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+ Sorbonne Université and CNRS, Institut Jean Le Rond d’Alembert,

UMR 7190, F-75005 Paris, France
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Abstract

A series of benchmarks based on the physical situation of “phase
inversion” between two incompressible liquids is presented. These
benchmarks aim at progressing toward the direct numerical simulation
of two-phase flows. Several CFD codes developed in French laborato-
ries and using either Volume of Fluid or Level Set interface tracking
methods are utilized to provide physical solutions of the benchmarks,
convergence studies and code comparisons. Two typical configura-
tions are retained, with integral scale Reynolds numbers of 1.37 104and
4.33 105, respectively. The physics of the problem are probed through
macroscopic quantities such as potential and kinetic energies, interfa-
cial area, enstrophy or volume ratio of the light fluid in the top part
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of the cavity. In addition, scaling laws for the temporal decay of the
kinetic energy are derived to check the physical relevance of the sim-
ulations. Finally the droplet size distribution is probed. Additional
test problems are also reported to estimate the influence of viscous
effects in the vicinity of the interface.

keywords: phase inversion, multiphase flows, benchmark, Volume Of fluid,
Level Set, Ghost Fluid
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1 Introduction

The physical validation or verification of CFD tools devoted to multiphase
flows and non miscible fluids, (by non-miscible we mean that interfaces re-
main sharp), is a major concern. A lot of work was carried out in the 90s
to validate interface tracking algorithms in cases where the velocity field is
given analytically [1] [2]. Comparisons have also been achieved with available
experiments or predictions of linear stability theories [3]. However, in almost
all of these situations, the topology of the interface is rather simple and the
flow problem lies in a single multiphase characteristics such as the continu-
ity of stresses across the interface with the two-phase Poiseuille flow [4], the
Laplace law [5], the oscillation modes of a free surface [6] [5], the head-on
coalescence of two drops [7] [8], the dam break problem [9] or the break-up
of a low-velocity round jet due to the Rayleigh-Plateau instability [10] to
mention just a few.

None of these problems puts into play the interaction between interfaces and
turbulence or unsteady flows which is a key point in many realistic cases
involving a two-phase dynamics. Indeed, such multiphase interactions occur
in many environmental and industrial applications. Let us just mention the
atomization of a liquid jet in an engine [11–13], phase separators in chemi-
cal engineering processes, the boiling crisis in nuclear reactors [14], complex
bubble flow including the flow past Taylor bubbles in pipes [15], droplet or as-
teroid impact [16], wave impact on structures or the ubiquitous phenomenon
of wave breaking at the ocean surface [17]. In most multiphase flows of envi-
ronmental or engineering relevance, the multiscale character of the flow is a
key issue to be handled by computational approaches. The interfacial length
scales are associated on the one hand to large interface structures such as
jets, films or large drops. On the other hand, small interfacial scales also
exist, corresponding to a small-scale dispersed phase, i.e. small bubbles or
droplets. These two widely distinct families of interfacial scales interact in
a nonlinear way through ligament break-up or drop/bubble coalescence and
the unsteady or turbulent nature of the carrier fluid motion plays a crucial
role in these interactions. The definition of a reference benchmark for these
multiscale sharp interface problems appears to be an important issue.

Homogeneous Isotropic Turbulence (HIT) often serves as a reference prob-
lem in the verification of single-phase DNS codes. In analogy, one would
like to define a reference problem for the verification of CFD multiphase flow
codes devoted to non miscible fluids. Our first idea was to try to define
the reference problem on the basis of a well documented experiment, such
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Figure 1: Example of simulated phase inversion in a closed box [18] illustrat-
ing the multiscale character of the interfacial flow.

as atomization of liquid sheets or jets. However, the quality of modeling
and simulation of atomization is very sensitive to inlet forcing conditions, in
particular due to upstream turbulence, boundary layers or inlet pump oscil-
lations [19, 20] . Although numerous experimental studies can be found in
the literature [9, 21, 22] they are plagued by two difficulties that make them
unsuitable as references cases: either they have too simple flow structures (as
for dam break on a dry bottom) or they are not sufficiently well documented
or instrumented to provide all the information required for defining bound-
ary and initial conditions for simulations. Moreover many experiments lack
instantaneous pressure, velocity and interface measurements (dam break on
a wet bottom [23]). As a consequence, we have decided to define a synthetic
reference case unrelated to a specific experiment, although an experiment in
this configuration could in principle be considered (the setup resembles that
of an oil and water phase separator or settling pond). In this reference case
initial and boundary conditions are simple and well known. At the same
time, we wish to have complex flow features (turbulence, interface rupture,
coalescence, multi-scale flow characteristics). A setup we believe satisfies all
these requirements is a cubic outer geometry and a simple arrangement of the
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phases both as initial condition and final equilibrium state of the dynamics,
so that grid quality and its influence on the Navier-Stokes solver performance
will not be a problem. At the same time, there are advantages to consider
sufficiently large Reynolds number Re and Weber number We to have the
multiphase equivalent of “fully developped turbulence”, a state in which the
statistical features of the flow on large and intermediate scales become rel-
atively independent of Re and We as those numbers further increase. Such
fully developped multiphase turbulence is the relevant flow state with respect
to common natural sciences or engineering situations.

The simple cubic geometry idea leads naturally to the phase inversion of
a cube of light fluid inside a larger cube of a heavier fluid contained in a
closed box. As desired, with high enough Re and We this flow configuration
is typical of fully developped turbulent multiscale flows in which a broad
range of interfacial scales (i.e. those characterizing the typical size of the
interfaces separating the two fluids) coexist: as a result of multiple break-up
and coalescence events, large-scale sloshing motions are observed together
with small dispersed droplets interacting with larger drops. An illustration
is given in Figure 1 taken from [18], [24]. As described in Figure 2, the
initial condition is geometrically straightforward and the solution at large
times is known, i.e. in the final stage the two fluids are superimposed in a
stable manner (with all the light fluid in the top part of the box) and are
separated by a single horizontal interface. A parametric study in which var-
ious physical parameters are varied can easily be performed by changing the
density or viscosity ratios as well as the surface tension. From a numerical
point of view, the physical parameters can be defined in such a way that a
numerical convergence study may be achieved until a true direct numerical
simulation (DNS) is obtained, i.e. all the flow and interfacial time and space
scales are resolved. The sensitivity of the results with respect to the grid
density or to the numerical methods can also be examined. Laminar as well
as turbulent conditions can be generated. Regimes corresponding to either
thinly dispersed flows or to large-drop topologies can be selected by properly
choosing the physical characteristics of the two fluids.

Among the wide number of references existing on the subject of multiphase
flow modeling and simulation, it appears to us that there are two categories
of work, those concerning mixing and diffuse evolution of initially discontin-
uous distribution of fluids and those associated to interfaces remaining sharp
during time, i.e. immiscible fluids. The first category has investigated for
example the interaction between Rayleigh-Taylor (RT) instabilities and tur-
bulence in numerous works [25–28] and a benchmark has been published in
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2004 by Dimonte and co-workers [29]. This reference work involves physical
phenomena similar to those occurring in the phase inversion configuration
proposed here. Much attention has been paid to characterizing, with vari-
ous models and numerical methods, the effects of initial perturbations of the
interface, volume fraction profiles, self-similar bubble dynamics or mixing
behavior. However, the major difference is related to the immiscible nature
of fluids and discontinuous character of interface (on a macroscopic point of
view). It has been clearly demonstrated [28] that the diffuse character of
the fluids has a major effect on the global dynamics of the turbulent two-
phase flow in terms of spike position for example and that this discrepancy
was increasing during time. In diffuse modeling of RT flows, simulations
mainly involve gas stratifications whereas our focus here is on immiscible
fluids (with at at least to one liquid phase in the considered problem). Our
benchmark thus belongs to the second category of problems for which RT
simulations also exist [30, 31]. Intermediate modeling between diffuse and
sharp interfaces have also been proposed for simulating Rayleigh-Taylor in-
stabilities [32]. The major concern was the model and numerical methods
and there was no consideration of the turbulence characteristics of the flows.
To our knowledge, neither benchmark nor detailed simulation works have
been published about RT interaction with turbulence in the framework of
sharp liquid interfaces and immiscible fluids. In that sense, the present work
is a relevant and new contribution for the CFD community of multiphase
flows with sharp interfaces.

The convergence study is the first original outcome of this work. Indeed, nei-
ther detailed nor accurate experimental measurements seem to exist for the
phase inversion problem considered here. Therefore it is of fundamental inter-
est to validate the quality of the various technical s.png of the computations,
namely the numerical schemes, the Navier-Stokes solvers, etc. Our second ob-
jective is to determine whether or not the interface tracking techniques and
the numerical methods required to discretize the two-phase Navier-Stokes
equations (e.g. the definition of the two-phase viscosity as a function of
those of the two fluids) can provide consistent solutions for the multiphase
and multiscale flow problem at hand. To meet both objectives, a comparison
of the performance of five distinct in-house DNS multiphase flow codes on
the reference or benchmark case is provided in what follows. It highlights
the capabilities but also the limitations of up-to-date numerical methods and
interface models to tackle multiscale, multiphase, flow problems.
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2 Definition of the phase inversion benchmark

The phase inversion configuration has previously been proposed or used [33]
without the objective of analyzing the physical aspects of the multiscale
character of the flow, nor comparing various interface tracking methods. A
benchmark based on this flow situation was also recently performed using
VOF methods [31]. The simulation of this configuration was used to obtain
a priori estimates of subgrid terms that appear and must be modeled when
LES is used in the framework of two-phase flows of immiscible fluids [34].
A new selection of the physical parameters is achieved here (see Tables 1,2
and 3). With the very high Re and La numbers achieved (Table 3) viscosity
is considerably smaller than what would be needed to obtain fully-resolved
simulations in multiphase as well as in single phase flow. (Note that other
computations were performed in [35] [33] [18] [24].) The two cases that
are presented in this work are a good illustration of an atomization process
at large Reynolds number. We cannot hope to perform a Direct Numerical
Simulation in the sense of a simulation with all length scales resolved. Clearly,
our simulations without explicit turbulent or subgrid droplet modeling, are
finely-resolved implicit Large Eddy Simulations.

2.1 Geometry, initial and boundary conditions

As described in Figure 2, an initial cubic blob of light liquid, referred to as
fluid 1, is placed in the bottom part of a cubic box filled with a heavier liq-
uid, referred to as fluid 2. The size of the box is (H,H,H), while the size of
the blob of light fluid is (H/2, H/2, H/2). All outer walls are considered as
free-slip impermeable walls, so that the normal velocity is zero and the tan-
gential components obey a symmetry condition. A π/2 static contact angle
is implicitly assumed on the walls. Gravitational acceleration is chosen as
g = (0,−9.81, 0). Besides the simplicity of the initial and final configurations
of the phase inversion problem, another of its advantages is that it provides
the possibility to observe multiple coalescence and break-up events, although
that introduces an additional complexity since in a simulation coalescence is
conditioned by numerical rather than physical properties. In this setup we
may conveniently observe fragmentation of ligaments in a kind of atomiza-
tion process, while not depending on complex initial or forcing conditions
such as those encountered in real atomization configurations [36], [37]. The
main disadvantage of this benchmark case is that no experimental data are
available.
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Figure 2: Sketch of the phase inversion problem in a closed box.

2.2 Physical parameters of the test cases

Characteristics of the fluids are varied in order to investigate various mul-
tiscale interface topologies. The fluid properties control these conditions,
which may be expressed in terms of Re, and We. In order to define these
numbers we need to define a velocity scale. We obtain it from energy con-
siderations. In all of what follows, we use the characteristic or color function
C that is defined with respect to fluid 1, so that C = 1 in fluid 1 and C = 0
in fluid 2. The potential energy of phase n is

Ep,n =

∫
Ω

CnρngydV (1)

where Ck is the characteristic function of phase n: C1 = C, C2 = 1− C and
with g = ‖g‖). The kinetic energy of phase n is

Ek,n =
1

2

∫
Ω

Cnρnu
2dV (2)
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Due to the simple topology of the interface in the initial and final s.png the
potential energies are trivially found. At t = 0, Ei

p,1 = ρ1gH
4/32 and Ei

p,2 =

15ρ2gH
4/32 while for t→∞, Ef

p,1 = 15ρ1gH
4/128 and Ef

p,2 = 49ρ2gH
4/128.

An upper bound on the kinetic energy is

Ek,1 + Ek,2 ≤ Ei
p,1 + Ei

p,2 − E
f
p,1 − E

f
p,2 =

11

128
(ρ2 − ρ1)gH4 (3)

and an upper bound on the velocity is ||u||2 < (2Ek/ρ1)1/2. Identifying the
velocity with the upperbound we obtain the velocity scale

UK =

√
11

8

√
ρ2 − ρ1

ρ1

gH

The dimensionless numbers are defined based on UK and properties of fluid
2,

Re =
ρ2HUK
µ2

, (4)

We =
ρ2HU

2
K

σ
, (5)

As is customary in atomization problems, the Reynolds and Weber numbers
may be combined in a way that eliminates the velocity scale, yielding the
Laplace number La=σρ2H/µ

2
2 = Re2/We.

To allow comparison with previous work on this setup we also define the
same velocity scale as in previous studies by some of us [18, 24, 34] Ug =

ρ2 − ρ1

ρ1

√
Hg

2
and a characteristic time scale tc = H/(2Ug).

The fluid properties correspond approximately to oil (fluid 1) and water (fluid
2). These configurations are interesting in so far as they provide interface
and turbulent characteristics similar to those of jet atomization with simpler
and more easily controlled initial conditions, and are as a result more conve-
nient for numerical simulations. These liquid-liquid two-phase flows make it
possible to select easily a range of Reynolds numbers smaller, or even equiv-
alent, to those encountered in real atomization processes while exhibiting
equivalent dynamics. The characteristics of fluid 1 and related dimensionless
numbers are given in Tables 1,2 and 3. Case 1 corresponds to a configura-
tion with moderate fragmentation. Case 2 has increased size and thus larger
Reynolds number (by a factor of 30 compared to case 1). The Weber num-
ber is also higher in case 2, (by a factor of 10 compared to case 1) but does
not grow as rapidly as the Reynolds number since surface tension was also
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artificially increased. This was done specifically to avoid having an exceed-
ingly large Weber number which would lead to excessive fragmentation of
the interface. Nevertheless both cases involve large inertial effects and low
capillary forces resulting in the generation of a large number of droplets.

ρ1 ρ2 µ1 µ2 g
(kg.m−3) (kg.m−3) (Pa.s) (Pa.s) (m.s−2)

900 1000 0.1 0.001 9.81

Table 1: Common fluid and physical properties

Case σ H
(kg.s−2) (m)

1 0.045 0.1
2 0.45 1

Table 2: Fluid and physical properties that depend on the case considered.

Case Re We La=Re2/We
1 1.37 104 41.6 4.5 106

2 4.33 105 416 4.5 108

Table 3: Dimensionless numbers for the cases considered.

2.3 Macroscopic quantities of interest

Several macroscopic quantities characterizing the evolution of the flow field
are of primary interest. Among these physically relevant quantities we select
the following.

• A measure of the amount of fluid 1 that has reached the upper part of
the box. The upper part is the box Ωup of dimension (H,H,H2) at the
top of domain. As t→∞ it is the exact location of fluid 1. Given the
initial volume of fluid 1, we have H2 = H/8 and the ratio

R2 =
1

V2

∫
Ωup

C2dV (6)
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is a relevant quantitative representation of the phase separation process
which has the asymptotic value R2 = 1. In the benchmark, values of
(6) will be saved at each time step of the simulations. Their evolution
will help us estimate the typical time of phase separation time and
characterize the macroscopic dynamics of the problem.

• The potential and kinetic energies will be stored at each time step.
They will help monitor the conversion of potential energy into kinetic
energy and provides a characterization of the density stratification.

• The time evolution of the volume integral of the enstrophy in both fluids
will also be recorded. This quantity is defined as Er,n =

∫
Ω
Cnw

2dV/2,
with w = ∇× u denoting the vorticity.

• The time evolution of the interfacial area will also be recorded, being
a sensitive marker of grid convergence. This parameter is also relevant
in problems involving interfacial energy or mass transfer [38], [39].To
estimate it, we introduce a binary presence function Cb such that Cb =
0 if C < 0.5 and Cb = 1 elsewhere. This function can also be easily
built from the level set function. The interfacial area Σint is finally
approximated as

Σint ≈
∑

{i,j,k : ‖∇Cb
i,j,k‖6=0}

∆x∆y . (7)

3 Model and numerical methods

As is now well established, incompressible two-phase flows involving fluid-
fluid interfaces and Newtonian fluids can be modeled by a single set of in-
compressible Navier-Stokes equations with phase-specific density and viscos-
ity and possibly extra interfacial forces (e.g. the capillary force), together
with the transport equation of the phase function C. The resulting model
takes implicitly into account the mass and momentum jump relations at the
interface [40] [41], whereas the continuity of the fluid-fluid and fluid-solid in-
terfaces are taken into account by the C equation. The entire set of equations
reads:

∇ · u = 0 , (8)

ρ

[
∂u

∂t
+ (u · ∇)u

]
= −∇p+ ρg +∇ ·

[
µ
(
∇u +∇uT

)]
+ Fst , (9)

∂C

∂t
+ u · ∇C = 0 , (10)
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where p is the pressure, Fst is the interfacial force per unit volume and ρ and
µ are the local density and viscosity of the two-phase medium, respectively.

Capillary effects are inserted in the source term Fst in the form Fst = σκniδi,
where σ denotes the surface tension, κ is the local mean curvature of the in-
terface, ni is the unit vector normal to the interface and δi is the interface
Dirac function [42].

The above one-fluid model is the classical model for multiphase incompress-
ible flow with sharp interfaces and surface tension. Localizing the interface
requires solving the additional transport equation for the characteristic func-
tion C. This can be performed using the volume fraction (also noted C in
Volume-of-Fluid methods) or using a continuous level-set function φ such
that φ = 0 at the interface and φ > 0 (resp. < 0) in fluid 2 (resp. 1). In
this case, the characteristic function is obtained as C = H(φ) where H is the
Heaviside function [43].

Note that the above equations are clearly distinct from those appearing in
various models of single or multiphase turbulence, that may involve Reynolds
stresses, terms for unresolved eddies or turbulent viscosities and diffusivities,
and non-sharp interfaces.

3.1 The Thétis code

Thétis is a CFD code developed in the TREFLE Department of the I2M
laboratory. It solves the one-fluid Navier-Stokes equations discretized with
implicit finite-volumes on an irregular staggered Cartesian grid. A second-
order centered scheme is used to approximate the spatial derivatives while
a second-order Euler or Gear scheme is used for the time integration [44].
All terms are written at time (n + 1)∆t, except the inertial term which is
expressed in the following semi-implicit manner:

un+1 · ∇un+1 ≈
(
2un − un−1

)
· ∇un+1. (11)

It has been shown that this approximation allows to reach second-order con-
vergence in time [45]. The coupling between velocity and pressure is ensured
by using an implicit algebraic adaptive augmented Lagrangian method [46].
The augmented Lagrangian methods used in this work are independent on
the chosen discretization and could for instance be implemented in a finite-
element framework [47]. In two dimensions, the standard augmented La-
grangian approach [48] can be used to deal with two-phase flows as direct
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solvers [49] are efficient in this case. However, as soon as three-dimensional
problems are considered, the linear system resulting from the discretization
of the augmented Lagrangian terms has to be treated with a BiCG-Stab II
solver, preconditioned by a Modified and Incomplete LU method [50]. As for
the interface tracking and advection equation of C, two different volume of
fluid (VOF) methods have been implemented in Thétis [51] [52]. They are
evaluated here. The above numerical methods and the one-fluid model have
been validated in previous works, e.g. [53] and [54].

3.2 The Gerris Flow Solver code

The Gerris Flow Solver (GFS) is a free code implementing finite volume
solvers on an octree adaptive grid together with a piecewise linear VOF
interface-tracking method. In this work, the Navier-Stokes equations for an
incompressible two-phase flow with constant surface tension are solved. The
simulations reported in this paper use a VOF method of the piecewise linear
type, in which the interface segments are reconstructed using the mixed-
Youngs-centered (MYC) approximation [55]. While not the most accurate
for very fine grids, the MYC approximation is easily implemented when using
only information from the nearest-neighbour cells, an important advantage
when domain-decomposition on octrees is used. Advection of C is performed
using the Lagrangian-Explicit method first published by Li [56] and discussed
in [57–59]. While not volume-conserving to machine accuracy, it has very
good volume and mass conservation properties. Surface tension is a vexing
question in multiphase flow. As density and viscosity ratios become very large
or very small, the simulations become increasingly difficult with standard
methods [59]. The problem has been considerably improved in Gerris as a
result of the use of Height-Function methods [5] and a so-called balanced-
force algorithm [60, 61]. For a review of surface-tension methods including
a discussion of the differences between those used in Gerris and in other
codes, see [62]. Gerris has been used with success in two-dimensional [63]
and three-dimensional [64, 65] atomization and droplet impact studies.

3.3 The Jadim code

JADIM is a versatile code developed for a number of years at IMFT (Institut
de Mécanique des Fluides de Toulouse). In JADIM, the time evolution of two-
phase or three-phase flow is obtained using the one-fluid formulation of the
Navier-Stokes equations. The momentum equations are discretized on a stag-
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gered orthogonal grid using a finite-volume approach. Spatial discretization
is performed using second-order centered differences. Time-advancement is
achieved through a third-order Runge-Kutta algorithm for advection/source
terms and a Crank-Nicolson algorithm for viscous stresses. Incompressibility
is satisfied at the end of each time step through a projection method. More
details may be found in [38]. The resulting code is second-order accurate in
both time and space for single-phase flows.

In two- and three-phase configurations, a VOF method with no interface
reconstruction is used. The advection equation for C is solved using a flux-
corrected scheme split into successive one-dimensional s.png [66]. Owing
to the splitting procedure, the overall transport scheme is not rigorously
conservative. Therefore a local mass error control which improves upon the
global control technique described in [56] is employed. The corresponding
strategy is based on the detection of drop or bubbles (through an index
function and a topological monitoring of each bubble or drop) and on an
iterative solution which modifies the volume fraction within the transition
regions (i.e. those in which the volume fraction is neither zero nor one) in
order to keep the volume of each bubble or drop constant. Since no interface
reconstruction step is involved, smearing of interfaces frequently occurs in
high-shear regions. A specific strategy is employed to keep this smearing
within reasonable bounds. For this purpose, the velocity at nodes crossed
by the interface is modified to keep the thickness of the interfacial region
constant. Details may be found in [4, 66]. In the most difficult cases (e.g.
break-up and coalescence), this approach is supplemented by an antidiffusion
technique in which the local volume is redistributed in the direction normal
to the interface so as to eliminate spurious values of the volume fraction
outside interfacial regions.

The capillary force is represented using a modified version of the Continuum
Surface Force (CSF) model [42]. The modification used in JADIM consists
in an original manner of evaluating the interfacial area. It allows us to de-
fine the interfacial region as that in which the capillary force takes non-zero
values (not as that in which the volume fraction takes intermediate values)
and improves the control of the thickness of the transition region.

3.4 The Archer code

Archer is a CFD code developed in the CORIA Laboratory mainly devoted to
multiphase flows. It has been previously applied to compute atomization [36],
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vaporization and mixing [67] and other complex interfacial flows [31]. The
Level Set (LS) method [43] is used for tracking interfaces and shapes. It
is based on a continuous distance function φ defined as the signed distance
between any point of the domain and the interface. Similar to the volume
fraction C, φ obeys a pure advection equation.

To avoid singularities in the φ field, the fifth order conservative WENO [68]
scheme is applied to discretize convective terms. When the LS advection is
carried out, high velocity gradients can cause wide spreading or stretching of
φ which then no longer remains a distance function. A redistancing algorithm
[69] is thus applied at every time step to restore the distance property of φ, i.e.
|∇φ| = 1. Advancement of the φ-equation and the redistancing algorithm can
induce mass loss in under−resolved regions [31]. This is the main drawback
of Level Set methods. To improve mass conservation, the Coupled Level-
Set Volume of Fluid (CLSVOF) method [70] is used. The main idea of this
method is to benefit from the advantages of each tracking strategy: minimize
the mass loss using VOF and keep a fine description of interface properties
with the smooth LS function. (A study of the performance of various VOF
variants was recently published [31] using Archer in the CLSVOF context;
the phase inversion problem is also discussed therein.) The coupling between
LS and VOF is maintained using a correction scheme based on geometric
reconstruction of both VOF and LS interfaces [34]. The LS method itself
is coupled with a projection method for the incompressible Navier−Stokes
equations, where the density and the viscosity depend on the sign of the LS
function (with appropriate interpolations used in interfacial cells). To finalize
the description of the two-phase flow, jump conditions across the interface are
taken into account using the Ghost Fluid (GF) method. In the GF approach,
ghost cells are defined on each side of the interface [71] [72] and appropriate
schemes are applied to the jump of each quantity. As defined above, the
interface is characterized through the distance function, and jump conditions
are extrapolated on some nodes on each side of the interface. Following the
jump conditions, the discontinued functions are extended continuously and
then derivatives are estimated. Heaviside functions are designed according
to the distance function in order to provide a characteristic function for the
two-phase medium. They follow the functions proposed by [73] according to
formula (6) in its publication. Concerning discrete Dirac functions, they are
built in a similar way and regularized by a properly set cosine function. These
techniques have been presented and validated in previous works, e.g. [36].
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3.5 The DyJeAT code

DyJeAT (Dynamics of Jet ATomization) is an in-house computational fluid
dynamics library developed at ONERA. Velocity/pressure coupling is en-
sured with classical projection methods [74] [75]. In the same way as the
ARCHER code, the Ghost Fluid method [76] is used to deal with surface
tension forces as well as density and viscosity jumps. The Level-Set (LS)
approach is also used for tracking interfaces and LS-VOF coupling is also
used to improve mass conservation. An adaptive mesh refinement (AMR)
capability has been added to DyJeAT in order to concentrate computational
effort where it is most needed. It is based on block-structured AMR. Details
of implementation and verification can be found in [77]. As the physics of
atomization processes involve many spatial scales, generating a wide range
of droplet sizes with large density and viscosity ratios, each scale has to be
resolved with an appropriate method to ensure the conservation of mass and
momentum and satisfy the jump conditions across the interface. To address
these problems, the LS-VOF approach is coupled to a particle tracking tech-
nique (via an improved Eulerian-Lagrangian coupling) to capture the droplet
dynamics [78].

3.6 Pros and cons of different codes

Code Interface Navier-Stokes Capillary Grids Solvers
tracking velocity-pressure forces

coupling
Archer CLSVOF Projection Ghost Cartesian BiCGStab

method fluid staggered Multigrid
DyJeat Level set Projection Ghost Cartesian BiCGStab

method fluid staggered Multigrid
Gerris Geometrical Projection CSF with Collocated BiCGStab

VOF method height and AMR Multigrid
functions

Jadim Implicit Projection CSF Cartesian BiCGStab
VOF method staggered Multigrid

Thetis Geometrical Augmented CSF with Cartesian BiCGStab
VOF Lagrangian smooth VOF Staggered ILU

Table 4: Summary of the numerical methods used in the various codes.
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All the codes used in the present work are based on finite volumes but with
different variants of the methods. Obviously, each code can lead to a differ-
ent result for a given grid, due to variations in the methods used. Table 4
is given to clarify the comparisons of the model and numerical method used.
Schematically, the codes cover the broad range of numerical methods that
can be found in literature for simulating multiphase flows using the sharp
interface approximation described above. This approach is sometimes called
direct or detailed to contrast it with other approaches that depart from the
sharp interface approximation. Four of the codes use staggered grids while
one (Gerris) is using a collocated grid. Staggered grids have several ad-
vantages: a more accurate pressure solution, and the avoidance of spurious
“red-black” velocity oscillations. However Gerris has demonstrated high ac-
curacy on test cases [5, 65] and ten years of experience with Gerris show
almost no occurrence of spurious oscillations. Four codes are using projec-
tion velocity-pressure coupling that contains a time splitting error while one
code (Thetis) uses an exact augmented Lagrangian approach. This technique
is exact if the residual of the iterative solver is zero at machine accuracy. In
terms of interface tracking, Gerris and Thetis are using a geometrical VOF-
PLIC technique while Jadim utilizes a FCT scheme to directly approximate
the hyperbolic advection equation on the VOF. DyJeat uses the Level Set
method whereas Archer couples this method with VOF-PLIC in order to
improve mass conservation of Level Set and also better inertia treatment in
the momentum conservation equation. Concerning surface tension, the most
accurate approaches are the Ghost fluid that uses jump relations at the in-
terface and the CSF with height functions [5]. Thetis and Jadim uses less
sophisticated capillary force approximations that are known to generate more
spurious currents than other methods. To finish with numerical methods, all
projection techniques are solved with iterative BiCGStab II solver precondi-
tionned with a multigrid algorithm while Thetis and the coupled augmented
Lagrangian method uses BiCGStab II and an incomplete LU precondition-
ner, because the linear system is not symmetric and more difficult to solve
than with the projection. The major drawback of the Thetis solver is that
its parallelization is keeping a good speed-up until 1000 processors but it can
hardly handle in the present form more processors due to the ILU precondi-
tionner. On the contrary, the multigrid preconditionner used in projection is
nicely extendable in parallel until 100000 processors.
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4 Benchmark of phase inversion

The teams that have participated to the present benchmark have each run
their own code. All the codes were run on 2563 grids. Moreover one of
the codes (DyJeAT) was run on a sequence of much finer grids in order to
provide a test of convergence. Cross-comparisons lead us to conclusions on
the physical behavior of the numerical methods and also on the physical
meaning of the simulations.

4.1 Case 1: a phase inversion problem with few frag-
mentation events

Parameter Value Units

t∗ = t/tc
t

0.643
-

Ef
p,1 the potential energy in fluid 1 for t→∞ 0.1035 J

Ef
p,2 the potential energy in fluid 2 for t→∞ 0.3755 J

E∗k,1 =
Ek,1

(1/16)ρ1U2
gH

3

Ek,1
0.000341

-

E∗k,2 =
Ek,2

(1/16)ρ2U2
gH

3

Ek,2
0.000378

-

H3/8 the final volume of fluid 1 in the top part of the box 0.000125 m3

Maximum of enstrophy in fluid 1 (DyJeAT on a 5123 grid) 0.0733 m3.s−2

Maximum of enstrophy in fluid 2 (DyJeAT on a 5123 grid) 1.3759 m3.s−2

3H2/4 the initial interfacial area of the drop of fluid 1 0.0075 m2

Table 5: Parameters used to define the dimensionless variables in case 1.

In this section we present the numerical results pertaining to case 1. The
characteristics of this case are summarized in Tables 1-3. The macroscopic
quantities defined in section 2.3 were computed by the five codes described
in the previous section. Dimensionless data are considered according to the
definitions indicated in Table 5.

The potential and kinetic energies are mostly dependent on the large scales
of the flow and can thus be dubbed “macroscopic” quantities. A convergence
study for these quantities was carried out on 1283, 2563 and 5123 grids with
the DyJeAT code. The corresponding results are reported in Figure 3. There
is still some difference between the 2563 grid and the 5123 grid for fluid 2
around time 2.5, although not in fluid 1. For the sake of simplicity in what
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Figure 3: Grid convergence of kinetic energies for case 1 with DyJeAT.

follows we will consider it to be the reference solution, although this may
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Figure 4: Potential energies for case 1.

not be a fully converged solution after time 2.5 . We note that since as
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Figure 5: Kinetic energies for case 1 in log-linear (top) and log-log (bottom)
coordinates.
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shown in Table 5 the kinetic energy is scaled by (1/16)ρnU
2
gH

3 for fluid n,
the maximum kinetic of fluid 2 in the scaled variables is 8(uK/uG)2(ρ1/ρ2) =
11.1375. This is close to the maximum of the fluid 2 curve on Figure 3. The
fact that the kinetic energy is close to its upper bound also means that UK
is close to the L2 norm of the velocity, and that our Reynolds and Weber
number estimates are accurate with the L2 norm velocity.

The evolution of the potential and kinetic energies of the other codes is
plotted in Figure 4 and Figure 5, respectively, together with the reference
solution. Computations were run on a 2563 grid. The results provided by
all five codes on various grids are in approximate agreement with each other
and with the reference solution for these quantities. Around time t∗ = 3 we
see differences between all the codes during the first oscillation arc of the
potential energy. At later times, the oscillations of all the codes are super-
posed, except for the two Thetis codes, and to a lesser degree the Jadim
code. For the kinetic energy the behavior is more complex as we see dif-
ferences between the behavior in fluid 1 and 2. However for both fluids, at
large times the kinetic energy predicted by the Archer code is the closest to
the reference solution. This may be due to the non-converged character of
the DyJeAT reference solution for t∗ > 2.5, which would make agreement
with Archer easier since both codes are at least partially Level-Set based. In
other words, Archer being the code most similar to DyJeAT will be the most
likely to agree with the reference. Figure 4 indicates that phase separation is
achieved after a dimensionless time equal to 15. The dimensionless frequency
f of the waves observed at the surface of the light fluid is about 0.6.

According to Figure 5, the kinetic energy decreases as e−αt
∗

in fluid 1, which
is referred to as Stokes’ decay law (18), whereas it decays as t∗−2 in fluid 2,
which we refer to as the turbulent decay law (23). The origin of these decay
laws and the physical assumptions on which they are based are discussed in
Appendix A.

To characterize the phase separation on a macroscopic point of view, the
volume ratio of fluid 1 occupying the top H/8 part of the box is plotted
in Figure 6. A convergence study was carried out on 1283, 2563 and 5123

grids with the DyJeAT code. This time the difference between the 2563

grid and the 5123 grid is much smaller than the difference between the 2563

grid and the 1283 grid. Again, it is observed here that all codes predict
evolutions close to each other and to the reference solution. The code-to-
code comparison indicates some phase shifts and various damping rates at
large times. The largest difference is found for the Thetis code, followed by
the Jadim code. The Archer code is even closer to the reference and the
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Figure 6: Evolution of the volume ratio of fluid 1 in the top part of the box
in case 1.
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Gerris code is closest. One possible explanation could be the quality of mass
conservation in the codes, since it would directly influence the amount of
fluid in the top part. Another explanation would be the accuracy of energy
conservation since it drives the oscillations seen. A third explanation for
the different behavior of the codes is their more or less diffusive character.
Level sets have the smoother indicator function while VOF have the sharper,
and Jadim has an intermediate behavior. Clearly the ranking of the codes
cannot be exclusively alloted to the conservation of mass since all the VOF
codes are supposed to do well in this respect but do not perform equally well
in the comparison. In addition, the effective initial volume of light fluid is
not initially strictly equal to the theoretical volume of H3/8. Also in some
cases one observes liquid drops trapped on the domain walls. Both of these
effects explain the fact that numerically obtained volume ratios tend to a
value slightly less than 1.

These plots suggest that phase separation is almost completed after more
than 20 time units, which is slightly longer than what was observed by ex-
amining the potential energy.

Figures 7 and 8 display the instantaneous values of the enstrophy in both
fluids. Although all codes were shown to agree well on other macroscopic
quantities, the magnitude of the enstrophy peak differs dramatically for each
of them. The location of this peak is found to occur at t∗ ≈ 2 (resp. 3) for
all codes in fluid 1 (resp. fluid 2). However, differences in magnitude up to
80% are observed, depending on the grid and the code. The spatial conver-
gence study of enstrophy carried out with DyJeAT is illustrated in Figure
9. Although the enstrophy seems to converge in fluid 1, its peak increases
with the grid resolution in fluid 2 and no convergence is reached even on
the 5123 grid. Therefore, although primary moments such as potential and
kinetic energies or volume ratio of the light fluid suggest that a real DNS was
achieved, the analysis of higher-order moments such as enstrophy invalidates
this hope. Despite the large discrepancies noticed between all codes, it is
interesting to observe that they all provide a t∗−3 temporal decay law which
may be shown to correspond to a turbulent scaling (see Appendix A).

The interface shape and isovalues of vorticity magnitude at t∗ = 3 (which
corresponds to the peak within fluid 2 in Figures 7 and 8) are reported in Fig.
10. The maximum magnitude of the vorticity is found to be concentrated in
the near-wall regions and in regions where the large blob of light fluid that
has risen during the phase separation process undergoes high deformations.
Finer vortical structures are clearly captured by the finer grid inside fluid 2
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Figure 7: Enstrophy for case 1.

(near the bottom corners for instance). When the large blob of light fluid
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Figure 8: Enstrophy for case 1 in log-log coordinates.

moves from one side of the box to the other, heavy fluid is trapped between
some of them and the wall, generating high shear (hence high vorticity) re-
gions. Such boundary layers are clearly not fully resolved with the grids used
in the present work, which explains the lack of convergence observed for the
volume-averaged enstrophy.
In single-phase turbulent flows, Direct Numerical Simulation is known to re-
quire a number of grid points of the order of Re9/4 [79] [80]. Provided no scale
smaller than the Kolmogorov microscale exists in the phase inversion problem
investigated here, and considering the integral scale Reynolds number based
on the parameters introduced in section 2.3, at least 137009/4 = 2.03 · 109

grid points would be necessary to achieve a real DNS for case 1. However
the finest grid used to simulate case 1 had only 5123 = 1.35 · 108 grid points.
This is an indication that the maximum grid resolution used in this work
is not sufficient. In addition, as we are considering two-phase flows with
severe jumps in the physical properties, especially viscosity, properly cap-
turing the interfacial vortical layers requires that a sufficient number of grid
points be located around the interfaces. The 2D slice shown in Figure 10
clearly indicates that the vorticity magnitude reaches its maximum near the
interfaces, a region where high shear rates take place, owing to the large vis-
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Figure 9: Convergence of enstrophy for case 1.

cosity contrast. Therefore we may suspect that the way the local viscosity is
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Figure 10: Vorticity structures and interface shape for case 1 - top: iso-
60 vorticity magnitude (blue) and iso C = 0.5 interface (orange surface)
- bottom: isoline of vorticity magnitude and interface shape (black line)
obtained with Thétis on two different grids.

estimated as a function of the local volume fraction plays a role in the local
vorticity magnitude. Indeed, an arithmetic average is generally performed
but there are good reasons to rather favor an harmonic average [81–83]. To
avoid this possible influence, we re-computed case 1 with the DyJeAT code
while considering the same viscosity in both fluids. The corresponding results
are discussed in Appendix B. They show that grid convergence of enstrophy
is still not achieved when the viscosity is set to 0.1Pa.s (the corresponding
Reynolds number is 130) although the enstrophy excursions are less violent.
A similar study was performed by some of us [84] with the conclusion that
sheet breakup may be responsible for spurious large enstrophy even at re-
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duced Re and La. The obvious conclusion of these additional computations
is that the differences found among the enstrophy evolutions are not due
to effects of an imprecise numerical modeling of the viscosity jump but to
other effects requiring further study. We also note that in the atomization
simulations of some of us [12] enstrophy as measured statistically is not di-
verging upon grid refinement. Hence the results produced by the five codes
do not correspond to a Direct Numerical Simulation: convergence is achieved
on quantities dominated by the large-scale motions, such as the kinetic and
potential energies, but it is not on enstrophy for which the main contribution
is from the small-scales.

4.2 Case 2: a phase inversion problem involving many
break-up events

Fluid Maximum Enstrophy
1 103 m3.s−2

2 1049 m3.s−2

Table 6: Values of enstrophy used to make the plots nondimensional in case
2 compared to 5, obtained from DyJeAT on a 20483 grid.

In this section, we comment on the simulations of case 2 whose specific
characteristics are provided in Table 2. The corresponding dimensionless data
are given in Table 3. The characteristic time is now tc,2 = H2/(2Ug,2) = 2.032
and the dimensionless time is now t∗ = t/tc,2.

Again, in order to examine grid convergence, the numerical simulations were
run on five grids i.e. 1283, 2563, 5123, 10243 and 20483 for DyJeAT. (It
has to be noted that 30 million hours of CPU time have been necessary
during two years to perform the simulation on the finest 20483 grid.) This
study is displayed on Figure 11. The data of the three finest grids superpose
until approximately t∗ = 4.5. After that time, the comparison of the three
finest grids shows that there is no longer a well-characterized convergence:
the predicted kinetic energy varies irregularly with the grid size, with the
difference between the 20483 and the 10243 often larger than the difference
between the 10243 and the 5123 grid. This behavior starts at t∗ = 1.75 and
becomes marked after t∗ = 5. This can only indicate one thing: despite
the kinetic energy being mostly in the large scales, the small scales influence
strongly the evolution of the kinetic energy. These small scales may for
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example be related to coalescence events involving the perforation of thin
liquid sheets, which will have a strong influence on the large scales.

Because of the observed convergence behavior of DyJeAT, its 20483 kinetic
energy can be taken as a reference, with certainty until t∗ = 1.75, and roughly
speaking until t∗ = 5. The other numerical simulations were run on a 2563

grid for Archer, Jadim, Gerris and Thétis. Similar to the observations in case
1, the results provided by the five codes are in approximate agreement as far
as the time evolution of the potential and kinetic energies is concerned, even
if larger discrepancies are observed compared to case 1. These evolutions are
displayed in Figures 12 and 13. The behaviors of the codes are diverse. For
example, the Gerris code performs well for the kinetic energy of fluid 2. How-
ever for the kinetic energy of fluid 1 the Gerris code predicts a significantly
different oscillatory dynamics as soon as t∗ = 1.5. In fact, for fluid 1, all
codes are close to the reference, except Gerris, until time t∗ = 2.5 and then
all codes diverge from the reference. For fluid 2 Gerris and Thetis behave
better than the other codes at times 2 < t∗ < 3. We have no explanation
for this behavior.

An oscillating behavior is still present, even though it it less regular than
in case 1. In all simulations, the kinetic energy decays as t∗−2 in fluid 2, as
already found with case 1. In fluid 1, the exponential Stokes decay law is
clearly more difficult to obtain as large amplitude variations are observed.
Compared to case 1, the turbulent intensity in fluid 2 is larger, especially in
the bottom part of the box, and thus provides a strong forcing to the large
blob of light fluid that stands on top of it. This is why the oscillatory motion
of fluid 1 is more complex than in case 1 and its decay does not strictly follow
the purely viscous Stokes law.

The time histories of enstrophy are plotted in Figures 14, 15 and 16. Again,
all codes find the peak value nearly at the same time, namely t ≈ 2.5 in
fluid 1 and t∗ ≈ 4 in fluid 2, although the code-to-code differences are sig-
nificantly larger than in case 1. The delay in the development of enstrophy
in fluid 2 (compared to fluid 1) was not observed in case 1. It is a direct
consequence of the higher Reynolds number: vortical layers develop quite
quickly in the more viscous fluid 1, but a significantly longer time is required
for shear regions to develop in fluid 2, owing to the prevalence of inertial
effects. Again, the enstrophy magnitude increases with the grid resolution
and is code-dependent. Compared to case 1, this tendency is reinforced by
the large number of break-up events which result in a large population of
droplets of fluid 1 that modulates the motion in fluid 2. Whatever the grid
resolution, including 20483, convergence is not achieved and the finer the
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Figure 11: Grid convergence on kinetic energies for case 2 with DyJeAT in
log-linear (top) and log-log (bottom) coordinates.
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Figure 12: Potential energies for case 2.

grid, the larger the enstrophy magnitude. As Figure 16 shows, the difference
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Figure 13: Kinetic energies for case 2 in log-linear (top) and log-log (bottom)
coordinates.
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Figure 14: Enstrophy for case 2.

in magnitude between the peak magnitudes obtained with two successive res-

34



Figure 15: Enstrophy for case 2 in log-log coordinates.

olutions increases as the grid is further refined. This is an indication that the
highest resolution considered here is still far from that required to achieve a
true DNS. However, in the DyJeAT convergence study, it is observed that
the width of the time interval in which the enstrophy differs is decreasing
with refinement of the grid, testifying that grid convergence will be reached
for a finer mesh. This observation is mainly valid for fluid 1.

A view of the shape of the interfaces at the time the enstrophy is maximum
is provided in Figure 19. Large interfacial scales are observed in the top part
of the box, with at the same time an important population of small dispersed
droplets of fluid 1. Consequently, high-shear regions are more numerous and
difficult to capture than in case 1. The vorticity in fluid 2 is modulated
by the presence of the light droplets of fluid 1 that first follow the motion
of fluid 2 at short times, owing to inertia and viscous effects, and then rise
under buoyancy effects. The finer the grid, the smaller the droplets captured
by the computation. This feature has a direct influence on the intensity and
density of vortical regions in the flow, since the latter are closely related to
the phase distribution, i.e. to the dispersion of fluid 1 in the present case.
Therefore the behavior of the volume-averaged enstrophy depicted above is
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Figure 16: Convergence of enstrophy for case 2.

a direct consequence of this grid-dependent population of droplets.
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Figure 17: Topology of interfaces for case 2 at t∗ = 4 (corresponding to the
enstrophy peak) in fluid 2 - Results are from Thétis on a 2563 grid.

In Figure 18 we consider the total interfacial area. For reasons of simplicity,
we use the rough approximation for the interfacial area given in equation (7).
A convergence study for formula (7) is proposed in Appendix C in the case
of a sphere. It is demonstrated that as soon as the grid is refined the error
on the interfacial area is going from 50% to less than 20%.

Consider first simulations run on the five grids of DyJeAT. The predicted
interfacial area seems to be almost converged on the finest grid. Interestingly
the convergence is not monotonic, but the interfacial area first increases for
grids 1283 to 10243 then decreases slightly for the 20483 grid. This may
indicate that there are two types of error involved, one coming from the
ability of the scheme to capture correctly all the relevant droplet sizes, and
the second from the ability of the code to find, using (7), the area of a droplet
that has been correctly formed, at the converged size in DyJeAT. The first
effect leads to a larger population of small droplets being produced as the
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Figure 18: Interfacial area for case 2 using either equation (7) or in the special
case of Gerris the PLIC reconstruction. Equation (7) is noted Int. Modemi.
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grid is refined from 1283 to 10243 while the second effect presumably comes
from a weaker increase of the number of droplets but a better capture of their
area. One can also see that in the Gerris case, where the PLIC surface area
is available, the interfacial area is markedly smaller with PLIC than with (7).

The physical mechanism behind the observed interfacial area behavior is easy
to comprehend in its broad lines. The initial fast upward motion of fluid 1
atomizes the interface and results in the growth of a population of small
droplets, that yields an increase of the interfacial area. However, mysteri-
ously, it can be noticed that the peak value of the interfacial area is not
only grid-dependent but also code-dependent. Pure PLIC-VOF codes such
as Gerris conserve mass much better and the breakup of thin sheets results in
the formation of a large number of droplets, while level-set codes such as Dy-
Jeat result in the “evaporation” of small objects. Thus the relatively larger
number of droplets at late times in Jadim and Gerris, both VOF codes, and
the smaller interfacial area in DyJeAT, a Level-Set code, could be attributed
to this fact and not to the use of (7) to compute the interfacial area. How-
ever this does not explain why Thetis, also a PLIC-VOF code, has such a
small interface area. Other aspects of the codes may explain the properties of
droplet atomization and coalescence, such as the implementation of surface
tension forces, which varies widely between codes.

This issue needs to be addressed in future investigations because the inter-
facial area is one of the key parameters in problems involving heat or mass
transfer.

5 Droplet size distributions

We have performed a study of droplet size distributions using DyJeAT in
case 2 at the time of the enstrophy peak (t∗ = 4). We define the Probability
Distribution Function (PDF) as number frequency f defined as follows. The
droplet sizes are measurered in the simulations and an equivalent radius r
is obtained for each drop. The equivalent radius may belong in any of a
number of adjacent bins Bi defined as the interval Bi = (ri−∆i/2, ri+∆i/2)
where ri and ∆i are the bin center and width, and define the bin structure.
In our first analysis, the bins are regularly spaced. One defines ∆i = 1/256,
ri = (i − 1/2)/256 and Bi = ((i − 1)/256, i/256). Then the number of
droplets whose equivalent radius is in Bi is noted Ni. Ni is approximately
proportional to an asymptotic probability f such that f(ri) = Ni/∆i however
the approximation does not hold very well for the first bin because ∆1/r1 is
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far from small. On Figure 19 we plot Ni versus ri. The observation of these
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Figure 19: Droplet radius frequency Ni defined in the text obtained with
DyJeAT at t∗ = 4. The droplet radii are in meters and the box size is
H = 1m.

distributions leads to several remarks. First, the 2563 grid result does not
match the others, but instead droplet populations obtained with that grid
are systematically less numerous than for the other grids, indicating that the
total mass of droplets obtained with that grid is smaller. This can be easily
explained by the fact that poorly resolved droplets “evaporate” in a level-set
method such as DyJeAT. The uncertainty surrounding the 2563 grid results
also leads us not to discuss the results of the other codes for the PDF, which
are only available at this resolution. Second, the 5123, 10243 and 20483 grid
results superpose in a region of variable size, going from a minimum radius
rm(N) to a maximum radius rM(N), with both rm and rM function of the
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grid resolution N . To be specific, the minimum radius of agreement decreases
with increasing N until approximately rm(2048) ' 0.005 which indicates a
range of convergence extending to very small droplet radii for the 20483

grid. The upper boundary rM(N) of the range of convergence is harder to
determine, because the large radii are affected by statistical noise. However,
it is seen that few additional very large droplets (r > 0.07) are seen as the
resolution increases from 2563 to 20483. Moreover grids 10243 and 20483 are
in agreement in a wide range with rM(2048) ' 0.05. Finally we note that
the behavior at very small droplet sizes is different for the 20483 grid and
other grids: while the other grids have a cutoff (a fall in droplet counts N1

and/or N2) at small sizes, the 20483 grid does not. This is due to the fact
that in the 20483 case the fall in droplet count can only be seen if instead of
the peculiar bin B1 defined above, one subdivides the interval (0, 1/256) into
several smaller bins. We have actually done that and did observe the cutoff
even for the 20483 case.

Indeed, similar effects of the grid refinement, including the cutoff or drop in
frequency, have been reported for atomization of liquid jets, especially for
level set methods [85] and less markedly for VOF methods [19]. This indi-
cates that 5123 grids are a minimum requirement to have an approximately
accurate droplet count at any scale, and that 2563 simulations are poorly
resolved in the whole range of scales. This explains the poor results on in-
terfacial area with the 2563 simulations of all the other codes. On the other
hand, the absence of convergence of the enstrophy does not imply a non con-
vergence of the droplet sizes in the intermediate range rm(N) < r < rM(N).
Another interesting fact is that the large scales are influenced by how the
small scales are computed: more large droplets are seen with finer grids,
probably because more grid resolution implies less breakup of thin layers or
filaments, thus reducing the rate at which large structures break into small
ones. In order to better understand the PDF, we plot the computed frequen-
cies for the two most refined grids as a graph of ln(riNi) versus ln ri in Figure
20. The first bin B1 has been excluded due to its particular character, and
only the most refined grids 10243 and 20483 are shown. Using these coor-
dinates has the advantage that the log-normal PDF appears as a parabola.
The log-normal PDF is defined by

f(r) =
A

r
exp

[
−(ln r − ln µ̂)2

2σ̂2

]
(12)

where A is normalisation constant, ln µ̂ is the logarithmic average and σ̂ the
logarithmic standard deviation. A parabolic curve corresponding to such a
log-normal distribution is shown on Figure 20 to aid the interpretation. This
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Figure 20: Droplet radius frequencies (probability distribution function) in
logarithmic coordinates, with rf(r) versus r. A log-normal distribution and
an exponential one are shown to guide the eye.

parabola is built with µ̂ = 10−3m, σ̂ = 1.7 and A = 3. While the value of µ̂
is at the least very uncertain, it is clear that extrapolating the trend of the
distribution leads to expect a larger value of rf(r) at smaller r. These larger
values of rf(r) could be revealed by simulations with yet more refined grids
than the current ones. This strongly reinforces the expectation that many
smaller droplets would be seen in a true DNS. However these droplets would
contribute little to the interface area. Indeed the interface area scales as

S =

∫ ∞
0

4πr2f(r) dr (13)

which for a log-normal f(r) or for a simpler f(r) ∼ 1/r converges at the r = 0
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bound. Note that we took the assumption of spherical droplets to estimate S.
The latter assumption is likely to be a good approximation for the smallest
droplets. Thus the absence of the smallest droplets in the integral does not
affect much the interface area S.

A simpler distribution of the form f(r) ∼ 1/r would be a horizontal line in
the variables of Figure 20. That approximation would not be much worse
than the log-normal one in the intermediate range of droplet sizes. As a
third alternative, an exponential distribution f(r) = A exp(−r/rm) is also
plotted on Figure 20 with rm = 0, 02 m. The exponential distribution is a
better fit for the largest values of r. With this distribution, the interfacial
area integral converges for ∆x� rm = 0, 02 m and thus for 2563 grids. The
fact that the interfacial area is seen not to converge in simulations signifies
that the number of droplets is much below its theoretical level, indicating a
kind of numerical “evaporation” of the droplets.

Finally we note that none of the distributions yields a very good fit. It
is possible that the PDF is in fact bimodal, with different “modes” being
superposed at various scales. This could be clarified by computing on even
more refined grids to capture the small sizes, or using an ensemble of initial
conditions as discussed below.

6 Summary and future work

A computational benchmark based on phase inversion of two immiscible flu-
ids of different densities confined in a closed cubic box has been set up. The
purpose of this benchmark is to check the capabilities and limitations of
current codes and grid resolutions with the ultimate goal of producing nu-
merical data of a quality similar to those provided by a DNS of single-phase
turbulence. Several numerical approaches based on the one-fluid model and
routinely used to compute two-phase incompressible flows have been used
and compared. They include the Volume-Of-Fluid and Level-Set approaches
for interface tracking, the Ghost-Fluid technique for the capture of interfacial
jumps of mass and momentum, as well as several variants of Navier-Stokes
solvers such as the time-splitting and augmented-Lagrangian algorithms. All
these approaches and methods are a priori suitable for simulating the various
configurations encountered in phase-inversion problems on an arbitrary grid.

The first problem we considered, case 1, is characterized by an integral
scale Reynolds number Re = 1.37 104. Computational results have been
analyzed by considering the time evolution of several volume-averaged in-
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dicators, namely the potential and kinetic energy in each fluid, the relative
volume of light fluid in the top part of the box and the enstrophy in each fluid.
The results reveal that all codes provide close evolutions for the first three
quantities, indicating that reliable predictions are obtained when quantities
essentially determined by large-scale motions are considered. The long-term
decay rates of the kinetic energies have been found to be in good agreement
with the viscous Stokes law (in fluid 1) and the turbulent decay law (in fluid
2) discussed in Appendix A, respectively. In addition, all codes agree on the
sloshing frequency of the light fluid. The situation has been found to be much
more problematic when enstrophy is considered: all codes provide markedly
different values of the enstrophy maximum (although they agree on the time
at which this maximum occurs) and none of them converges with respect to
grid refinement.

A second phase inversion test case, involving a higher Reynolds number Re
= 4.33 105was subsequently considered. The same general conclusions apply
to this configuration. All codes provide converging predictions as long as
only kinetic and potential energies are considered, whereas large discrepan-
cies are observed on enstrophy and interfacial area. Here again, the DNS
conditions are not satisfied and much finer grids should be considered to ex-
pect convergence on quantities such as enstrophy and interfacial area which
are governed by small-scale processes, especially multiple break-up events.
It has to be noticed that despite the discrepancies observed on enstrophy,
approximate convergence is obtained for PDFs of droplet sizes as soon as a
10243 grid is used. Clearly, case 2 is an implicit LES rather than a DNS. As
a conclusion, this benchmark illustrates the fact that implicit LES simula-
tions on fine grids allow to reach convergence on first order moments such as
kinetic or potential energies while they fail to converge as soon as small scale
statistics are investigated. Explicit LES models may be implemented in this
case [18, 24,34,35,86,87] or finer meshes should be utilized for true DNS.

In order to disentangle physically meaningful phenomena and numerical ar-
tifacts possibly induced in the interfacial regions by the averaging rule used
to define the local viscosity, complementary problems have been considered
in Appendix B. They make use of the same parameters as case 1, except
for viscosity µ which is the same in both fluids and equal to 0.1, 0.01 and
0.001Pa.s. For the two largest viscosities (0.1 and 0.01Pa.s), convergence is
still not obtained for enstrophy in both fluids, but less violent excursions are
observed.

Finally, a natural and important extension of this study should address the
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reproducibility of the benchmark results. In the approach reported in the
current paper, we do not select or force any initial interface perturbation
by specifying perfectly flat interfaces located on the faces of a cube. No
initial wavelength or length scale other than the size of the cube is present.
Constitently with this flat character of the interface the initial velocity is
zero. In an extension of this study, we have begun investigating a statistical
ensemble of simulations. The ensemble is constructed by adding an interfacial
or velocity perturbation at t = 0. We then perform repeatedly the same
simulation with a different random perturbation each time. A statistical
analysis of the problem is then performed in order to extract an average or
typical flow field and interface position, and fluctuations about this average.
This approach is in progress. Clearly, characterizing how simulations that are
part of an ensemble with noisy or perturbed initial conditions diverge from
each other is an important issue that needs to be investigated and constitutes
an important perspective of extension for the present study.

Future work of all partners will first be devoted to reconsidering cases 1 and
2 on finer grids. Multiscale Eulerian VOF or Level Set approaches coupled
to a Lagrangian description of small droplets will also be introduced by some
of them with the goal of reaching convergence on all physical quantities on
‘reasonable’ grids that do not capture the smallest droplets. Last, adaptative
mesh refinement (AMR) techniques will be considered to concentrate numer-
ical efforts in flow regions where the vorticity magnitude is expected to reach
its peak.
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A Appendix A: Scaling laws for the kinetic

energy decay

After the acceleration stage induced by buoyancy forces, during which most
of the lighter fluid goes to the top part of the cavity, the phase inversion
problem is characterized in a second time by a wavy behavior which makes
it look quite similar to a sloshing flow progressively damped by shearing and
viscous effects. The classical analysis of Stokes regarding the viscous damping
of gravity waves (see e.g. [88], pp. 623-624), makes it possible to predict the
time evolution of the kinetic energy in a weakly viscous flow driven by a
surface wave. First, the time evolution of the mechanical energy, which is
the sum of the potential and kinetic energies, is known to result from the
internal viscous dissipation, so that

dEmech
dt

= −1

2
µ

∫
Ω

(
∇u +∇tu

)2
dV (14)

If we assume the shear layer at the free surface to have negligible effect owing
to the moderate velocity gradients expected in this region, the flow can be
considered as irrotational. Then the velocity potential, φ, and mechanical
energy, Emech, read

φ = φ0e
kzcos(kx− ωt) , (15)

dEmech
dt

= −8µk4

∫
Ω

φ2dV , (16)

where k and ω are the wave number and wave frequency, respectively, and
the overbar denotes the time average value. In the framework of linear wave
theory, the potential and kinetic energies are equal. However the wave am-
plitude is not small in the present phase inversion problem. Nevertheless, as
soon as most light fluid lies in the top part of the cavity, the potential energy
stays almost constant, making the time variation of Emech mainly governed
by that of the kinetic energy. Therefore, still in the linear approximation, we
can approximately write

Emech =
1

2
ρ

∫
Ω

u2dV ≈ 1

2
ρ

∫
Ω

∇φ · ∇φdV = ρk2

∫
Ω

φ2dV (17)
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Now, two markedly different flow situations can be met in the phase inversion
problem,namely a “gentle” configuration in which break-up and coalescence
events of the light fluid is scarcely occur and a “violent” configuration in
which such events are much more numerous. Combining (16) and (17), the
time evolution of the kinetic energy in the first regime is found to obey

Emech =
1

2
ρ

∫
Ω

u2dV = Ke−8νk2t = Ke
−8ν ω4

g2
t
, (18)

where K is a constant, ν = µ/ρ, and use has been made of the dispersion
relation ω2 = gk.
Let us now consider the “violent” configuration. In this case, averaging
throughout the whole volume Ω, (15)-(16) simply yields

ũ2 = ∇̃φ · ∇φ = k2φ̃2 , (19)

dEmech
dt

= −8µk2ũ2 , (20)

where ·̃ denotes the mean value over Ω. In other words, one has

dũ2

dt
= −16νk2ũ2 (21)

In this configuration, the flow is expected to be turbulent and the molecular
viscosity is not relevant any more to estimate the flow damping rate. As a
crude surrogate, we can introduce an effective turbulent viscosity νt scaling
as lũ, where l is a characteristic length of the large-scale flow, which can be
taken as the box size. Replacing ν by νt in (21), we then obtain

dũ2

dt
= −16lk2ũ3 (22)

Assuming the volume-averaged velocity to follow a power law, i.e. ũ to be of
the form ũ0t

−n, immediately yields n = 1, from which we infer

Emech ∼ t−2 (23)

This prediction is to be compared with the exponential decay predicted by
(18) in the “gentle” regime. The result (23) is reminiscent of the approximate
decay law of decaying homogeneous isotropic turbulence (e.g. [89]). This is
expected since, according to Taylor’s estimate, the dissipation rate .pngilon is
known to scale as u3

0/l0, where u0 and l0 stand for the large-scale velocity and
length scales, respectively. Therefore, when l0 is constant, (23) is immediately
recovered and the dissipation rate is predicted to decay as t−3.
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B Appendix B: influence of viscosity on the

flow dynamics

In order to better understand the origin of code- and grid-dependences of
the volume-averaged enstrophy in cases 1 and 2, we perform an extra series
of computations in which the viscosity is identical in the two fluids. In this
way, any possible influence of the averaging procedure selected to compute
the local viscosity as a function of the volume fraction and of the numerical
treatment of the viscosity jump in the interfacial grid cells is removed. We
make use of the physical parameters of case 1, except for viscosity which
is set to 0.1Pa.s (case 1a), 0.01Pa.s (case 1b) and 0.001Pa.s (case 1c), re-
spectively. The simulations are only carried out with the DyJeAT code, as it
allows us to use the largest grids at a reasonable cost. The convergence study
is performed on three different grids, namely 1283, 2563 and 5123 in case 1a,
whereas four grids ranging from 1283 to 10243 are considered in cases 1b and
1c.

Figure 21: Grid convergence of enstrophy for case 1a in fluid 1 (left) and
fluid 2 (right) - linear-linear (top) and log-linear (bottom) coordinates.

The evolution of the volume-averaged enstrophy is reported in Figures 21, 22
and 23 for cases 1a, 1b and 1c, respectively. In case 1a, the Reynolds number
is 130 and the enstrophy while still not converging as the grid is further re-
fined, has less violent excursions. In this configuration, the enstrophy decay
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Figure 22: Grid convergence of enstrophy for case 1b in fluid 1 (left) and
fluid 2 (right) - linear-linear (top) and log-log (bottom) coordinates.

Figure 23: Grid convergence of enstrophy for case 1c in fluid 1 (left) and
fluid 2 (right) - linear-linear (top) and log-log (bottom) coordinates.

at large time follows an exponential law, a behavior typical of the viscous de-
cay of gravity waves (see appendix A). In case 1b, grid convergence is also not
achieved in both fluids, the Reynolds number in fluid 2 being 1300. At large
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time, the enstrophy obeys a t∗−3 decay law typical of turbulent conditions
(see appendix A). In case 1c, enstrophy convergence is not achieved in either
fluid. The Reynolds number is 1.37 104and it is observed that, even though
the results concerning energy and relative volume in the upper part of the
box converge, as shown with case 1, the grid is not thin enough to capture
the small-scale eddies. Again, the decay law at large times corresponds of
course to turbulent conditions.

C Appendix C: convergence of the interfacial

area

A simple formula is proposed in the present work to estimate the interfacial
area. It is based on the detection of the cells cut by the interface by con-
sidering the gradient of the volume of fluid. It is reported in equation (7).
This estimate can be considered to be rough compared to a more accurate
calculation provided by the sum of the surface of the planes generated by the
VOF-PLIC method. However, the interest of (7) is that it can be utilized
whatever the interface tracking algorithm (VOF or Level Set).

Figure 24: Convergence of formula (7) for interface area calculation - sphere
surface on a 1283 grid (left) and grid convergence of the interfacial area (right)
compared to the exact sphere surface.

In order to evaluate the accuracy of formula (7), it is proposed to estimate
the interfacial area of a sphere of radius 0.25m placed in a square domain of
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side size 1m. The sphere surface obtained with a VOF function on a 1283 grid
is presented in Fig. 24 together with the convergence of the percentage error
on the interfacial area with respect to grid refinement. It has to be noticed
that in the present case, the exact interfacial area is π/4. The percentage
error decreases from 50% to 18% for a number of grid cells being 8 to 128
in each Cartesian space direction. The coarser grid is representative of an
under resolved drop containing 2 grid cells over a radius whereas the 1283

grid is representative of a well resolved drop with 32 grid cells over a radius.
These are typical characteristics that are encountered in the phase inversion
simulations. It can be estimated that the error brought by (7) is belonging
to the range 20% to 50% which is not so bad for a rough approximation. A
better estimate is certainly provided by the sum of the surface of the planes
coming from the VOF-PLIC reconstruction. An illustration is given in Fig.
(18). The gap between (7) (noted Int. Modemi) and VOF PLIC calculation
(noted Int. PLIC) on a 1283 grid for the Gerris code is 30%, which is in
agreement with the present convergence study.
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