𝒙] | ∃𝒘 s.t. 𝒙 = M𝒘}
In the quasi-adaptive case, we allow the common reference string to depend on gk,M but an
adversary can choose the statement [𝒙] adaptively. There are very efficient constructions in this
setting. We briefly describe the construction of Kiltz and Wee [KW15]. First we consider the
designated verifier case. Let M be an ℓ × 𝑛 matrix. The construction is essentially a hash proof
system [CS02]. The crs contains the projection [B] = [M⊤K] for a random secret key K ∈ Zℓ×𝑘𝑝 .
To prove a statement [𝒙] = [M]𝒘, the prover sends [𝝅] = 𝒘⊤[B] and the verifier asserts that
[𝝅] = [𝒙]⊤K. Now it is easy to see that this simple protocol is complete. Indeed

𝝅 = 𝒘⊤[B] = 𝒘⊤M⊤K = 𝒙⊤K

For soundness, roughly speaking, the value 𝒙⊤K is random for 𝒙 that does not belong to the
image of M conditioned on B. Thus, a cheating (even unbounded) prover has only negligible
probability of producing a verifying proof for elements not in the image of M.

To make the scheme publicly verifiable, groups equipped with a bilinear map are employed.
To enable the verifier to perform the test without knowing the secret K, we also add to the
crs the value [C] = [KA], where A is a matrix that satisfies some hardness condition. Now,
the verifier can test 𝑒([𝝅], [A]) = 𝑒([𝒙⊤], [C]). Note that this corresponds to multiplying the
verification equation of the designated verifier case from the right with A. Now, if

(1) the designated verifier relation does not hold, namely, 𝝅 ≠ 𝒙⊤K and

(2) the proof verifies, namely 𝝅A = 𝒙⊤KA,

then [𝝅] − [𝒙⊤]K is a non-trivial element in the co-kernel of [A]. Thus, the publicly verifiable
scheme is sound if we additionally assume that A is sampled by a distributions 𝒟 such that
the𝒟-Kernel Diffie-Hellman assumption holds.

Note that if M spans the entire linear space, then the language is trivial. In this case, only
knowledge soundness is a meaningful property. However, we do not whether knowledge
soundness of this construction can be proven under falsifiable assumptions or not.

Knowledge Transfer Arguments. To achieve succinct arguments, in principle, one needs to
use shrinking commitments. When trying to use such commitments with QA-NIZK such as
[KW15], the aforementioned “triviality” problem arises and it seems like one has to resort
to non-falsifiable assumptions or the generic group model. Motivated by the problem of
constructing delegation schemes under falsifiable assumptions and in order to overcome the
above issue, [GR19] relax the knowledge soundness property.

9In this work we do not need the zero knowledge property so we omit it from the discussion.
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When considering delegation using the natural approach of (deterministically) committing
to the wires of the circuit, one can observe that full knowledge soundness seems to be an
unnecessarily strong requirement. Indeed, given the input 𝒙 of the circuit, one can compute
(or verify) these commitments efficiently by evaluating the circuit. This means intuitively, that
we already know how a “correct” opening of the commitments looks like in the soundness
security reduction. [GR19] exploits this fact and manages to relax the knowledge soundness
requirement by considering statements of the form “if commitment [𝒄] opens to 𝒘, then
commitment [𝒅] opens to 𝑓 (𝒘)” for publicly known function 𝑓 . As we shall see later, they
show that this notion of soundness is enough to construct delegation for low-depth circuits.
They also construct two knowledge transfer arguments for linear and quadratic relations under
falsifiable assumptions. More concretely, they consider statements of the form

• “if [𝒄] opens to M𝒘, then [𝒅] opens to N𝒘 for some publicly known M,N, and

• “if [𝒄1] opens to 𝒘1 and [𝒄2] opens to 𝒘2, then [𝒅] opens to 𝒘1 ◦𝒘2 where ◦ denotes the
pairwise product of vectors.

In the soundness definition, the adversary is required to output the valid opening along with
the statement proof-pair. We emphasize that this is only part of the soundness definition and
in the protocol execution the prover does not have to output the valid opening. Consider for
example the first case for linear relations. An adversary wins if it manages to output a statement
[𝒄], [𝒅]with an accepting proof and a 𝒘 such that [𝒄] = [M]𝒘 but [𝒅] ≠ [N]𝒘. Such statements
essentially give the guarantee that some a priori knowledge about a commitment is “correctly”
transferred to another commitment.

For the former construction, namely linear relations, they use the [KW15] construction
where they define M as a two block matrix where the upper part corresponds to [𝒄] and
the lower to [𝒅]. Now, using [KW15], the prover simply needs to convince the verifier that[
𝒄
𝒅

]
=

[
M
N

]
𝒘. They show that this construction is knowledge transfer sound if the upper

matrix M is sampled from a distribution𝒟 for which the𝒟-MDDH assumption holds.
For proving the quadratic relations, they do a different analysis of standard techniques

used for the construction of pairing-based succinct arguments that exploit the properties of the
Lagrange basis.

They also modify these constructions to be compatible with the more efficient setting of
asymmetric bilinear groups, under the natural modifications of the required assumption for
asymmetric groups.

2.2.2 Oblivious Trapdoor Generation for Quasi-Arguments

Similar to the case of no-signaling SSB commitments we define a stornger and easier to work
with (in our context) notion that implies the no-signaling property of quasi arguments, oblivious
trapdoor generation.

We require that there exists an oblivious key generation algorithm that takes as input (1) a
crs𝑆 that allows extraction for a set 𝑆, and (2) the description of a subset 𝑆′ ⊆ 𝑆, and generates
a crs𝑆′ for some set 𝑆′ and a trapdoor10 for extracting local witnesses associated to the set 𝑆′
obliviously of 𝑆 \ 𝑆′. We emphasize that the oblivious trapdoor generation algorithm knows
neither the description of 𝑆 nor any information about the trapdoor associated with it. We

10We modify the quasi-argument defintion of [KPY19] to admit a fixed extractor algorithm that takes as input the
statement-proof pair of the adversary, and additionally some secret state produced during the crs generation, -the
trapdoor- and extracts the local witness.
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require that the new crs is statistically close to the crs𝑆 given as input. The fact that this property
implies no-signaling commitments is identical to the case of SSB commitments.

2.2.3 Quasi-Arguments of Membership in a Linear Space

We define a quasi-argument of knowledge of some vector [𝒙] ∈ Gℓ belonging to the image of a
matrix [U] ∈ Gℓ×𝑛 , where 𝒙 is committed using an SSB commitment. Consider a commitment
[𝒄] that is statistically binding on the set 𝑆. We show that there exists a local and no-signaling
extractor which, given some 𝑆 ⊆ [𝑛] of size 𝑡 ≤ 𝐾, extracts [𝒙𝑆] ∈ Im([U𝑆]), where 𝒙𝑆 ∈ Z𝑡𝑝 is the
vector whose entries are 𝑥𝑖 and U𝑆 ∈ Z𝑡×𝑛𝑝 is the matrix whose rows are the rows of U indexed
by 𝑖, where 𝑖 ranges over 𝑆 in some fixed order. A local constraint [𝒙𝑆] associated with the set
𝑆 can be interpreted as satisfying two properties:

(1) [𝒙𝑆] is consistent with the commitment [𝒄], namely the (uniqe) 𝑆-opening of [𝒄] is 𝑥𝑆, and

(2) [𝒙𝑆] is in the image of [U𝑆].
We use the Kiltz and Wee argument of membership in linear spaces [KW15] to construct a
quasi argument for linear relations. Details follow.

The argument. Our construction is Kiltz and Wee linear membership argument [KW15]
for the matrix [GU], where G is an SSB commitment key with locality parameter 𝐾. For
completeness, we describe the protocol for this specific matrix. We note that we present the
scheme with proof size 𝑘 + 1 of [KW15], where 𝑘 is a parameter of the scheme defined by the
underlying assumption, but our construction is also sound for the more efficient instantiation
of size 𝑘. In any case, we emphasize that the parameter is a small constant (𝑘 = 2).

Let’s recall the construction for the matrix M = GU. The crs contains [B] = [U⊤G⊤K] and
[C] = [KA] for some random hash key K and A drawn from some distribution satisfying a
kernel assumption. A proof is computed as [𝝅] = 𝒘⊤[B], and verification is done by checking
if 𝑒([𝝅], [A]) = 𝑒([𝒄⊤], [C]).

Local and No-Signaling extraction. Our strategy to prove local soundness is to show that,
apart from extracting [𝒙𝑆] from [𝒄], we are also able to produce a verifying proof [𝝅†] that
[𝒙𝑆] ∈ Im(U𝑆). More concretely, on input a crs crs𝑆 = ([A†], [B†], [C†]) for membership in the
linear space of U𝑆, we can construct another crs that is statistically close to the quasi argument
crs for U and, more importantly, we can extract a local opening [𝒙𝑆] and a proof [𝝅†] satisfying
the verification equation for crs𝑆.

We embed the public parameters [A†], [B†], [C†] of the local linear space argument for U𝑆 in
the quasi argument parameters. Although the secret hash key K† of the local linear argument
is statistically hidden, we can still pick a random hash key for all the coordinates by picking
another secret key and implicitly define the full secret key as some composition of the two keys.
Concretely, given the trapdoor T𝑆 for locally opening SSB commitments we implicitly define
K = T𝑆K† +R, where R is the additional key, so that the proofs for 𝒄 = GP

( 𝒙𝑆
𝒙𝑆

)
= G𝑆𝒙𝑆 +G𝑆𝒙𝑆

are of the form 𝝅 = 𝒄⊤K = (G𝑆𝒙𝑆 +G𝑆𝒙𝑆)⊤(T𝑆K† + R) = 𝒙⊤𝑆 K† + 𝒄⊤R. In this way a proof for
the local argument can be retrieved as [𝝅†] = [𝝅] − [𝒄⊤]R. This equivalent way of sampling K
allows to compute the crs of the larger linear argument using only [A†], [B†], [C†] and T𝑆 ,R.
Indeed, we can define [A] = [A†], [B] = [B†] + [U⊤G⊤]R and [C] = T𝑆[C†] + R[A†].

We also show that the crs is indistinguishable for different sets and that there is an oblivious
trapdoor generation strategy, and hence we also have a no-signaling extraction strategy. The
indistinguishability of the crs follows directly from the indistinguishability of SSB commitment
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keys; it is enough to note that only the commitment key depends on 𝑆 and all other values can
be efficiently computed given only the commitment key11. For oblivious trapdoor generation,
we use the fact that we can sample an identically distributed commitment key along with a
trapdoor -this follows by the oblivious key generation of the commitment scheme- and then
we argue in the same way as before: given the commitment key we can sample the rest of crs
honestly.

Extension to Knowledge Transfer, Bilateral Spaces and Sum Arguments. We also construct
variations of the above protocol, specifically a knowledge transfer version based on [GR19] and
two construction suitable for asymmetric bilinear groups.

First we consider the knowledge transfer construction. We first describe the local constraints.
Consider two matrices [M], [N], and two commitment keys [G], [H] statistically binding at 𝑆.
The statement consists of two commitments [𝒄], [𝒅]. For the local extraction guarantee w.r.t.
set 𝑆 we require that, given an accepting proof 𝜋 and an opening 𝒘, we can extract values [𝒙𝑆],
[𝒚𝑆] such that

(1) [𝒙𝑆], [𝒚𝑆] are the unique 𝑆-openings of [𝒄], [𝒅]w.r.t. commitment keys G,H respectively,
and

(2) if [𝒙𝑆] = [M𝑆]𝒘, then [𝒚𝑆] = [N𝑆]𝒘.

The construction and the analysis are identical to the previous case. We simply use the [KW15]
construction for the matrix with upper part GM and lower part HN. The only difference in
the analysis is on the local extraction case. We argue that we can extract an accepting proof for
a crs for the language of linear knowledge transfer for the matrices M𝑆 ,N𝑆 and, thus, we also
require that theℳ⊤𝑆 -MDDH assumption holds for every 𝑆, whereℳ𝑆 is the distribution from
which we sample M𝑆.

Finally, we also consider constructions in asymmetric bilinear groups. A variant of the
linear subspace QA-NIZK argument given in [GHR15b], and extended to knowledge transfer
arguments in [GR19], considers the statement as well as the matrix split between the two
groups. We call this argument a linear argument for bilateral spaces. We also consider a
particular type of argument for bilateral linear spaces defined in [GHR15b] and called “sum
in subspace argument”. In this case, the statement is [𝒙]1 , [𝒚]2 and soundness captures that
𝒙 + 𝒚 ∈ Im(M + N) given [M]1 , [N]2 in the two different source groups. We construct quasi
arguments for all these variants with knowledge transfer soundness. Luckily, the constructions
as well as the security proofs are minor modifications of the original argument.

2.2.4 Quasi-Argument of Hadamard Products

The next quasi arguement construction shows that some vector 𝒄 is the Hadamard product
of two vectors 𝒂 , 𝒃, namely 𝒄 = 𝒂 ◦ 𝒃. We can naturally define the local constraints here as
𝒄𝑆 = 𝒂𝑆 ◦ 𝒃𝑆 for every set 𝑆 ⊆ [𝑛], where 𝑛 is the dimension of the vectors. As in the linear
case, we care about committed values, that is, the vectors 𝒂 , 𝒃, 𝒄 are committed and we claim
that the openings satisfy the claimed relation.

Our starting point is the “bit-string” argument of [GHR15b]. We observe that it is implicitly
a quasi-argument with locality parameter 𝐾 = 1 for the set of equations 𝑏𝑖(𝑏𝑖 − 1) = 0 for
all 𝑖 ∈ [𝑛]. Next we describe this construction and after that we show it indeed satisfies the

11Here, we assume the distribution 𝒰 that outputs the matrix [U] is witness samplable, meaning that during
sampling, we can also sample the discrete logarithms of [U]which is usually the case. In this work, we only consider
such distributions.
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no-signaling local soundness property. It will be convenient to directly work with equations of
the form 𝑥𝑖𝑦𝑖 = 𝑧𝑖 instead of the bit-string argument equations.

The common reference string in [GHR15b] contains what we interpret as three SSB com-
mitment keys [G], [H], [F] with locality parameter 𝐾 = 1. It additionally includes the product
[G ⊗ H]. The prover gives three commitments [𝒂], [𝒃], [𝒄] w.r.t. G,H, F and claims that the
openings satisfy the Hadamard relation. We first note that it is easy to construct an arguement
for a related language. Consider the elements G ⊗ H as a commitment key. The prover can
give a commitment to the Kronecker product 𝒛 = 𝒂 ⊗ 𝒃 by computing [𝒕] = [G ⊗ H]𝒛. The
verifier can then use the pairing to verify the Kronecker product relation, namely it tests that
𝑒([𝒄], [𝒅]) = 𝑒([𝒕], [1]) where [𝒄] = [G]𝒂 , [𝒅] = [H]𝒃 are commitment to some vectors and are
part of the statement. Some simple calculations show that

𝒄𝒅 = 𝒄 ⊗ 𝒅 = G𝒂 ⊗ H𝒃 = (G ⊗ H)(𝒂 ⊗ 𝒃) = 𝒕

The Kronecker product commitment 𝒕 is included as part of the proof. Now, from this simple
Kronecker product argument, it is easy to prove the Hadamard product. It is enough to note
that the Hadamard product is a linear funciton of the Kronecker product, thus, the prover and
verifier can use the protocol for linear relations of the previous section.

Local and No-Signaling Extraction. The crucial observation to prove local extraction is that
if G,H are extractable in one position, say 𝑖 , 𝑗 respectively, then G⊗H is extractable at position
𝑛(𝑖−1)+ 𝑗. More concretely, lettting TG, TH be the trapdoors for G,H respectively, the trapdoor
for the commitment key G ⊗ H is simply TG ⊗ TH. Some straightforward calculations reveal
that applying this trapdoor to a commitment with the key G⊗H indeed yields the 𝑛(𝑖−1)+ 𝑗-th
coordinate of the committed value, which is uniquely defined. In fact, we generalize this for
larger locality parameters and we also show that, for some distributions of commitment keys,
the no-signaling/oblivious trapdoor generation properties hold if they hold for G, H.

Consider the simple case of 𝐾 = 1 and let all three commitments G,H, F be extractable at the
same position 𝑖. We show that we can extract local openings [𝑥𝑖] = TG[𝒂], [𝑦𝑖] = TH[𝒃], [𝑧𝑖] =
TF[𝒄] as well as [𝑤𝑖] = TG⊗H[𝒕] such that 𝑧𝑖 = 𝑥𝑖𝑦𝑖 . Assume for the sake of a contradiction that
𝑧𝑖 ≠ 𝑧′𝑖 = 𝑎𝑖𝑏𝑖 . Since the columns 𝒈𝑖 , 𝒉𝑖 , 𝒇𝑖 are linearly independent from the other columns
in G,H, F, respectively, if the commitments [𝒄], [𝒅], [𝒕] satisfies [𝒄] ⊗ [𝒅] = 𝑒([𝒕], [1]), then the
unique openings at coordinate 𝑖 satisfy 𝑧𝑖 = 𝑥𝑖𝑦𝑖 . Now, if 𝑧𝑖 ≠ 𝑧′𝑖 , the linear relation does not
hold and we can break the underlying QA-NIZK for membership in linear spaces.

For oblivious trapdoor generation, it is enough to note that if the commitment key satisfies
this property, so does the above constructions. Indeed, note that using the commitment key,
it is enough to produce a crs for membership in subspace language to create the full crs of the
protocol.

Extension to Knowledge Transfer Arguments. We extend the quasi-argument local sound-
ness to offer a “knowledge transfer” guarantee. In this case, we essentially commit to commit-
ments. That is, we use an SSB commitment key to commit to multiple commitments and the
local openings are commitments themselves. Namely we extract values [𝑥𝑖], [𝑦𝑖], [𝑧𝑖] which
are interpreted as commitments w.r.t. some (not necessarily SSB) commitments keys U,V,W.
We require that no PPT adversary can produce openings 𝒂 , 𝒃 such that 𝑥𝑖 = U𝑖𝒂 , 𝑦𝑖 = V𝑖𝒃 but
𝑧𝑖 ≠ W𝑖𝒂 ◦ 𝒃. The constraint language for a set 𝑆 is parametrized by SSB commitments G,H, F
binding at 𝑆 as well as some matrices U,V,W. We require that given an accepting proof 𝜋 for
a statement [𝒄], [𝒅], [ 𝒇 ] and openings 𝒂 , 𝒃, we can extract values [𝒙𝑆], [𝒚𝑆], [𝒛𝑆] such that

(1) [𝒙𝑆], [𝒚𝑆], [𝒛𝑆] are the unique 𝑆-openings of [𝒄], [𝒅], [ 𝒇 ] w.r.t. commitment keys G,H, F
respectively, and
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(2) if [𝒙𝑆] = [U𝑆]𝒂 and [𝒚𝑆] = [V𝑆]𝒃, then [𝒛𝑆] = [W𝑆]𝒂 ◦ 𝒃.

One might wonder at this point how we commit to commitments which naturally requires
multiplication of group elements which is assumed computationally hard. To achieve that,
we simply include in the crs the products [GU], [HV], [FW]. Now, we can commit to the 𝑛
commitments U𝑖𝒂 as [GU]𝒂 and similarly for the other keys.

The knowledge transfer version is essentially the same as in the previous case. The only
difference is that we also need to include some additional elements in the crs to allow to the
prover to compute the Kronecker product, namely the values [Q] = [(G⊗H)(U⊗V)]. As in the
previous case, we can then exploit the linear relation between the Hadamard product and the
Kronecker product. From a correct commitment [Q](𝒂 ⊗ 𝒃), we can use the linear knowledge
transfer to get a commitment to the Hadamard products w.r.t. the third commitment key,
namely [FW](𝒂 ◦ b). To show this, we first show that the 𝒢 ⊗ ℋ -MDDH assumption holds if
𝒢-MDDH andℋ -MDDH hold, where 𝒢 ,ℋ are the distributions of G,H respectively.

We are also able to extend these techniques to work in asymmetric bilinear groups as well.
The construction is somewhat technical, but the core idea is to construct SSB commitments
suitable for asymmetric groups, where we “split” the commitments between the two groups,
and use the bilateral variants of the linear quasi-arguments discussed in the previous sections.

2.3 From our Quasi-Arguments to Delegation.

Using the ideas of [PR17; KPY19], we can derive delegation of computation from quasi argu-
ments for languages encoding the computation. The local constraints capture that each step
of the computation was done correctly. First, we present the high level idea for the delegation
construction from quasi-arguments. We first show how to delegate low-space TMs/low-width
circuits and then we show how to overcome the dependence on space/width.

2.3.1 Delegating bounded space TM/bounded width circuits

We first recall the high-level ideas to construct a delegation scheme from quasi arguments of
[PR17; KPY19] in the simpler case of bounded space computation. Consider some polynomial
time sequential computation which on input 𝑥 outputs 𝑦, for example a Turing Machine or an
arithmetic circuit. The computation goes through a sequence of states st0 , st1 , . . . , st𝑑 such
that st0 is consistent with the input, state st𝑑 contains the output 𝑦, and there’s a functional
relation between states st𝑖 , st𝑖+1 where st𝑖+1 = 𝑓 (st𝑖) and 𝑓 is determined by the description
of the computation. We first consider the case of bound space computation and discuss later
how to remove this constraint. Consider a quasi arguement of locality 𝐾 = 2|st| where local
constraints require that st𝑖 , st𝑖+1 are consistent w.r.t. 𝑓 . The goal is to show that an adversary
that makes the quasi-argument verifier accept must (w.o.p) sample 𝑥, 𝑦 such that 𝑦 is the result
of the computation on input 𝑥.

We can first “program” the local extractor extractor to extract st0 , st1, i.e. use locality
parameter 𝐾 = 2|st|, where |st| is a bound on the size of the states (i.e. space of the TM
or width of the circuit). Local soundness asserts that state st0 is consistent with 𝑥. Local
soundness also implies that st1 is consistent with st0 and hence with 𝑥 (note that the statement
st1 = 𝑓 (st0) depends only on local variables). Now, to show that st2 is also consistent, we jump
to another game where first the extractor computes only st1, and in the next game the extractor
computes st1 , st2. The crucial observation is that st1 should be still consistent with 𝑥 in both
games. Otherwise, we can distinguish between the common output of extractors for st0 , st1
and st1 or between st1 and st1 , st2, which contradicts the no-signaling property. Importantly,
we can efficiently compute the “correct” state st1 since the computation is deterministic, and
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thus the no-signaling distinguisher discribed is indeed efficient. Similarly, consistency of st1
and local soundness imply that st2 is also consistent. Now, we can inductively continue until
we reach the last state, st𝑑, which corresponds to the output of the computatiaon.

Small width circuit delegation from DLIN. Let 𝐶 be an arithmetic circuit with width 𝑤 and
depth 𝑑. We consider the input to correspond to level 0. Without loss of generality, assume
that the circuit has 𝑤 input and 𝑤 output wires. In this section we consider the width 𝑤 to be
small, or alternatively, efficiency will depend on 𝑤.

We follow the circuit arithmetization of [GR19]. The multiplication gates are partitioned in
𝑑 levels. Each level groups the gates at the same distance from the inputs, without counting
linear gates. In this way, the inputs of level 𝑖 + 1 are linear combinations of outputs of the 𝑖
previous levels. We can then express this as constraints describing the computation as

𝒂𝑖 ◦ 𝒃𝑖 = 𝒄𝑖 for 𝑖 = 1 to 𝑑, (1)(
𝒂𝑖+1
𝒃𝑖+1

)
=

∑
0≤ 𝑗≤𝑖

(
D𝑖, 𝑗

E𝑖, 𝑗

)
𝒄 𝑗 =

(
D𝑖 0
E𝑖 0

)
𝒄 for 𝑖 = 0 to 𝑑 − 1, (2)

𝒄0 = 𝒙 ∈ Z𝑤𝑝 and 𝒄𝑑 = 𝒚 ∈ Z𝑤𝑝 . (3)

Vectors 𝒂𝑖 , 𝒃𝑖 , 𝒄𝑖 denote respectively the left, right and output wires of multiplication gates in
level 𝑖. Matrices D𝑖 , 𝑗 , E𝑖 , 𝑗 can be naturally derived from the circuit’s linear gates. Equation (1)
states the relation between output wires and the input wires of a level of multiplication gates.

Now consider a symmetric bilinear group described by gk and consider three SSB commit-
ments G,H, F with locality 𝐾 = |𝑤 | for committing to 𝑤𝑑-dimensional vectors. We publish in
the crs the commitment keys and we we also compute two quasi argument crs:

(1) for membership in linear space crs for the matrix [M1] =


F
GD
HE

 . Here, D, E are the

matrices for the linear relations as a whole (note per level). That is, for left and output
wires it should hold 𝒂 = D𝒄, and similarly for right wires.

(2) for hadamard relation for G,H, F. Note that, essentially, this corresponds to yet another

quasi argument for membership in linear spaces for [M2] =
[(G ⊗ H)

F∆

]
where ∆ captures

the linear relation between the Kronecker and Hadamard product, that is (𝒂◦𝒃) = ∆(𝒂⊗𝒃).
The prover gives the commitments to the left, right, output wires, namely [𝑳] = [G]𝒂 , [𝑹] =
[H]𝒃, [𝑶] = [F]𝒄. Note that these commitments are of size 𝒪(poly(𝜅)𝑤) but independent of 𝑑.
Next, it proves that [O], [L], [R]

• lie in the image of [M1] using the witness 𝒄.

• satisfy the Hadamard relations. To do so, it computes a commitment [𝒁] = [(G⊗H)](𝒂⊗𝒃)
and shows using the linear argument that the vector

[(
𝒁
𝑶

)]
lies in the image of M2 using

the witness 𝒂 ⊗ 𝒃.

The verifier checks that (1) the linear proofs verify and (2) that 𝑒([𝑳], [𝑹]) = 𝑒([𝒁], [1]). It also
does some additional input/output consistency check which we omit for now and describe
next.
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Now, let’s see the core of the extraction argument. The inductive claim goes as follows:
If we set [F] extractable for the 𝑖-th level, namely we the set 𝑆𝑖 = {𝑖𝑤 + 1, . . . , (𝑖 + 1)𝑤}, then
-conditioned on an accepting proof- extracting the level 𝑖-th level wires corresponds to the
correct values [𝒄𝑖] w.r.t. the input 𝒄0. We will handle the base case later when we discuss
input/output consistency. For the inductive step, assume the statement is true for 𝑖. We show
that it is true for 𝑖 + 1. We proceed as follows:

(1) We first set G,H extractable at set 𝑆𝑖+1 corresponding to the 𝑖 + 1-th level in addition to
the F extractable at 𝑆𝑖 . By the no-signaling guarantees the value [𝒄𝑖] extracted by [𝑶] is
still correct.

(2) By the local soundness of the linear quasi argument, the extracted values [𝒄𝑖], [𝒂𝑖+1], [𝒃𝑖+1]
must lie in the image of the submatrix of M1 corresponding to these values. This matrix
contains the blocks I,D𝑖+1 , E𝑖+1. Hence the values extracted correspond to the correct
values [𝒂𝑖+1], [𝒃𝑖+1]w.r.t the input 𝒄0.

(3) We only set G,H extractable at set 𝑆𝑖+1 and leave F extractable at the empty set. By the
no-signaling guarantees the extracted wires for left and right values [𝒂𝑖+1], [b𝑖+1] are still
correct.

(4) In addition to G,H extractable at set 𝑆𝑖+1, we set F extractable at 𝑆𝑖+1. Now we argue
about local constraint of the Hadamard product. We proceed in two steps:

– By the pairing test 𝑒([𝑳], [𝑹]) = 𝑒([𝒁], [1]) and the assumption that [𝒂𝑖+1], [𝒃𝑖+1] are
correct we get that

TG𝑳 ⊗ TH𝑹 = (TG ⊗ TH)(𝑳 ⊗ 𝑹) = (TG ⊗ TH)𝒁 = TG⊗H𝒁

which implies that 𝒛𝑖+1 = 𝒂𝑖+1 ⊗ 𝒃𝑖+1. This means that the extracted value of the
Kronecker commitment corresponds to the Kronecker product 𝒂𝑖+1 ⊗ 𝒃𝑖+1 of left and
right wires in level 𝑖 + 1.

– Working similarly to the step (2), we get that the extracted values 𝒁𝑖+1 ,𝑶𝑖+1 live
in the image of M2. It should then be the case that we extract [𝒄𝑖+1] which is the
Hadamard product 𝒂𝑖+1 ◦ 𝒃𝑖+1. This correspond to the correct assignment of output
wires in level 𝑖 + 1.

(5) Finally, we only set F extractable at set 𝑆𝑖+1 and leave G,H extractable at the empty
set. By the no-signaling guarantees the extracted value [𝒄𝑖+1] is still correct.

We note that proving this is technically more involved. We need to show that the quasi
arguments can be composed well, and they still satisfy the no-signaling properties despite the
fact that they share commitment keys. Equivalently one could define and analyze a unified
quasi argument to directly work with the circuit “transition funciton”. In any case, we omit
these details from these technical overview.

Input/Output Consistency. We modify the commitment F by making it trivially extractable
at the input/output levels 0, 𝑑 always, regardless of the extraction set. That is, we “use”
the identity matrix I𝑤 for committing to the output wires at the first and last level. This
corresponds to augmenting F with some identity rows. Thus, the verifier can always trivially
check the consistency with input/output. Note that the final commitment size grows by 2|𝑤 |,
the size of input and output, but these values are part of the statement and don’t need to be
included in the proof. We stress out the “trivial” identity commitment satisfies the properties
needed to be used in our quasi-arguments.
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Assumptions. We next discuss the assumptions we use. For the specific matrices used in the
reduction, one can prove soundness of the QA-NIZK argument under falsifiable assumptions
since the 𝑆-submatrices M1 ,M2 produce a non-trivial subspace. This means that we rely on
the kernel assumption we use for instantiating the QA-NIZK. Noting that MDDH assumptions
implies the corresponding kernel assumptions, we can instantiate the quasi argument using
the DLIN assumption. Furthermore, the no-signaling property of the commitment keys (the
only computational property we use) reduces to an MDDH which we chose on instantiation.
Noting that DDH does not hold in symmetric groups we resort to the DLIN assumption which
makes the commitments larger by 1 group element. Thus, soundness of the above delegation
scheme reduces to the DLIN assumption.

2.3.2 Overcoming the dependence on space/width.

The issue with the above construction is that setting 𝐾 = 𝑂(|st|) yields a proof whose size
is linear in the space of the computation. To achieve succinctness in the general case, we
need to also perform some “compressing” of the state/width. Kalai et. al. overcome this
by considering delegation of RAM computation [KP16] using collision-resistant hash function
to compress the width. They use a notion similar to the knowledge transfer notion, namely
that no PPT adversary can produce digests h, h′ and state st such that h = Hash(st) but
h′ ≠ Hash( 𝑓 (st)). Now, a quasi argument for the local constraints h𝑖 = Hash( 𝑓 (st𝑖)) and
h𝑖+1 = Hash( 𝑓 (st𝑖)) is enough for delegation in the general case.

While previous works achieve this by essentially encoding the computation of generic hash
functions in the computation, we use hash functions that are based on Pedersen commitments
and have nice algebraic structure and properties. This allows to avoid the concrete cost of
encoding arbitrary hash functions in the arithmetic circuit. To this end, we use techniques from
[GR19] to derive a structure preserving construction. We present next the basic ideas of their
(low depth) delegation construction.

Structure Preserving Delegation for Bounded-Depth Circuits. González and Ràfols [GR19]
constructed a delegation scheme with proof-size 𝑂(𝑑𝜅) and verification requiring 𝑛 plus 𝑂(𝑑)
cryptographic operations, where 𝑛 is the size of the input, 𝑑 the depth of the circuit and 𝜅 a
security parameter. Interestingly, the verification procedure of [GR19] can be described com-
pletely as a set of pairing product equations. As shown by Abe et al.[AFG+16], cryptographic
primitives whose correctness can be stated as equations over bilinear groups are more suited
for practically efficient arguments without resorting to generic reductions to a circuit or a 3CNF
formula.

In the heart of the delegation scheme of [GR19] lie the two knowledge transfer arguments for
linear and quadratic relations described before. To delegate the computation of an arithmetic
circuit, the multiplication gates are partitioned in 𝑑 levels. Each level groups the gates at the
same distance from the inputs, without counting linear gates. In this way, the inputs of level
𝑖 + 1 are linear combinations of outputs of the 𝑖 previous levels. A prover commits to the left,
right, and output wires of each level as 𝐿𝑖 , 𝑅𝑖 , 𝑂𝑖 . In the first 𝑑 arguments 𝑓 is a linear function
and the argument handles the linear relations between the input wires (the openings of 𝐿𝑖 , 𝑅𝑖)
of level 𝑖 and the output wires of all previous levels (the openings of 𝑂1 , . . . , 𝑂𝑖−1). In the next
𝑑 arguments 𝑓 is the hadamard product so that the opening of 𝑂𝑖 is the the hadamard product
of the openings of 𝐿𝑖 and 𝑅𝑖 . The fact that the verifier can check the commitment to the first
level using the public input and a simple inductive argument over the levels shows that the
output must be correct.

More concretely, starting from a correct commitment 𝑂0 (directly checked for consistency
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with input 𝑥 from the verifier) we conclude that 𝐿1 , 𝑅1 by the knowledge transfer guarantee of
the linear argument. Since 𝐿1 , 𝑅1 are correct w.r.t. 𝑥,𝑂1 is also correct w.r.t. 𝑥 by the knowledge
transfer guarantee of the quadratic arguement. We continue this way and we conclude that 𝑂𝑑

is a correct commitment to the output of the computation. Now, we simply need to check that
the claimed output 𝑦 is a correct opening for that latter commitment.

As for soundness, the quadratic knowledge transfer arguement requires a specific (not
uniform) distribution for the commitment keys where each row of the matrix of the commitment
key is the result of evaluating Lagrange polynomials at a different random point. Thus,
soundness relies on a width-size assumption, namely “ℛ-Rational Strong Diffie Hellman”
assumption [GR19] which is proven secure in the Generic Group Model. We stress out that we
modify the construction of [GR19] to overcome the need for a 𝑞-size assumption and rely only
on a constnt-size one, albeit at the cost of having a quadratic crs and prover computation.

Succinct Publicly Verifiable Delegation for polynomial size circuits. We use the technique
of [GR19] to overcome the width dependency in the above construction. The problem with
this construction is that we need to rely on simple soundness of the underlying Kiltz and
Wee QA-NIZK. However if we try to “shrink” the per-level information to eliminate the width
dependence, the subspaces used become trivial and knowledge soundness seems to be needed.

We overcome this by relying on the knowledge transfer analysis of Kiltz and Wee used
in [GR19]. To exploit this to construct delegation, we proceed as follows: we keep the same
skeleton of the small-width circuit protocol, but instead of directly committing to the left, right
and output wires, we commit to commitments of them. That is, for each level we compute three
shrinking commitments -with size independent of the width- corresponding to left, right and
output wires for that level, and we commit to these commitments (by including appropriate
group elements in the crs). Furthermore, we use the knowledge transfer variants of the quasi
arguements.

Now, our no-signaling extractor works as in the small-width case, but instead of the wires
for some level, it outputs the commitments for the wires in this level. By the knowledge transfer
guarantees, we establish that the extracted values for each level satisfy:

(1) if 𝑂𝑖 is a commitment to 𝒄𝑖 then 𝐿𝑖+1 and 𝑅𝑖+1 are commitments to 𝒂𝑖+1 , 𝒃𝑖+1,

(2) if 𝐿𝑖+1 and 𝑅𝑖+1 are commitments to 𝒂𝑖+1 and 𝒃𝑖+1 respectively, then 𝑂𝑖+1 is a commitment
to 𝒄𝑖+1

Extracting these values in a no-signaling way, as in the bounded space case, yields soundness
for the delegation scheme. The analysis is almost the same and the only difference is that the
knowledge transfer guarantee implies some hardness assumption (MDDH) on the distribution
of matrices used as parameters, in this case, the width commitment keys. To satisfy this using
constant size assumptions, we use a simple variation of Pedersen commitments where the
commitment keys satisfy the DLIN assumption.

Remark (Uniform vs Non-Uniform Computation). Our construction can be used for any non-
uniform computation, namely polynomial size arithmetic circuits, while previous works such
as [PR17; KPY19] focus on delegating uniform computations: Turing or RAM machines. While
this is a stronger result, we achieve it using a long (quadratic in the size/time of computation)
crs while the work of [KPY19] achieves a short (i.e. sublinear) crs. One motivation for working
directly with poly-size circuits is for practical efficiency: we utilize the rich SNARK toolbox
without the need to encode expensive cryptographic operations as arithmetic circuits, namely,
we focus on structure preserving constructions. While we have an inefficient (quadratic) prover,
in all other aspects we achieve optimal efficiency comparable with SNARGs from non-falsifiable
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assumptions. We believe that this is a promising direction and an interesting open problem is
to improve the prover to quasi-linear using these techniques. This would yield a delegation
scheme for poly-size circuits that directly competes with the aforementioned non-falsifiable
based constructions in all aspects, effectively making the use of non-falsifiable assumptions
unjustifiable in the context of deterministic computation. We also leave as future work exploring
to what extend our techniques can be applied for delegating uniform computations and if this
would give some improvement over existing constructions.

Remark (On bootstrapping and proof composition). To improve efficiency (crs size), [KPY19]
use the bootstrapping technique which involves proof composition. Our techniques seem to
be incompatible with the bootstrapping technique. This is because the crs of our construction
depends on the circuit and we cannot directly reuse a crs for different computations. We
leave as future work to examine if we can modify our techniques to be able to apply the
bootstrapping technique. We also stress out that this might prove to be an interesting direction
for improvements in practical efficiency as well due to some recent results in proof-composition
techniques [BCMS20; BCL+21].

2.4 NIZK, SNARKs and Compact NIZK

We can use standard techniques to turn our delegation scheme into a NIZK argument. Es-
sentially, the prover needs to prove knowledge of (additional) secret input wires 𝑤 and proof
that 𝐶(𝑥, 𝑤) = 𝑦 for some secret input 𝑤. Given the “structure preserving” properties of our
delegation scheme, we can directly apply the Groth Sahai proof system [GS08]12 on the set of
verification equations. In general, all we need to achieve knowledge soundness is an extractable
(and hiding) commitment for extracting the witness 𝑤. Depending on the properties of the
extractable commitment scheme we get different NIZK flavors.

If the commitments to the inputs are succinct, the construction yields a SNARK for NP.
Such commitments are widely employed in SNARKs, but their security relies on non-standard
assumptions: either knowledge type assumptions such as 𝑞-Knowledge of Exponents assump-
tion [GGPR13] or the generic group model [Gro16]. If we take for example the zk-SNARK from
[DFGK14], the size of 𝑞 is the number of field elements extracted from a valid proof. Indeed,
the proof of soundness requires the extraction of all the circuit wires, which are later used
to break some falsifiable 𝑞-assumption. Consequently, the knowledge assumption is of size
𝑞 = 𝑂(|𝐶 |). By reducing the number of extracted values from 𝑂(|𝐶 |) to |𝑤 |, we reduce the size
of the underlying knowledge assumption to 𝑞 = |𝑤 | < |𝐶 |.

If we use the “bit-string” argument of [GHR15b] to show knowledge of 𝒃 ∈ {0, 1}𝑛 , we get
extractable commitments of size 𝑛+𝑂(1) group elements based on a constant-size falsifiable as-
sumption. Combining this extractable commitment with our delegation scheme yields a NIZK
argument for circuit satisfiability with proof size 𝑛 + 𝑂(1) groups elements, or equivalently of
size 𝑂(𝑛𝜅).

Finally, we can then use the techniques of Katsumata et al. [KNYY19; KNYY20] to construct a
compact NIZK. The construction of Katsumata et al. is based on a non-compact NIZK argument
for NC1 plus a symmetric key encryption scheme (K,E,D) where the size of E(𝐾, 𝑚) is |𝑚 | +
poly(𝜅). Instead of committing to the input 𝒙 of a circuit 𝐶, we need to compute 𝐾 ← K(1𝜅)
to obtain 𝑐𝑡 ← E(𝐾, 𝒙) and give a NIZK argument of knowledge of some 𝐾 ∈ {0, 1}poly(𝜅) such
that 𝐶(D(𝐾, 𝑐𝑡)) = 1 . We note that we can straightforward use this idea to construct compact
NIZK for any circuit by simply plugging our NIZK argument based on the commitments of

12This can be also achieved in a more efficient way (concretely) by directly using hiding commitments for the
delegation scheme.
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[GHR15b]. The final proof is of size |𝑐𝑡 | + |𝐾 |poly(𝜅) + |𝜋| = 𝑛 + poly(𝜅) and is sound for any
polynomial size circuit.

3 Preliminaries

3.1 Notation

For 𝑛 ∈ N, let [𝑛] be the set {1, . . . , 𝑛}. For vectors 𝒂 = (𝑎𝑖)𝑖∈[𝑛] , 𝒃 = (𝑏𝑖)𝑖∈[𝑛] ∈ Z𝑛𝑝 , we denote
𝒂◦𝒃 = (𝑎𝑖𝑏𝑖)𝑖∈[𝑛] the Hadamard product of them, and for matrices A = (𝑎𝑖 , 𝑗)𝑖∈[𝑛1], 𝑗∈[𝑚1] ∈ Z𝑛1×𝑚1

𝑝 ,
B ∈ Z𝑛2×𝑚2

𝑝 we denote A ⊗ B = (𝑎𝑖, 𝑗B)𝑖∈[𝑛1], 𝑗∈[𝑚1] ∈ Z𝑛1𝑛2×𝑚1𝑚2
𝑝 their Kronecker product. We will

be using the mixed-product property of kronecker products, which says that (A ⊗ B)(C ⊗D) =
(AC) ⊗ (BD) whenever A,B,C,D have the appropriate dimensions. When 𝑛1 = 𝑛2 we denote
by A|B ∈ Z𝑛1×𝑚1+𝑚2

𝑝 their vertical concatenation. For 𝒙 , 𝒚 ∈ Z𝑛𝑝 we write 𝒙 ≤ 𝒚 if and only if
𝑥𝑖 ≤ 𝑦𝑖 for all 𝑖 ∈ [𝑛]. We consider vectors of sets 𝑺 = (𝑆1 , . . . , 𝑆ℓ ), where 𝑆𝑖 ⊆ [𝑛𝑖] for 𝑖 ∈ [ℓ ]
and 𝑛𝑖 ∈ N, and extend set operations entry-wise. That is 𝑺′ ⊆ 𝑺 if and only if 𝑆′𝑖 ⊆ 𝑆𝑖 for all
𝑖 ∈ [ℓ ], and |𝑺 | = (|𝑆1 |, . . . , |𝑆ℓ |). For 𝒏 ∈ Nℓ , [𝒏] = ([𝑛1], . . . , [𝑛2]).

We use implicit group notation. Let 𝑔𝑘 = (𝑝,G1 ,G2 ,G𝑇 , 𝑒 ,𝒫1 ,𝒫2) ← 𝒢(1𝜅) be the descrip-
tion of an asymmetric bilinear group of size 𝑝 = 𝑂(2𝜅) equipped with an efficient bilinear map
𝑒 : G1 × G2 → G𝑇 , where 𝒫𝜇 is a generator of G𝜇, 𝜇 ∈ {1, 2}. We assume all our algorithms
receive as input 𝑔𝑘 sampled from 𝒢(1𝜆), although in some abstract definitions is not necessar-
ily the description of a bilinear group. For 𝑟 ∈ Z𝑝 we denote [𝑟]𝜇 = 𝑟𝒫𝜇 for 𝜇 ∈ {1, 2, 𝑇} and
𝒫𝑇 = 𝑒(𝒫1 ,𝒫2). For a vector 𝑎 ∈ Z𝑛𝑝 and matrix A ∈ Z𝑛×𝑚𝑝 we denote with [𝒂]𝜇, [A]𝜇 the natural
embedding of 𝒂, A in G𝜇, respectively.

Sub-vectors and Sub-matrices. Let 𝑆 = {𝑠1 , . . . , 𝑠𝑡} ⊆ [𝑛] and 𝑆 = {𝑠1 , . . . , 𝑠𝑛−𝑡} the set
[𝑛] \ 𝑆. We use an algebraic notation for the sub-vector 𝒙𝑆 and sub-matrix G𝑆 of some 𝒙 ∈ Z𝑛𝑝
and G ∈ Z𝑚×𝑛𝑝 respectively. Let P𝑆 ∈ {0, 1}𝑛×𝑛 the permutation matrix defining the ordering
𝑠1 , . . . , 𝑠𝑡 , 𝑠1 , . . . , 𝑠𝑛−𝑡 . That is, P𝑆𝒆𝑠𝑖 = 𝒆𝑖 and P𝑆𝒆𝑠 𝑖 = 𝒆𝑖+𝑡 , where 𝒆𝑖 is the 𝑖-th unitary vector of
size 𝑛. We may simply write P when 𝑛, 𝑆 are clear from the context. We also define the matrix
Σ𝑆 = (I𝑡 |0𝑡×𝑛−𝑡). We may omit the subscript when the values are clear from the context.

We denote by 𝒙𝑆 ∈ Z𝑡𝑝 ,G𝑆 ∈ Z𝑘×𝑡𝑝 the sub-vector and sub-matrix containing the elements or
columns with indices in 𝑆 ⊆ [𝑛] of 𝒙 ∈ Z𝑛𝑝 and G ∈ Z𝑘×𝑛𝑝 , respectively.

Fact 1. For any 𝒙 ∈ Z𝑛𝑝 and any 𝑆′ ⊆ 𝑆 ⊆ [𝑛] it holds that:

i. P𝑆𝒙 =
( 𝒙𝑆
𝒙𝑆

)
and GP⊤𝑆 = (G𝑆 |G𝑆).

ii. 𝒙𝑆 = Σ𝑆P𝑆𝒙 and G𝑆 = GP⊤𝑆Σ⊤𝑆 .

iii. G𝒙 = G𝑆𝒙𝑆 +G𝑆𝒙𝑆.

iv. Let 𝒙𝑆′ |𝑆 = Σ𝑆 |𝑆′P𝑆′ |𝑆𝒙𝑆, where P𝑆′ |𝑆 is some permutation matrix such that P𝑆′ |𝑆𝒙𝑆 =
( 𝒙𝑆′
𝒙𝑆\𝑆′

)
and Σ𝑆′ |𝑆 = (I|𝑆′ | |0|𝑆′ |×𝑡−|𝑆′ |). 𝒙𝑆′ |𝑆 = 𝒙𝑆′ and G𝑆′ |𝑆 = G𝑆′.

When 𝒙 = U𝒘, for some matrix U ∈ Z𝑛×𝑚𝑝 and 𝒘 ∈ 𝑚, we abuse of notation and also write
U𝑆 for Σ𝑆P𝑆U so that 𝒙𝑆 = U𝑆𝒘.

We extend this notation to two sets 𝑆1 ⊆ [𝑛1], 𝑆2 ⊆ [𝑛2] and for 𝒙 ∈ Z𝑛1𝑛2
𝑝 define 𝒙𝑆1 ,𝑆2 ∈

Z
|𝑆1 |·|𝑆2 |
𝑝 as 𝒙𝑆1 ,𝑆2 = (𝒙(𝑖−1)𝑛2+𝑗 : 𝑖 ∈ 𝑆1 and 𝑗 ∈ 𝑆2) in some fixed order. For matrices instead we

define G𝑆1 ,𝑆2 = (𝑞ℓ ,(𝑖−1)𝑛2+𝑗 : ℓ ∈ [𝑘], 𝑖 ∈ 𝑆1 and 𝑗 ∈ 𝑆2) ∈ Z𝑘×|𝑆1 |·|𝑆2 |
𝑝 , where 𝑘 is the number of

columns of G. Similarly as before, the following holds.
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Fact 2. For any 𝒙 ∈ Z𝑛1𝑛2
𝑝 and any 𝑆′1 ⊆ 𝑆1 ⊆ [𝑛1], 𝑆′2 ⊆ 𝑆2 ⊆ [𝑛2] it holds that:

i. For some permutation matrix Π ∈ Z𝑛1𝑛2×𝑛1𝑛2
𝑝 , (P𝑆1 ⊗ P𝑆2)𝒙 = Π

( 𝒙𝑆1 ,𝑆2
𝒙𝑆1 ,𝑆2
𝒙𝑆1 ,𝑆2
𝒙𝑆1 ,𝑆2

)
and G(P⊤𝑆1

⊗ P⊤𝑆2
) =

(G𝑆1 ,𝑆2 |G𝑆1 ,𝑆2
|G𝑆1 ,𝑆2

|G𝑆1 ,𝑆2
)Π⊤.

ii. 𝒙𝑆1 ,𝑆2 = (Σ𝑆1 ⊗ Σ𝑆2)(P𝑆1 ⊗ P𝑆2)𝒙 and G𝑆1 ,𝑆2 = G(P⊤𝑆1
⊗ P⊤𝑆2

)(Σ⊤𝑆1
⊗ Σ⊤𝑆2

).
iii. G𝒙 = G𝑆1 ,𝑆2𝒙𝑆1 ,𝑆2 +G𝑆1 ,𝑆2

𝒙𝑆1 ,𝑆2
+G𝑆1 ,𝑆2

𝒙𝑆1 ,𝑆2
+G𝑆1 ,𝑆2

𝒙𝑆1 ,𝑆2
.

iv. Let 𝒙𝑆′1 ,𝑆′2 |𝑆1 ,𝑆2 = (Σ⊤𝑆′1 |𝑆1
⊗Σ⊤𝑆′2 |𝑆2

)(P𝑆′1 |𝑆1⊗P𝑆′2 |𝑆2)𝒙𝑆1 ,𝑆2 and G𝑆′1 ,𝑆
′
2 |𝑆1 ,𝑆2 = G(P⊤𝑆′1 |𝑆1

⊗P⊤𝑆′2 |𝑆2
)(Σ⊤𝑆′1 |𝑆1

⊗
Σ⊤𝑆′2 |𝑆2

). Then 𝒙𝑆′1 ,𝑆′2 |𝑆1 ,𝑆2 = 𝒙𝑆′1 ,𝑆′2 and G𝑆′1 ,𝑆
′
2 |𝑆1 ,𝑆2 = G𝑆′1 ,𝑆

′
2

3.2 Cryptographic Assumptions

Definition 1. Let 𝑘, ℓ ∈ N. We call𝒟ℓ ,𝑘 (resp. 𝒟𝑘) a matrix distribution if it outputs in PPT time,
with overwhelming probability matrices in Zℓ×𝑘𝑝 (resp. in Z(𝑘+1)×𝑘

𝑝 ). For a matrix distribution
𝒟𝑘 , we denote as 𝒟𝑘 the distribution of the first 𝑘 rows of the matrices sampled according to
𝒟𝑘 .

Assumption 1. Let 𝒟ℓ ,𝑘 be a matrix distribution. For all non-uniform PPT adversaries 𝒜 and
relative to gk← 𝒢(1𝜅), A←𝒟ℓ ,𝑘 and the coin tosses of adversary𝒜,

1. the Kernel Matrix Diffie-Hellman Assumption holds in G𝛾 [MRV16] if

Pr
[[𝒓]3−𝛾 ←𝒜(𝑔𝑘, [A]𝛾) : 𝒓⊤A = 0

]
= negl(𝜅),

2. the Split Kernel Matrix Diffie-Hellman Assumption [GHR15b] holds if

Pr
[[𝒓]1 , [𝒔]2 ←𝒜(𝑔𝑘, [A]1 , [A]2) : 𝒓 ≠ 𝒔 ∧ 𝒓⊤A = 𝒔⊤A

]
= negl(𝜅).

Assumption 2. Let 𝒟ℓ ,𝑘 be a matrix distribution and gk ← 𝒢(1𝜅). For all non-uniform PPT
adversaries 𝒜 and relative to gk← 𝒢(1𝜅), A← 𝒟ℓ ,𝑘 ,𝒘 ← Z𝑘𝑝 , [𝒛]𝛾 ← Gℓ𝛾 and the coin tosses
of adversary𝒜,

1. the Matrix Decisional Diffie-Hellman Assumption in G𝛾 (𝒟𝑘-MDDH𝛾) holds if��Pr[𝒜(𝑔𝑘, [A]𝛾 , [A𝒘]𝛾) = 1] − Pr[𝒜(𝑔𝑘, [A]𝛾 , [𝒛]𝛾) = 1]�� ≤ negl(𝜅),
2. the Split Matrix Decisional Diffie-Hellman Assumption in G𝛾 (𝒟𝑘-SMDDH𝛾) holds if��Pr[𝒜(𝑔𝑘, [A]1,2 , [A𝒘]𝛾) = 1] − Pr[𝒜(𝑔𝑘, [A]1,2 , [𝒛]𝛾) = 1]�� ≤ negl(𝜅).

Assumption 3. Let (𝒟1
ℓ ,𝑘 ,𝒟2

ℓ ,𝑘) be (possibly correlated) matrix distributions and gk ← 𝒢(1𝜅).
For all non-uniform PPT adversaries𝒜 and relative to gk← 𝒢(1𝜅), (A,B) ← (𝒟1

ℓ ,𝑘 ,𝒟2
ℓ ,𝑘),𝒘 ←

Z𝑘𝑝 , [𝒛]𝛾 ← Gℓ𝛾 and the coin tosses of adversary 𝒜, the (𝒟1
ℓ ,𝑘 ,𝒟2

ℓ ,𝑘)-Split Matrix Decisional
Diffie-Hellman Assumption ((𝒟1

ℓ ,𝑘 ,𝒟2
ℓ ,𝑘)-MDDH𝛾) holds if

|Pr[𝒜(𝑔𝑘, [A]1 , [B]2 , [A𝒘]1 , [B𝒘]2) = 1] − Pr[𝒜(𝑔𝑘, [A]1 , [B]2 , [𝒔]1 , [𝒕]2) = 1]| ≤ negl(𝜅).
We also consider stronger versions of these definitions, denoted (𝒟ℓ ,𝑘 , ℎ)-MDDH, (𝒟ℓ ,𝑘 , ℎ)-

SMDDH, (𝒟1
ℓ ,𝑘 ,𝒟2

ℓ ,𝑘 , ℎ)-MDDH, where the adversary is also given ℎ(A) (ℎ(A,B) in the latter) for
some (possibly probabilistic) function ℎ.
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K(𝑔𝑘, [M]1 , [N]2 , [P]1 , [Q]2):
• K1 ← Zℓ1×𝑘𝑝 ; K2 ← Zℓ2×𝑘𝑝 ; K3 ← Zℓ3×𝑘𝑝 ; K4 ← Zℓ4×𝑘𝑝 .

• Sample A←𝒟𝑘 ; Γ← Z𝑛×𝑘𝑝 .
• [B]1 = [M⊤K1 +N⊤K2 + Γ]1; [D]2 = [P⊤K3 +Q⊤K4 − Γ]2.
• C1 = K1A; C2 = K2A; C3 = K3A; C4 = K4A.
• Output crs = (𝑔𝑘, [A]1,2 , [B]1 , [D]2 , [C1]2 , [C2]1 , [C3]2 , [C4]1).

Prove(crs, ([𝒄1]1 , [𝒄2]2 , [𝒅1]1 , [𝒅2]2),𝒘):
• Sample 𝝆← Z𝑘𝑝 ; [𝝅]1 := 𝒘⊤[B]1 + [𝝆]1; [𝜽]2 := 𝒘⊤[D]2 − [𝝆]2.
• Output ([𝝅]1 , [𝜃]2)

Verify(crs, ([𝒄1]1 , [𝒄2]2 , [𝒅1]1 , [𝒅2]2), ([𝝅]1 , [𝜽]2)):
• Output 1 iff 𝑒([𝝅]1 , [A]2) + 𝑒([𝜽]2 , [A]1) − 𝑒([𝒄⊤1 ]1 , [C1]2) − 𝑒([𝒄⊤2 ]2 , [C2]1) −
𝑒([𝒅⊤1 ]1 , [C3]2) − 𝑒([𝒅⊤2 ]2 , [C4]1);

Figure 1: Construction Πkt-lin for ℒyes
lin ,ℒno

lin . For ℓ1 = ℓ2, construction Πkt-sum for ℒyes
sum ,ℒno

sum is
identical with the only difference that K2 = K1.

3.3 Arguments of Knowledge Transfer

In this section we recall arguments of knowledge transfer for membership in linear spaces as
defined in [GR19] which in turn is just an instantiation of [KW15]. We also slightly modify the
construction to turn it into an argument of knowledge transfer for the sum language, which we
will use in later constructions.

Let 𝑔𝑘 be a bilinear group of order 𝑝 andℳ ,𝒩 ,𝒫 ,𝒬 be matrix distributions outputting
matrices [M]1 ∈ Gℓ1×𝑛1 , [N]2 ∈ Gℓ2×𝑛2 [P]1 ∈ Gℓ3×𝑛1 [Q]2 ∈ Gℓ4×𝑛2 respectively. In Fig. 1, we present
two arguments of knowledge transfer for (1) the linear membership language

ℒyes
lin = {([𝒄1]1 , [𝒄2]2 , [𝒅1]1 , [𝒅2]2) | ∃𝒘 s.t ( 𝒄1

𝒄2 ) =
( M

N
)
𝒘 and

(
𝒅1
𝒅2

)
=

( P
Q
)
𝒘}

ℒno
lin = {([𝒄1]1 , [𝒄2]2 , [𝒅1]1 , [𝒅2]2 ,𝒘) | ( 𝒄1

𝒄2 ) =
( M

N
)
𝒘 and

(
𝒅1
𝒅2

)
≠

( P
Q
)
𝒘},

and (2) the sum knowledge transfer language

ℒyes
sum = {([𝒄1]1 , [𝒄2]2 , [𝒅1]1 , [𝒅2]2) | ∃𝒘 s.t 𝒄1 + 𝒄2 = (M +N)𝒘 and

(
𝒅1
𝒅2

)
=

( P
Q
)
𝒘}

ℒno
sum = {([𝒄1]1 , [𝒄2]2 , [𝒅1]1 , [𝒅2]2 ,𝒘) | 𝒄1 + 𝒄2 = (M +N)𝒘 and

(
𝒅1
𝒅2

)
≠

( P
Q
)
𝒘}.

A knowledge transfer argument is just an argument for the promise problem defined by ℒyes

and ℒno. Completeness means that an honest proof is accepting for any statement in ℒyes.
Soundness that any proof for a statement inℒno, which comes with an “advice” 𝒘, is accepting
only with negligible probability.

We use this construction with (1) Q = 0 for the case of linear knowledge transfer and (2)
N = 0 for the case of sum knowledge transfer so we prove only these two cases. We stress
out that the proofs are easily extended to accommodate for the more general cases. We also
strengthen the security requirements by allowing the adversary to get some extra information

23



about the language parameters through some (possibly probabilistic) function ℎ. We call this
property ℎ-strong soundness.

For the case of Πkt-lin, when setting Q = 0, the security is shown in [GR19]. The only
modification is that we allow the adversary 𝒜 to get the discrete logarithms N, P and the ℎ
information of the MDDH challenge, which does not affect the result of [GR19]. We extend the
results of [GR19] to the sum argument. The security proof is essentially identical to the one for
the bilateral case of [GR19]. For completeness we give the full proof in Appendix A.

4 No-Signaling Somewhere Statistically Binding Commitments

In this section we recall Somewhere Statistically Binding (SSB) commitments and then define
two additional notions for SSB commitments: no-signaling extraction and oblivious key gen-
eration. The former is a natural adaptation of the definitions of no-signaling extractors from
previous works [PR17; KPY19]. We show that the latter implies the former, and we give an
efficient instantiation based on any 𝒟𝑘-MDDH assumption. Finally, we consider the kronecker
product of two of these commitments.

We now define somewhere Statistically Binding (SSB) commitment schemes [HW15; FLPS20].
An SSB commitment scheme, as the name suggests, is statistically binding only w.r.t. some
variables which are determined during key generation. The commitment key computationally
hides any information about this set, meaning that for all “modes” the commitment keys are
computationally indistinguishable. Furthermore, the KeyGen outputs a trapdoor which allows
to extract (a function of) the values in this set.

It will be useful to consider SSB commitments where committed vectors live inℳ𝑛1𝑛2 and
can be indexed by 𝑖1 ∈ [𝑛1], 𝑖2 ∈ [𝑛2]. We consider also 2 locality parameters 𝑲 = (𝐾1 , 𝐾2)
with 𝑲𝑖 ≤ 𝑛𝑖 , and extraction sets are of the form 𝑺 = (𝑆1 , 𝑆2) where 𝑆𝑖 ⊆ [𝑛𝑖] and |𝑆𝑖 | ≤ 𝐾𝑖 ,
for 𝑖 ∈ {1, 2}. We put forward a stronger variant of the index set hiding property, where
the distinguisher is also given ℎ(𝑠𝑘) for some function ℎ. In this case we will say the SSB
commitment is ℎ-strong ISH.

Definition 2. Let [·] : ℳ → 𝐺 be a function, where ℳ is the message space and 𝐺 some
set. Syntactically, a Somewhere Statistically Binding Commitment Scheme CS is a tuple of
algorithms CS = (KeyGen,Com,Extract)

• (𝑐𝑘, 𝑠𝑘) ← KeyGen(gk, 𝒏 ,𝑲 , 𝑺): KeyGen takes as input the parameters gk, 𝒏 ∈ Nℓ , locality
parameters 𝑲 ∈ [𝒏] and the sets 𝑺 ⊆ [𝒏], |𝑺 | ≤ 𝑲. It outputs a commitment key 𝑐𝑘, which
may also contain some auxiliary information aux, a secret key 𝑠𝑘, containing a trapdoor
𝜏 and possibly the random coins used by KeyGen.

• 𝑐 ← Com(𝑐𝑘, 𝒙): Com takes as input the commitment key 𝑐𝑘 and a vector 𝒙 ∈ ℳ𝑛1·𝑛2 and
outputs a commitment 𝑐,

• 𝒚← Extract(𝜏, 𝑐): Extract takes as input the trapdoor 𝜏 and a commitment 𝑐, and outputs
the value 𝒚 ∈ 𝐺 allegedly equaling [𝒙𝑆], where 𝒙 is a valid opening for 𝑐.

For all 𝜅 ∈ N, 𝒏 ∈ N2 ,𝑲 ∈ [𝒏], 𝑺0 , 𝑺1 ⊆ [𝒏] with |𝑺0 |, |𝑺1 | ≤ 𝑲, CS must satisfy the following
properties:

• ℎ-Strong Index Set Hiding: for all PPT𝒟

Pr
gk←𝒢(1𝜅)

[
𝒟(𝑐𝑘, ℎ(𝑠𝑘)) = 𝑏 𝑏 ← {0, 1}

(𝑐𝑘, 𝑠𝑘) ← KeyGen(gk, 𝒏 ,𝑲 , 𝑺𝑏)
]
≤ 1

2 + negl(𝜅).
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• Somewhere Statistically Binding: for all all, even unbounded𝒜,

Pr
gk←𝒢(1𝜅)

[
Com(𝑐𝑘, 𝒙) = Com(𝑐𝑘, 𝒙′)

and 𝒙𝑺 ≠ 𝒙′𝑺
(𝑐𝑘, 𝑠𝑘) ← KeyGen(gk, 𝒏 ,𝑲 , 𝑺);

(𝒙 , 𝒙′) ← 𝒜(𝑐𝑘);
]
≤ negl(𝜅).

• 𝐺-Extractability: for all, even unbounded𝒜

Pr
gk←𝒢(1𝜅)

[ ∃𝒙 s.t. 𝑐 = Com(𝑐𝑘, 𝒙) (𝑐𝑘, 𝑠𝑘) ← KeyGen(gk, 𝒏 ,𝑲 , 𝑺); 𝑐 ←𝒜(𝑐𝑘);
and 𝒚 ≠ [𝒙𝑺] 𝒚← Extract(𝜏, 𝑐), where 𝑠𝑘 = (𝜏, 𝑟);

]
≤ negl(𝜅)

Note that an SSB commitment is also “everywhere” computationally binding. This is the
case since a breach in binding, namely the ability to produce 𝑐 that opens to both 𝒙 ≠ 𝒙′, implies
the ability to distinguish where the commitment is not statistically binding contradicting the
index set hiding property.

We next present an extra property for an SSB commitment scheme which we call ℎ-strong
no-signaling extraction and is a natural adaptation of the definitions in [PR17; KPY19].

Definition 3. We say the extractor of an SSB commitment scheme CS = (Setup,KeyGen,Com,
Extract) with commitment space 𝒞 13 is ℎ-strong no-signaling if for any 𝑺′ ⊆ 𝑺 ⊆ [𝒏], where
|𝑺 | ≤ 𝑲, and any PPT adversary𝒟 = (𝒟1 ,𝒟2),������ Pr
gk←𝒢(1𝜅)

 𝒟2(𝑐𝑘𝑆′ , ℎ(𝑠𝑘𝑆′)), 𝑐, 𝒚′) = 1
(𝑐𝑘𝑆′ , 𝑠𝑘𝑆′) ← KeyGen(gk, 𝒏 ,𝑲 , 𝑺′)

𝑐 ←𝒟1(𝑐𝑘𝑆′ , ℎ(𝑠𝑘𝑆′)); if 𝑐 ∉ 𝒞: 𝑐 ← ⊥
𝒚′← Extract(𝜏, 𝑐), where 𝑠𝑘𝑆′ = (𝜏, 𝑟).

 −
Pr

gk←𝒢(1𝜅)

 𝒟2(𝑐𝑘𝑆 , ℎ(𝑠𝑘𝑆)), 𝑐, 𝒚𝑆′) = 1
(𝑐𝑘𝑆 , 𝑠𝑘𝑆) ← KeyGen(gk, 𝒏 ,𝑲 , 𝑺)

𝑐 ←𝒟1(𝑐𝑘𝑆 , ℎ(𝑠𝑘𝑆)); if 𝑐 ∉ 𝒞: 𝑐 ← ⊥
𝒚← Extract(𝜏, 𝑐), where 𝑠𝑘 = (𝜏, 𝑟).


������ ≤ negl(𝜅).

We define also oblivious trapdoor generation. This property states that there exists an
oblivious key generation algorithm, that takes a commitment key 𝑐𝑘 that allows extraction in
𝑺 and a set 𝑺′ ⊆ 𝑺, and can produce a fresh commitment key 𝑐𝑘′ and a trapdoor to extract 𝑺′.
The distribution of the new key 𝑐𝑘′ is statistically close to that of 𝑐𝑘 and – importantly – the
oblivious key generation algorithm does not get as input the original extraction set 𝑺. In other
words, given a commitment key 𝑐𝑘 that we know allows extraction for some superset of 𝑺, we
can create a new key with a trapdoor for 𝑺′ without skewing the distribution of 𝑐𝑘.

Definition 4. An SSB commitment scheme has oblivious trapdoor generation if there exists a
PPT algorithm OblKeyGen such that for all 𝜅 ∈ N, 𝒏 ∈ N2 ,𝑲 ∈ [𝒏], 𝑺 ⊆ [𝒏], with |𝑺 | ≤ 𝑲, and
any 𝑺′ such that 𝑺′ ⊆ 𝑺, and for all, even unbounded𝒟 = (𝒟1 ,𝒟2),������ Pr

gk←𝒢(1𝜅)

 𝒟2(𝑐𝑘′, 𝑐, 𝒚′) = 1
(𝑐𝑘, 𝑠𝑘) ← KeyGen(gk, 𝒏 ,𝑲 , 𝑺);

(𝑐𝑘′, 𝜏′) ← OblKeyGen(gk, 𝒏 ,𝑲 , 𝑺′, 𝑐𝑘);
𝑐 ←𝒟1(𝑐𝑘′); 𝒚′← Extract(𝜏′, 𝑐), where 𝑠𝑘 = (𝜏, 𝑟)

 −
Pr

gk←𝒢(1𝜅)

[
𝒟2(𝑐𝑘, 𝑐, 𝒚𝑺′) = 1 (𝑐𝑘, 𝑠𝑘) ← KeyGen(gk, 𝒏 ,𝑲 , 𝑺);

𝑐 ←𝒟1(𝑐𝑘); 𝒚← Extract(𝜏, 𝑐), where 𝑠𝑘 = (𝜏, 𝑟)
] ����� ≤ negl(𝜅)

Next, we show that an SSB commitment scheme with oblivious trapdoor generation is also
no-signaling. We leave as an open problem to prove or disprove the opposite implication.

13We assume that membership in 𝒞 is efficiently decidable
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Theorem 2. Let CS = (Setup,KeyGen,OblKeyGen,Com,Extract) be an SSB commitment scheme
with oblivious trapdoor generation and ℎ-strong ISH. Then, CS is also ℎ-strong no-signaling.

Proof. Fix any 𝑺′ ⊆ 𝑺 ⊆ [𝒏] with |𝑺 | ≤ 𝑲, and let 𝒟 = (𝒟1 ,𝒟2) be a distinguisher against
no signaling extraction for these values. We show by a sequence of games that its success
probability is negligible.

Game𝒟0 (1𝜅): In this game, we execute (𝑐𝑘, 𝑠𝑘) ← KeyGen(gk, 𝒏 ,𝑲 , 𝑺). We then get 𝑐 ←
𝒟1(ck, ℎ𝑛𝑠(sk)), change it to ⊥ if 𝑐 ∉ 𝒞, and compute 𝒚← Extract(𝜏, 𝑐) for 𝑠𝑘 = (𝜏, 𝑟). The
output is𝒟2(ck, 𝑐, 𝒚𝑺′).
Game𝒟1 (1𝜅): In this game, we execute (𝑐𝑘, 𝑠𝑘) ← KeyGen(gk, 𝒏 ,𝑲 , 𝑺) and (ckobl , 𝜏obl) ←
OblKeyGen(gk, 𝒏 ,𝑲 , 𝑺′, ck). We then compute ℎ(𝑠𝑘obl) corresponding to 𝑐𝑘obl and get
𝑐 ← 𝒟1(ckobl , ℎ(𝑠𝑘obl)), change it to ⊥ if 𝑐 ∉ 𝒞, and compute 𝒚′ ← Extract(𝜏obl , 𝑐). The
output is𝒟2(ckobl , 𝑐, 𝒚′).
Game𝒟2 (1𝜅): In this game, we execute (𝑐𝑘, 𝑠𝑘) ← KeyGen(gk, 𝒏 ,𝑲 , 𝑺′) and (ckobl , 𝜏obl) ←
OblKeyGen(gk, 𝒏 ,𝑲 , 𝑺′, ck). We then compute ℎ(𝑠𝑘obl) corresponding to 𝑐𝑘obl and get
𝑐 ← 𝒟1(ckobl , ℎ(𝑠𝑘obl)), change it to ⊥ if 𝑐 ∉ 𝒞, and compute 𝒚′ ← Extract(𝜏obl , 𝑐). The
output is𝒟2(ckobl , 𝑐, 𝒚′).
Game𝒟3 (1𝜅): In this game, we execute (𝑐𝑘′, 𝑠𝑘′) ← KeyGen(gk, 𝒏 ,𝑲 , 𝑺′). We then get
𝑐 ←𝒟1(ck′, ℎ𝑛𝑠(𝑠𝑘′)), change it to⊥ if 𝑐 ∉ 𝒞, and compute 𝒚← Extract(𝜏′, 𝑐) for 𝑠𝑘 = (𝜏, 𝑟).
The output is𝒟2(ck, 𝑐, 𝒚′).

Now we show the output of games 𝑖 and 𝑖 + 1 is indistinguishable for 𝑖 = 0 to 2.

• Cases 𝑖 = 0, 𝑖 = 2. For 𝑖 = 0, the two games are distributed identically to the two cases of
the oblivious trapdoor generation definition for 𝑺′ ⊆ 𝑺. Thus, the outputs of the games
are statistically close. For 𝑖 = 2, the same argument holds for 𝑺 = 𝑺′. Note that in both
cases, the oblivious trapdoor generation distinguisher is unbounded so it can compute
𝑠𝑘obl.

• Case 𝑖 = 1. The difference in the two games is how we sample the (𝑐𝑘, 𝑠𝑘) pair, either
programmed to extract 𝑺 or 𝑺′. By the ℎ-index set hiding property the outputs of the two
games are computationally indistinguishable.

Finally, noting that Game𝒟0 , Game𝒟3 correspond to the two cases of no signaling extraction, the
result follows.

□

4.1 Algebraic SSB Commitments.

In this section, we define algebraic SSB commitments following the definition of algebraic com-
mitment schemes of [RS20] and extend them to what we call split algebraic SSB commitments.

Informally, an algebraic SSB commitment scheme is a commitment scheme where the com-
mitment key is a matrix [G] of group elements such that (1) committing to a vector 𝒙 is done
by multiplying on the left with [G], that is [𝒄] = [G]𝒙 and (2) the trapdoor is a matrix of
field elements T and local extraction is done by multiplying the commitment on the left with
T⊤, that is [𝒙𝑆] = T⊤[𝒄]. We also allow the commitment key to output some public auxiliary
information which is not used in committing nor extraction.
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Definition 5. An SSB commitment scheme CS = (KeyGen,Com,Extract) is algebraic if, given
𝑔𝑘 ← 𝒢(1𝜅), KeyGen(gk, 𝑛,𝑲 , 𝑺) outputs 𝑐𝑘 = [G] ∈ G𝑲×𝑛 and 𝑠𝑘 = (T ∈ Z𝑲×|𝑆 |𝑝 ,G) where
𝑲 ≥ 𝑲, Com([G], 𝒙) = [G]𝒙 and T⊤G = Σ𝑺P𝑺.

We also define a subtype of algebraic commitments which are specific to asymmetric groups,
where the commitment key is “split” between the two groups.

Definition 6. An SSB commitment scheme CS = (KeyGen,Com,Extract) is split algebraic if
KeyGen(gk, 𝑛,𝑲 , 𝑺) outputs 𝑐𝑘 = ([G]1 ∈ G𝑲×𝑛

1 , [H]2 ∈ G𝑲×𝑛
2 ) and 𝑠𝑘 = (T ∈ Z𝑲×|𝑺 |𝑝 , (G,H)), for

𝑲 ≥ 𝑲, Com([G]1 , [H]2 , 𝒙) = ([G]1𝒙 , [H]2𝒙) and T⊤G + T⊤H = Σ𝑺P𝑺.

All SSB commitment schemes in this work are algebraic or split-algebraic. Note that all
(split-)SSB commitments only differ on the key generation algorithm. For that reason we
sometimes refer to a commitment key distribution as the commitment scheme itself.

In the case of non-split algebraic SSB commitments, we can G-extract by computing

T⊤[𝒄] = T⊤[G𝒙] = [Σ𝑆P𝑆𝒙] = [𝒙𝑆],
while in the case of split-algebraic commitments, we can only G𝑇 extract. That is, we can
compute values [𝒖𝑆]1 , [𝒗𝑆]2 such that 𝑒([𝒖𝑆]1 , [1]2)+𝑒([1]1 , [𝒗𝑆]2) = [𝒙𝑆]𝑇 . Indeed, if [𝒄]1 = [G]1𝒙
and [𝒅]2 = [H]2𝒙 then we can compute [𝒖𝑆]1 = T[𝒄]1 and [𝒗𝑆]2 = T[𝒅]2 and it holds that

𝒖𝑆 + 𝒗𝑆 = T⊤𝒄 + T⊤𝒅 = T⊤G𝒙 + T⊤H𝒙 = (T⊤G + T⊤H)𝒙 = Σ𝑆P𝑆𝒙 = 𝒙𝑆 .

Note that by definition, if the commitment key generation does not fail, the commitments are
perfectly binding/extractable at 𝑆. This will be the case for commitment schemes with perfect
completeness. We will utilize this fact in our constructions to simplify some of the arguments.

4.2 Somewhere Statistically Binding Commitments with Oblivious Trapdoor Gen-
eration

We present in Fig. 2 a simple construction of an SSB with Oblivious Key Generation from
plain SSB commitments with locality parameter 1. The setup algorithm instantiates 𝐾 different
commitment keys and, given a set 𝑆, each of the first |𝑆 | commitment keys is extractable in a
different position 𝑠 ∈ 𝑆. The last 𝐾 − |𝑆 | are binding for the empty set. To commit to a value
𝒙, one gives 𝐾 commitments to this value with each of the commitment keys. To verify an
opening, one verifies each individual opening and that all the openings are the same.

Note that the ordering of the elements in 𝑆 is arbitrary and, in some sense, there’s no
unique key generation algorithm for a set 𝑆. Indeed, it is only necessary that the commitment
key contains 𝐾 commitment keys for locality 1 such that 𝑐𝑘𝑖1 , . . . , 𝑐𝑘𝑖 |𝑆 | are binding at 𝑠1 , . . . , 𝑠 |𝑆 |
respectively. Note that there are

( 𝐾
|𝑆 |

)
different choices of 𝑖1 , . . . , 𝑖𝑛 . For this reason, if the input

of the oblivious generator is just 𝑆′, it is impossible to know which commitment keys are the
ones corresponding to 𝑆′. To alleviate this, the oblivious key generator receives as advice the
indices where 𝑆′ “appears” in 𝑆 that is, 𝑖1 , . . . , 𝑖 |𝑆′ | such that 𝑠𝑖1 = 𝑠′1.

In this case we need to change a little the proof that oblivious trapdoor generation implies
no-signaling. We add a game Game𝒟1/2(1𝜅), between games 0 and 1, which is identical to
Game𝒟0 (1𝜅) but ℰ1 samples 𝑐𝑘𝑖 binding at {𝑠𝑖} if 𝑠𝑖 ∈ 𝑆′ and at ∅ if not. By the index-set hiding
property of 𝑐𝑘1 , . . . , 𝑐𝑘𝐾 the output of both games is indistinguishable. Game𝒟1 (1𝜅) is as before
but the oblivious key generator receives also the advise. The rest of the proof is exactly as
before
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CS′.KeyGen(gk, 𝑛, 𝐾, 𝑆):
• For 𝑠𝑖 ∈ 𝑆 set (ck𝑖 , 𝜏𝑖) ← CS.KeyGen(gk, 𝑛, 1, {𝑠𝑖}).
• For |𝑆 | + 1 ≤ 𝑖 ≤ 𝐾 set (ck𝑖 , 𝜏𝑖) ← CS.KeyGen(gk, 𝑛, 1, ∅).
• Set ck = (ck1 , . . . , ck𝐾), 𝜏 = ((𝜏1 , 𝑠1), . . . , (𝜏|𝑆 | , 𝑠 |𝑆 |)) and output (ck, 𝜏)

CS′.Com(ck = (ck1 , . . . , ck𝐾), 𝒙):
• For 1 ≤ 𝑖 ≤ 𝐾 compute 𝑐𝑖 ← CS.Com(ck𝑖 , 𝒙).
• Set 𝑐 = (𝑐1 , . . . , 𝑐𝐾) and output 𝑐.

CS′.Extract(𝜏 = ((𝜏1 , 𝑠1), . . . , (𝜏|𝑆 | , 𝑠 |𝑆 |)), 𝑐 = (𝑐1 , . . . , 𝑐𝐾)):
• For all 𝑠𝑖 ∈ 𝑆 compute 𝑦𝑠𝑖 ← CS.Extract(𝜏𝑖 , 𝑐𝑖).
• Set 𝒚 = (𝑦1 , . . . , 𝑦|𝑆 |) and output 𝒚.

CS′.OblKeyGen(gk, 𝑛, 𝐾, 𝑆′, 𝑎, ck = (ck1 , . . . , ck𝐾)):
• Parse 𝑎 as 𝑖1 , . . . , 𝑖 |𝑆′ | , the indices of the commitment keys binding at 𝑠𝑖 𝑗 ∈ 𝑆′.
• For 1 ≤ 𝑗 ≤ |𝑆′ | set (ck𝑖 𝑗 , 𝜏𝑖 𝑗 ) ← CS.KeyGen(gk, 𝑛, 1,

{
𝑠′𝑗
}
).

• Set ck = (ck1 , . . . , ck𝐾), 𝜏 = ((𝜏𝑖1 , 𝑠𝑖1), . . . , (𝜏𝑖 |𝑆 |′ , (𝑠𝑖 |𝑆 |′ )) and output (ck, 𝜏)

Figure 2: Oblivious SSB commitment scheme from𝐾 SSB commitments with locality parameter
1.

Theorem 3. Let CS be an SSB commitment with locality parameter 𝐾 = 1. Then construction CS′ of
Fig. 2 is an SSB commitment with Oblivious Trapdoor Generation.

Proof. First, we show that CS′ is an SSB commitment. For index-hiding we can use a standard
hybrid argument to show that the concatenation of 𝐾 commitment keys are indeed indistin-
guishable. Somewhere Statistical Binding and𝐺-extractability of CS′ follow from the respective
properties of CS. Indeed, for the former, note that each individual commitment is statistically
binding in one coordinate, and for a commitment-opening to verify, all commitments are
checked w.r.t. to the same opening; thus, effectively the commitment is statistically binding in
the set S. For the latter, we use the same argument and the fact that the extractor of CS can
𝐺-extract each value independently.

For oblivious trapdoor generation, note that the crs output by OblKeyGen follow exactly the
same distribution as the one output by KeyGen as well as a valid trapdoor for 𝑆′. □

Next, we present a more efficient SSB commitment scheme with oblivious trapdoor gener-
ation. The scheme is parameterized by a group description gk, the message space is Z𝑛𝑝 and
we extract [𝒙𝑆]𝜇. The construction is essentially the one given in [FLPS20], which in turn is a
generalization of the so called Multi-Pedersen commitments from [GHR15b], with a minor change
in the key generation algorithm.
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KeyGen(gk, 𝑛, 𝐾, 𝑆):
• Let A←𝒟𝑘 , B← Z𝐾+𝑘×𝐾−|𝑆 |𝑝 , W← Z𝐾−1×𝑘+1

𝑝 and define G0 =
(
B A

WA

)
.

• Let G𝑆 ← Z𝐾+𝑘×|𝑆 |𝑝 and Γ← Z𝐾+𝑘−|𝑆 |×𝑛−|𝑆 |𝑝 .

• Let T𝑆 ∈ Z𝐾+𝑘×|𝑆 |𝑝 s.t. T⊤𝑆G𝑆 = I|𝑆 | and T⊤𝑆G0 = 0|𝑆 |×𝐾+𝑘−|𝑆 |. Abort if such a matrix
does not exist.

• Let G = (G𝑆 |G0Γ)P𝑆. Output (ck, 𝑠𝑘) = ([G]𝜇 , (T𝑆 ,G)).
OblKeyGen(gk, 𝑛, 𝐾, 𝑆′, ck = [G]𝜇): //𝑆′ ⊆ 𝑆

• Sample G1 ← Z𝐾+𝑘−|𝑆′ |×|𝑆′ |𝑝 , G2 ← Z|𝑆′ |×|𝑆′ |𝑝 , R← Z|𝑆′ |×𝐾+𝑘−|𝑆′ |𝑝 .

• Compute a matrix T ∈ Z|𝑆′ |×|𝑆′ |𝑝 such that (G⊤1 R⊤ − G⊤2 )T = I|𝑆′ |. Abort if such a
matrix does not exist.

• Denote by [G𝑆
′]𝜇 the matrix containing the first 𝐾 + 𝑘 − |𝑆′ | rows of [G𝑆

′]𝜇.

• Output ckob = [G∗]𝜇 =
([G1]𝜇 [G𝑆

′]𝜇
[G2]𝜇 R[G𝑆

′]𝜇
)

P𝑆′ and 𝜏ob = T∗ =
(
R⊤T
−T

)
Com(ck, 𝒙): Parse ck = [G]𝜇 and output [𝒄]𝜇 = [G]𝜇𝒙.

Extract(𝜏, [𝒄]𝜇): Output [𝒙𝑆]𝜇 = T⊤𝑆 [𝒄]𝜇.

Figure 3: SSB commitment scheme with oblivious trapdoor generation parametrized by the
matrix distribution𝒟𝑘 .

For simplicity, we describe the oblivious key generation algorithm in terms of the permu-
tation P𝑆 while it is not really needed. Indeed, it only needs to randomly sample itself the
columns corresponding to 𝑆′ and sample the lower rows as a random combination of upper
rows or columns in 𝑆

′
.

In [FLPS20] it is shown that the Index Set Hiding property can be reduced to DDH with a
security lost of 2 log𝐾 when G0 is uniform using the results of [Vil12]. In our case G0 it is not
completely uniform as some part depends on𝒟𝑘 . Although it seems still possible to use [Vil12],
for simplicity we use a naive hybrid argument at the cost of a less tight reduction. Although
the security lost is 2𝐾 instead of 2 log𝐾, in general 𝐾 is small (constant in our instantiations)
and hence it doesn’t make much difference. We give a proof of the following theorem.
Theorem 4. Construction CS of Fig. 3 is an SSB commitment scheme. It is somewhere statistically
binding andG-Extractable with probability at least 1− 𝐾

𝑝 and Index Set Hiding with probability at least
1 − 2𝐾 · AdvMDDH-𝒟𝑘 (𝒟), where𝒟 is a PPT adversary against the𝒟𝑘-MDDH assumption.
Proof. We first show that CS.KeyGen aborts only with probability 𝐾

𝑝 . Let G⊥0 be a matrix whose
columns are a basis of the kernel of G⊤0 . Since G0 is uniformly distributed, by the Schwartz-
Zippel lemma, G0 has rank 𝐾 + 𝑘 − |𝑆 | with probability at least 1 − 𝐾+𝑘−|𝑆 |

𝑝 . Now, consider
the matrix G⊤𝑆G⊥0 . Again, by the Schwartz-Zippel lemma and the fact that G𝑆 is uniformly
distributed, this matrix has rank |𝑆 | with probability at least 1 − |𝑆 |𝑝 , and thus, it is invertible.
Let T be its inverse. This matrix exists except with probability 𝐾+𝑘−|𝑆 |+|𝑆 |

𝑝 = 𝐾+𝑘
𝑝 . Now, set

T𝑆 = G⊥0 T. We have that G⊤𝑆T𝑆 = G⊤𝑆G⊥0 T′ = I|𝑆 | and G⊤0 T𝑆 = G⊤0 G⊥0 T′ = 0𝐾+𝑘−|𝑆 |×|𝑆 |, which
concludes the proof.
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Index Set Hiding. Consider the following sequence of hybrid games.

• Game𝒟0 : In this game we sample (𝑐𝑘, 𝑠𝑘) ← KeyGen(1𝜆 , gk, 𝑛, 𝐾, 𝑆0) and output𝒟(𝑐𝑘).
• Game𝒟1 : In this game we sample (𝑐𝑘, 𝑠𝑘) ← KeyGen(1𝜆 , gk, 𝑛, 𝐾, ∅) and output𝒟(𝑐𝑘).
• Game𝒟2 : In this game we sample (𝑐𝑘, 𝑠𝑘) ← KeyGen(1𝜆 , gk, 𝑛, 𝐾, 𝑆1) and output𝒟(𝑐𝑘).

Noting that in Game0 and in Game1 the difference in the distributions of ck is that in the former
G𝑆0 is uniform, while in the later G𝑆0 = G0Γ𝑆0 , where Γ𝑆0 ∈ Z𝐾+𝑘−|𝑆 |×|𝑆0 |

𝑝 . Using a standard
hybrid argument, we can bound the advantage of distinguishing these games by |𝑆0 | ≤ 𝐾 times
the advantage of breaking the G0-MDDH assumption. It is not hard to see that the G0-MDDH
can be reduced (without security lost) to the 𝒟𝑘-MDDH assumption. We conclude that the
advantage of distinguishing Game0 and Game1 can be bounded by 𝐾 · Adv𝒟𝑘-MDDH. The same
argument applies to Game1 and in Game2.

Somewhere Statistically Binding. Finally we show the somewhere statistically binding and
extractability property. Let G𝑆 ,G0 , Γ, implicitly defined by (𝑐𝑘, 𝑠𝑘) ← CS.KeyGen(gk, 𝑛, 𝐾, 𝑆).
Conditioned on CS.KeyGen not failing, which only happens with probability at most 1− 𝐾

𝑝 , the
matrix T𝑆 ∈ Z𝐾+𝑘×|𝑆 |𝑝 satisfies T⊤𝑆G = Σ𝑆P𝑆.

Now let 𝒙 , 𝒙′ ∈ Z𝑛 . For extractability, note that T⊤CS.Com([G]𝜇 , 𝒙) = T⊤[G]𝜇𝒙 = [Σ𝑆P𝑆]𝜇𝒙 =
[𝒙𝑆]𝜇. Additionally, if CS.com([G]𝜇 , 𝒙) = CS.com([G]𝜇 , 𝒙′) and we multiply by T⊤ on both sides,
we get that 𝒙𝑆 = 𝒙′𝑆 □

In the next Theorem we assume 𝒟𝑘 outputs full rank matrices with overwhelming proba-
bility. Note that this is true for most matrix distributions such as the uniform and the linear
family.

Theorem 5. Construction CS of Fig. 3 satisfies Oblivious Trapdoor Generation. Furthermore, for all
even unbounded𝒟 = (𝒟1 ,𝒟2), against oblivious trapdoor generation, AdvCS

Oblv(𝒟) ≤ 𝐾
𝑝 .

Proof. Let 𝐾 ≤ 𝑛 and 𝑆′ ⊆ 𝑆 ⊆ [𝑛]. We first show that the oblivious key follows exactly
the same distribution as the original key. Let 𝑐𝑘 := [G]𝜇 be the output of KeyGen(gk, 𝑛, 𝐾, 𝑆)
and 𝑐𝑘ob = [G∗]𝜇 be the output of OblKeyGen(gk, 𝑛, 𝐾, 𝑆′, [G]). We can write 𝑐𝑘 as G =
((G𝑆′ |G𝑆′ |𝑆)P𝑆′ |𝑆 |G0Γ)P𝑆.

Let G𝑆′ |𝑆 ∈ Z𝐾+𝑘−|𝑆
′ |×𝐾−|𝑆′ |

𝑝 , G𝑆′ |𝑆 ∈ Z|𝑆
′ |×𝐾−|𝑆′ |

𝑝 , G0 ∈ Z𝐾+𝑘−|𝑆′ |×𝑘𝑝 , G0 ∈ Z|𝑆
′ |×𝑘

𝑝 , such that

G𝑆′ |𝑆 =
(
G𝑆′ |𝑆
G𝑆′ |𝑆

)
,G0 =

(
G0
G0

)
. We claim that there exists a matrix R ∈ Z|𝑆′ |×𝐾+𝑘−|𝑆′ |𝑝 , uniformly

distributed, such that
(
G𝑆′ |𝑆 |G0

)
= R

(
G𝑆′ |𝑆 |G0

)
as in the output of OblKeyGen. If this is the

case, the distributions of ck output by KeyGen and ckob output by OblKeyGen are identical, since
we can write

G =
(
G𝑆′

((
G𝑆′ |𝑆 G0
G𝑆′ |𝑆 G0

) (
I 0
0 Γ

))
P𝑆′ |𝑆

)
P𝑆

=

(
G𝑆′

((
G𝑆′ |𝑆 G0

R
(
G𝑆′ |𝑆 G0

)) (
I 0
0 Γ

))
P𝑆′ |𝑆

)
P𝑆

=
(
G𝑆′

G𝑆
RG𝑆

)
P𝑆 .
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First we show that the matrix (G𝑆′ |𝑆 |G0) is full rank with overwhelming probability. Indeed,
G0 =

(
A

WA

)
, where A ← 𝒟𝑘 ,W ← Z𝐾−1−|𝑆′ |×𝑘+1

𝑝 , and it has rank 𝑘. By the fact that G𝑆′ |𝑆
is uniform, using the Schwartz-Zippel lemma we get that (G𝑆′ |𝑆 |G0) has rank 𝐾 + 𝑘 − |𝑆′ |
except with probability 𝐾−|𝑆′ |

𝑝 . This means that the matrix is invertible and we can set R =

(G𝑆′ |𝑆 |G0)(G𝑆′ |𝑆 |G0)−1. Furthermore, both G𝑆′ |𝑆 and G0 = WA are uniform, the latter since
W ∈ Z|𝑆′ |×𝑘+1

𝑝 is uniformly distributed and A is full rank, and the former by construction.
To conclude the proof, we to show that the trapdoor output by OblKeyGen(gk, 𝑛, 𝐾, 𝑆′, [G])

is correct w.r.t 𝑐𝑘ob, that is T∗⊤G∗ = Σ𝑆′. By a simple calculation,

T∗⊤G∗ =
(
T⊤R −T

) (
G1 G𝑆

′

G2 RG𝑆′

)
=

(
T⊤(RG1 −G2) T⊤RG𝑆

′ − T⊤RG𝑆
′
)
=

(
I|𝑆′ | 0

)
= Σ𝑆′

where T⊤(RG1 −G2) = I𝑆′ by construction. □

In the next sections we assume that KeyGen and OblKeyGen do not abort. This is w.l.o.g.
since we can always re-sample values when an abort happens. Note that in this case, the keys
of both KeyGen and OblKeyGen are “somewhere perfectly binding”.

4.3 Kronecker Product of two SSB commitments

Let CS be an algebraic commitment scheme and let [G]1 ∈ Gℓ1×𝑛1
1 and [H]2 ∈ Gℓ2×𝑛2

2 commitment
keys. We note there’s the following key and input homomorphism

CS.Com([G]1 , 𝒙) ⊗ CS.Com([H]2 , 𝒚) = CS.Com([G ⊗ H]𝑇 , 𝒙 ⊗ 𝒚),
where ⊗ is the Kronecker product and is naturally defined w.r.t. the pairing function when
the operands are group elements. To get a structure preserving primitive, so that we can
later efficiently show that committed values satisfy some relation, it is better to consider all
keys defined over one of the base groups [AFG+16]. However, as noted in [GHR15b], in
asymmetric groups it is not clear whether [G ⊗H]1 (or [G ⊗H]2) defines an SSB commitment.
Indeed, if we use the ISH of CS2 to prove that [G ⊗ H]1 is ISH, it turns out that we only know
[H]2 in group G2 and hence we can only compute G ⊗ [H]2 which is trivially distinguishable
from the original key. To overcome this problem, the authors in [GHR15b] used the split key
[Q1]1 = [G ⊗ H + Z]1 ∈ Gℓ1ℓ2×𝑛1𝑛2

1 , [Q2]2 = [−Z] ∈ Gℓ1ℓ2×𝑛1𝑛2
2 , for Z← Zℓ1ℓ2×𝑛1𝑛2

𝑝 . In this case we
can write the homomorphism as follows

CS.Com([G]1 , 𝒙) ⊗ CS.Com([H]2 , 𝒚) =
𝑒(CS.Com([Q1]1 , 𝒙 ⊗ 𝒚), [1]2) + 𝑒([1]1 ,CS.Com([Q2]2 , 𝒙 ⊗ 𝒚). (4)

If additionally CS is an instance of the scheme defined in figure 3, the following theorem holds.

Theorem 6. For 𝑛𝑖 ∈ N, 𝐾𝑖 ≤ 𝑛𝑖 , 𝑆𝑖 ⊆ [𝑛𝑖] and |𝑆𝑖 | ≤ 𝐾𝑖 , let CS1 and CS2 be two instances of the
SSB commitment of figure 3 such that (𝑐𝑘𝑖 , 𝑠𝑘𝑖) ← CS𝑖 .KGen(𝑔𝑘𝑖 , 𝑚𝑖 , 𝐾𝑖 , 𝑆𝑖) outputs a key over G𝑖 ,
where 𝑖 ∈ {1, 2}. Then the commitment scheme kCS, where kCS.KGen(𝑔𝑘, (𝑛1 , 𝑛2), (𝐾1 , 𝐾2), (𝑆1 , 𝑆2))
is defined as

kCS.KGen(𝑔𝑘, 𝑐𝑘1 , 𝑐𝑘2 , 𝑠𝑘1 , 𝑠𝑘2) ://(𝑐𝑘𝑖 , 𝑠𝑘𝑖) ← CS1.KGen(𝑔𝑘, 𝑚𝑖 , 𝐾𝑖 , 𝑆𝑖)
1. Parse 𝑠𝑘1 as (G,TG) and 𝑠𝑘2 as (H,TH).
2. Let Q1 = G ⊗ H + Z and Q2 = −Z, where Z← Z𝐾1𝐾2×𝑛1𝑛2

𝑝 .
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3. Let TQ = TG ⊗ TH and aux = (𝑐𝑘1 , 𝑐𝑘2).
4. output 𝑐𝑘 = ([Q1]1 , [Q2]2 , aux) and 𝑠𝑘 = (TQ ,Q1 ,Q2 ,G,H).

is a split algebraic oblivious SSB commitment scheme.

Proof. Index Set Hiding. Let 𝑆1 , 𝑆′1 ⊆ [𝑛1], |𝑆1 |, |𝑆′1 | ≤ 𝐾1 and 𝑆2. The result follows from
the indistinguishability of the following distributions (this is essentially part of the proof in
[GHR15a, Theorem 6]). For simplicity we write X← CS.KGen, where X is some part of (𝑐𝑘, 𝑠𝑘),
meaning that after running KGen we discard everything but X. Recall that aux = ([G]1 , [H]2).

1. aux, [G ⊗ H + Z]1 , [−Z]2, G← CS.Setup(𝑔𝑘, 𝑛1 , 𝐾1 , 𝑆1), H← CS.Setup(𝑔𝑘, 𝑛2 , 𝐾2 , 𝑆2),
2. aux, [G]1 ⊗ H + [Z]1 , [−Z]2, G← CS.Setup(𝑔𝑘, 𝑛1 , 𝐾1 , 𝑆1), H← CS.Setup(𝑔𝑘, 𝑛2 , 𝐾2 , 𝑆2),
3. aux, [G]1 ⊗ H + [Z]1 , [−Z]2, G← CS.Setup(𝑔𝑘, 𝑛1 , 𝐾1 , 𝑆′1), H← CS.Setup(𝑔𝑘, 𝑛2 , 𝐾2 , 𝑆2),
4. aux, [Z]1 ,G ⊗ [H]2 − [Z]2, G← CS.Setup(𝑔𝑘, 𝑛1 , 𝐾1 , 𝑆′1), H← CS.Setup(𝑔𝑘, 𝑛2 , 𝐾2 , 𝑆2),
5. aux, [Z]1 ,G ⊗ [H]2 − [Z]2, G← CS.Setup(𝑔𝑘, 𝑛1 , 𝐾1 , 𝑆′1), H← CS.Setup(𝑔𝑘, 𝑛2 , 𝐾2 , 𝑆′2),
6. aux, [G ⊗ H + Z]1 , [−Z]2, G← CS.Setup(𝑔𝑘, 𝑛1 , 𝐾1 , 𝑆′1), H← CS.Setup(𝑔𝑘, 𝑛2 , 𝐾2 , 𝑆′2).

Perfect indistinguishability between distributions 1-2, 3-4 and 5-6 follows from the fact that
always both distributions are uniformly distributed conditioned on their sum being equal to
G ⊗ H. On the other hand, computational indistinguishability of distributions 2-3 and 4-5
follows from the ISH of CS1 and CS2 respectively.

Somewhere Statistically Binding and𝐺-Extractability. Let 𝒛, 𝒛′ ∈ Z𝑛1𝑛2
𝑝 such that kCS.Com(𝑐𝑘, 𝒛) =

kCS.Com(𝑐𝑘, 𝒛′). Let TG and TH the trapdoors associated to [G]1 and [H]2, respectively, then

0 = (TG ⊗ TH)(G ⊗ H + Z)(𝒛 − 𝒛′) − (TG ⊗ TH)Z(𝒛 − 𝒛′)
= (TG ⊗ TH)(G ⊗ H)(𝒛 − 𝒛′)
= (TGG) ⊗ (THH)(𝒛 − 𝒛′)
= (Σ𝑆1P𝑆1) ⊗ (Σ𝑆2P𝑆2)(𝒛 − 𝒛′)
= (Σ𝑆1 ⊗ Σ𝑆2)(P𝑆1 ⊗ P𝑆2)(𝒛 − 𝒛′)
= 𝒛𝑆1 ,𝑆2 − 𝒛′𝑆1 ,𝑆2

,

Note that this also shows that the trapdoors correctly extracts [𝒛𝑆1 ,𝑆2]𝑇 from kCS.Com(𝑐𝑘, 𝒛).
Oblivious Trapdoor Generation. We first recall the following commutative property of kro-

necker products.

Fact 3. For every𝑚1 , 𝑚2 , 𝑛1 , 𝑛2 ∈ N there exists permutation matrices Π1 ∈ {0, 1}𝑚1𝑛1×𝑚1𝑛1 ,Π2 ∈
{0, 1}𝑚2𝑛2×𝑚2𝑛2 such that for any pair of matrices M ∈ Z𝑚1×𝑚2

𝑝 ,N ∈ Z𝑛1×𝑛2
𝑝 it holds that M ⊗N =

Π1(N ⊗M)Π2. Note that Π1 and Π2 depend only on the size of M and N but not the values of
their entries.

We construct an oblivious key generation algorithm as follows.

kCS.OblKeyGen(𝑔𝑘, (𝑛1 , 𝑛2), (𝐾1 , 𝐾2), (𝑆1 , 𝑆2), 𝑐𝑘) :
1. Parse 𝑐𝑘 as [Q1]1 , [Q2]2 and aux = ([G]1 , [H]2).
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2. Run
([G∗],T1) ← CS1.OblKeyGen(𝑔𝑘, 𝑛1 , 𝐾1 , 𝑆1 , [G]1)
([H∗]2 ,T2) ← CS2.OblKeyGen(𝑔𝑘, 𝑚2 , 𝐾2 , 𝑆2 , [H]2)

and use the random coins of OblKeyGen to retrieve G∗𝑆1
,R1 and H∗𝑆1

,R2 such that

[G∗]1 =

(
[G∗𝑆1
]1 [G𝑆1

]1
R1[G𝑆1

]1

)
P𝑆1 and H∗ =

(
[H∗𝑆2
]2 [H𝑆2

]2
R2[H𝑆2

]2

)
P𝑆2 ,

as defined in Fig. 3.
3. Let [A1]1 , [A2]2 be the matrices containing the first (𝐾1 + 𝑘 − |𝑆1 |)(𝐾2 + 𝑘) rows of
[(Q1)𝑆1 ,𝑆2

]1 and [(Q2)𝑆1 ,𝑆2
]2, respectively.

4. Let Π1 and Π2 the permutation matrices of Fact 3 for matrices with (𝐾1 + 𝑘 − |𝑆 |1)
and (𝐾2 + 𝑘) rows, and 𝑛1 − |𝑆1 | and 𝑛2 − |𝑆2 | columns.

5. Define [B1]1 and [B2]2 be the matrices of the first (𝐾1+ 𝑘− |𝑆1 |)(𝐾2+ 𝑘− |𝑆2 |) columns
of Π⊤1 [A1]1Π⊤2 and Π⊤1 [A2]2Π⊤2 , respectively.

6. Let [A∗1]1 = Π1

( [B1]1
(R2 ⊗ I𝐾1+𝑘−|𝑆1 |)[B1]1

)
Π2 and [A∗2]2 = Π1

( [B2]2
(R2 ⊗ I𝐾1+𝑘−|𝑆1 |)[B2]2

)
Π2.

7. Pick Z← Z(𝐾1+𝑘)(𝐾2+𝑘)×𝑛1𝑛2
𝑝 and let

[Q∗1]1 =
(
[Z𝑆1 ,[𝑛2]]1

���[G∗
𝑆1
]1 ⊗ H∗𝑆2

+ [Z𝑆1 ,𝑆2
]1
��� ( [A∗1]1(R1 ⊗ I𝐾2+𝑘)[A∗1]1

)
+ [Z𝑆1 ,𝑆2

]1
)
(P𝑆1 ⊗ P𝑆2)

[Q∗2]2 =
(
G∗𝑆1
⊗ [H∗]2 − [Z𝑆1 ,[𝑛2]]1

��� − [Z𝑆1 ,𝑆2
]2
��� ( [A∗2]2(R1 ⊗ I𝐾2+𝑘)[A∗2]2

)
− [Z𝑆1 ,𝑆2

]2
)
(P𝑆1 ⊗ P𝑆2)

8. Let aux = ([G∗]1 , [H∗]2) and T = T1 ⊗ T2.
9. Return (𝑐𝑘 = ([Q∗1]1 , [Q∗2]2 , aux), 𝜏 = T).

Now we show that 𝑐𝑘 is correctly distributed. Since CS1 and CS2 are both oblivious SSB
commitments, it holds that aux = [G∗]1 , [H∗] follows the same distribution as the honest aux.
It is enough to show that Q∗ = Q∗1 + Q∗2 = G∗ ⊗ H∗. This is the case since if this holds,
the commitment key [Q∗1]1 , [Q∗2]2 consists of two uniform matrices, conditioned on their sum
equaling G∗ ⊗ H∗, and this is the distribution of the honest key as well.

It is clear that this is the case for Q∗𝑆1 ,[𝑛2] and Q∗
𝑆1 ,𝑆2

, so we show it is also the case for Q∗
𝑆1 ,𝑆2

.

First, note that Q𝑆1 ,𝑆2
= (Q1 +Q2)𝑆1 ,𝑆2

=
(
G𝑆1
⊗ H𝑆2

G𝑆1
⊗ H𝑆2

)
and then A = A1 +A2 = G𝑆1

⊗H𝑆2
. It

follows that Π⊤1 AΠ⊤2 = Π⊤1 Π1H𝑆2
⊗G𝑆1

Π2Π⊤2 =

(
H𝑆2
⊗ G𝑆1

H𝑆2
⊗ G𝑆1

)
and hence B = B1+B2 = H𝑆2

⊗G𝑆1
.
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Finally we have that

Q∗
𝑆1 ,𝑆2

=
(

A∗1 +A∗2(R1 ⊗ I𝐾2+𝑘)(A∗1 +A∗2)
)
=

©­«Π1

(
B1 + B2

(R2 ⊗ I𝐾1+𝑘−|𝑆1 |)(B1 + B2)
)

Π2

(R1 ⊗ I𝐾2+𝑘)(A∗1 +A∗2)
ª®¬

=
©­­«
Π1

(
H𝑆2
⊗ G𝑆1

(R2 ⊗ I𝐾1+𝑘−|𝑆1 |)(H𝑆2
⊗ G𝑆1

)

)
Π2

(R1 ⊗ I𝐾2+𝑘)(A∗1 +A∗2)

ª®®¬ =
©­­«

Π1

(
H𝑆2

R2H𝑆2

)
⊗ G𝑆1

Π2

(R1 ⊗ I𝐾2+𝑘)(A∗1 +A∗2)

ª®®¬
=

(
Π1H∗

𝑆2
⊗ G𝑆1

Π2

(R1 ⊗ I𝐾2+𝑘)(A∗1 +A∗2)

)
=

(
G𝑆1
⊗ H∗

𝑆2

(R1 ⊗ I𝐾2+𝑘)(G𝑆1
⊗ H∗

𝑆2
)

)
= G∗

𝑆1
⊗ H∗

𝑆2
.

For finishing the proof it suffices to show that the rest of the input given to the dis-
tinguisher is correctly distributed. Note that, following definition 4 and fact 2, [𝒚𝑆′1 ,𝑆′2]𝑇 =
(Extract(T𝑆1 ,𝑆2 , [𝒄]1 , [𝒅]2))𝑆′1 ,𝑆′2 = [𝒛𝑆′1 ,𝑆′2 |𝑆′1 ,𝑆2]𝑇 = [𝒛𝑆′1 ,𝑆′2]𝑇 = Extract(T𝑆′1 ,𝑆′2 , [𝒄]1 , [𝒅]2). □

Corollary 1. Construction from fig. 3 instantiated in G1 is ISH even when the adversary is given
ℎ(𝑠𝑘) = ([H]2 , [G ⊗ H + Z]1 , [−Z]2). Similarly, it is also ISH when instantiated in G2 when the
adversary is given ℎ(𝑠𝑘) = ([G]1 , [G ⊗ H + Z]1 , [−Z]2).
Proof. Follows directly from the ISH of the kronecker SSB commitment of Theorem 6. Specif-
ically, ISH for G1 follows from the indistinguishability of distributions 1 to 3 from Theorem 6,
and ISH for G2 follows from the indistinguishability of distributions 3 to 6. □

5 Quasi-Arguments with Preprocessing

In this section we introduce an extension of Quasi Arguments as defined in [KPY19] which
adds support for language dependent crs or preprocessing such as the so called QA-NIZK argu-
ments [JR13]. Additionally we use different languages for completeness and local soundness,
i.e. promise problems, to incorporate the “knowledge transfer” soundness of [GR19].

Following [JR13], languages are parametrized by 𝜌 ∈ ℒpar and 𝜌 sampled from some
distribution𝒟par. We say tat𝒟par is witness samplable if 𝜌 can be efficiently sampled together
with a witness 𝜃 for 𝜌 ∈ ℒpar. We simply write (𝜃, 𝜌) ← 𝒟par. Each 𝜌 ∈ ℒpar defines a language
ℒ𝜌 with the corresponding relations ℛyes

𝜌 , that is ℒ𝜌 = {𝑥 | ∃𝑤 s.t. (𝑥, 𝑤) ∈ ℛyes
𝜌 }. After

the language is fixed there is a (language dependent) prepossessing stage where a common
reference string is generated. Going a step forward, we would like our statements to be
commitments and that ℛyes

𝜌 puts some restriction on the commitment opening. Since we will
be using SSB commitments, the language parameter must contain the SSB commitment key.
Therefore, we assume distribution 𝒟par receives as input 𝑑 ∈ N (the size of the opening), a
locality parameter 𝐾 ≤ 𝑑 and a set 𝑆 ⊆ [𝑑]. It will be useful to define ℒyes

𝜌 = ℒ𝜌 and ℒno
𝜌 the

complement of ℒyes
𝜌 , and similarly define ℛyes

𝜌 and ℛno
𝜌 . Traditional arguments of knowledge

require that from any accepting statement and proof pair one can extract a witness 𝑤 such that
(𝑥, 𝑤) ∈ ℛno

𝜌 only with negligible probability.In a quasi-argument of knowledge only a small
part of the witness 𝑤𝑆 is extracted and (𝑥, 𝑤𝑆) ∈ ℛyes

𝜌,𝑆 with overwhelming probability, where
ℛyes

𝜌,𝑆 is a “local version” of ℛyes
𝜌 . 14

14In the case 𝑥 is a 3-CNF formula, in [KPY19] the authors define ℛyes
𝜌,𝑆 as the pairs (𝑥, 𝑤) where 𝑤 is a “locally

satisfying assignment”. This means that every clause 𝐶 in 𝑥 with all variables in 𝑆, is satisfied by 𝑤.

34



Our final addition is support for arguments of knowledge transfer (AoKT) [GR19]. In a
nutshell, an AoKT enables to “succinctly reuse” an AoK of the opening of some commitment
𝐶 for constructing another AoK for commitment 𝐷. That is, given an opening 𝑤 for 𝐶, it
enables to give a succinct proof that 𝐷 opens to 𝑔(𝑤). Importantly, AoKTs can be based on
falsifiable assumptions. Following [GR19], 𝜌 ∈ ℒpar defines languages ℒyes

𝜌 and ℒno
𝜌 , with

ℒno
𝜌 not necessarily the complement of ℒyes

𝜌 (i.e. a promise problem), with their corresponding
relations ℛyes

𝜌 and ℛno
𝜌 . For no instances, the adversary provides a promise 𝑤∗ for 𝑥. In [GR19]

𝑥 = (𝐶, 𝐷) and (𝐶, 𝐷, 𝑤∗) ∈ ℒno
𝜌 if 𝑤∗ is an opening for 𝐶 but 𝑔(𝑤∗) is not an opening for 𝐷.

In our instantiations 𝑥 will be two SSB commitments to 𝐶1 , . . . , 𝐶𝑑 and 𝐷1 , . . . , 𝐷𝑑 such that
𝐶𝑖 opens to 𝑤 and 𝐷𝑖 to 𝑔𝑖(𝑤). From the two SSB commitments we can extract 𝐶𝑆 and 𝐷𝑆.
Furthermore, 𝐶𝑖 and𝐷𝑖 might not be extractable (actually, they will be Pedersen commitments)
an hence the extractor can only compute 𝑓 (𝑤, 𝑆) = {Com(𝑐𝑘𝑖 , 𝑤) : 𝑖 ∈ 𝑆}.

We define the yes and no languages as

ℒyes
𝜌 = {𝑥 | ∃𝑤 s.t. (𝑥, 𝑤) ∈ ℛyes

𝜌,𝑆}, ℒno
𝜌 = {(𝑥, 𝑤∗) | ∃𝑦 s.t. (𝑥, 𝑦, 𝑤∗) ∈ ℛno

𝜌,𝑆},
where𝑤∗ is the promise of the adversary and 𝑦 is the local 𝑓 -witness that we can extract from the
adversary. Intuitively, the two witnesses of the languages are different kind of objects. Witness
𝑦 is the value we extract from the adversary, which can’t be equal to 𝑓 (𝑤, 𝑆) for successful
adversaries, but should lie the image of 𝑓 anyway. On the other hand 𝑤 is a “proper” witness
from which an 𝑦 can be computed and hence belongs to the preimage of 𝑓 .15

5.1 Arguments with No-signaling extraction and Oblivious CRS Generation

Similarly to the way we treated commitment schemes, we don’t directly prove the existence of
no-signaling extractors but first show the existence of an Oblivious CRS Generation algorithm.
We then show the latter notion implies the former. For convenience, we start defining a quasi
argument without no-signaling extraction but only local soundness. For local soundness, we
use a weaker variant of the strong Quasi-Adaptive soundness of [JR13] where the adversary
chooses (𝜌, 𝜃) ∈ ℒpar. Instead, we honestly sample parameter 𝜌 and reveal part of the witness
ℎ𝑙𝑠(𝜃) to the adversary, for some function ℎ𝑙𝑠 . When we don’t require computational assump-
tions on 𝜌, as in quasi arguments of membership in a linear space, ℎ𝑙𝑠 might be the identity
function and then our definition becomes strong soundness as defined in [JR13]. In knowledge
transfer arguments, soundness holds provided the hardness of some computational assump-
tion defined by 𝜌. For this reason ℎ𝑙𝑠 can’t be the identity and some part of 𝜃 must remain
hidden.

In practice ℎ𝑙𝑠 models correlated information leaked by another protocol, typically as a
result of sharing the commitment keys. If local knowledge soundness holds even when the
adversary is given ℎ𝑙𝑠(𝜃), it means that any other protocol for which the crs can be derived
from ℎ𝑙𝑠(𝜃) can be safely executed with a “correlated crs”.

It will be useful to consider vectors of sets of size 𝑡. Namely 𝑺 = (𝑺1 , . . . , 𝑺𝑡), for some 𝑡 ∈ N.

Definition 7. An ℎ𝑙𝑠-strong locally extractable proof system Π for the parameter languageℒpar and
relations ℛyes

𝜌 ,ℛno
𝜌,𝑺 is a tuple of PPT algorithms Π = (K,Prove,Verify,Extract)where

• (𝜌, 𝜃) ← 𝒟par(𝑔𝑘, 𝑑,𝑲 , 𝑺): Parameter generation 𝒟par takes as input a group key 𝑔𝑘, the
locality parameter 𝑲 and a set 𝑺 ⊆ ([𝑑], . . . , [𝑑]) with |𝑺 | ≤ 𝑲; it outputs an instance
witness pair (𝜌, 𝜃) of ℒpar.

15The original definition from [GR19] is syntactically different as 𝑤 is part of the statement in the yes language.
However, as the authors said, the verifier can’t read 𝑤 as it will render the verification process not succinct. Since 𝑦
becomes irrelevant, we prefer to eliminate it from the yes language.
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• (crs, 𝜏) ← K(𝜌, 𝜃): K takes as input an instance-witness pair (𝜌, 𝜃) of ℒpar; it outputs a
common reference string crs and an extraction trapdoor 𝜏.

• 𝜋← Prove(crs, 𝑥, 𝑤): Prove takes as input crs and a statement-witness pair (𝑥, 𝑤) of ℒyes
𝜌 ;

it outputs a proof 𝜋.

• 𝑏 ← Verify(crs, 𝑥,𝜋): Verify takes as input crs, a statement 𝑥 and a proof 𝜋; it outputs a bit
𝑏 indicating if the proof 𝜋 is a valid proof.

• 𝑦 ← Extract(𝜏, 𝑥,𝜋): Extract takes as input the extraction trapdoor 𝜏, a statement 𝑥 and a
proof 𝜋, and outputs a local witness 𝑦 for the set 𝑺.

For all 𝜿 ∈ N𝑡 ,𝑲 ≤ (𝑑, . . . , 𝑑) ∈ N𝑡 , 𝑺 ⊆ ([𝑑], . . . , [𝑑]), with |𝑺 | ≤ 𝑲, Π satisfies the following
properties:

• Completeness: For all (𝜌, 𝜃) ∈ ℒpar and 𝑥, 𝑤 ∈ {0, 1}∗

Pr
𝑔𝑘←𝒢(1𝜅)

[
Verify(crs, 𝑥,𝜋) = 1
∨ (𝑥, 𝑤) ∉ ℛyes

𝜌,𝑺

(crs, 𝜏) ← K(𝜌, 𝜃);
𝜋← Prove(crs, 𝑥, 𝑤)

]
≥ 1 − negl(𝜅)

• ℎ𝑙𝑠-Strong Local Knowledge Soundness: For all PPT𝒜

Pr
𝑔𝑘←𝒢(1𝜅)


Verify(crs, 𝑥,𝜋) = 0
∨ (𝑥, 𝑦, 𝑤∗) ∉ ℛno

𝜌,𝑺

(𝜌, 𝜃) ← 𝒟par(𝑔𝑘, 𝑑,𝑲 , 𝑺);
(crs, 𝜏) ← K(𝜌, 𝜃);

(𝑥, 𝑤∗ ,𝜋) ← 𝒜(𝜌, ℎ𝑙𝑠(𝜃), crs);
𝑦 ← Extract(𝜏, 𝑥,𝜋)

 ≥ 1 − negl(𝜅)

Next, we define the no-signaling property of quasi-arguments. Similarly as with strong
knowledge soundness, we consider a stronger definition where the adversary is given some
function of 𝜃, namely ℎ𝑛𝑠(𝜃).
Definition 8. An ℎ𝑙𝑠-strong locally extractable proof system Π for the parameter language
ℒpar and relations ℛyes

𝜌,𝑺 ,ℛno
𝜌,𝑺 is an (ℎ𝑙𝑠 , ℎ𝑛𝑠)-quasi argument if it satisfies ℎ𝑛𝑠-strong no-signaling

extraction. That is, for all 𝜅 ∈ N,𝑲 ≤ 𝑑 ∈ N𝑡 , 𝑺′ ⊆ 𝑺 ⊆ ([𝑑], . . . , [𝑑])with |𝑺 | ≤ 𝑲, and all PPT𝒜
and PPT𝒟��������� Pr

𝑔𝑘←𝒢(1𝜅)


𝒟(crs, 𝑥,𝜋, 𝑦𝑺′) = 1

(𝜌, 𝜃) ← 𝒟par(𝑔𝑘, 𝑑,𝑲 , 𝑺);
(crs, 𝜏) ← K(𝜌, 𝜃);

(𝑥,𝜋) ← 𝒜(𝜌, ℎ𝑛𝑠(𝜃), crs);
if Verify(crs, 𝑥,𝜋) = 0: set 𝑥 = ⊥;

𝑦 ← Extract(𝜏, 𝑥,𝜋)


−

Pr
𝑔𝑘←𝒢(1𝜅)


𝒟(crs, 𝑥,𝜋, 𝑦′) = 1

(𝜌, 𝜃) ← 𝒟par(𝑔𝑘, 𝑑,𝑲 , 𝑺′);
(crs, 𝜏) ← K(𝜌, 𝜃);

(𝑥,𝜋) ← 𝒜(𝜌, ℎ𝑛𝑠(𝜃), crs);
if Verify(crs, 𝑥,𝜋) = 0: set 𝑥 = ⊥;

𝑦′← Extract(𝜏, 𝑥,𝜋)



���������� ≤ negl(𝜅)

Finally, we define the notion of oblivious locally extractable proof systems. The require-
ments are that (1) the crs alone does not help PPT adversaries gain information about the
extraction set used to sample the parameters 𝜌; (2) there exists a PPT algorithm OblSetup that
on input a set 𝑺′ ⊆ 𝑺 and (𝜌, crs), sampled for extraction on the superset of 𝑺, outputs new
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values (𝜌′, crs′) that are statistically close to (𝜌, crs) and additionally, it outputs a trapdoor 𝜏′
for 𝑺′ that outputs indistinguishable witnesses to the ones output for 𝑺 and restricted to 𝑺′.

We consider also a “ℎ𝑛𝑠-strong” variant of (1). Note that (2) holds against unbounded
adversaries which can compute 𝜃 by themselves.

Definition 9. A locally extractable proof systemΠ for the parameter languageℒpar and relations
ℛyes

𝜌 ,ℛno
𝜌,𝑺 is ℎ𝑛𝑠-Strong Oblivious if there exist a PPT algorithm OblSetup such that, for all

𝜅 ∈ N,𝑲 ≤ (𝑑, . . . , 𝑑) ∈ N𝑡 , 𝑺′, 𝑺 ⊆ ([𝑑], . . . , [𝑑])with |𝑺′ |, |𝑺 | ≤ 𝐾,

1. ℎ𝑛𝑠-Strong Index Set Hiding: for all PPT𝒟����� Pr
𝑔𝑘←𝒢(1𝜅)

[
𝒟(𝜌, crs, ℎ𝑛𝑠(𝜃)) (𝜌, 𝜃) ← 𝒟par(𝑔𝑘, 𝑑,𝑲 , 𝑺)

(crs, 𝜏) ← K(𝜌, 𝜃)
]
−

Pr
𝑔𝑘←𝒢(1𝜅)

[
𝒟(𝜌, crs, ℎ𝑛𝑠(𝜃)) (𝜌, 𝜃) ← 𝒟par(𝑔𝑘, 𝑑,𝑲 , 𝑺′)

(crs, 𝜏) ← K(𝜌, 𝜃)
] ����� ≤ negl(𝜅)

2. Oblivious trapdoor Generation: if 𝑺′ ⊆ 𝑺 then for all, (even unbounded) adversaries𝒜 and
distinguishers𝒟���������� Pr
𝑔𝑘←𝒢(1𝜅)


(𝜌, 𝜃) ← 𝒟par(𝑔𝑘, 𝑑,𝑲 , 𝑺); (crs, 𝜏) ← K(𝜌, 𝜃)

(𝜌′, crs′, 𝜏′) ← OblSetup(𝜌, crs, 𝑺′)
𝒟(𝜌′, crs′, 𝑦′) = 1 (𝑥,𝜋) ← 𝒜(𝜌, crs′)

if Verify(crs, 𝑥,𝜋) = 0: set 𝑥 = ⊥;
𝑦′← Extract(𝜏′, 𝑥,𝜋)


−

Pr
𝑔𝑘←𝒢(1𝜅)


(𝜌, 𝜃) ← 𝒟par(𝑔𝑘, 𝑑,𝑲 , 𝑺); (crs, 𝜏) ← K(𝜌, 𝜃)

𝒟(𝜌, crs, 𝑦𝑺′) = 1 (𝑥,𝜋) ← 𝒜(𝜌, crs)
if Verify(crs, 𝑥,𝜋) = 0: set 𝑥 = ⊥;

𝑦 ← Extract(𝜏, 𝑥,𝜋)


���������� ≤ negl(𝜅)

Next, we present a proof that if a locally extractable proof system satisfies oblivious crs
generation, then it is no-signaling. The proof is similar to the proof of Thm. 2.

Theorem 7. Let Π = (K,Prove,Verify,Extract,OblSetup) be an ℎ𝑛𝑠-strong Locally Extractable Proof
System for the parameter language ℒpar and relations ℛyes

𝜌 ,ℛno
𝜌,𝑺. Then, Π has ℎ𝑛𝑠-strong no signaling

extraction.

Proof. Fix any 𝑺′ ⊆ 𝑺 ⊆ ([𝑑], . . . , [𝑑])with |𝑺 | ≤ 𝑲, and let𝒟 be a PPT distinguisher against no
signaling extraction for these values, on instance-proof pairs output by a PPT 𝒜. We show by
a sequence of games that its success probability is negligible.

Game𝒟 ,𝒜0 (1𝜅): We execute (𝜌, 𝜃) ← 𝒟par(𝑔𝑘, 𝑑,𝑲 , 𝑺); (crs, 𝜏) ← K(𝜌, 𝜃); we then get
(𝑥,𝜋) ← 𝒜(𝜌, crs, ℎ𝑛𝑠(𝜃)) and change 𝑥 to ⊥ if Verify(crs, 𝑥,𝜋) = 0; we compute 𝑦 ←
Extract(𝜏, 𝑥,𝜋). The output is𝒟(crs, 𝑥,𝜋, 𝑦𝑺′).
Game𝒟 ,𝒜1 (1𝜅): We execute (𝜌, 𝜃) ← 𝒟par(𝑔𝑘, 𝑑,𝑲 , 𝑺); (crs, 𝜏) ← K(𝜌, 𝜃); we use the oblivi-
ous extractor to get (𝜌′, crs′, 𝜏′) ← OblSetup(𝜌, crs, 𝑺′); we then get (𝑥,𝜋) ← 𝒜(𝜌′, crs′, ℎ𝑛𝑠(𝜃))
and change 𝑥 to ⊥ if Verify(crs, 𝑥,𝜋) = 0; we compute 𝑦′← Extract(𝜏′, 𝑥,𝜋). The output is
𝒟(crs, 𝑥,𝜋, 𝑦′).
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Game𝒟 ,𝒜2 (1𝜅): This is the same as Game𝒟 ,𝒜1 but in the first step we sample parameters
for 𝑺′, that is we execute (𝜌, 𝜃) ← 𝒟par(𝑔𝑘, 𝑑,𝑲 , 𝑺′).
Game𝒟 ,𝒜3 (1𝜅): We execute (𝜌, 𝜃) ← 𝒟par(𝑔𝑘, 𝑑, 𝐾, 𝑺′); (crs, 𝜏) ← K(𝜌, 𝜃); we then get
(𝑥,𝜋) ← 𝒜(𝜌, crs, ℎ𝑛𝑠(𝜃)) and change 𝑥 to ⊥ if Verify(crs, 𝑥,𝜋) = 0; we compute 𝑦′ ←
Extract(𝜏, 𝑥,𝜋). The output is𝒟(crs, 𝑥,𝜋, 𝑦′).

We next show that for all 1 ≤ 𝑖 ≤ 3,���Pr
[
Game𝒟 ,𝒜𝑖 (1𝜅) = 1

]
− Pr

[
Game𝒟 ,𝒜𝑖−1 (1𝜅) = 1

] ��� ≤ negl(𝜅). (5)

• Case 𝑖 = 1, 𝑖 = 3. Note that for 𝑖 = 1, the difference in the two games is exactly as in
the two cases of the oblivious trapdoor generation property for 𝑺′ ⊆ 𝑺, so the outputs of
games are statistically close. For case 3, we use the same argument for 𝑺′ ⊆ 𝑺′.

• Case 𝑖 = 2 The only difference in the games is how we setup the initial crs, either by sam-
pling for 𝑺′ or for 𝑺. The output of the two games are computationally indistinguishable
by the index set hiding property, even when the adversary is given ℎ𝑛𝑠(𝜃).

By a standard argument we get that, for all PPT𝒟 ,𝒜,���Pr
[
Game𝒟 ,𝒜0 (1𝜅) = 1

]
− Pr

[
Game𝒟 ,𝒜5 (1𝜅) = 1

] ��� ≤ negl(𝜅).
Finally, noting that Game𝒟 ,𝒜0 , Game𝒟 ,𝒜3 correspond to the two cases of no signaling extraction,
we conclude the proof. □

5.2 Succinct Pairing Based Quasi-Arguments

In this section we present quasi arguments for various languages using SSB commitments with
oblivious trapdoor generation. We first present the simpler case, membership in linear spaces,
and then we present some extensionsof it, specifically a knowledge transfer version, and a
knowledge transfer version for statements split in the two groups. Finally,we use the latter to
build a quasi argument of knowledge transfer for hadamard products.

5.2.1 Quasi Arguments of Membership in Linear Spaces

Let 𝒰 be a witness samplable distributions sampling ([U]1 ,U), where U ∈ Z𝑑×𝑛𝑝 . We assume

that for any 𝑆 ⊆ [𝑑], given only [U𝑆]1 such that U = P⊤𝑆
(

U𝑆
U𝑆

)
there is an efficient way of sampling

[U𝑆].16 Also, let CS be an algebraic SSB commitment key. The parameter language is

ℒpar = {[U]1 , [G]1 | ∃U,G s.t. ([U]1 ,U) ∈ Sup(𝒰) and
([G]1 ,G,T) ∈ Sup(CS.KeyGen(gk, 𝑑, 𝐾, 𝑆))}

We assume that the corresponding relation is efficiently verifiable17. The parameters 𝜌 =
([U]1 , [G]1) ← (𝒰 ,CS.KeyGen(𝑔𝑘, 𝑑, 𝐾, 𝑆)) define the following relations:

ℛℒyes
𝜌 = {([𝒄]1 ,𝒘) : 𝒄 = GU𝒘},

ℛℒno
𝜌,𝑆 = {([𝒄]1 , [𝒚]1) : 𝒚 is a valid 𝑆-opening of 𝒄 and 𝒚 ∉ Im(U𝑆)}

16We will instantiate the argument with U a block lower triangular matrix where each row is of the form
(U1 ,U2 , . . . ,U𝑖 , 0, . . . , 0) where {U𝑖}𝑖 are independent random variables. Then is clear that from [U𝑆]1 we know
[U𝑖]1 up to 𝑖 = max 𝑆, and the rest {U𝑗 : 𝑗 ∉ 𝑆} can be sampled independently.

17This is w.l.o.g. since one can extend the witness to include the randomness used to sample the parameters.
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The advice is the empty string while the extractor should retrieve 𝑓 (𝒘 , 𝑆) = [U𝑆]1𝒘 from
any accepting statement and proof pair. We present the construction QALin in Fig. 4. The
construction is essentially the quasi adaptive construction of membership in linear space of
[KW15] for the matrix GU.

𝒟par(𝑔𝑘, 𝑑, 𝐾, 𝑆):
• ([U]1 ,U) ← 𝒰 ; (𝑝𝑘, 𝑠𝑘) ← CS.KeyGen(gk, 𝑑, 𝐾, 𝑆)
• Output (𝜌, 𝜃)where 𝜌 = (gk, 𝑝𝑘, [U]1), 𝜃 = (𝑠𝑘,U)

K(𝜌 = (gk, [G]1 , [U]1), 𝜃 = (G,T,U)):
• Sample K← Z𝐾×𝑘𝑝 , A←𝒟𝑘 , and redefine A as its first 𝑘 columns.
• Compute [B]1 = [U⊤]1G⊤K, C = KA.
• Output (crs, 𝜏)where crs = ([A]2 , [B]1 , [C]2), 𝜏 = T.

Prove(crs = ([A]2 , [B]1 , [C]2) , [𝒄]1 ,𝒘): Output [𝝅]1 ← 𝒘⊤[B]1.

Verify (crs = ([A]2 , [B]1 , [C]2) , [𝒄]1 , [𝝅]1): Output 1 if 𝑒([𝝅]1 , [A]2) = 𝑒([𝒄⊤]1 , [C]2) and 0 other-
wise.

Extract (𝜏 = T, [𝒄]1 , [𝝅]1): Output [𝒚]1 ← T⊤[𝒄𝑆]1, otherwise output ⊥.

Figure 4: Construction QALin for membership in linear spaces. Note that this is just the
argument of [KW15] for matrix [GU]1.

Theorem 8. Let𝒰 be a witness samplable distribution,𝒟𝑘 be a matrix distribution and CS an algebraic
SSB commitment. Then, construction QALin of Fig. 4 is a locally extractable proof system with ℎls-strong
local knowledge soundness where ℎls(𝜃) = 𝜃. Furthermore, completeness holds with probability 1 and
ℎls-strong local knowledge soundness holds with probability at least 1 − AdvΠlin

snd(ℬ), whee ℬ is a PPT
adversary against the strong soundness of Πlin of [KW15].

Proof. For completeness, we have that if 𝒄 = GU𝒘, then

𝒄⊤C = (GU𝒘)⊤C = 𝒘⊤U⊤G⊤C = 𝒘⊤U⊤G⊤KA = 𝒘⊤BA = 𝝅A.

Local knowledge soundness is guaranteed by the local extractability of the SSB commitment
scheme and soundness of Kiltz and Wee proof system. Note that the extractor always outputs
a valid partial opening of [𝒄]1 given an accepting proof [𝜋]1, by the local extractability property
of the SSB commitments. We claim that this opening must lie in Im([U𝑆]1). Assume otherwise,
and let𝒜 be a PPT adversary that makes the extraction fail. We construct a PPT adversary ℬ𝑆
that breaks strong soundness of Kiltz and Wee for the matrix U𝑆, conditioned on 𝒜 giving a
valid proof. ℬ𝑆 works as follows: it takes input crs𝑆 containing [U𝑆]1 ∈ G|𝑆 |×𝑑, [A]2 ∈ G𝑘×𝑘2 ,
[B†]1 ∈ G𝑑×𝑘 , [C†]2 ∈ G|𝑆 |×𝑘2 and the discrete logarithms of matrix U𝑆 and does the following:

• It samples ([U𝑆]1 ,U𝑆) s.t. U = P⊤𝑆 (U𝑆/U𝑆).
• It samples ([G]1 ,G,T) ← CS.KeyGen(gk, 𝑛, 𝑑, 𝐾, 𝑆) and a random matrix R← Z𝐾+𝑘×𝑘𝑝 .

• It computes [B]1 = [B†]1 + [U]⊤G⊤R, [C]2 = T[C†]2 + R[A]2.

• It sets 𝜌 := (gk, [G]1 , [U]1), 𝜃 := (G,U,T) and crs := ([A]2 , [B]1 , [C]2).
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It then executes𝒜(𝜌, 𝜃, crs) until it outputs [𝒄]1 , [𝜋]1. If this is an accepting proof pair, ℬ𝑆 sets
[𝒙†] := T[𝒄] and [𝝅†] := [𝝅]1 − [𝒄]⊤1 R.

First, we claim that the values 𝜌, 𝜃, crs given as input to 𝒜 are identically distributed to
honestly created ones and thus do not skew the probability that𝒜 outputs a valid proof. This
is immediate for 𝜌, 𝜃 since they are sampled honestly. We show that this is true for crs as well.
Let K† ∈ Z|𝑆 |×𝑘 be the implicit matrix in crs𝑆, that is it satisfies B† = U⊤𝑆K† and C† = K†A.
Consider the matrix K = TK† + R, and note that this matrix is uniformly distributed since
R is uniformly distributed. Thus K is distributed identically to an honestly generated K′ for
generating a crs. We claim that the crs crs output by ℬ𝑆 is identically distributed to sampling
this matrix and computing the other values honestly. Indeed we have that

C = TC† + RA
= TK†A + RA
= (TK† + R)A
= KA

and B = B† +U⊤G⊤R = U⊤𝑆K† +U⊤G⊤R
= U⊤G⊤TK† +U⊤G⊤R
= U⊤G⊤(TK† + R) = (GU)⊤K

where the second equality for B follows since by the properties of algebraic SSB commitments
we have T⊤G = (I|𝑆 | 0)P𝑆 which gives

U⊤G⊤T = U⊤P⊤𝑆

(
I|𝑆 |
0

)
= U𝑆 .

So, the outputted crs crs′ is indeed identically distributed with an honest one.
Finally, we show that if 𝒜 outputs a valid proof [𝝅]1, then ℬ𝑆 outputs a valid statement-

proof pair w.r.t. to crs𝑆. Indeed, by the local extractability property of the commitment scheme,
ℬ𝑆 always outputs some [𝒙†]1 consistent with [𝒄]1, and also the proof verifies, since we have

𝝅A = 𝒄⊤C = 𝒄⊤KA = 𝒄⊤(TK† + R)A = (𝒙†)⊤K†A + 𝒄⊤RA

which gives 𝝅†A = 𝝅A − 𝒄⊤RA = (𝒙†)⊤K†A = (𝒙†)C†. We conclude that [𝝅†]1 is a valid proof
for [𝒙†]1 ∉ Im([U𝑆]1) and ℬ𝑆 breaks soundness of Kiltz and Wee construction. □

Corollary 2. Consider construction from Fig. 4 with a statement of the form
( [𝒙]1
[𝒚]1

)
, matrix

( U
V
)
,

locality parameter 𝑳 ≤ (𝑑, 𝑑) ∈ N2 and extraction set 𝑺 = (𝑆1 , 𝑆2) ⊆ ([𝑑], [𝑑]), |𝑺 | ≤ 𝑳, such that the
(U⊤𝑆1

, ℎ)-MDDH assumption is hard for some function ℎ. Assume also K← Z𝐿1+𝐿2+2𝑘×𝑘
𝑝 , G =

(
G1 0
0 G2

)
,

where G𝑖 ← CS.KeyGen(𝑔𝑘, 𝑑, 𝐿𝑖 , 𝑆𝑖), and A ← Z𝑘×𝑘𝑝 , 𝑘 ≥ 2. Then construction from Fig. 4 is
also a quasi argument for the relations 𝒦ℒyes

𝜌 = ℛℒyes
𝜌 and 𝒦ℒno

𝜌 = {[𝒄]1 , [𝒅]1 , [𝒙∗]1 , [𝒚∗]1 ,𝒘∗ :

( 𝒄𝒅 ) 𝑺-open to
(
𝒙∗
𝒚∗

)
and 𝒙∗ = U𝑆1𝒘

∗ but 𝒚∗ ≠ V𝑆2𝒘
∗}, with ℎls-strong local soundness where ℎls(𝜃) =

(ℎ(U⊤𝑆1
),G,U⊤𝑆2

).
Proof. In [GR19] it is shown that Kiltz and Wee argument is also a knowledge transfer argument
whenever the U⊤-MDDH assumption (U⊤𝑆1

-MDDH in this case) holds and A is not full rank. Of
course, this is still true if the stronger (U⊤𝑆 , ℎ)-MDDH assumption holds. However in construction
of fig. 4 A is full rank with overwhelming probability. Nevertheless, if A is uniform and 𝑘 ≥ 2
we can jump to a game (relying on the DDH assumption) where A ∈ Z𝑘×𝑘𝑝 is not full rank. Then
the reduction of Thm. 8 yields also a reduction to the knowledge transfer of [KW15] (taking(

T1
T2

)
as trapdoor, where T𝑖 is the trapdoor for G𝑖). □
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The proof that QALin is oblivious essentially follows from the oblivious trapdoor generation
and index set hiding of SSB commitments. Before proving oblivious trapdoor generation we
present a lemma stating that we can also compute 𝜌, crs knowing only the commitment key
[G]1 and U, in both simple and knowledge transfer schemes.

Lemma 1. There exists a modified crs generation algorithm K′ that on input (𝜌, 𝜃′), where 𝜃′ contains
only U (resp. U,V) outputs a crs such that (𝜌, crs) are identically distributed to the honest algorithm.

The lemma follows directly by noting that [B]1 = [U⊤]1GK = U⊤[G]1K. (resp. [B]1 = [U⊤ |
V⊤]1GK = (U⊤ | V⊤)[G]1K. Given that this result holds, we slightly abuse notation and refer
to K′(𝜌, 𝜃′) as K(𝜌, 𝜃′), that is we use the same name for the honest and the simulated algorithm.

Theorem 9. Let𝒰 (resp. 𝒰 ,𝒱 for the knowledge transfer case) be a witness samplable distribution,
and CS be an algebraic SSB commitment scheme with perfect completeness, ℎ-strong index set hiding and
oblivious trapdoor generation. Then Construction QALin of Fig. 4 (resp. construction Π of corollary 2)
is ℎns-strong oblivious where ℎns = (ℎ(𝑠𝑘),U) (resp. ℎns = (ℎ(𝑠𝑘),U,V)). Furthermore,

1. For every PPT 𝒜 against ℎns-strong index set hiding of Π, there exists an adversary ℬ against
ℎ-strong index set hiding property of CS, such that AdvΠISH(𝒜) ≤ AdvCS

ISH(ℬ) where ℎns(𝜃) =
(ℎ(𝑠𝑘),U).

2. For every 𝒜 against oblivious trapdoor generation of Π, there exists an adversary ℬ against
oblivious trapdoor generation of CS, such that AdvΠoblv(𝒜) ≤ AdvCS

oblv(ℬ).
Proof. For index set hiding, it is enough to notice that in both cases, the crs ofΠ can be efficiently
computed given only 𝑐𝑘 = ([G]1 , ℎ(G)). Indeed by sampling [U]1 ,U←𝒰 (resp. [U]1 ,U←𝒰 ;
[V]1 ,V ← 𝒱) all values of crs are efficiently computable, as noted in the previous lemma.
Additionally, since we assume CS is ℎ-strong ISH, 𝒜 can be also given ℎns(𝜃) = (ℎ(𝑠𝑘),U)
(resp. ℎns(𝜃) = (ℎ(𝑠𝑘),U,V)). Thus, a distinguishing advantage in index set hiding of Π
immediately implies equal advantage on the respective property of CS.

For oblivious trapdoor generation we first describe the OblSetup algorithm. Let 𝑆′ ⊆ 𝑆.

OblSetup(𝜌 = ([G]1 , [U]1), crs):
• ([G′]1 ,T′) ← CS.OblSetup(gk, 𝑑, 𝐾, 𝑆, 𝑐𝑘 = [G]1).
• ([U]1 ,U) ← 𝒰 (resp. ([U]1 ,U) ← 𝒰 ; ([V]1 ,V) ← 𝒰).
• (crs, 𝜏) ← Π.K(𝜌, 𝜃′ = U) (resp. (crs, 𝜏) ← Π.K(𝜌, 𝜃′ = (U,V))).

Note that the only difference in sampling with 𝑆 and with 𝑆′ is how we sample the commit-
ment key G. The crs part crs is identically distributed to an honest one by Lemma 1. Finally,
by the statistically binding property of the commitment key the extracted witness for 𝑆 and 𝑆′
are unique and thus do not help the (unbounded) distinguisher, who can compute them on its
own.

□

Corollary 3. When CS is the one from fig. 3, then Π from fig. 4 (resp. corollary 2) is ℎns-strong
no-signaling where ℎns(𝜃) = (ℎ(𝑠𝑘),U) (resp. ℎns(𝜃) = (ℎ(𝑠𝑘),U,V)).
Proof. Follows directly from Theorem 7 and the ℎns-strong ISH of QALin, which in turn follows
from Theorem 9. □
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Extensions. We consider several extensions of QALin such as bilateral linear spaces [GHR15b],
where the statement as well as the generating matrix have components in both groups. We
also consider a sum argument [GHR15b] which is akin to a bilateral language but one shows
that the sum of the discrete logs of two vectors in G1 and G2 belong to the image of the sum
of two matrices in G1 ,G2. Finally, we extend local soundness to consider knowledge transfer
arguments. The security of all this extensions is almost verbatim of theorems 8 and 9.

Quasi Argument for Bilateral Linear Knowledge Transfer. Letℳ ,𝒩1 ,𝒩2 be 3 witness sam-
plable distribution over matrices in G𝑑×𝑛1 ,G𝑑×𝑛1 and G𝑑×𝑛2 , respectively, for 𝑛, 𝑑 ∈ N. Let 𝑲 ≤ 𝑑
where 𝑲 = (𝐾1 , 𝐾2) and 𝑺 ⊆ ([𝑑], [𝑑]) where 𝑆 = 𝑆1 ∪ 𝑆2 and 𝑺 ≤ 𝑲 Let CS be an algebraic SSB
commitment schemes with commitment space G𝐾𝜇 , where G𝜇 is defined by the input gk. The
parameter language is

ℒpar =
{[M]1 ,[N1]1 , [N2]2 , [G]1 , [H]1 , [F]2 | ∃M,N1 ,N2 ,G,H, F s.t.

([M]1 ,M), ([N1]1 ,N2), ([N2]2 ,N2) ∈ Sup(ℳ ,𝒩1 ,𝒩2),
([G]1 ,G,TG) ∈ Sup(CS.KeyGen(gk1 , 𝑑, 𝐾1 , 𝑆1)),
([H]1 ,H,TH) ∈ Sup(CS.KeyGen(gk1 , 𝑑, 𝐾2 , 𝑆2)),
([F]2 , F,TF) ∈ Sup(CS.KeyGen(gk2 , 𝑑, 𝐾2 , 𝑆2))

}
We assume w.l.o.g. that the corresponding relation is efficiently verifiable.The parameters
𝜌 = ([M]1 , [N1]1 , [N2]2 , [G]1 , [H]1 , [F]2), define the following relations:

ℛyes
𝜌 =

 [𝒄]1 , [𝒅1]1 , [𝒅2]2 ,𝒘 ©­«
𝒄
𝒅1
𝒅2

ª®¬ =
©­«

GM
HN1
FN2

ª®¬𝒘
 ,

ℛno
𝜌,𝑺 =

 ([𝒄]1 , [𝒅1]1 , [𝒅2]2),𝒘 ,
([𝒙]1 , [𝒚1]1 , [𝒚2]2)

������ 𝒙 , 𝒚1 , 𝒚2 are valid 𝑆1 , 𝑆2 , 𝑆2 openings of
𝒄, 𝒅1, 𝒅2 w.r.t. G,H, F respectively and
𝒙1 = M𝑆1𝒘 but 𝒚1 ≠ N1,𝑆2𝒘 or 𝒚2 ≠ N2,𝑆2𝒘

 ,
that is the partial witness for 𝑺 is some valid local openings [𝒙]1 , [𝒚1]1 , [𝒚2]2 w.r.t. to G,H, F
respectively that satisfy the following: if 𝒙𝑆2 = M𝑆1𝒘 then it should be the case that both
𝒚1 = N1,𝑆2𝒘 and 𝒚2 = N2,𝑆2𝒘 where 𝒘 is the promise of the adversary. Note that if 𝑆1 is the
empty set the latter relations trivially hold. We present the protocol in Fig. 5. Security is almost
verbatim to the unilateral case.

Theorem 10. Let ℳ ,𝒩1 ,𝒩2 be witness samplable distributions, 𝒟𝑘 be a matrix distribution and
CS an algebraic SSB commitment with perfect completeness. Also, let 𝒜 be an adversary against
ℎls-strong local knowledge soundness of construction QABlin of Fig. 5, where the index ℎls(𝜃) =
(G,H, F, ℎ(M,N1 ,N2)). Then, completeness holds with probability 1 and ℎls-strong local knowl-
edge soundness holds with probability at least 1−AdvΠkt-lin

snd (ℬ𝑺), where ℬ𝑺 is any PPT adversary against
ℎ-strong soundness of Πkt-lin and ℎ giving the discrete logarithms of the last two matrices.
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Proof. For completeness, we have that

(𝒄⊤ | 𝒅⊤1 )C1 + 𝒅⊤2 C2 = (𝒄⊤ | 𝒅⊤1 )
(
K1
K2

)
A + 𝒅⊤2 K2A

= (𝒄⊤K1 + 𝒅⊤1 K2 + 𝒅⊤2 K2)A
=

(
𝒘⊤M⊤G⊤K1 +𝒘⊤N⊤1 H⊤K2 +𝒘⊤N⊤2 F⊤K2

)
A

=
(
𝒘⊤(M⊤G⊤K1 +N⊤1 H⊤K2) +𝒘⊤N⊤2 F⊤K2

)
A

= 𝒘⊤BA +𝒘⊤DA
= 𝝅A + 𝜽A

Local Extractability follows using almost an identical argument to Thm. 8 and reducing to
knowledge transfer of linear KTA Argument of [GR19] presented in Fig. 1. Given an adversary
𝒜 breaking ℎls-Strong local knowledge soundness of QABlin we construct another adversaryℬ𝑺

that breaks ℎ-strong soundness of the argument Πkt-lin for matrices [M𝑆1]1, [N1,𝑆2]1 and [N2,𝑆2]2.
ℬ𝑺 works as follows: it takes input (𝜌† , ℎ(𝜃†), crs†)where

𝜌† := (gk, [M𝑆1]1 , [N1,𝑆2]1 , [N2,𝑆2]2), ℎ(𝜃†) := (N1,𝑆2 ,N2,𝑆2),
crs† := ([B†]1 , [D†]2 , [A]1,2 , [C†1]2 , [C†2]1)

and does the following:

• ([G]1 ,G,TG) ← CS.KGen(𝑔𝑘1 , 𝑑, 𝐾1 , 𝑆1).
• ([H]1 ,H,TH) ← CS.KGen(𝑔𝑘1 , 𝑑, 𝐾2 , 𝑆2).
• ([F]2 , F,TF) ← CS.KGen(𝑔𝑘2 , 𝑑, 𝐾2 , 𝑆2).

• It samples M𝑆1
,N1,𝑆2

,N2,𝑆2
, such that M = P𝑆1

(
M𝑆1

M𝑆1

)
, N1 = P𝑆2

(
N1,𝑆2

N1,𝑆2

)
, N2 = P𝑆2

(
N2,𝑆2

N2,𝑆2

)
.

• R0 ← Z𝐾0×𝑘
𝑝 ; R1 ← Z𝐾1×𝑘

𝑝 ; R2 ← Z𝐾2×𝑘
𝑝 .

• It computes [B]1 := [B†]1 + [M]⊤1 G⊤R0 + [N1]⊤1 H⊤R1 and [D]2 := [D†]2 + [N2]⊤2 F⊤R2

• It computes [C1]2 :=
(
TG 0
0 TH

)
[C†1]2 +

(
R0
R1

)
[A]2 and [C2]1 := TF[C†2]1 + R2[A]1.

• It sets

𝜌 := ([G]1 , [H]1 , [F]2 , [M]1 , [N1]1 , [N2]2), ℎls(𝜃) := (G,H, F,N1 ,N2)
crs := ([B]1 , [D]2 , [A]1,2 , [C1]2 , [C2]1)

It then executes 𝒜(𝜌, ℎls(𝜃), crs) until it outputs a statement ([𝒄]1 , [𝒅1]1 , [𝒅2]2 ,𝒘) together
with an accepting proof [𝝅]1 , [𝜽]2. Given an accepting proof ℬ𝑺 sets [𝒙†]1 = TG[𝒄]1 , [𝒚†1]1 =
TH[𝒅1]1 , [𝒚†2]2 = TF[𝒅2]2, [𝝅†]1 = [𝝅]1 − [𝒄]⊤1 R0 − [𝒅1]⊤1 R1 and [𝜽†]2 = [𝜽]1 − [𝒅2]⊤2 R2. It outputs(([𝒙†]1 , [𝒚†1]1 , [𝒚†2]2),𝒘 , ([𝝅†]1 , [𝜽†]2)) .

Note that the commitment keys are perfectly binding at 𝑆. First, we claim that in this case
the values 𝜌, ℎls(𝜃), crs output by ℬ𝑺 are identically distributed to honestly computed ones and
thus do not skew the probability that 𝒜 outputs a valid proof. For 𝜌, ℎls(𝜃), this is immediate
by the witness samplability of the distributionsℳ, 𝒩1, 𝒩2. We show that this holds for crs as
well.
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Let K†0 ∈ Z|𝑆1 |×𝑘
𝑝 ,K†1 ∈ Z|𝑆2 |×𝑘

𝑝 ,K†2 ∈ Z|𝑆2 |×𝑘
𝑝 be the implicit values used to compute crs†, that

is, they satisfy

B† = M⊤𝑆K†0 +N⊤1,𝑆K†1 , D† = N⊤2,𝑆K†2 , C†1 =
(
K†0
K†1

)
A and C†2 = K†2A.

Now ℬ𝑺 implicitly defines K2 = TGK†0 + R0, K2 = THK†1 + R1, K2 = TFK†2 + R2. First, note
that these matrices are uniformly distributed since R0 ,R1 ,R2 are uniformly distributed. Thus
K1 ,K2 ,K2 are distributed identically to honestly generated values for generating a crs. We
claim that the crs output by𝒜 is identically distributed to sampling this matrix and computing
the other values honestly. Indeed we have that

B = B† +M⊤G⊤R0 +N⊤1 H⊤R1

= M⊤𝑆1
K†1 +N⊤1,𝑆2

K†2 +M⊤G⊤R0 +N⊤1 H⊤R1

= M⊤G⊤TGK†1 +N⊤1 H⊤T⊤HK†2 +M⊤G⊤R0 +N⊤1 H⊤R1

= M⊤G⊤(TGK†1 + R0) +N⊤1 H⊤(T⊤HK†2 + R1)
= M⊤G⊤K1 +N⊤1 H⊤K2

where the third equality follows since by the local extractability of the SSBs we have that
T⊤GGM = M𝑆1 , T⊤HHN1 = N1,𝑆2 . Similarly, we have

D = D† +N⊤2 F⊤R2

= N⊤2,𝑆2
K†3 +N⊤2 F⊤R2

= N⊤2 F⊤TFK†2 +N⊤2 F⊤R2

= N⊤2 F⊤(TFK†2 + R2)
= N⊤2 F⊤K2

Also, we have that

C1 =
(
TG 0
0 TH

)
C†1 +

(
R0
R1

)
A =

(
TG 0
0 TH

) (
K†1
K†2

)
A +

(
R0
R1

)
A =

(
TGK†1 + R0
THK†2 + R1

)
A =

(
K1
K2

)
A

C2 = TFC†2 + R2A = TFK†2A + R2A = (TFK†2 + R2)A = K2A

so the outputted crs is indeed identically distributed to an honest one.
Then, we show that ℬ outputs a valid statement-proof pair w.r.t. to crs†. Since the com-

mitment keys are extractable and perfectly binding at 𝑆, we have that 𝒙†, 𝒚†1 and 𝒚†2 are valid
openings for the commitments given. Assuming 𝒜 produces a valid statement for ℛno

𝜌,𝑺, for
the extracted values it holds that 𝒙† = M𝑆1𝒘 and either 𝒚†1 ≠ N1,𝑆2𝒘 or 𝒚†2 ≠ N2,𝑆2𝒘. Thus, ℬ𝑺

outputs a valid statement and it suffices to show that [𝝅†]1 , [𝜽†]2 is a valid proof. Indeed, we
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have that

0 = 𝝅A + 𝜽A − (𝒄⊤ | 𝒅⊤1 )C1 − 𝒅⊤2 C2

= (𝝅† + 𝒄⊤R0 + 𝒅⊤1 R1)A + (𝜽† + 𝒅⊤2 R2)A
− (𝒄⊤ | 𝒅⊤1 )

((
TG 0
0 TH

)
C†1 +

(
R0
R1

)
A
)

− 𝒅⊤2
(
TFC†2 + R2A

)
= (𝝅† + 𝒄⊤R0 + 𝒅⊤1 R2)A + (𝜽† + 𝒅⊤2 R2)A
− (𝒄⊤TG | 𝒅⊤1 TH)C†1 − (𝒄⊤R0 − 𝒅⊤1 R1)A
− 𝒅⊤2 TFC†2 − 𝒅⊤2 R2A

= 𝝅†A + 𝜽†A − (𝒄⊤TG | 𝒅⊤1 TH)C†1 − 𝒅⊤2 TFC†2
= 𝝅†A + 𝜽†A − (𝒙†⊤ | 𝒚†1

⊤)C†1 − 𝒚†2
⊤C†2

and the last equation is the verification equation for the knowledge transfer argument for
crs†. □

We next show that when the distribution ℳ ,𝒩1 ,𝒩2 guarantee that the linear knowledge
transfer argument is secure w.r.t. all possible sets 𝑺, construction QABlin has ℎls-strong local
knowledge soundness where ℎls includes G,H, F,N1 ,N2, and some extra information about
the matrix M.

Corollary 4. Let𝒟𝑘 be a matrix distribution for which𝒟𝑘-SKerMDH. Denoteℳ𝑆 (resp. 𝒩1,𝑆,𝒩2,𝑆)
the distributions that sample matrices fromℳ (res. 𝒩1, 𝒩1), and restricts them to rows corresponding
to 𝑆. Then

1. If for all 𝑆1 ⊆ [𝑑] with 𝑆1 ≤ 𝐾1, (ℳ⊤𝑆1
, ℎ)-MDDH holds, QABlin is an ℎls-strong local knowledge

sound proof system, where ℎls(𝜃) = (ℎ(M𝑆),G,H, F,N1 ,N2).
2. If for all 𝑆1 , 𝑆2 ⊆ [𝑑] with 𝑆1 ≤ 𝐾1, 𝑆2 ≤ 𝐾2 the distributionsℳ𝑆1 ,𝒩𝑆2 ,𝒩𝑆2 output matrices

with the last 𝑛′ columns being 0, and (ℳ′⊤𝑆1
, ℎ)-MDDH holds, withℳ′𝑆1 beingℳ𝑆1 where we

delete the trailing zero columns, then QABlin is an ℎls-strong local knowledge sound proof system,
where ℎls(𝜃) = (ℎ(M𝑆),G,H, F,N1 ,N2).

Proof. The proof is an immediate consequence of of Thm. 10 and Thm. 19.1 for case 1 and
Thm. 19.2 for case 2. □

The proof of oblivious trapdoor generation follows from the oblivious trapdoor generation
and index set hiding of SSB commitments. We follow essentially the same proof as in the
unilateral case.

First we show that we construct an indistinguishable crs given only the commitment keys
and the matrices M,N1 ,N2.

Lemma 2. There exists a modified crs generation algorithm K′ that on input (𝜌, 𝜃′), where 𝜃′ contains
only either M,N1 ,N2 or G,H, F outputs a crs such that (𝜌, crs) are identically distributed to the honest
algorithm.
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The lemma follows directly by noting that [B]1 , [D]2 are efficiently computable given the com-
mitment keys and the discrete logarithms of matrices M,N1 ,N2 (equivalently G,H, F). As in
the unilateral case, we abuse notation and refer to K′(𝜌, 𝜃′) as K(𝜌, 𝜃′).

In the next theorem we consider the three keys issued as a single key. It is easy to verify that
the properties of the commitment keys still hold. Essentially, we want to capture the condition
that the keys preserve oblivious key generation even if we consider a function ℎ that outputs
information that depends on all commitment keys. In our delegation construction this will
correspond to ℎ(G,H, F) = ([G]1 , [H]2 , [F]2 , [H ⊗ F − Z]1 , [Z]2), for a uniform Z, namely the
information needed to obliviously create a crs for the kronecker composition of the last two
keys.

Theorem 11. Letℳ, 𝒩1, 𝒩2 be witness samplable distributions, and CS be an algebraic SSB com-
mitment scheme and let CS′ be the concatenation of three instances of CS, that is it outputs G′ =( [G0]1 0 0

0 [G1]1 0
0 0 [G2]2

)
with G𝑖 ← CS.KeyGen(gk, 𝑛, 𝑑, 𝐾𝑖 , 𝑆𝑖). If CS′ has ℎ-strong oblivious trapdoor

generation, then construction QABlin of Fig. 5 is ℎ𝑛𝑠-strong oblivious where ℎ𝑛𝑠 = (ℎ(𝑠𝑘),M1 ,N1 ,N2).
Furthermore,

1. For every PPT 𝒜 against ℎ𝑛𝑠-strong index set hiding of QABlin, there exists an adversary ℬ
against ℎ-index set hiding property of CS, such that AdvQABlin

ISH (𝒜) ≤ 3AdvCS
ISH(ℬ).

2. For every𝒜 against oblivious trapdoor generation of QABlin, there exists an adversary ℬ against
oblivious trapdoor of CS, such that AdvQABlin

oblv (𝒜) ≤ 3AdvCS
oblv(ℬ).

Proof. Since the commitment key is perfectly binding at the extraction set, it is enough to show
that ℎ𝑛𝑠-strong index set hiding holds and that we can sample a tuple (𝜌, crs) indistinguishable
from the one we are given, along with a valid trapdoor.

For index set hiding, it is enough to notice that the crs of QABlin can be efficiently computed
given only [G]1 , [H]1 , [F]2. Indeed by sampling [M]1 ,M ← ℳ , [N1]1 ,N1 ← 𝒩1 , [N2]2 ,N2 ←
𝒩2 all values of crs are efficiently computable as noted in Lemma 2. Thus, a distinguishing
advantage in index set hiding of QABlin immediately implies equal advantage on the respective
property of CS.

For oblivious crs generation we first describe the OblSetup algorithm. Let 𝑺′ ⊆ 𝑺.

OblSetup(𝜌 := ([G]1 , [H]1 , [F]2 , [M]1 , [N1]1 , [N2]2), crs):
• ([G′]1 ,T′G) ← CS.OblSetup(gk, 𝑑, 𝐾0 , 𝑆0 , [G]1).
• ([H′]1 ,T′H) ← CS.OblSetup(gk, 𝑑, 𝐾1 , 𝑆1 , [H]1).
• ([F′]2 ,T′F) ← CS.OblSetup(gk, 𝑑, 𝐾2 , 𝑆2 , [F]2).
• Sample ([M′]1 ,M′) ← ℳ; ([N′1]1 ,N′1) ← 𝒩2; ([N′2]2 ,N′2) ← 𝒩2;
• Set 𝜏′ = (T′G ,T′H ,T′F) and compute crs← QABlin.K(𝜌, 𝜃′ = (M,N1 ,N2)).

Note that the only difference in sampling with 𝑺 and with 𝑺′ is how we sample the commit-
ment keys G,H, F; crs is identically distributed to an honest one since we sample M,N1 ,N2 in
the same way that𝒟par does. Also, by oblivious key generation of CS, the trapdoor 𝜏′ is a valid
one w.r.t. G′,H′, F′ and set 𝑺′, so it extracts valid witnesses which, by perfect binding in 𝑆′ are
unique and do not assist the distinguisher which can compute them itself.

□

Finally, we get the following corollary.
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Corollary 5. When CS is the one from fig. 3 and CS′ is the concatenation of the three keys as described in
Thm. 11 for and ℎ(G,H, F) = ([H⊗ F−Z]1 , [Z]2) for uniform Z, then QABlin from fig. 5 is ℎ𝑛𝑠-strong
no-signaling where ℎ𝑛𝑠(𝜃) = (ℎ(G,H, F),M,N1 ,N2).
Proof. Follows directly from Thm. 7, the ℎ𝑛𝑠-strong ISH of the QALin which we show on Thm. 11
and the properties of the kronecker key operator (Thm. 6). □
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𝒟par(gk, 𝑑,𝑲 , 𝑺 = (𝑆0 , 𝑆1)):
• ([M]1 ,M) ← ℳ; ([N1]1 ,N1) ← 𝒩1; ([N2]2 ,N2) ← 𝒩2.
• ([G]1 ,G,TG) ← CS.KeyGen(gk1 , 𝑛, 𝑑, 𝐾0 , 𝑆0);
([H]1 ,H,TH) ← CS.KeyGen(gk1 , 𝑛, 𝑑, 𝐾1 , 𝑆1);
([F]2 , F,TF) ← CS.KeyGen(gk2 , 𝑛, 𝑑, 𝐾2 , 𝑆1);

• Output (𝜌, 𝜃)where

𝜌 = (gk, [G]1 , [H]1 , [F]2 , [M]1 , [N1]1 , [N2]2),
𝜃 = (G,H, F,TG ,TH ,TF ,M,N1 ,N2).

K(𝜌, 𝜃):
• Parse 𝜌 = (gk, [G]1 , [H]1 , [F]2 , [M]1 , [N1]1 , [N2]2),

𝜃 = (G,H, F,TG ,TH ,TF ,M,N1 ,N2).
• Sample K0 ← Z𝐾0×𝑘

𝑝 ; K1 ← Z𝐾1×𝑘
𝑝 ; K2 ← Z𝐾2×𝑘

𝑝 ; A←𝒟𝑘 and redefine A as its first 𝑘
columns.

• Compute [B]1 = [M⊤]1G⊤K0 + [N⊤1 ]1H⊤K1 and [D]2 = [N⊤2 ]2F⊤K2.

• C1 =
(
K0
K1

)
A and C2 = K2A;

• Output (crs, 𝜏)where crs = ([B]1 , [D]2 , [A]1,2 , [C1]2 , [C2]1) and 𝜏 = (TG ,TH ,TF).
Prove(crs = ([B]1 , [D]2 , [A]1,2 , [C1]2 , [C2]1), [𝒄]1 , [𝒅1]1 , [𝒅2]2 ,𝒘):

• Output ([𝝅]1 , [𝜽]2) ← (𝒘⊤[B]1 ,𝒘⊤[D]2).
Verify (crs, [𝒄]1 , [𝒅1]1 , [𝒅2]2 , [𝝅]1 , [𝜽]2):

• Output 1 iff 𝑒([𝝅]1 , [A]2) + 𝑒([𝜽]2 , [A]1) = 𝑒([𝒄⊤ | 𝒅⊤1 ]1 , [C1]2) + 𝑒([𝒅⊤2 ]2 , [C2]1).
Extract (𝜏, [𝒄]1 , [𝒅1]1 , [𝒅2]2 , [𝝅]1 , [𝜽]2):

• Parse 𝜏 as (TG ,TH ,TF) and output [𝒙]1 = T⊤G[𝒄]1 , [𝒚1]1 = T⊤H[𝒅1]1 , [𝒚2]2 = T⊤F [𝒅2]2.

Figure 5: Quasi argument QABlin for knowledge transfer of membership in linear space.
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Quasi Argument for Sum Knowledge Transfer. Let (ℳ1 ,ℳ1) be some (possibly correlated)
witness samplable distributions outputting matrices inG𝑑×𝑛1 ×G𝑑×𝑛2 and𝒩 be witness samplable
distributions outputting matrices in G𝑑×𝑛1 for 𝑛, 𝑑 ∈ N. Let 𝑲 ≤ 𝑑 where 𝑲 = (𝐾0 , 𝐾1) and
𝑺 ⊆ ([𝑑], [𝑑]) where 𝑆 = 𝑆1 ∪ 𝑆2 and 𝑺 ≤ 𝑲. Let CS be an algebraic SSB commitment scheme
and CS′ be a split algebraic commitment key with commitment spaceG𝐾1 ,G𝐾1 ×G𝐾2 respectively.
The parameter language is

ℒpar =
{[M1]1 ,[M2]2 , [N]1 , [Q1]1 , [Q2]1 , [F]2 | ∃M1 ,M2 ,N1 ,Q1 ,Q2 , F s.t.

([M1]1 , [M2]2 ,M1 ,M2) ∈ Sup(ℳ1 ,ℳ2), ([N]1 ,N) ∈ Sup(𝒩),
([Q1]1 , [Q2]2 ,Q1 ,Q2 ,TQ) ∈ Sup(CS′.KeyGen(gk, 𝑛, 𝐾0 , 𝑆1)),
([F]1 , F,TF) ∈ Sup(CS.KeyGen(gk1 , 𝑛, 𝐾1 , 𝑆2))

}
We assume w.l.o.g. that the corresponding relation is efficiently verifiable. The parameters
𝜌 = ([M]1 , [N1]1 , [N2]2 , [Q1]1 , [Q2]1 , [F]2) define the following relations18

ℛyes
𝜌 =

{
[𝒄1]1 , [𝒄2]2 , [𝒅]2 ,𝒘

(
𝒄1 + 𝒄2

𝒅

)
=

((Q1 +Q2)(M1 +M2)
FN

)
𝒘

}
,

ℛno
𝜌,𝑺 =

 ([𝒄1]1 , [𝒄2]2 , [𝒅]1),𝒘 ,
([𝒙1]1 , [𝒙2]2 , [𝒚]1)

������ 𝒙1 + 𝒙2 , 𝒚 are valid 𝑆0 , 𝑆1 openings of
𝒄1 + 𝒄2, 𝒅2 w.r.t. Q1 +Q2 , F respectively and
𝒙1 + 𝒙2 = (M1,𝑆0 +M2,𝑆0)𝒘 but 𝒚 ≠ N𝑆2𝒘

 ,
that is the partial witness for 𝑺 is some valid local openings [𝒙1]1 , [𝒙2]2 , [𝒚]1 w.r.t. to G,H, F
respectively that satisfy the following: if 𝒙1 + 𝒙2 = (M1,𝑆1 +M2,𝑆1)𝒘 then it should be the case
that 𝒚 = N𝑆2𝒘 where 𝒘 is the promise of the adversary. Note that if 𝑆1 is the empty set the
latter relations trivially hold.

We present the protocol in Fig 6.
Theorem 12. Let ℳ1 ,ℳ2 be (possibly correlated) witness samplable distribution, 𝒩 be a witness
samplable distribution, 𝒟𝑘 a matrix distribution and CS,CS′ an algebraic and split algebraic SSB
commitment respectively with perfect completeness. Also, let𝒜 be an adversary against ℎ𝑙𝑠-strong local
soundness of construction QASum where ℎ𝑙𝑠 = (Q1 ,Q2 , F,N). Then, QAsum has perfect completeness
and ℎ𝑙𝑠-strong local knowledge soundness holds with probability at least 1 − AdvΠkt-sum

snd (ℬ𝑺), where ℬ𝑺

is any PPT adversary against soundness of Πkt-sum.
Proof. For completeness, we have that

(𝒄⊤1 | 𝒅⊤)C1 + 𝒄⊤2 C2 = (𝒄⊤1 | 𝒅⊤)
(
K0
K1

)
A + 𝒄⊤2 K0A

= (𝒄⊤1 K0 + 𝒅⊤K1 + 𝒄⊤2 K0)A
=

((𝒄⊤1 + 𝒄⊤2 )K0 + 𝒅⊤K1
)
A

=
(
𝒘⊤(M⊤1 +M⊤2 )(Q⊤1 +Q⊤2 )K0 +𝒘⊤N⊤F⊤K1

)
A

= 𝒘⊤
((M⊤1 +M⊤2 )Q⊤K0 +N⊤F⊤K1

)
A

= 𝒘⊤
((M⊤1 Q⊤K0 +N⊤F⊤K1 + Z) + (M⊤2 Q⊤K0 − Z)) A

= 𝒘⊤ (B +D)A
= 𝒘⊤BA +𝒘⊤DA
= 𝝅A + 𝜽A

18We allow both the distributionsℳ1 ,ℳ2 ,𝒩 and the commitment keys to include some auxiliary information
with its associated witness which are included in 𝜌, 𝜃 respectively. This auxiliary information is not used in the
protocol, but is public when the protocol is used inside other protocol. We omit it here to simplify the presentation
but we consider it whenever needed.
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𝒟par(gk, 𝑑,𝑲 , 𝑺 = (𝑆0 , 𝑆1)):
• ([M1]1 , [M2]2 ,M1 ,M2) ← (ℳ1 ,ℳ2); ([N]1 ,N) ← 𝒩 ;
• ([Q1]1 , [Q2]2 ,Q1 ,Q2 ,TQ) ← CS′.KeyGen(gk, 𝑛, 𝑑, 𝐾0 , 𝑆0);
([F]1 , F,TF) ← CS.KeyGen(gk1 , 𝑛, 𝑑, 𝐾1 , 𝑆1);

• Output (𝜌, 𝜃)where

𝜌 = (gk, [Q1]1 , [Q2]1 , [F]2 , [M1]1 , [M2]2 , [N]1),
𝜃 = (Q1 ,Q2 , F,TQ ,TF ,M1 ,M2 ,N).

K(𝜌, 𝜃):
• Parse 𝜌 = (gk, [Q1]1 , [Q2]1 , [F]2 , [M1]1 , [M2]2 , [N]1), 𝜃 =
(Q1 ,Q2 , F,TQ ,TF ,M1 ,M2 ,N).

• Set Q = Q1 + Q2 and sample K0 ← Z𝐾0×𝑘
𝑝 ; K1 ← Z𝐾1×𝑘

𝑝 ; Z ← Z𝑛×𝑘𝑝 ; A ← 𝒟𝑘 and
redefine A as its first 𝑘 columns.

• Compute [B]1 = [M⊤1 ]1Q⊤K0 + [N⊤]1F⊤K1 + [Z]1 and [D]2 = [M⊤2 ]2Q⊤K0 − [Z]2.

• C1 =
(
K0
K1

)
A and C2 = K0A;

• Output (crs, 𝜏)where crs = ([B]1 , [D]2 , [A]1,2 , [C1]2 , [C2]1) and 𝜏 = (TQ ,TF).
Prove(crs = ([B]1 , [D]2 , [A]1,2 , [C1]2 , [C2]1), [𝒄1]1 , [𝒄2]2 , [𝒅]1 ,𝒘):

Sample 𝒛← Z𝑘𝑝 and output ([𝝅]1 , [𝜽]2) ← (𝒘⊤[B]1 − [𝒛⊤]1 ,𝒘⊤[D]2 + [𝒛⊤]2).
Verify (crs, [𝒄1]1 , [𝒄2]2 , [𝒅]1 , [𝝅]1 , [𝜽]2):

• Output 1 iff 𝑒([𝝅]1 , [A]2) + 𝑒([𝜽]2 , [A]1) = 𝑒([𝒄⊤1 | 𝒅⊤]1 , [C1]2) + 𝑒([𝒄⊤2 ]2 , [C2]1).
Extract (𝜏, [𝒄1]1 , [𝒄2]2 , [𝒅]1 , [𝝅]1 , [𝜽]2):

• Parse 𝜏 as (TQ ,TF) and output [𝒙1]1 = TQ
⊤[𝒄1]1 , [𝒙2]2 = TQ

⊤[𝒄2]1 , [𝒚]1 = TF
⊤[𝒅]1.

Figure 6: Quasi argument QASum for knowledge transfer of sum membership in linear space.

Local knowledge soundness follows using almost an identical argument to Thm. 10 and
reducing to knowledge transfer of KTA Sum Argument Πkt-sum of Fig. 1. Given an adversary𝒜
breaking Knowledge Transfer of the quasi-argument of Fig. 6, we construct another adversary
ℬ𝑺 that breaks Knowledge Transfer of the argument Πkt-sum for matrices [M1,𝑆0]1, [M2,𝑆0]2 and
[N𝑆1]1. ℬ𝑺 works as follows: it takes input (𝜌† , ℎ𝑘𝑡(𝜃†), crs†)where

𝜌† := (gk, [M1,𝑆0]1 , [M2,𝑆0]2 , [N𝑆1]1), ℎ𝑘𝑡(𝜃†) := N𝑆1 , crs† := ([B†]1 , [D†]2 , [A]1,2 , [C†1]2 , [C†2]1)
and does the following:

• It samples ([Q1]1 , [Q2]2 ,Q1 ,Q2 ,TQ) ← CS′.KGen(𝑔𝑘, 𝑑, 𝐾, 𝑆1) and sets Q := Q1 +Q2.

• It samples ([F]1 , F,TF) ← CS.KGen(𝑔𝑘, 𝑑, 𝐾, 𝑆2).

• It samples M1,𝑆1
,M2,𝑆1

,N𝑆2
, such that M1 = P𝑆1

(
M1,𝑆1

M1,𝑆1

)
, M2 = P𝑆1

(
M2,𝑆1

M2,𝑆1

)
, N = P𝑆2

(
N𝑆2

N𝑆2

)
.
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• It samples R0 ← Z𝐾0×𝑘
𝑝 ; R1 ← Z𝐾1×𝑘

𝑝

• It computes [B]1 := [B†]1 + [M1]⊤1 Q⊤R0 + [N]⊤1 F⊤R1 and [D]2 := [D†]2 + [M2]⊤2 Q⊤R0

• It computes [C1]2 :=
(
TQ 0
0 TF

)
[C†1]2 +

(
R0
R1

)
[A]2 and [C2]1 := TQ[C†2]1 + R0[A]1.

• It sets

𝜌 := ([Q1]1 , [Q2]1 , [F]2 , [M1]1 , [M2]2 , [N]1), ℎ𝑙𝑠(𝜃) := (Q1 ,Q2 , F,N)
crs := ([B]1 , [D]2 , [A]1,2 , [C1]2 , [C2]1)

It then executes 𝒜(𝜌, ℎ𝑙𝑠(𝜃), crs) until it outputs a statement ([𝒄1]1 , [𝒄2]2 , [𝒅]1 ,𝒘) together
with an accepting proof [𝝅]1 , [𝜽]2. Given an accepting proof ℬ sets [𝒙†1]1 = TQ[𝒄1]1 , [𝒙†2]2 =
TQ[𝒄2]2 , [𝒚†]1 = TF[𝒅]1, [𝝅†]1 = [𝝅]1 − [𝒄1]⊤1 R1 − [𝒅]⊤1 R2 and [𝜽†]2 = [𝜽]1 − [𝒄2]⊤2 R1. It outputs(([𝒙†1]1 , [𝒙†2]2 , [𝒚†]1),𝒘 , ([𝝅†]1 , [𝜽†]2)) .

Note that by perfect completeness of the commitment scheme, the commitment keys are
extractable and perfectly binding at 𝑆.

First, we claim that in this case the values 𝜌, ℎ𝑙𝑠(𝜃), crs output by ℬ𝑺 are identically dis-
tributed to honestly computed ones and thus do not skew the probability that 𝒜 outputs a
valid proof. For 𝜌, ℎ𝑙𝑠(𝜃), this is immediate by the witness samplability of the distributions
ℳ1,ℳ2, 𝒩 . We show that this holds for crs as well. Let K†0 ∈ Z|𝑆1 |×𝑘

𝑝 ,K†1 ∈ Z|𝑆2 |×𝑘
𝑝 , Z† ∈ Z𝑛×𝑘𝑝

matrices satisfying:

B† = M⊤1,𝑆1
K†0 +N⊤𝑆K†1 + Z† , D† = M⊤2,𝑆1

K†0 − Z† , C†1 =
(
K†0
K†1

)
A and C†2 = K†0A.

Now ℬ𝑆 implicitly defines K0 = TQK†0 + R0, K1 = TFK†1 + R1, and note that these matrices
are uniformly distributed since R0 ,R1 are uniformly distributed. Thus K0 ,K1 are distributed
identically to honestly generated values for generating a crs. We claim that the crs output by
𝒜 is identically distributed to sampling this matrix and computing the other values honestly.
Indeed we have that

B = B† +M⊤1 Q⊤R1 +N⊤1 H⊤R1

= M⊤1,𝑆1
K†0 +N⊤𝑆2

K1 + Z† +M⊤1 Q⊤R0 +N⊤1 H⊤R1

= M⊤1 Q⊤TQK†0 +N⊤F⊤T⊤F K1 + Z† +M⊤1 Q⊤R0 +N⊤1 H⊤R1

= M⊤1 Q⊤(TQK†0 + R0) +N⊤F⊤(T⊤F K1 + R1) + Z†

= M⊤1 Q⊤K0 +N⊤F⊤K1 + Z†

where the third equality follows since by the local extractability of the SSBs (1) T⊤QQM1 = M1,𝑆
and (2) T⊤F FN = N𝑆. Similarly, we have

D = D† +M⊤2 Q⊤R0

= M⊤2,𝑆1
K†0 − Z† +M⊤2 Q⊤R0

= M⊤2 Q⊤TQK†0 − Z† +M⊤2 Q⊤R0

= M⊤2 Q⊤(TQK†0 + R0) − Z†

= M⊤2 Q⊤K0 − Z†
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Also, we have that

C1 =
(
TQ 0
0 TF

)
C†1 +

(
R0
R1

)
A =

(
TQ 0
0 TF

) (
K†0
K†1

)
A +

(
R0
R1

)
A = 𝑖

(
TQK†0 + R0
TFK†1 + R1

)
A =

(
K0
K1

)
A

C2 = TQC†2 + R0A = TQK†0A + R0A = (TQK†0 + R0)A = K0A

so the outputted crs is indeed identically distributed to an honest one.
Then, we show that ℬ outputs a valid statement-proof pair w.r.t. to crs†. Since the commit-

ment keys are extractable and perfectly binding, we have that (𝒙†1 , 𝒙†2) and 𝒚† are valid openings
for the commitments (𝒄1 , 𝒄2) and 𝒅 respectively. Assuming 𝒜 produces a valid statement for
ℛno

𝜌,𝑺, for the extracted values it holds that 𝒙†1 + 𝒙†2 = (M1,𝑆1 +M2,𝑆1)𝒘 and 𝒚† ≠ N𝑆2𝒘. Thus ℬ𝑺

outputs a valid statement and it suffices to show that (𝝅† , 𝜽†) is a valid proof. Indeed, we have

0 = 𝝅A + 𝜽A − (𝒄⊤1 | 𝒅⊤)C1 − 𝒄⊤2 C2

= (𝝅† + 𝒄⊤1 R0 + 𝒅⊤R1)A + (𝜽† + 𝒄⊤2 R0)A
− (𝒄⊤1 | 𝒅⊤)

((
TQ 0
0 TF

)
C†1 +

(
R0
R1

)
A
)

− 𝒄⊤2
(
TQC†2 + R0A

)
= (𝝅† + 𝒄⊤1 R0 + 𝒅⊤R1)A + (𝜽† + 𝒄⊤2 R0)A
− (𝒄⊤1 TQ | 𝒅⊤TF)C†1 − (𝒄⊤1 R0 − 𝒅⊤R1)A
− 𝒄⊤2 TQC†2 − 𝒄⊤2 R0A

= 𝝅†A + 𝜽†A − (𝒄⊤1 TQ | 𝒅⊤TF)C†1 − 𝒄⊤2 TQC†2
= 𝝅†A + 𝜽†A − (𝒙†1

⊤ | 𝒚†⊤)C†1 − 𝒙†2
⊤C†2

and the last equation is the verifying equation for the knowledge transfer argument for crs†.
□

We next show that when the distributions (ℳ1ℳ2),𝒩 guarantee that the sum knowledge
transfer argument is secure w.r.t. all possible sets 𝑺, construction QASum has ℎ𝑙𝑠-strong local
knowledge soundness where ℎ𝑙𝑠 includes G,H, F, [M]2 , [N1 ⊗ N2 − R]1 , [−R]2), for a uniform
R and some extra information about the matrix M.

Corollary 6. Let𝒟𝑘 be a matrix distribution for which𝒟𝑘-SKerMDH. Denoteℳ1,𝑆 (resp. ℳ2,𝑆,𝒩𝑆)
the distributions that sample matrices fromℳ1 (res. ℳ2,𝒩), and restricts them to rows corresponding
to 𝑆. Then

1. If for all 𝑆0 ⊆ [𝑑] with 𝑆0 ≤ 𝐾0, (ℳ⊤1,𝑆0
,ℳ⊤2,𝑆0

, ℎ)-MDDH holds, QASum is an ℎ𝑙𝑠-strong local
knowledge sound proof system, where ℎ𝑙𝑠(𝜃) = (ℎ(M1,𝑆 ,M2,𝑆),G,H, F,N).

2. If for all 𝑆0 , 𝑆1 ⊆ [𝑑]with 𝑆0 ≤ 𝐾0, 𝑆1 ≤ 𝐾1 the distributionsℳ1,𝑆0 ,ℳ2,𝑆0 ,𝒩𝑆1 output matrices
with the last 𝑛′ columns being 0, and (ℳ′⊤1,𝑆0

,ℳ′⊤2,𝑆0
, ℎ)-MDDH holds, withℳ′𝑏,𝑆0 beingℳ𝑏,𝑆0

where we delete the trailing zero columns, then QASum is an ℎ𝑙𝑠-strong local knowledge sound
proof system, where ℎ𝑙𝑠(𝜃) = (ℎ(M1,𝑆0 ,M2,𝑆0),G,H, F,N).

Proof. The proof is an immediate consequence of Thm. 12 and Thm. 19.1 for case 1 and Thm. 19.2
for case 2. □
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The proof that QASum is oblivious follows from the oblivious trapdoor generation and
index set hiding of SSB commitments. We follow essentially the same proof as in the QABlin
case.

First we show the corresponding lemma to Lemma 2, that is, we construct an indistinguish-
able crs given only the commitment keys and the matrices M1 ,M2 ,N.

Lemma 3. There exists a modified crs generation algorithm K′ that on input (𝜌, 𝜃′), where 𝜃′ contains
only either M1 ,M2 ,N or Q1 ,Q2 , F and outputs a crs such that (𝜌, crs) are identically distributed to the
honest algorithm.

Proof. Given these values we can compute the crs using a simple trick. Instead of computing

[B]1 = [M⊤1 ]1Q⊤K0 + [N⊤]1F⊤K1 + [Z]1
[D]2 = [M⊤2 ]2Q⊤K0 − [Z]2 ,

we compute
[B]1 = (M⊤1 +M⊤2 )[Q⊤1 ]1K0 + [N⊤]1F⊤K1 + [Z]1

[D]2 = (M⊤2 +M⊤2 )[Q⊤2 ]2K0 − [Z]2 ,
Noting that in both cases the elements computed are uniformly distributed conditioned on
B +D = (M⊤1 +M⊤2 )(Q⊤1 +Q⊤2 )K0 +N⊤F⊤K1 we see that these values are computed as in the
honest setup.

In the case where 𝜃 = (Q1 ,Q2 , F)we can directly compute the crs by noting that Q = Q1+Q2
and the group elements in 𝜌 are enough to compute all values of crs. □

As in the previous cases, we abuse notation and refer to K′(𝜌, 𝜃′) as K(𝜌, 𝜃′).
The proof of oblivious extraction essentially follows from the oblivious key generation and

index set hiding of the SSB commitments and is similar to the proof of Thm. 11.

Theorem 13. Letℳ1 ,ℳ2 be (possibly correlated) witness samplable distribution,𝒩 be a witness sam-
plable distribution, and CS,CS′ be an algebraic and a split algebraic SSB commitment scheme respectively
with perfect completeness, oblivious trapdoor generation and ℎ, ℎ′-index set hiding respectively. Then
Construction QASum of Fig. 6 is ℎ𝑛𝑠-strong oblivious, where ℎ𝑛𝑠(𝜃) = (ℎ(𝑠𝑘), ℎ′(𝑠𝑘′),M1 ,M2 ,N).
Furthermore,

1. For every PPT𝒜 against index set hiding of QASum, there exist adversaries ℬ0 ,ℬ1 against index
set hiding property of CS′, CS respectively, such that AdvQASum

ISH (𝒜) ≤ AdvCS′
ISH(ℬ0)+AdvCS

ISH(ℬ1).
2. For every 𝒜 against oblivious crs generation of QASum, there exist an adversaries ℬ0 ,ℬ1

against oblivious key generation of CS′,CS respectively, such that AdvQASum
oblv (𝒜) ≤ AdvCS′

oblv(ℬ0)+
AdvCS

oblv(ℬ1).
Proof. It is enough to show that ℎ𝑛𝑠-strong index set hiding holds and that we can sample a
tuple (𝜌, crs) indistinguishable from the one we are given, along with a valid trapdoor. This
is the case because the commitment keys are perfectly binding in 𝑆′, which means that the
witnesses are unique and do not help the (unbounded) distinguisher who can compute them
on its own.
Index Set Hidning. Assume there exist sets 𝑺, 𝑺′ of size at most 𝑲 and an adversary 𝒜 which
distinguishes (𝜌, crs) sampled for 𝑺 from (𝜌, crs) sampled for 𝑺′ with some probability 𝛼. We
construct adversaries ℬ0 distinguishing 𝑐𝑘0 sampled for 𝑆1 from 𝑐𝑘0 sampled for 𝑆′1 with
probability 𝛼0 and an adversary ℬ1 distinguishing 𝑐𝑘1 sampled for 𝑆2 from 𝑐𝑘1 sampled for 𝑆′2
with probability 𝛼1 such that 𝛼 ≤ 𝛼0+𝛼1

2 .
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ℬ0 takes as input some 𝑐𝑘0 and ℎ′(sk0) sampled either for 𝑆0 or 𝑆′0 and parses ck0 as
[Q]1 , [Q]2 , aux. It then honestly computes the crs by sampling M1 ,M2 ,N and following
the K described in Lemma 3 except that ck1 is computed as follows: it samples 𝑏 ← {0, 1}
and if 𝑏 = 0 it sets (𝑐𝑘1 , 𝑠𝑘1) ← CS.KeyGen(𝑔𝑘1 , 𝑑, 𝐾, 𝑆1) otherwise it sets (𝑐𝑘1 , 𝑠𝑘1) ←
CS.KeyGen(𝑔𝑘1 , 𝑑, 𝐾, 𝑆′1).Note that, with probability 1/2, the crs computed by ℬ follows ex-
actly the original distribution. This is the case since B,D are uniform matrices conditioned on
their sum being equal to (M⊤1 +M⊤2 )(Q⊤1 +Q⊤2 )K1 +N⊤F⊤K2 for uniform K1 ,K2, exactly as in
the honest crs generation. Finally ℬ0 runs 𝒜(𝜌, crs, ℎ𝑛𝑠(𝜃) = (ℎ′(sk0), ℎ′(sk1),M1 ,M2 ,N)) and
output whatever it outputs.

Similarly, on input ck1 , ℎ(sk1) sampled either for𝑆1 or𝑆′1,ℬ1 samples 𝑏 ← {0, 1} and if 𝑏 = 0 it
sets (𝑐𝑘0 , 𝑠𝑘0) ← CS.KeyGen(𝑔𝑘, 𝑑, 𝐾, 𝑆0) otherwise it sets (𝑐𝑘0 , 𝑠𝑘0) ← CS.KeyGen(𝑔𝑘, 𝑑, 𝐾, 𝑆′0)
and honestly computes the crs as in the previous case. A simple case analysis shows that
𝜌 ≤ 𝜌1+𝜌2

2 .

Oblivious trapdoor generation: We show how to obliviously sample a trapdoor given black
box access to CS.OblKeyGen and CS′.OblKeyGen. For oblivious trapdoor generation, given a
pair 𝜌, crs for the quasi argument and set 𝑺′ the oblivious setup QASum.OblKeyGen does the
following:

• (ck′0 , 𝜏′0) ← CS.OblKeyGen(ck0 , 𝑆′0) and (ck′1 , 𝜏′1) ← CS.OblKeyGen(ck1 , 𝑆′1).
• Sample ([M1]1 , [M2]2 ,M1 ,M2) ← ℳ, ([N]1 ,N) ← 𝒩 .

• Compute the rest of the crs by K(ck′0 , ck′1 ,M1 ,M2 ,N).
Arguing as in the index set hiding proof, the only difference in the oblivious and an honest
crs is how the commitment keys are sampled. We can thus use a standard hybrid argument to
reduce the property to the oblivious trapdoor generation of the commitment schemes CS,CS′.

□

Corollary 7. If CS is the one from fig. 3, and CS is the construction of kCS of Thm. 6, then QASum
from fig. 6 is ℎ𝑛𝑠-strong no-signaling where ℎ𝑛𝑠(𝜃) = (M,N1 ,N2).
Proof. The proof follows directly from Theorem 7 and the ℎ𝑛𝑠-strong oblivious property of
QASum, which in turn follows from applying Theorems 2, 6 to Theorem 13. □
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5.2.2 Quasi-Arguments for Hadamard Products.

The main result of [GHR15b] was implicitly a quasi-argument for the set of equations 𝑏𝑖(𝑏𝑖−1) =
0, for all 𝑖 ∈ [𝑑]. We extend their results to equations of the form 𝑥𝑖𝑦𝑖 = 𝑧𝑖 , that is 𝒙 ◦ 𝒚 = 𝒛
where ◦ denotes the hadamard product. Let𝒰 ,𝒱 ,𝒲 be witness samplable distributions over
matrices in G𝑑×𝑛1 ,G𝑑×𝑛2 and G𝑑×𝑛1 , respectively, for 𝑛, 𝑑 ∈ N. Let 𝑲 = (𝐾, 𝐾) with 𝐾 ≤ 𝑑 and
𝑺 = (𝑆, 𝑆) with 𝑆 ⊆ [𝑑] and 𝑆 ≤ 𝐾. Also let CS be an algebraic SSB commitment scheme with
commitment space G𝐾𝜇 . The parameter language is

ℒpar =
{[U]1 ,[V]2 , [W]1 , [G]1 , [H]2 , [F]1 | ∃U,V,W,G,H, F s.t.

([U]1 ,U) ∈ Sup(𝒰), ([V]2 ,V) ∈ Sup(𝒱), ([W]1 ,W) ∈ Sup(𝒲),
([G]1 ,G,TG) ∈ Sup(CS.KeyGen(gk1 , 𝑛, 𝐾, 𝑆))
([H]2 ,H,TH) ∈ Sup(CS.KeyGen(gk2 , 𝑛, 𝐾, 𝑆))
([F]1 , F,TF) ∈ Sup(CS.KeyGen(gk1 , 𝑛, 𝐾, 𝑆))

}
We assume w.l.o.g. that the corresponding relation is efficiently verifiable. The parameters
𝜌 = ([U]1 , [V]2 , [W]1 , [G]1 , [H]2 , [F]1)define the following relations:

ℛyes
𝜌 =

{
[𝒖]1 , [𝒗]2 , [𝒘]2 , 𝒂 , 𝒃 𝒖 = GU𝒂 , 𝒗 = HV𝒃

𝒘 = FW(𝒂 ◦ 𝒃)
}
,

ℛno
𝜌,𝑆 =

 ([𝒗]1 , [𝒖]2 , [𝒘]1), 𝒂 , 𝒃([𝒙1]1 , [𝒙2]2 , [𝒚]1)

������ 𝒙1 , 𝒙2 , 𝒚 are valid 𝑆 openings of
𝒄1, 𝒄2, 𝒅 w.r.t. G,H, F respectively and
𝒙1 = U𝑆𝒂 , 𝒙2 = V𝑆𝒃, but 𝒚 ≠ W𝑆(𝒂 ◦ 𝒃)

 .
That is the partial witness for 𝑆 is some valid local openings [𝒙1]1 , [𝒙2]2 , [𝒚]1 w.r.t. to G,H, F
respectively that satisfy the following: if 𝒙1 = U𝑆𝒂 and 𝒙2 = V𝑆𝒃 and then it should be the
case that 𝒚 = W𝑆𝒄 where 𝒄 = 𝒂 ◦ 𝒃. Here 𝒂 , 𝒃 is the promise of the adversary. We present the
protocol in Fig 7. Essentially, we first have the prover commit to the kronecker product 𝒂 ⊗ 𝒃
using a commitment scheme defined by the ⊗ operation of CS to itself, and then show that if
the split opening of this commitment is 𝒘 = 𝒂 ⊗ 𝒃, then the opening of 𝒅 is D𝒘 where D is
the linear operation that outputs 𝒂 ◦ 𝒃 on input 𝒂 ⊗ 𝒃. The former “promise”, regarding the
kronecker product, is verified by the pairing operation, while for the latter construction QASum
is used.

Theorem 14. Let 𝒰 ,𝒱 ,𝒲 be witness samplable distributions, 𝒟𝑘 be a matrix distribution and CS
an algebraic SSB commitment scheme with perfect completeness. Also, let 𝒜 be an adversary against
ℎ𝑙𝑠-strong local knowledge soundness of QAHad where ℎ𝑙𝑠(𝜃) = (G,H, F,W, [U ⊗ V − R]1 , [R]2)
for a uniformly distributed R. Then completeness holds with probability 1 and for ℎ𝑙𝑠-strong local
soundness it holds that AdvQAHad

snd (𝒜) ≤ AdvQASum
snd (ℬ) where ℬ is an adversary against ℎls-sum-strong

local soundness of QASum for 𝜌sum as computed in Fig. 7 and ℎls-sum(𝜃sum) outputs 𝜃sum except the
matrices M1 ,M2.

Proof. For completeness, we have that

𝒖 ⊗ 𝒗 = GU𝒂 ⊗ GU𝒃 = (G ⊗ H)(U ⊗ V)(𝒂 ⊗ 𝒃) =
= (G ⊗ H − Z + Z)(U ⊗ V − R + R)(𝒂 ⊗ 𝒃) =
= (Q1 +Q2)(M1 +M2)(𝒂 ⊗ 𝒃)

and also 𝒄1 + 𝒄2 = (E1 + E2)(𝒂 ⊗ 𝒃) = (Q1 + Q2)(U ⊗ V)(𝒂 ⊗ 𝒃) = 𝒖 ⊗ 𝒗, so the pairing test is
successful. Finally, noting that 𝒘 = 𝒅 = FW(𝒂 ◦ 𝒃) = FWD(𝒂 ⊗ 𝒃) = FN(𝒂 ⊗ 𝒃), we see that

55



the statement/witness pair ([𝒄1]1 , [𝒄2]2 , [𝒅]1), 𝒂 ⊗ 𝒃 is a yes instance of the sum language for
parameters 𝜌sum and the second condition for verification follows by the completeness of the
QASum.

For local knowledge soundness, it is enough to note that the Kronecker part of the knowledge
transfer holds unconditionally, that is, if for some promise 𝒂 , 𝒃 it holds that 𝒖 = GU𝒂 and
𝒗 = HV𝒃, then by the verification of the pairing condition, 𝒄1+ 𝒄2 = (Q1+Q2)(M1+M2)(𝒂 ⊗ 𝒃),
so we efficiently construct a promise for the sum language. Also, the value ℎls-sum(𝜃sum) can
be computed given ℎ𝑙𝑠(𝜃). Now, an accepting proof for the hadamard language contains an
accepting proof for the sum language and we use that to break 𝑞-strong local soundness of
QASum. Details follow.

Let 𝒜 be an adversary against ℎ𝑙𝑠-strong local knowledge soundness of QAHad. We con-
struct an adversary ℬ against ℎls-sum-strong local knowledge soundness of QASum. ℬ takes as
input (𝜌sum , ℎls-sum(𝜃sum), crssum) and works as follows:

• Parse

𝜌sum = (gk, [Q1]1 , [Q2]2 , [F]1 , [M1]1 , [M2]2 , [N]1 , auxCS = (G,H), auxℳ = ([U]1 , [V]2),
𝜃𝑞sum = (Q1 ,Q2 ,G,H, F,N)

• Set 𝜌 = (gk, [G]1 , [H]2 , [F]2 , [U]1 , [V]2 , [N]1), ℎ𝑙𝑠(𝜃) = (G,H, F,N, [M1]1 , [M2]2).
• It samples R′← Z𝐾𝑝 ×𝑛2 and sets [E1]1 = (Q1+Q2)[M1]1+[R′]1 , [E2]2 = (Q1+Q2)[M2]2−
[R′]2.

It then executes 𝒜(𝜌, ℎ𝑙𝑠(𝜃), crs = ([E1]1 , [E2]2 , crssum)) until it outputs a statement ([𝒖]1 , [𝒗]2 ,
[𝒘]1 , 𝒂 , 𝒃) together with an accepting proof ([𝒄1]1 , [𝒄2]2 ,𝜋sum). It outputs the statement/ad-
vice/proof tuple

(([𝒄1]1 , [𝒄2]2 , [𝒘]1), 𝒂 ⊗ 𝒃,𝜋sum).
The crs is identically distributed to an honestly computed one. Indeed the only thing com-

puted differently are the values [E1]1 , [E2]2, but note that in the reduction they are distributed
uniformly conditioned on E1 + E2 = (Q1 +Q2)(M1 +M2) = (Q1 +Q2)(U ⊗ V), as in the honest
crs generation.

Now, assuming an accepting proof, and a correct promise 𝒂 , 𝒃 given from 𝒜 means that
the promise of ℬ is also correct. Indeed, we have

𝒄1 + 𝒄2 = 𝒖 ⊗ 𝒗 = GU𝒂 ⊗ HV𝒃 = (G ⊗ H)(U ⊗ V)(𝒂 ⊗ 𝒃) =
= (G ⊗ H − Z + Z)(U ⊗ V − R + R)(𝒂 ⊗ 𝒃) =
= (Q1 +Q2)(M1 +M2)(𝒂 ⊗ 𝒃).

Now let 𝒙1 = TQ𝒄1, 𝒙2 = TQ𝒄2, 𝒚 = TF𝒘 be the extracted values. We have that

𝒙1 + 𝒙2 = TQ(𝒄1 + 𝒄2) = TQ(Q1 +Q2)(M1 +M2)(𝒂 ⊗ 𝒃)
= (M𝑆,1 +M𝑆,2)(𝒂 ⊗ 𝒃).

so indeed the promise is correct. Also assuming that the statement/advice given from 𝒜 is
a no-instance for the hadamard language w.r.t. to the set 𝑆, then the statement/advice given
from ℬ is a no-instance for the sum language w.r.t. the same set 𝑆. Indeed, we have

𝒚 ≠ W𝑺(𝒂 ◦ 𝒃) = W𝑺D(𝒂 ⊗ 𝒃) = N𝑺(𝒂 ⊗ 𝒃).
So, conditioned on a successful 𝒜, ℬ outputs an instance/advice such that (1) the extractor
gets values that satisfy ℛno

𝜌sum ,𝑺
for 𝜌sum and (2) a proof that verifies w.r.t. the instance.

□
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We next show that when the distributions𝒰 ,𝒱 ,𝒲 guarantee that the sum knowledge transfer
argument is secure w.r.t. all possible sets 𝑺, construction QAHad has ℎ𝑙𝑠-strong local knowledge
soundness where ℎ𝑙𝑠 includes G,H, F,W, [U ⊗ V − R]1 , [R]2 for a uniform R.

Corollary 8. Let 𝒟𝑘 be a matrix distribution for which 𝒟𝑘-SKerMDH and let DDH hold in G1 ,G2.
Denote𝒰𝑆 (resp. 𝒱𝑆,𝒲𝑆) the distributions that sample matrices from𝒰 (res. 𝒱2,𝒲), and restricts
them to rows corresponding to 𝑆. Then

1. If for all 𝑆 ⊆ [𝑑] with 𝑆 ≤ 𝐾0, 𝒰⊤𝑆 -MDDH and 𝒱⊤𝑆 -MDDH hold, QAHad is an ℎ𝑙𝑠-strong local
knowledge sound proof system, where ℎ𝑙𝑠(𝜃) = (G,H, F,N, [U⊗V−R]1 , [R]2) for a uniform R.

2. If for all 𝑆, 𝑆 ⊆ [𝑑] with 𝑆 ≤ 𝐾 the distributions 𝒰𝑆 ,𝒱𝑆 ,𝒲𝑆 output matrices with the last 𝑛′
columns being 0, and𝒰′⊤𝑆 -MDDH and𝒱′⊤𝑆 -MDDH hold, with𝒰′𝑆, (resp. 𝒱′𝑆) being𝒰𝑆 (resp.
𝒱𝑆) where we delete the trailing zero columns, then QAHad is an ℎ𝑙𝑠-strong local knowledge sound
proof system, where ℎ𝑙𝑠(𝜃) = (G,H, F,W, [U ⊗ V − R]1 , [R]2).

Proof. By Thm. 14 it is enough to show that QASum is secure for such distribution. This in
turn hold when the sum knowledge transfer argument is sound (Thm. 12) which is true if𝒟𝑘-
SKerMDH holds and (𝒰𝑆 ,𝒱𝑆 , ℎ) − MDDH assumption holds (similar in the second case for the
distributions we remove the zeros) by Thm. 19. It remains to show that for these distribution the
latter condition holds when we are given the extra information ℎ(U,V) = ([U ⊗ V − R]1 , [R]2)
for a uniform R. We show that this is the case if, additionally, DDH hold. That is we need to
show that for all 𝑆 the (𝒰𝑆 ,𝒱𝑆 , ℎ)-MDDH holds or equivalently the distributions

• [U⊤]1 , [V⊤]2 , [U⊤ ⊗ V⊤ − R]1 , [R]2 , [(U ⊗ V)⊤𝒌 − 𝒓]1 , [𝒓]2 : 𝒌 ← Z|𝑆 |2𝑞 ; 𝒓 ← Z𝑛2
𝑞 ; 𝑘 ← Z𝑞

• [U⊤]1 , [V⊤]2 , [U⊤ ⊗ V⊤ − R]1 , [R]2 , [𝒔]1 , [𝒕]2 : 𝒔 , 𝒕 ← Z𝑛2
𝑞

where U←𝒰𝑆; V←𝒱𝑆; R← Z𝑛2×|𝑆 |2
𝑞 are computationally indistuinguishable.

Let 𝑆 ⊆ [𝑑] with |𝑆 | ≤ 𝐾. We show the indistinguishability of these distributions by
showing indistinguishability of a sequence of hybrid distributions. In what follows denote
𝛼 = ([U⊤]1 , [V⊤]2 , [U⊤ ⊗ V⊤ − R]1 , [R]2)where U←𝒰𝑆 ,V←𝒱𝑆 ,R← Z𝑛2×|𝑆 |2

𝑞 .
We have

0. 𝛼, [(U ⊗ V)⊤𝒌 − 𝒓]1 , [𝒓]2 : 𝒓 ← Z𝑛2
𝑞 , 𝒌 ← Z𝑛2

𝑞

1. 𝛼, [(U ⊗ V)⊤(𝒌1 ⊗ 𝒌2) − 𝒓]1 , [𝒓]2 : 𝒓 ← Z𝑛2
𝑞 , 𝒌1 , 𝒌2 ← Z𝑛𝑞

2. 𝛼, [(U⊤𝒌1) ⊗ (V⊤𝒌2) − 𝒓]1 , [𝒓]2 : 𝒓 ← Z𝑛2
𝑞 , 𝒌1 , 𝒌2 ← Z𝑛𝑞

3. 𝛼, [𝒖 ⊗ (V⊤𝒌2) − 𝒓]1 , [𝒓]2 : 𝒖 ← Z𝑛𝑞 , 𝒓 ← Z𝑛2
𝑞 , 𝒌2 ← Z𝑛𝑞

4. 𝛼, [𝒓]1 , [𝒖 ⊗ (V⊤𝒌2) − 𝒓]2 : 𝒖 ← Z𝑛𝑞 , 𝒓 ← Z𝑛2
𝑞 , 𝒌2 ← Z𝑛𝑞

5. 𝛼, [𝒓]1 , [𝒖 ⊗ 𝒗 − 𝒓]2 : 𝒖 , 𝒗 ← Z𝑛𝑞 , 𝒓 ← Z𝑛2
𝑞

6. 𝛼, [𝒔]1 , [𝒕]2 : 𝒔 , 𝒕 ← Z𝑛2
𝑞

We next show that for all 1 ≤ 𝑖 ≤ 5 the distributions 𝑖 − 1, 𝑖 are computationally indistin-
guishable.
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• Case 𝑖 = 1. We show that distinguishing these two distributions reduces to the rank
problem in G1 introduced in [Vil12], namely, distinguishing [A]1 ∈ G𝑛×𝑛1 sampled uni-
formly over all matrices in G𝑛×𝑛1 of rank 1, from [A]1 ∈ G𝑛×𝑛1 sampled uniformly over all
matrices in G𝑛×𝑛1 of rank 𝑛. Now, assume there exists a distinguisher𝒜 for distributions
0 and 1. We construct a distinguisher ℬ against the rank problem. The distinguisher
works as follows: on input [A]1, it samples U ← 𝒰𝑆 ,V ← 𝒱𝑆 ,R ← Z𝑛2×|𝑆 |2

𝑞 , 𝒓 ← Z𝑛2
𝑞 .

It computes M = U⊤[A]1V and vectorizes it; denote the vectorization as [𝒎]1. it then
executes𝒜([U⊤]1 , [V⊤]2 , [U⊤ ⊗V⊤ −R]1 , [R]2 , [𝒎]1 − [𝒓]1 , [𝒓]2) and outputs whatever𝒜
outputs. Now, note the vectorization [𝒎]1 corresponds to the value [(U ⊗V)𝒎]1. If [A] is
of rank 1, then we can write A = 𝒌1𝒌⊤2 and we have M = U⊤𝒌1𝒌⊤2 V = U⊤𝒌1(V⊤𝒌2)⊤ and
the vectorization corresponds to (U⊤𝒌1) ⊗ (V⊤𝒌2), namely the case 𝑖 = 0. Otherwise, [A]
is of rank 𝑛, and we can write its vectorization as 𝒌. Then, 𝒎 correspond to (U⊤ ⊗V⊤)𝒌),
namely the case 𝑖 = 1. As shown in [Vil12], the rank problem reduces to DDH with a
security loss of log 𝑛.

• Case 𝑖 = 2. Distributions 1, 2 are perfectly indistinguishability since the only difference is
that the latter is computed as [(U⊤𝒌1) ⊗ (V⊤𝒌2) − 𝒓]1, which equals to [(U⊤ ⊗ V⊤)(𝒌1 ⊗
𝒌2) − 𝒓]1, which is the corresponding value of distribution 1.

• Case 𝑖 = 3. This case reduces to the𝒰⊤𝑆 -MDDH1 assumption. The only difference is that in
the forth distribution, we replace U⊤𝒌1 with a uniform element 𝒖. It is enough to show
that we can compute the rest of the values given [U]1 , [𝒖]1 where [𝒖] is either U⊤𝒌1 or
uniform. We can compute the values as

[U⊤]1 , [V⊤]2 , [U⊤]1 ⊗ V⊤ − [R]1 , [R]2 , [𝒖]1 ⊗ (V⊤𝒌2) − [𝒓]1 , [𝒓]2
where we sample V←𝒱𝑆 , R← Z𝑛2×|𝑆 |2

𝑞 , 𝒓 ← Z𝑛2
𝑞 , 𝒌2 ← Z𝑛𝑞 .

• Case 𝑖 = 4. The distributions 4 and 5 are perfectly indistinguishable. It is enough to note
that in both, the last two elements are uniformly distributed conditioned on their sum of
discrete logarithms being equal to 𝒖 ⊗ (V⊤𝒌2).

• Case 𝑖 = 5. This is the same as the case 𝑖 = 3 for the value [𝒗]2. This case reduces to the
𝒱⊤𝑆 -MDDH2 assumption. The only difference is that in the last distribution, we replace
V⊤𝒌2 with a uniform element 𝒗. It is enough to show that we can compute the rest of the
values given [V]2 , [𝒗]2 where 𝒗 is either V⊤𝒌2 or uniform. We can compute the values as

[U⊤]1 , [V⊤]2 , [R]1 ,U⊤ ⊗ [V⊤]2 − [R]2 , [𝒓]1 , 𝒖 ⊗ [𝒗]2 − [𝒓]2 ,

where we sample U←𝒰𝑆 , R← Z𝑛2×|𝑆 |2
𝑞 , 𝒓 ← Z𝑛2

𝑞 , 𝒖 ← Z𝑛𝑞 .

• Case 𝑖 = 6. This again reduces to the rank problem in 𝒢2. The only difference in the two
distributions is that in distribution 5 the sum of the last two elements, namely 𝒖 ⊗ 𝒗 is a
vectorized matrix of rank 1, namely 𝒖𝒗⊤, while in distribution 6 is a uniformly distributed
matrix of rank 𝑛 (except w.n.p). Given [A]2 ∈ G𝑛×𝑛2 either uniform of rank 1 or uniform of
rank 𝑛we can compute all the other values efficiently as follows. Let 𝒂 be the vectorization
of T. We compute

[U⊤]1 , [V⊤]2 , [U⊤ ⊗ V⊤ − R]1 , [R]2 , [𝒓]1 , [𝒂]2 − [𝒓]2 ,

where U ← 𝒰𝑆 ,V ← 𝒱𝑆 ,R ← Z
𝑛2×|𝑆 |2
𝑞 , 𝒓 ← Z𝑛

2
𝑞 . This implies that distinguishing

distributions 5, 6 reduces to the rank problem, which in turn reduces to DDH in G2.
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□

The proof of oblivious trapdoor generation essentially follows from the oblivious trapdoor
generation and index set hiding of the SSB commitments and is similar to the corresponding
proofs for the other constructions.

First we show the corresponding lemma to Lemma 3, that is, we construct an indistinguish-
able crs given only the commitment keys and the matrices U,V,W.

Lemma 4. There exists a modified crs generation algorithm K′ that on input (𝜌, 𝜃′), where either
𝜃′ = (U,V,W, [G ⊗H−Z]1 , [Z]2) or 𝜃′ = (G,H, F, [U ⊗V−R]1 , [R]2) and outputs a crs such that
(𝜌, crs) are identically distributed to the honest algorithm.

The lemma follows by inspection an by noting that with the given values we can compute
the crs for the sum as explained in Lemma 3. Again, w.l.o.g. we use the same name for the two
algorithms, namely K and differentiate them by their input.

We next show that the construction satisfies oblivious extractability.

Theorem 15. Let𝒰 ,𝒱 ,𝒲 be witness samplable distributions, and CS be the algebraic commitment
scheme of Fig. 3 for which CS ⊗ CS is obliviously extractable. Then Construction QAHad of Fig. 7 is
ℎ𝑛𝑠-strong oblivious where ℎ𝑛𝑠 = ([G ⊗ H − Z]1 , [Z]2). Furthermore,

1. For every PPT𝒜 against index set hiding of QAHad, there exist an adversaryℬ against ℎ𝑛𝑠-strong
index set hiding property of CS such that AdvQAHad

ISH (𝒜) ≤ 3AdvCS
ISH(ℬ).

2. For every 𝒜 against oblivious crs generation of QAHad, there exist an adversary ℬ against
oblivious crs generation of QASum such that AdvQAHad

oblv (𝒜) ≤ AdvQASum
oblv (ℬ).

Proof. It is enough to show that index set hiding holds and that we can sample a tuple (𝜌, crs)
indistinguishable from the one we are given, along with a valid trapdoor. This is the case
because the commitment keys are perfectly binding in 𝑆′, which means that the witnesses are
unique and do not help the (unbounded) distinguisher who can compute them on its own.
ℎ𝑛𝑠-Strong Index Set Hidning. Assume there exist sets 𝑆, 𝑆′ of size at most 𝐾 and an adversary𝒜
which distinguishes (𝜌, crs, ℎ𝑛𝑠(𝜃)) sampled for 𝑆 from (𝜌, crs, ℎ𝑛𝑠(𝜃)) sampled for 𝑆′with some
probability 𝛼. We construct adversaries ℬ distinguishing 𝑐𝑘 sampled for 𝑆 from 𝑐𝑘 sampled
for 𝑆 with probability 𝛽 such that 𝛼 ≤ 2𝛽.
ℬ takes as input some 𝑐𝑘 sampled either for 𝑆 or 𝑆′ which is parsed as [G]1 and honestly

computes the crs following K of Lemma 4 using the values [G⊗H−Z]1 , [Z]2 which are included
in ℎ𝑛𝑠 except that [H]2 ,H,TH , [F]1 , F,TF are computed as follows: it samples 𝑏 ← {0, 1} and if
𝑏 = 0 it sets

([H]2 ,H,TH) ← CS.KeyGen(𝑔𝑘2 , 𝑑, 𝐾, 𝑆), ([F]1 , F,TF) ← CS.KeyGen(𝑔𝑘1 , 𝑑, 𝐾, 𝑆)
otherwise it sets

([H]2 ,H,TH) ← CS.KeyGen(𝑔𝑘2 , 𝑑, 𝐾, 𝑆′), ([F]1 , F,TF) ← CS.KeyGen(𝑔𝑘1 , 𝑑, 𝐾, 𝑆′)
If the guess 𝑏 is correct, by witness samplability of U,V,W the distribution of 𝜌 is not changed,
and since the crs is computed as an honest one conditioned on 𝜌, index set hiding follows holds
with probability 𝛼

2 .
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Oblivious trapdoor generation: Here, we can simply use the oblivious trapdoor generation of
protocol QASum. The conditions of corollary 5 are satisfied since we include the values [G ⊗
H − Z]1 , [Z]2 in ℎ𝑛𝑠 and by Thm 6 the commitment key for the sum has oblivious trapdoor
generation. It is enough to show that we can compute the crs for the QAHad given a crs for
QASum. But this is easy since when given a pair (𝜌sum , crssum) we execute the oblivious crs
algorithm QASum.OblKeyGen(𝜌, crs, 𝑺 = (𝑆, 𝑆)) as in Lemma 4.

□

Corollary 9. If CS is the one from fig. 3, then QAHad from fig. 7 is ℎ𝑛𝑠-strong no-signaling where
ℎ𝑛𝑠 = ([G ⊗ H − Z]1 , [Z]2 ,U,V,W) .
Proof. The proof follows directly from Theorem 7 and the ℎ𝑛𝑠-strong oblivious trapdoor gen-
eration of QAHad which is shown in Thm. 15. □
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𝒟par(gk, 𝑑, 𝐾, 𝑆):
• ([U]1 ,U) ← 𝒰 ; ([V]2 ,V) ← 𝒱. ([W]1 ,W) ←𝒲;
• ([G]1 ,G,TG) ← CS.KeyGen(gk1 , 𝑛, 𝑑, 𝐾, 𝑆);
([H]2 ,H,TH) ← CS.KeyGen(gk2 , 𝑛, 𝑑, 𝐾, 𝑆);
([F]1 , F,TF) ← CS.KeyGen(gk1 , 𝑛, 𝑑, 𝐾, 𝑆);

• Output (𝜌, 𝜃) where 𝜌 := (gk, [G]1 , [H]2 , [F]1 , [U]1 , [V]2 , [W]1), and 𝜃 :=
(G,H, F,TG ,TH ,TF ,U,V,W).

K(𝜌, 𝜃):
• Parse 𝜌 = (gk, [G]1 , [H]2 , [F]1 , [U]1 , [V]2 , [W]1), 𝜃 = (G,H, F,TG ,TH ,TF ,U,V,W).
• (𝑐𝑘, 𝑠𝑘) ← kCS.KeyGen(gk, [G]1 , [H]2 ,G,H) and parse 𝑐𝑘 as [Q1]1 , [Q2]2 , aux and 𝑠𝑘

as Q1 ,Q2 ,TQ.

• Sample R ∈ Z𝑑2×𝑛2
𝑞 and set M1 = U ⊗ V − R and M2 = R. Set N = WD.

• Set 𝜌sum := (gk, [Q1]1 , [Q2]1 , [F]2 , [M1]1 , [M2]2 , [N]1),
𝜃sum := (Q1 ,Q2 , F,TQ ,TF ,M1 ,M2 ,N).

• Set (crssum , 𝜏sum) ← QASum(𝜌sum , 𝜃sum).
• Sample R′← Z𝐾2×𝑛2

𝑝 and set [E1]1 = [Q1(U ⊗ V) − R′)]1, [E2]2 = [Q2(U ⊗ V) + R′]2.
• Output crs = ([E1]1 , [E2]2 , crssum), 𝜏 = (TG ,TH ,TF).

Prove(crs, [𝒙]1 , [𝒚]2 , [𝒘]1 , 𝒂 , 𝒃):
• Parse crs = ([E1]1 , [E2]2 , crssum).
• Set [𝒄1]1 = [E1]1(𝒂 ⊗ 𝒃), [𝒄2]2 = [E2]2(𝒂 ⊗ 𝒃), [𝒅]1 = [𝒘]1.
• 𝜋sum = QASum.Prove(crssum , [𝒄1]1 , [𝒄2]1 , [𝒅]1 , 𝒂 ⊗ 𝒃).
• Output 𝜋 := ([𝒄1]1 , [𝒄2]1 ,𝜋sum).

Verify (crs, [𝒖]1 , [𝒗]2 , [𝒘]1 ,𝜋):
• Parse crs = ([E1]1 , [E2]2 , crssum), 𝜋 := ([𝒄1]1 , [𝒄2]1 ,𝜋sum).
• Compute [𝒖 ⊗ 𝒗]𝑇 using the pairing operation and output 1 iff

1. QASum.Verify (crssum , [𝒄1]1 , [𝒄2]2 , [𝒘]1) = 1 and
2. [𝒖 ⊗ 𝒗]𝑇 = 𝑒([𝒄1]1 , [1]2) + 𝑒([1]1 , [𝒄2]2)

Extract (𝜏, [𝒖]1 , [𝒗]2 , [𝒘]1 ,𝜋): Parse 𝜏 as (TG ,TH ,TF) and output [𝒙1]1 := T⊤G[𝒖]1 , [𝒙2]2 :=
T⊤H[𝒗]1 , [𝒚]1 := T⊤F [𝒘]1.

Figure 7: Quasi argument QAHad for knowledge transfer of hadammard product. Here D ∈
Z𝑛×𝑛2
𝑞 is the matrix such that D(𝒂 ⊗ 𝒃) = 𝒂 ◦ 𝒃
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6 Delegation for Arithmetic Circuit Evaluation

Formally, we define a delegation scheme as follows.

Definition 10. A triplet of algorithms Del = (Setup,Prove,Verify) is a delegation scheme for
circuit evaluation with preprocessing if for any circuit 𝐶 : Z𝑛0

𝑝 → Z𝑛𝑑𝑝 :

Completeness: For any 𝒙 , 𝒚 such that 𝒚 = 𝐶(𝒙) it holds

Pr
𝑔𝑘←𝒢(1𝜅)

[Verify(crs, 𝒙 , 𝒚,𝜋) = 1|crs← Setup(𝑔𝑘, 𝐶),𝜋← Prove(crs, 𝒙 , 𝒚)] ≥ 1 − negl(𝜅),

Soundness: For any adversary𝒜 it holds that

Pr
𝑔𝑘←𝒢(1𝜅)

[Verify(crs, 𝒙 , 𝒚,𝜋) = 1 and 𝒚 ≠ 𝐶(𝒙)|crs← Setup(𝑔𝑘, 𝐶), (𝒙 , 𝒚,𝜋) ← 𝒜(crs)] ≤ negl(𝜅),

Efficiency: The setup algorithm and the prover run in time poly(|𝐶 |, 𝜅). The size of each proof
is 𝑂(𝜅) and verification time 𝑛poly(𝜅) + poly(𝜅).

6.1 The Scheme

In the delegation scheme from [GR19] the prover, gives 3𝑑 commitments [𝐿1]1 , . . . , [𝐿𝑑]1,
[𝑅1]2 , . . . , [𝑅𝑑]2 , [𝑂1]1 , . . . , [𝑂𝑑]1 to, respectively, the left, right and output wires of each level
of the circuit. Then, it gives a linear and quadratic knowledge transfer arguments to “transfer”
knowledge of the opening from the input level, which is known to the verifier, to the next levels.
Finally, the verifier checks that the commitment to the output opens to 𝒚.

We give a “compressed” version of [GR19] where the 3𝑑 commitments are shrunken into
3 no-signaling SSB commitments, and the 2𝑑 knowledge transfer arguments are shrunk into 2
quasi arguments. From the SSB commitments we can extract [𝐿𝑖]1[𝑅𝑖]2 , [𝑂 𝑗]1 for 𝑗 = 𝑖 − 1 or
𝑗 = 𝑖. Local knowledge soundness of the quasi arguments imply that knowledge is “transferred”
from [𝑂𝑖−1]1 to [𝐿𝑖]1 , [𝑅𝑖]2 or from [𝐿𝑖]1 , [𝑅𝑖]2 to [𝑂𝑖]1. One important technical problem with
this approach is that the linear knowledge transfer argument is between the next level and all
previous levels. That is, the knowledge is transferred from commitments to the output in all
previous levels [𝑂1]1 , . . . , [𝑂𝑖]1, to commitments to the left and right wires in the next level
[𝐿𝑖+1]1 , [𝑅𝑖+1]2. This means the quasi-argument must extract 𝑂(𝑑) values and hence is not
succinct. We solve this issue by computing 𝐿𝑖 , 𝑅𝑖 , 𝑂𝑖 as commitments also to the respective
wires of all previous levels. Consider an arithmetic circuit 𝐶 : Z𝑛0

𝑝 → Z𝑛𝑑𝑝 . The circuit can be
naturally sliced into 𝑑 + 1 levels, where level 0 contains the input and level 𝑖 is formed by a set
of 𝑛𝑖 multiplication gates, the inputs of which depends on a linear transformation of outputs
of previous levels.19 Let 𝑁𝑖 =

∑𝑖
𝑗=0 and 𝑁 = 𝑁𝑑. Denote by 𝒂𝑖 , 𝒃𝑖 , 𝒄𝑖 ∈ Z𝑁𝑖𝑝 the left, right

and output wires of level 1, . . . , 𝑖 respectively. That is 𝒂𝑖 =
( 𝒂𝑖−1

D𝑖𝒄𝑖−1

)
and 𝒃𝑖 =

(
𝒃𝑖−1

E𝑖𝒄𝑖−1

)
, where

D𝑖 , E𝑖 ∈ Z𝑛𝑖×𝑁𝑖−1
𝑝 are defined by the circuit’s linear gates, 𝒂0 , 𝒃0 are of size 0 and 𝒄0 = 𝒙 is the

input. Let D ∈ Z𝑁−𝑛0×𝑁
𝑝 (resp. E) be the matrix such that the 𝑖-th row of D is (D𝑖 |0𝑛𝑖×𝑁−𝑁𝑖−1).

Note that matrices D, E are lower triangular. For the outputs we have 𝒄𝑖 = 𝒂𝑖 ◦ 𝒃𝑖 .
Denote 𝒂 = 𝒂𝑑, 𝒃 = 𝒃𝑑 and 𝒄 = 𝒄𝑑−1. The evaluation of the circuit is correct if ( 𝒂𝒃 ) =

( D
E
)
𝒄

and 𝒄 = 𝒂 ◦ 𝒃. Next, consider Pedersen commitment keys U∗𝑖 ← Z1×𝑛𝑖
𝑝 , V∗𝑖 ← Z1×𝑛𝑖

𝑝 and
W∗𝑖 ← Z1×𝑛𝑖

𝑝 and define U𝑖 = (U∗1 , . . . ,U∗𝑖 ),V𝑖 = (V∗1 , . . . ,V∗𝑖 ), for 𝑖 ∈ [𝑑], W𝑖 = (W∗1 , . . . ,W∗𝑖 ),
19We consider w.l.o.g. only linear transformations since if we can handle affine ones by including a wire with the

value 1 in the input.
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for 𝑖 ∈ [𝑑 − 1]. Consider commitments (represented in Z𝑝) to left, right and output wires as
𝑂𝑖 = W𝑖𝒄𝑖 ,𝑶 = W𝒄, 𝐿𝑖 = U𝑖𝒂𝑖 = U𝒂 , 𝑅𝑖 = V𝑖𝒃𝑖 ,𝑹 = V𝒃, where

U =
©­­«
U∗1 0
...

. . .
U∗1 . . . U∗𝑑

ª®®¬ , V =
©­­«
V∗1 0
...

. . .
V∗1 . . . V∗𝑑

ª®®¬ , W =
©­­«
W∗1 0
...

. . .
W∗1 . . . W∗𝑑−1

ª®®¬ , (6)

𝑶 = (𝑂1 , . . . , 𝑂𝑑−1)⊤ , 𝑳 = (𝐿1 , . . . , 𝐿𝑑)⊤ ,𝑹 = (𝑅1 , . . . , 𝑅𝑑)⊤.
We additionally pick G,H, F for computing SSB commitments to vectors of size 𝑑 and

publish [GU]1, [HV]2, [FW]2. The prover computes [𝑳̂]1 = [GU]1𝒂 , [𝑹̂]2 = [HV]2𝒃, [𝑶̂]1 =
[FW]1𝒄 and gives a quasi-argument of linear knowledge transfer from 𝒙 , [𝑶]1 , 𝒚 to [𝑳]1 , [𝑹]2
with the following structure

©­­­­­«
𝒙
𝑶
𝒚
𝑳
𝑹

ª®®®®®¬
=

©­­­­­«

input︷︸︸︷
I𝑛0

mid-wires︷︸︸︷
0

output︷︸︸︷
0

0 W 0
0 0 I𝑛𝑑

UD 0
VE 0

ª®®®®®¬
©­«
𝒙
𝒄
𝒚

ª®¬ . (7)

That is, we can extract [𝐿𝑖]1 , [𝑅𝑖]2 , [𝑂𝑖−1]1 and, if we are additionally given 𝒄𝑖−1 such that𝑂𝑖−1 =
W𝑖−1𝒄𝑖−1, then 𝐿𝑖 = U𝑖D𝑖𝒄𝑖 , 𝑅𝑖 = V𝑖E𝑖𝒄𝑖 . We also use a quasi-argument of knowledge transfer
of the hadamard product from [𝑳]1 , [𝑹]2 to [𝑶]1. In this case we extract [𝐿𝑖]1 , [𝑅𝑖]2 , [𝑂𝑖]1 and,
if we are additionally given 𝒂𝑖 , 𝒃𝑖 such that 𝐿𝑖 = U𝑖𝒂𝑖 and 𝑅𝑖 = V𝑖𝒃𝑖 , then 𝑂𝑖 = W𝑖(𝒂𝑖 ◦ 𝒃𝑖).

We need to make one last change that will allow us to take into account the input 𝒙 and the
claimed output 𝒚. Essentially, we make the first and last commitment key (trivially) perfectly
binding by using as a commitment key the identity matrix. The security properties still hold
in a trivial way (the I𝑛0-MDDH assumption is perfectly secure). We change accordingly the SSB

commitment key, that is we set F′ =
(

I𝑛0 0 0
0 F 0
0 0 I𝑛𝑑

)
. Note that the extraction trapdoor remains the

same, but the extractor can trivially extract the values corresponding to 𝒙 , 𝒚 regardless of F′
distribution. In other words, our commitment key is always perfectly binding in the first 𝑛0
and 𝑛𝑑 coordinates. We denote with W′ the modified matrix where we change the first and
last rows with (I𝑛0 | 0) and (0 | I𝑛𝑑 ) respectively. Therefore, if 𝑶 = W′𝒄, we get that 𝑂0 = 𝒙 and
𝑂𝑑 = 𝒚.

6.2 Proof of Security

Theorem 16. Let𝒜 be an adversary against Adaptive Soundness of the delegation scheme of Fig. 8, that
outputs an input/output pair 𝒙 , 𝒚∗ and a valid proof 𝜋 :=

(
[𝑳̂]1 , [𝑹̂]2 , [𝑶̂]1 ,𝜋had ,𝜋blin

)
but 𝒚∗ ≠ 𝐶(𝒙).

Then there exists a distinguisher𝒟blin ,𝒟had and adversariesℬblin ,ℬhad against the no-signaling property
of QABlin and QAHad, respectively, and adversaries 𝒜blin ,𝒜had against local knowledge soundness of
QABlin and local knowledge soundness QAHad, respectively, such that

AdvDel(𝒜) ≤ 2(𝑑 + 1)
(
AdvQAHad

NS (𝒟had ,ℬhad) + AdvQAHad
NS (𝒟had ,ℬhad)

)
+ (𝑑 + 1)

(
AdvQAHad

snd (𝒜had) + AdvQABLin
snd (𝒜blin)

)
.

Proof. Let Game0 be the soundness game:
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Setup(𝑔𝑘, 𝐶):
• From the linear gates of 𝐶 compute matrices D, E.
• ([F]1 , F,TF) ← CS.KeyGen(gk, 𝑑 − 1, 1, ∅),
([G]1 ,G,TG) ← CS.KeyGen(gk, 𝑑, 1, ∅), ([H]1 ,H,TH) ← CS.KeyGen(gk, 𝑑, 1, ∅);

• Sample U,V,W as in equation 6. Define W′ as the matrix W augmented with (I𝑛0 | 0)
and (0 | I𝑛𝑑 ) as its first and last row.

• Let 𝜌blin = (𝑔𝑘, [F′]1 , [G]1 , [H]2 , [W′]1 , [UD]1 , [VE]2) and 𝜃blin = (F,G,H,TF ,TG ,TH ,
U′,UD,VE), where F′ contains rows (I𝑛 | 0 | 0), (0 | F | 0), (0 | 0 | I𝑛𝑑 ).

• Let 𝜌had = (𝑔𝑘, [G]1 , [H]2 , [F′′]1 , [U]1 , [V]2 , [U]1) and 𝜃had = (G, H, F, TG , TH , TF , U,
V, W), where F′′ contains the rows (F | 0), (0 | I𝑛𝑑 ).

• Sample crsblin ← QABlin.K(𝜌blin , 𝜃blin) and crshad ← QAHad.K(𝜌had , 𝜃had)
• output crs := ([GU]1 , [HV]2 , [FW]1 , crslin , crshad)

Prove(crs, 𝒙 , 𝒚):
• Evaluate the circuit on input 𝒙 to obtain values for the wires 𝒂 , 𝒃, 𝒄.

• Compute [𝑳̂]1 = [GU]1𝒂 , [𝑹̂]2 = [HV]2𝒃, [𝑶̂]1 = [FW]1𝒄.
• 𝜋blin ← QABlin.Prove(crsblin ,

( 𝒙
[𝑶̂]1
𝒚

)
, [𝑳̂]1 , [𝑹̂]2), (𝒙 , 𝒄, 𝒚)).

• 𝜋had ← QAHad.Prove(crshad , [𝑳̂]1 , [𝑹̂]2 ,
(
[𝑶̂]1
𝒚

)
, 𝒂 , 𝒃).

• Return 𝜋 = ([𝑶̂]1 , [𝑳̂]1 , [𝑹̂]2 ,𝜋blin ,𝜋had).
Verify(crs, (𝒙 , 𝒚),𝜋):

• Parse 𝜋 := ([𝑶̂]1 , [𝑳̂]1 , [𝑹̂]2 ,𝜋blin ,𝜋had).
• Output 1 if the following tests are successful and 0 otherwise:

– QABlin.Verify(crsblin ,
( 𝒙
[𝑶̂]1
𝒚

)
, [𝑳̂]1 , [𝑹̂]2),𝜋blin) = 1 and

– QAHad.Verify(crshad , [𝑳̂]1 , [𝑹̂]2 ,
(
[𝑶̂]1
𝒚

)
,𝜋had) = 0

Figure 8: Delegation scheme for an arithmetic circuit.

Game0: This is the soundness game. The output of Game0 is 1 iff on input crs← Setup(gk, 𝐶),
the adversary outputs 𝒙 , 𝒚,𝜋←𝒜(crs) such that 𝐶(𝒙) ≠ 𝒚 and the proof verifies, namely
Verify(crs, 𝒙 , 𝒚,𝜋) = 1.

In what follows we use the fact that the commitment keys corresponding to [𝑂]0 and [𝑂]𝑑
are the identity matrices. Therefore are trivially extractable; thus the bilateral knowledge
argument is sound since it satisfies the soundness conditions (MDDH is trivially hard for the
identity matrix). This is used in the same way as [GR19].

For 𝑖 ∈ [𝑑], 𝑗 ∈ [0, 𝑑] and 𝑆1 , 𝑆2 sets of sizes at most 1, consider the following games:

BadO𝑗,𝑆1 ,𝑆2 : As Game0 with the following difference: we sample commitment keys that make
crshad extractable at 𝑺 = (𝑆1 , 𝑆2) and a corresponding trapdoor 𝜏. The output of BadOj,S1 ,S2

is 1 iff either 𝑆2 ≠ { 𝑗} or [𝑂 𝑗]1 ≠ [W∗𝑗]1𝒄 𝑗 , where 𝒄 𝑗 is computed by honestly executing 𝐶(𝒙)
and [𝑂 𝑗]1 ← QAHad.Extract(𝜏, [𝑳̂]1 , [𝑹̂]2 , [𝑶̂]1 ,𝜋had) is extracted from the adversary’s
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proof 𝜋 = ([𝑶̂]1 , [𝑳̂]1 , [𝑹̂]2 ,𝜋blin ,𝜋had).
BadLR𝑖 ,𝑆1 ,𝑆2 : As Game0 with the difference: we sample commitment keys that make crslin

extractable at 𝑺 = (𝑆1 , 𝑆2) and a corresponding trapdoor 𝜏. The output of BadLRi,S1 ,S2

is 1 iff either 𝑆1 ≠ {𝑖} or [𝐿𝑖]1 ≠ [U∗𝑖]1𝒂𝑖 or [𝑅𝑖]1 ≠ [V∗𝑖]1𝒃𝑖 , where 𝒂𝑖 , 𝒃𝑖 are computed
by honestly executing 𝐶(𝒙) and ([𝐿𝑖]1 , [𝑅𝑖]1) ← QAHad.Extract(𝜏, [𝑳̂]1 , [𝑹̂]2 , [𝑶̂]1 ,𝜋blin) is
extracted from the adversary’s proof 𝜋 = ([𝑶̂]1 , [𝑳̂]1 , [𝑹̂]2 ,𝜋blin ,𝜋had).

Now for any game, let 𝐸 be the event where the output (𝒙 , 𝒚,𝜋) ← 𝒜(crs) satisfies
Verify(crs, 𝒙 , 𝒚,𝜋) = 1. We define𝑂𝑑 = 𝒚 and W𝑑 = (0𝑛𝑑×𝑁−𝑛𝑑 |I𝑛𝑑 ) so that Game0 = BadO𝑑,∅,{𝑑}∧
𝐸. We also define BadO𝑖 = BadO𝑖 ,∅,{𝑖}.

Let𝒜 be an adversary against adaptive soundness of the delegation scheme and for each 𝑖
define Pr[BadO𝒜𝑖 (gk) = 1 | 𝐸] = 𝑝𝑖 . We claim that

Pr[BadO𝒜𝑖+1(gk) = 1 | 𝐸] ≤ 𝑝𝑖 + AdvQABlin
snd (𝒜blin) + AdvQAHad

snd (𝒜had)
+ 2AdvQABlin

ns (𝒟blin ,ℬblin) + 2AdvQAHad
ns (𝒟had ,ℬhad)

The proof of the claim is by induction over 𝑖. In the inductive case we show that

Pr[BadO𝒜𝑖 = 1 | 𝐸] ≈ Pr[BadO𝒜𝑖,({𝑖+1},{𝑖}) = 1 | 𝐸] ≈ Pr[BadLR𝒜𝑖 ,({𝑖+1},{𝑖}) = 1 | 𝐸]
≈ Pr[BadLR𝒜𝑖,({𝑖+1},{𝑖+1}) = 1 | 𝐸]

and Pr[BadLR𝒜𝑖,({𝑖+1},{𝑖+1}) = 1 | 𝐸] ≈ Pr[BadO𝒜𝑖+1,({𝑖+1},{𝑖+1}) = 1 | 𝐸] ≈ Pr[BadO𝒜𝑖+1 = 1 | 𝐸]
where 𝑝1 ≈ 𝑝2 is defined as |𝑝1 − 𝑝2 | ≤ negl(𝜅). Now we show that each ≈ is indeed negligible.
Note that 𝜌had can be computed from 𝜌blin and vice-versa.

BadO𝑖 ,BadO𝑖 ,({𝑖+1},{𝑖}): Consider the sets 𝑺1 = (∅, {𝑖}) and 𝑺2 = ({𝑖 + 1}, {𝑖}). We show that the
output of the games relative to 𝒜 are computationally indistinguishable by reducing to
the no-signaling property of QABlin.
We construct adversaries 𝒟blin ,ℬblin against no-signaling extraction of QABlin. By Corol-
lary 5, the no-signaling property holds even when ℬblin is given 𝜌blin , crsblin and addition-
ally ℎns(𝜃blin) = (U,V,W, [G ⊗H+Z]1 , [−Z]2). Using this additional help, ℬblin computes
crshad ← QAHad.K(𝜌had , 𝜃′ = ℎns(𝜃blin)) as in Lemma 4. It then runs𝒜(crs) until it outputs
(𝒙 , 𝒚∗ , [𝑶̂]1 , [𝑳̂]1 , [𝑹̂]2 ,𝜋blin ,𝜋had), and then ℬblin outputs (

[ 𝒙
𝑶̂
𝒚∗

]
1
, [𝑳̂]1 , [𝑹̂]2) and 𝜋blin. It

gets the extracted value for the intersection of the two sets (∅, {𝑖}), namely [𝑂𝑖]1. If all
conditions of BadO𝑖 and 𝐸 hold (Verify(crs, 𝒙∗ , 𝒚∗ ,𝜋) = 1 and [𝑂𝑖] ≠ W∗𝑖 𝒄𝑖) 𝒟blin outputs 1
and otherwise 0.
Then we can bound Pr[BadO𝒜𝑖 ,({𝑖+1},{𝑖}) = 1 | 𝐸] ≤ 𝑝𝑖 + AdvQABlin

NS (𝒟blin ,ℬblin) = 𝑝𝑖 ,1.

BadO𝑖,({𝑖+1},{𝑖}) ,BadLR𝑖+1,({𝑖+1},{𝑖}): We build an adversary𝒜lin against the ℎ-strong knowledge
soundness of QABlin. On input crsblin and ℎls(𝜃blin) = (G,H, F,U,V) computes crshad ←
QAHad.K(𝜌had , ℎls(𝜃blin)), as in Lemma 4. Then runs 𝒜(crs) until it outputs 𝒙 , 𝒚∗ ,𝜋 and
then 𝒜blin outputs (

[ 𝒙
𝑶̂
𝒚∗

]
1
, [𝑳]1 , [𝑹]2) and 𝜋blin. Now by definition, conditioned on 𝐸, if

the events ¬BadO𝒜𝑖+1,({𝑖+1},{𝑖}) and BadLR𝒜𝑖+1,({𝑖},{𝑖}) happen, it holds that (1) 𝜋blin verifies,
(2) [𝑂𝑖]1 = W𝑖𝒄𝑖 and (3) [𝐿𝑖+1]1 ≠ U𝑖+1𝒂𝑖+1 or [𝑅𝑖+1]1 ≠ V𝑖+1𝒃𝑖+1. Then we can bound

Pr[BadLR𝒜𝑖+1,({𝑖+1},{𝑖}) = 1 | 𝐸] ≤ Pr[BadLR𝒜𝑖+1,({𝑖+1},{𝑖}) = 1 ∧ BadO𝒜𝑖 ,({𝑖+1},{𝑖}) = 1 | 𝐸]
+ Pr[BadLR𝒜𝑖+1,({𝑖+1},{𝑖}) = 1 ∧ ¬BadO𝒜𝑖 ,({𝑖+1},{𝑖}) = 1 | 𝐸]
≤ 𝑝𝑖 ,1 + AdvQABLin

snd (𝒜blin) = 𝑝𝑖 ,2
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BadLR𝑖+1,({𝑖+1},{𝑖}) ,BadLR𝑖+1,({𝑖+1},{𝑖+1}): Similarly as the case BadO𝑖 ,BadO𝑖,({𝑖+1},{𝑖}), but we
need to transition between sets ({𝑖}, {𝑖+1}) → (∅, {𝑖 + 1}) → ({𝑖+1}, {𝑖+1}). We use twice
the no-signaling property of QAHad and exploit the fact that we can build crsblin using
ℎ𝑛𝑠(𝜃had). Therefore, Pr[BadLR𝑖 ,({𝑖+1},{𝑖+1}) = 1 | 𝐸] ≤ 𝑝𝑖 ,2 + 2AdvQAHad

NS (𝒟had ,ℬhad) = 𝑝𝑖 ,3.

BadLR𝑖 ,({𝑖+1},{𝑖+1}) ,BadO𝑖+1,({𝑖+1},{𝑖+1}): We build an adversary𝒜had against the ℎ-strong knowl-
edge soundness of QAHad. On input crshad and ℎls(𝜃had) = (G,H, F,W) computes
crsblin ← QABlin.K(𝜌blin , ℎls(𝜃had)), as in Lemma 2. Then runs 𝒜(crs) until it outputs
𝒙 , 𝒚∗ ,𝜋 and then𝒜blin outputs ([L]1 , [R]2 ,

[
𝑶̂
𝒚∗

]
1
) and𝜋had. Now by definition, conditioned

on 𝐸, if the events ¬BadLR𝒜𝑖+1,({𝑖+1},{𝑖+1}) and BadO𝒜𝑖+1,({𝑖+1},{𝑖+1}) happen, it holds that (1)
𝜋had verifies, (2) [𝐿𝑖+1]1 = U𝑖+1𝒂𝑖+1 and [𝑅𝑖+1]1 = V𝑖+1𝒃𝑖+1 and (3) [𝑂𝑖+1]1 ≠ W𝑖+1𝒄𝑖+1.
Then we can bound

Pr[BadO𝒜𝑖+1,({𝑖+1},{𝑖+1}) = 1 | 𝐸] ≤ Pr[BadO𝒜𝑖+1,({𝑖+1},{𝑖+1}) = 1 ∧ BadLR𝒜𝑖+1,({𝑖+1},{𝑖+1}) = 1 | 𝐸]
+ Pr[BadO𝒜𝑖+1,({𝑖+1},{𝑖+1}) = 1 ∧ ¬BadLR𝒜𝑖+1,({𝑖+1},{𝑖+1}) = 1 | 𝐸]
≤ 𝑝𝑖 ,3 + AdvQAHad

snd (𝒜had) = 𝑝𝑖 ,4

BadO𝑖+1,({𝑖+1},{𝑖+1}) ,BadO𝑖+1: Similarly as the case BadO𝑖 ,BadO𝑖,({𝑖+1},{𝑖}) we can bound

Pr[BadO𝒜𝑖+1 = 1 | 𝐸] ≤ 𝑝𝑖 ,4 + AdvQABlin
NS (𝒟blin ,ℬblin).

and we conclude the claim.
Now, Pr[BadO𝒜𝑖+1(gk) = 1 | 𝐸] = Pr[BadO𝒜𝑖 (gk) = 1] + 𝑝𝑖 . We have that

Pr[BadO𝒜𝑑 (gk) = 1 | 𝐸] = Pr[Game0
𝒜(gk) = 1] =

𝑑∑
𝑖=0

𝑝𝑖

which concludes the proof.
□

Efficiency. The size of the crs is (6𝑁2+6𝑁+24)G1 elements and (6𝑁2+4𝑁+36)G2 elements and
computing it is dominated by the same number of group exponentiations inG1 ,G2 respectively;
the prover is dominated by 6𝑁2 + 6𝑁 exponentiations in G1 and 6𝑁2 + 2𝑁 exponentiations
in G2 and produces a proof of size 12G1+10G2 group elements; verifying a proof requires 36
pairing operations. The size of the proof can be reduced to 10G1+8G2 combining the linear
argument with the one used by the hadamard quasi argument.

7 Applications

In this section we show how to use our delegation scheme to (1) get a NIZK argument for NP
in the preprocessing model where the size of the proof is linear in the size of the NP witness
and independent of the computation size, in spite of most NIZK constructions under standard
assumptions; (2) a zk-SNARK with quantitatively weaker assumptions and (3) compact NIZK
for NP with proof size proportional to the witness.

We will use Groth-Sahai proofs [GS08] and, for completeness, we give a high level overview.
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Groth-Sahai Proofs The Groth Sahai (GS) proof system is a non-interactive witness indistin-
guishable proof system (and in some cases also zero-knowledge) for the language of quadratic
equations over a bilinear group. The admissible equation types must be in the following form:

𝑚𝑦∑
𝑗=1

𝑓 (𝛼 𝑗 , y𝑗) +
𝑚𝑥∑
𝑖=1

𝑓 (x𝑖 , 𝛽𝑖) +
𝑚𝑥∑
𝑖=1

𝑚𝑦∑
𝑗=1

𝑓 (x𝑖 , 𝛾𝑖, 𝑗y𝑗) = 𝑡 , (8)

where 𝜶 ∈ M𝑚𝑦

1 , 𝜷 ∈ M𝑚𝑥
2 , Γ = (𝛾𝑖 , 𝑗) ∈ Z𝑚𝑥×𝑚𝑦

𝑞 , 𝑡 ∈ M𝑇 , andM1 ,M2 ,M𝑇 ∈ {Z𝑞 ,G1 ,G2 ,G𝑇} are
equipped with some bilinear map 𝑓 :M1×M2 →M𝑇 . The proof system is also zero-knowledge
wheneverM1 ≠ G1 orM2 ≠ G2 or 𝑡 = 0 [EG14]. We will use only equations for which 𝑡 = 0.

The GS proof system is a commit-and-prove proof system. That is, the prover first commits to
solutions of equation 8 using Groth-Sahai commitments20, and then computes a proof that the
committed values satisfies equation 8. We denote an instance of the Groth-Sahai proof system
by GS = (Setuppb ,Setupph ,P,V).

GS proofs are perfectly sound when the CRS is sampled from the perfectly binding distribu-
tion, i.e crsGS ← GS.Setuppb(𝑔𝑘). This means that any 𝜋 such that GS.V(crsGS , equation 8,𝜋) =
1 contains commitments from which one can extract solutions to equation 8 with probabil-
ity 1. Proofs are perfectly witness-indistinguishable when sampled from the perfectly hiding
distribution, i.e. crsGS ← GS.Setupph(𝑔𝑘). That is, for any two solution to equation 8 the
proofs follow exactly the same distribution, Computational indistinguishability of GS.Setuppb
and GS.Setupph implies that either the proof system is perfectly sound and computationally
witness indistinguishable or computationally sound and perfect witness-indistinguishable.

7.1 NIZK arguments for NP.

Let CS𝐸 an be algebraic commitment scheme –namely compatible with the Groth-Sahai proof
system [GS08]– which is hiding and extractable. Also note that we can express the verification
algorithm Del.Verify as a set of pairing product equation. The idea to construct a NIZK is the
following: let 𝐶 be an arithmetic circuit that takes public input 𝒙 and secret input 𝒘 the secret
input, and let crsDel be a crs for the delegation of computation of 𝐶. The prover commits to 𝒘
and the group elements defining the proof of the delegation using the extractable commitment
and gives a Groth-Sahai proof that the set of verification equations are satisfied w.r.t. the
opening of the commitment. Now, if CS𝐸 is extractable, we can extract the witness 𝒘, and if
the circuit is not satisfied w.r.t. 𝒙 ,𝒘 we can break adaptive soundness of delegation scheme
Del. We present the scheme.

20For elements of Z𝑝 , a Groth-Sahai commitment is just an SSB commitment wiht locality parameter 1.
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Setup(𝑔𝑘, 𝐶): Let 𝐶 an arithmetic circuit which on public input 𝒙 size 𝑛𝑥 and secret input 𝒘
size 𝑛𝑤 outputs 𝒚 of size 𝑛𝑑.

• ck𝑤 ← CS𝐸(gk, 𝑛𝑤); crsDel ← Del.Setup(𝑔𝑘, 𝐶).
• crsGS ← GS.Setuppb(𝑔𝑘).
• Output crs = (ck𝑤 , crsDel , crsGS).

Prove(crs,𝒘 , 𝒙 , 𝒚):
• Parse crs = (ck𝑤 , crsDel , crsGS).
• Compute 𝜋← Del(crsDel , (𝒙 ,𝒘), 𝒚) and 𝑐𝑤 = CS𝐸 .Com(𝒘; 𝒓).
• Denote 𝜙GS the system of pairing product equations that contain

1. The equations defined by Del.V(crs, (𝒙 ,𝒘), 𝒚,𝜋) = 1, where the unknowns are
𝒘 and 𝜋.

2. The equations defined by 𝑐𝑤 = CS𝐸 .Com(ck𝑤 ,𝒘; 𝒓), where the unknowns are 𝒘
and 𝒓 .

• 𝜋GS ← GS.P(crsGS , 𝜙𝐺𝑆 , (𝒘 , 𝒓))
• Output 𝜋← (𝑐𝑤 ,𝜋GS).

Verify(crs, (𝒙 , 𝒚),𝜋):
• Parse crs = (ck𝑤 , crsDel , crsGS). and 𝜋 = (𝑐𝑤 ,𝜋GS).
• Output 1 iff GS.V(crsGS , 𝜙GS ,𝜋GS) = 1

Figure 9: NIZK argument of NP. CS𝐸 is an algebraic commitment, GS is the Groth-Sahai proof
system of [GS08] and Del the delegation scheme of Fig. 8.

Theorem 17. Let CS𝐸 be an algebraic commitment scheme that is hiding and extractable, GS the
Groth-Sahai proof system of [GS08] and Del the delegation scheme of Fig. 8. Then, construction of Fig. 9
is a NIZK argument of knowledge. Furthermore, for every adversary 𝒜 against knowledge soundness
there exist adversaries ℬ1 ,ℬ2 against extractability of CS𝐸 and against soundness of Del respectively
such that Adv(𝒜) ≤ AdvCS𝐸

ext (ℬ1) + AdvDel
snd(ℬ2).

Proof. Completeness follows by the correctness of CS𝐸, and completeness of GS, Del. Compu-
tational zero knowledge follows from the computational zero-knowledge of GS and the hiding
property of CS𝐸. For knowledge soundness, we show how we can extract a valid witness given
an accepting proof. In what follows, let ℰCS be the extractors for CS𝐸. The NIZK extractor
ℰ𝒜(crs, 𝒙 , 𝒚,𝜋 = (𝑐𝑤 ,𝜋GS)) simply outputs (𝒘 ,𝜋) ← ℰCS(ck𝑤 , 𝑐𝑤). Now, we claim that this a
valid witness except with negligible probability. It is enough to note that if it is not, there are
three possible cases:

1. The extractor ℰCS failed which contradicts extractability of CS𝐸.

2. The extracted solutions 𝒘 ,𝜋, 𝒓 are not solutions to 𝜙GS, contradicting perfect soundness
of GS since the proof verifies.

3. 𝒚 ≠ 𝐶(𝒙 | |𝒘). We can extract the solution 𝒘 ,𝜋, 𝒓 and it must hold that

Del.Verify(crs, (𝒙 ,𝒘), 𝒚,𝜋) = 1

contradicting adaptive soundness of Del.
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□

As for efficiency, and specifically proof size, noting that the Groth-Sahai proof gives only a
constant, multiplicative overhead to the proof –which is constant –, its size is dominated by the
size of CS𝐸. Depending on the choice of CS𝐸 we can get qualitatively different constructions.
We discuss the following cases:

(i) For a NIZK argument of knowledge under falsifiable assumptions, we can extend our
result to apply to boolean circuits instead of arithmetic ones by arithmetizing the different
types of gates e.g. as in[DFGK14]. We can then use commitments for boolean vectors
that are extractable in the field under falsifiable assumptions such as Groth-Sahai com-
mitments or using methods of [GHR15b]. The proof size in this case is 𝒪(𝜆|𝒘 |) where
𝒘 is the secret input. Since fully succinct algebraic extractable commitments that allow
extraction in the field are unknown to exist under falsifiable assumptions, we cannot
achieve a (concretely more efficient) NIZK AoK for arithmetic circuits.

(ii) We use succinct extractable commitments based on knowledge assumptions, yielding
a SNARK of constant proof size. Additionally, since the committed value is the secret
input and not the full wire assignment we get a quantitatively smaller assumption size.
For example, in case of 𝑞-power knowledge of exponent assumption (𝑞-KEA) used in
[DFGK14], we use only the 𝑛𝑤-KEA while [DFGK14] requires the larger (and hence
stronger) |𝐶 |-KEA.

(iii) To construct a compact NIZK where the proof size is𝑂(|𝒘 |)+poly(𝜅)we follow essentially
the ideas of [KNYY19; KNYY20]. We use a secret key symmetric encryption scheme SE =
(KGen,Enc,Dec) with additive overhead in the cyphertexts. That is, |SE.Enc(𝑠𝑘,𝒘)| =
𝑂(|𝒘 |) + poly(𝜅). We use the NIZK from figure 9, instantiated with the commitment
scheme from (i), for showing knowledge of some𝐾 ∈ Im(SE.KGen) such that𝐶′(𝐾, 𝐷) = 1,
where𝐾 is the secret input,𝐷 the public input, and𝐶′(𝐾, 𝐷) = 𝐶(SE.Dec(𝐾, 𝐷)). To prove
that 𝐶(𝒘) = 1 the prover picks 𝐾 ← SE.KGen(1𝜅) and computes 𝐷 ← SE.Enc(𝐾,𝒘)
together with a proof 𝜋 that 𝐶′(𝐾, 𝐷) = 1. The verifier on input crs, 𝐷 and 𝜋 ouputs 1 if 𝜋
is a valid proof for 𝐷. In spite of [KNYY19; KNYY20] and by the nature of the underlying
non-compact NIZK scheme we use, we don’t require SE.Dec to be in NC1.
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K∗(𝑔𝑘, [M]1 , [N]2 , [P]1):
• C1 ← Zℓ1×𝑘𝑝 ; C3 ← Zℓ3×𝑘𝑝 ; 𝜸← Z𝑛𝑝 .

• K1,2 ← Zℓ1×1
𝑝 ; K3,2 ← Zℓ3×1

𝑝 .

• Sample A =
(

A
A

)
← 𝒟𝑘 ; Γ← Z𝑛×𝑘𝑝 . Here A denotes the first 𝑘 rows for A and A the

last row.
• K1,1 = (C1 −K1,2A)A−1

; K3,1 = (C3 −K3,2A)A−1
;

• [𝒔]1 ← [M⊤]1K1,2 − [𝜸]1;
[𝒕]2 ← [N⊤]1K1,2 + [𝜸]1.

• [B]1 = [(M⊤K1,1 + P⊤K3,1 , 𝒔 + P⊤K3,2) + Γ]1;
[D]2 = [(N⊤K1,1 , 𝒕) − Γ]2;

• Output crs = (𝑔𝑘, [A]1,2 , [B]1 , [D]2 , [C1]2 , [C3]2).

Figure 10: Modified crs generation algorithm used in Lemma 5.

A Delayed proof from Section 3.3

We use the following lemmas.

Lemma 5. For any adversary𝒜 and for any P ∈ Zℓ3×𝑛𝑝 , let

𝜖𝒜 = Pr
[

𝒅 ≠ 0
𝝅 + 𝜽 = 𝒅⊤K3

���� (M,N) ← (ℳ ,𝒩); crs← K(𝑔𝑘, [M]1 , [N]2 , [P]1);
([𝒅]1 , [𝝅]1 , [𝜽]2) ← 𝒜(crs, [M]1 , [N]2 , ℎ(M,N), P)

]
.

Then, there exists a PPT adversary ℬ such that 𝜖𝒜 ≤ Adv(ℳ⊤ ,ℎ)-MDDH(ℬ) + 1/𝑝, whereℳ⊤ is the
distribution which results from sampling matrices fromℳ and transposing them.

Proof. (Lemma 5)
We show this by a sequence of games.

Game0: This game runs the adversary as in Lemma 5.

Game1: This game is exactly as Game0 but the crs is computed using algorithm K∗, as defined
in Fig. 10, and the winning condition is 𝒅 ≠ 0 and 𝝅 = (𝒅⊤(C3 −K3,2A)A−1

, 𝒅⊤K3,2),
Game2: This game is exactly as Game1 but 𝒔 , 𝒕 ← Z𝑛𝑝 .

We now prove some Lemmas which show that the games are indistinguishable. Lemmas 6 and
7 show that the adversary has essentially the same advantage of winning in any game. Lemma
8 says that the adversary has negligible probability of winning in Game2. Lemma 5 follows
from the composition of lemmas 6, 7 and 8.

□

Lemma 6. For any (unbounded) algorithm𝒜 we have Pr[Game1(𝒜) = 1] = Pr[Game0(𝒜) = 1].

Proof. If we define K1,1 = (C1 − K1,2A)A−1
and K =

(
K1
K3

)
=

(
K1,1 K1,2
K3,1 K3,2

)
, we observe that the

output of K∗ is well formed and the winning condition is the same as in the previous game,
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since B,D are uniform conditioned on their sum being equal to

B +D =
((M⊤ +N⊤)K1,1 + P⊤K3,1 , 𝒔 + P⊤K3,2

) + (
R⊤K1,1 , 𝒕

) + Γ − Γ
=

((M⊤ +N⊤)K1,1 + P⊤K3,1 , (M⊤ +N⊤)K1,2 + P⊤K3,2
)

= (M⊤ +N⊤)
(
K1,1
K1,2

)
+ P⊤

(
K3,1
K3,2

)
= (M⊤ +N⊤ | P⊤)K,

KA =

(
(C1 −K1,2A)A−1

K1,2

(C3 −K3,2A)A−1
K3,2

) (
A
A

)
=

(
C1 −K1,2A +K1,2A
C3 −K3,1A +K3,2A

)
= C,

and by definition 𝝅 + 𝜽 = (𝒅⊤(C3 −K3,2A)A−1
, 𝒅⊤K3,2) = (𝒅⊤K3,1 , 𝒅⊤K3,2) = 𝒅⊤K3.

Therefore we just need to argue that the distribution of K is the same in both games. But
this is an immediate consequence of the fact that for every value of (C,K1,1 ,K3,1) there exists
a unique value of (K1,2 ,K3,2) which is compatible with C = KA. Indeed, C = KA ⇐⇒ C𝑖 =

K𝑖 ,1A +K𝑖,2A, 𝑖 = 1, 3 ⇐⇒ (C𝑖 −K𝑖 ,2A)A−1
= K𝑖,1 , 𝑖 = 1, 3. □

Lemma 7. For any PPT algorithm𝒜 there exists a PPT algorithm ℬ such that

AdvΠkt-sum,ℎ′ (𝒜) ≤ Adv(ℳ⊤ ,𝒩⊤ ,ℎ)-MDDH(ℬ).
Proof. We construct an adversaryℬ that receives the challenge ([M⊤]1 , [N⊤]2 , [𝒔∗]1 , [𝒕∗]2 , ℎ([M⊤ ,N⊤]),
where 𝒔∗ + 𝒕∗ = (M⊤ + N⊤)𝒘, 𝒘 ← Zℓ1𝑝 , or 𝒔∗ , 𝒕∗ ← Z𝑛𝑝 . ℬ computes the crs running
K∗(𝑔𝑘, [M]1 , [N]2 , [P]1) but replaces [𝒔]1 , [𝒕]2 with [𝒔∗]1 , [𝒕∗]2 respectively, and then runs 𝒜
as in game Game1. Since Game1 corresponds to the first case and Game2 to the second, the
lemma follows.

□

Lemma 8. For any (unbounded) algorithm𝒜, Pr[Game2(𝒜) = 1] ≤ 1/𝑝.

Proof. We will show that, conditioned on A,C,B + D,M + N, P, the matrix K3,2 is uniformly
distributed. Since it holds that (B +D)A = (M⊤ +N⊤ | P⊤)C, we get that the first 𝑘 columns of
B +D, namely B1 +D1, are completely determined by the last columns B2 +D2. Indeed

(B1 +D1 ,B2 +D2)A = (M⊤ +N⊤ | P⊤)C ⇐⇒ B1 +D1 = ((M⊤ +N⊤ | P⊤)C− (B2 +D2)A)A−1
.

Hence, conditioning in A,C,B1 + D1 ,M + N, P doesn’t alter the probability. We have that
B2 + D2 = (𝒔 + 𝒕) + P⊤K3,2, which consists of 𝑛 equations on 𝑛 + ℓ2 variables. It follows that
there are ℓ2 free variables. Then K3,2 is uniformly distributed and hence completely hidden to
the adversary.

Note that
𝝅 + 𝜽 = 𝒅⊤K3 =⇒ 𝝅2 + 𝜽2 = 𝒅⊤K3,2 ,

where 𝝅2 , 𝜽2 are the last element of 𝝅, 𝜽 respectively. Given that 𝒅 ≠ 0, the last equation only
holds with probability 1/𝑝 and so𝒜’s probability of winning.

□

The knowledge transfer property is a direct consequence of Lemma 5. We present the proof
next.

Theorem 18. For any adversary 𝒜 against the soundness of Πkt−sum with respect to ℒno
sum, there exist

adversaries ℬ1 and ℬ2 such that

Advkt-sum(𝒜) ≤ Adv𝒟𝑘-SKerMDH(ℬ1) + Adv(ℳ⊤ ,𝒩⊤ ,ℎ)-MDDH + 1/𝑝.
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Proof. Given an adversary that produces a valid proof for a statement inℒno
sum, successful attacks

can be divided in two categories.

Type I: In this attack 𝝅 + 𝜽 ≠ (𝒄⊤1 + 𝒄⊤2 )K1 + 𝒅⊤K3.

Type II: In this type of attack 𝝅 + 𝜽 = (𝒄⊤1 + 𝒄⊤2 )K1 + 𝒅⊤K3.

Type I attacks are computationally infeasible when 𝑘 = 𝑘+1, as they can be used to construct an
adversary ℬ1 against the𝒟𝑘-SKerMDH assumption.21 Adversary ℬ1 receives a challenge [A]1,2
and then runs the soundness experiment for𝒜. When𝒜 outputs ([𝒄1]1 , [𝒄2]2 , [𝒅]1 , [𝝅]1 , [𝜽]2),
ℬ1 outputs [𝝅†]1 = [𝝅]1 − [𝒄⊤1 ]1K1 − [𝒅⊤]1K3, [𝜽†]2 = [𝜽]1 − [𝒄⊤2 ]1K1 where it holds that
𝝅+𝜽 ≠ (𝒄⊤1 + 𝒄⊤2 )K1+𝒅⊤K3. Since [𝝅]1 , [𝜽]2 is accepted by the verifier we get that 𝑒([𝝅]1 , [A]2)+
𝑒([𝜽]2 , [A]1) = 𝑒([𝒄⊤1 ]1 , [C1]2)+ 𝑒([𝒄⊤2 ]2 , [C1]1)+ 𝑒([𝒅⊤]1 , [C3]2) and then (𝝅†+𝜽†)A = (𝝅+𝜽)A−
(𝒄⊤1 + 𝒄⊤2 )K1A − 𝒅⊤K3A = (𝝅 + 𝜽)A − (𝒄1 + 𝒄2)⊤C1 − 𝒅⊤C3 = 0. We conclude that the success
probability of a type I attack is bounded by Adv𝒟𝑘-SKerMDH(ℬ1).

For type II attacks, since [𝝅]1 = [𝒄⊤1 ]1K1+[𝒅⊤]1K3 , [𝜽]2 = [𝒄⊤2 ]2K1 is a valid proof for
( [𝒄1]1
[𝒄2]2
[𝒅]1

)
,

then, by linearity of the verification equations 𝝅† = 𝝅−𝒘⊤B and 𝜽† = 𝜽−𝒘⊤B is a valid proof

for
(

0
0
[𝒅†]1

)
=

( [𝒄1]1−[M]1𝒘
[𝒄2]2−[N]2𝒘
[𝒅]1−[P]1𝒘

)
. Since 𝒅 ≠ N𝒘, we conclude that an attacker of type II can be turned

into an attacker ℬ2 for Lemma 5.
□

We next note that the argument of knowledge transfer remains secure even for matrix
distribution that also include some zero columns.

Theorem 19. Let ℳ′,𝒩′,𝒫′,𝒬′ be matrix distributions that sample (M | 0ℓ1×𝑛′), (N | 0ℓ2×𝑛′),
(P | 0ℓ3×𝑛′), (Q | 0ℓ4×𝑛′) where M←ℳ, N←𝒩 , P← 𝒫, Q← 𝒬.

1. For any adversary 𝒜 against the ℎ-strong soundness of Πkt-lin there exist adversaries ℬ1 and ℬ2
such that AdvΠkt-lin,ℎ′ (𝒜) ≤ Adv𝒟𝑘-SKerMDH(ℬ1) + Adv(ℳ⊤ ,ℎ)-MDDH(ℬ2) + 1/𝑝, where
ℎ′([M]1 , [N]2 , [P]1 , [Q]2) = (ℎ(M),N, P,Q).

2. When ℓ1 = ℓ2, for any adversary𝒜 against the ℎ-strong soundness ofΠkt-sum there exist adversaries
ℬ1 and ℬ2 such that AdvΠkt-sum,ℎ′ (𝒜) ≤ Adv𝒟𝑘-SKerMDH(ℬ1) + Adv(ℳ⊤ ,𝒩⊤ ,ℎ)-MDDH(ℬ2) + 1/𝑝,
where ℎ′([M]1 , [N]2 , [P]1 , [Q]2) = (ℎ(M,N), P,Q).

The proof is implicitly shown in [GR19, Lemma 15]. Essentially one can reduce to the
knowledge transfer argument where we delete the zero columns of the matrix and rely on the
linearity properties of the proofs of construction of Fig. 1.

21This part of the proof follows essentially the same lines of the first constant-size QA-NIZK arguments for linear
spaces of Libert et al.[LPJY14] which were later simplified and generalized by Kiltz and Wee [KW15].
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