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Abstract

A series of benchmarks based on the physical situation of “phase inversion” between two immiscible
liquids is presented. These benchmarks aim at progressing towards the direct numerical simulation
of two-phase flows. Several CFD codes developed in French laboratories and using either Volume-of-
Fluid or Level-Set interface tracking methods are used to provide physical solutions of the benchmarks,
convergence studies and code comparisons. Two typical configurations are retained, with integral scale
Reynolds numbers of 1.37 104 and 4.33 105, respectively. The physics of the problem are probed through
macroscopic quantities such as potential and kinetic energies, or enstrophy. In addition, scaling laws for
the temporal decay of the kinetic energy are derived to check the physical relevance of the simulations.
Finally the droplet size distribution is probed. Additional test problems are also reported to estimate
the influence of viscous effects in the vicinity of the interface.

Keywords: phase inversion flow, water-oil flow, atomization, multiphase flow benchmark, Volume Of
Fluid Method, Level-Set Method.
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1 Introduction

The physical validation or verification of numerical codes devoted to multiphase flows and immiscible fluids
(by immiscible we mean that interfaces remain sharp) is a major concern of modern CFD. A lot of work
was carried out since the 1990s to validate interface-tracking algorithms in cases where the velocity field
is given analytically [1,2]. Comparisons have also been achieved with available experiments or predictions
of linear stability theories [3]. However, in these situations, the topology of the interface is simple and the
flow problem involves a single scale and a single physical effect such as the continuity of stresses across
the interface with the two-phase Poiseuille flow [4], the Laplace law for a spherical or circular drop [5], the
oscillation modes of a free surface in the linear regime [5,6], the head-on coalescence of two drops [7,8], or
the break-up of a low-velocity round jet due to the Rayleigh-Plateau instability [9] to mention just a few.

Figure 1: Initial setup of the phase inversion problem in a closed box. The light liquid or oil is fluid 1 and
the more dense, less viscous liquid is fluid 2.

None of these problems puts into play the interaction between fluctuating interfaces and a turbulent flow,
which is a key point in many realistic cases involving a two-phase dynamics. Indeed, such multiphase in-
teractions occur in many environmental and industrial applications. Let us just mention the atomization
of a liquid jet in an engine [10–12], phase separators in chemical engineering processes, the ladle-based
elaboration of steel, the boiling crisis in nuclear reactors [13], complex bubbly flows including the flow past
Taylor bubbles in pipes [14], droplet or asteroid impacts [15], wave impact on structures or the ubiquitous
phenomenon of wave breaking [16–18]. In most multiphase flows of environmental or engineering rele-
vance, the multiscale character of the flow is a key issue to be handled by computational approaches. The
interfacial length scales are associated on the one hand to large interface structures such as jets, films or
large drops. On the other hand, small interfacial scales also exist, corresponding to a small-scale dispersed
phase, i.e. small bubbles or droplets. These two widely distinct families of interfacial scales interact in
a nonlinear way through ligament break-up or drop/bubble coalescence and the unsteady or turbulent
nature of the carrier fluid motion plays a crucial role in these interactions. The definition of a reference
benchmark for these multiscale sharp interface problems appears to be an important issue.

Homogeneous Isotropic Turbulence (HIT) often serves as a reference problem in the verification of single-
phase DNS codes. In analogy, one would like to define a reference problem for the verification of CFD
multiphase flow codes devoted to immiscible fluids. Our first idea was to try to define the reference problem
on the basis of a well-documented experiment, such as atomization of liquid sheets or jets. However, the
quality of the modeling and simulation of atomization is very sensitive to inflow conditions, in particular
upstream turbulence, boundary layers or inlet pump oscillations [20,21]. Although numerous experimental
studies can be found in the literature [22–24] they are plagued by two difficulties that make them unsuitable
as references cases: either they have too simple flow structures (as for dam break on a dry bottom) or they
are not sufficiently well documented or instrumented to provide all the information required for properly
defining boundary and initial conditions for simulations. Moreover, many experiments lack instantaneous
pressure, velocity and interface measurements (dam break on a wet bottom [25]). As a consequence, we
decided to define a synthetic reference case unrelated to a specific experiment. It is the phase inversion of
an initial cube of light fluid inside a larger cube of a heavier fluid, both contained in a closed box (Figure
1). (Although an experiment in this configuration could in principle be considered, the setup resembles
that of an oil and water phase separator or settling pond, or of a model Rayleigh-Taylor experiment, and
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Figure 2: Example of simulated phase inversion in a closed box [19] illustrating the multiscale character
of the interfacial flow. (The case is similar to our case 2 but with smaller surface tension.)

with a 90◦-change in the gravity orientation, that of the dam-break problem [22].) In this reference case,
initial and boundary conditions are simple and well defined. We also simplify the problem somewhat by
using a liquid-liquid density ratio (ρ1/ρ2 = 9/10). There are two reasons for this simplification: 1) with
the air-water density ratio, the air inertia is not large enough to defeat the liquid inertia and gravity
(this is why the dam-break problem is not producing much atomization); and 2) the numerical issues are
considerably simplified with moderate density ratios. (We note that a study of atomization with liquid-
liquid density ratios was published recently [26]. The present study aims at the same kind of atomization
but “in a box”.) We wish to have complex flow features such as turbulence, interface rupture, coalescence,
and multiple scales. Typically, the higher the Reynolds number Re and Weber number We the more
interesting and complex will the flow be. Moreover, we note that in single-phase turbulence there is a
large-Reynolds-number state where the range of scales is very wide and the statistical features of the flow
on large and intermediate scales become relatively independent of Re, a kind of universality. Is there such
an equivalent universal state at large Re and We in multiphase turbulence? This is not certain but there
is clearly a benefit to reach an analogous state there. Such a fully-developed multiphase turbulence would
be the relevant flow state with respect to common natural sciences or engineering situations. An example
of the phase inversion flow at very high Re and We in which a broad range of interfacial scales coexist,
multiple break-up and coalescence events take place, and large-scale sloshing motions are observed together
with small dispersed droplets interacting with larger drops, is illustrated in Figure 2 (taken from [19,27]).

However, with very high Re and We numbers, viscosity is considerably smaller than what is required
to obtain fully-resolved simulations in multiphase as well as in single-phase flow and one cannot hope
to perform truly a Direct Numerical Simulation (that is, a simulation with all length scales resolved
and quantities such as dissipation and enstrophy converged). There is thus a dilemma or a balance to
strike between the interest for “fully developed” multiphase turbulence and the desire to have a fully
converged Direct Numerical Simulation for reference purposes. We chose the parameters given below
in Table 3. In retrospect, once simulations are performed at great costs, it appeared clear (especially
from the investigation of enstrophy convergence and particle size Probability Density Functions (PDF)
as we shall see) that the current work inclines towards the high-Re side of the dilemma. We define two
simulation cases in the phase inversion setup. Our simulations, especially in the second case (which are
performed without explicit turbulent or subgrid droplet modeling), are finely-resolved implicit Large Eddy
Simulations or Detailed Numerical Simulations. (Note that other combinations of parameters were used
in [19, 28, 29] and [27].) We also note that the second case presented in this work is a good illustration
of an atomization process although at higher Re and We than previous works on atomization that got
closer to the “converged” side of the dilemma [11,20,30,31]. In a way, one may see the second case of the
current problem as the study of “atomization in a box”. An unexpected discovery of this study is that the
non-convergence of certain flow characteristics is actually not only due to large Re and We numbers but
also to the dependence of thin sheet breakup on the grid size, as shown in the analysis of droplets sizes in
case 1 below.

Within the literature on high Re turbulent multiphase flow simulation one may distinguish two categories
of works: 1) on diffusive interfaces and 2) on interfaces remaining sharp over time (immiscible fluids). The
first class of works has investigated for example the interaction between Rayleigh-Taylor (RT) instabilities
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and turbulence [32–35] and a benchmark has been published in 2004 by Dimonte and co-workers [36]. This
reference work involves physical phenomena similar to those occurring in the phase inversion configuration
proposed here. Much attention has been paid to characterizing, with various models and numerical
methods, the effects of initial perturbations of the interface, volume fraction profiles, self-similar bubble
dynamics or mixing behavior. However, the major difference between reference [36] and the current work
is the immiscible nature of the fluids and the discontinuous character of the interfaces (of course from a
macroscopic point of view). It has been clearly demonstrated [35] that the diffuse character of the fluids
has a major effect on the global dynamics of the turbulent two-phase flow in terms of spikes position for
example, and that this effect increases over time. In diffuse modeling of RT flows, simulations mainly
involve gas stratifications whereas our focus here is on immiscible fluids (with at least one liquid phase
in the considered problem). Our benchmark thus belongs to the second category of problems. The phase
inversion configuration has previously been investigated [29] without the objective of analyzing the physical
aspects of the multiscale character of the flow, nor comparing various interface tracking methods, but with
the purpose of obtaining a priori estimates of subgrid terms that appear and must be modeled when LES
is used in the framework of two-phase flows of immiscible fluids [37]. We note that for sharp interfaces and
complex flows, RT simulations also exist [38,39], and intermediate modeling standing between diffuse and
sharp interface approaches have also been proposed for simulating RT instabilities [40]. The major concern
was the model and numerical methods and there was no consideration of the turbulence characteristics of
the flows. To our knowledge, neither benchmark nor detailed simulation works have been published about
RT interaction with turbulence in the framework of sharp liquid-liquid interfaces.

The study reported here has two objectives. The first is to analyze convergence of the simulations with
grid refinement, thus producing a reference set of results. Since no experimental measurements seem to
exist for the phase inversion problem considered here, this first objective is a necessary step. The second
objective is to compare the results of five distinct in-house DNS multiphase flow codes to the reference
results. The results should highlight the capabilities but also the limitations of up-to-date numerical
methods and interface models to tackle multiscale, multiphase, flow problems. The outline of the paper
is as follows: the phase inversion setup is defined in the following Section 2. The codes and the numerical
methods are described in Section 3. The reference simulations and results are in Section 4 while the results
of all the codes are in Section 5, followed by concluding remarks in Section 6.

2 Definition of the phase inversion benchmark

We define the benchmark in this Section, following the motivations given in the previous section.

2.1 Geometry, initial and boundary conditions

As described in Figure 1, an initial cubic blob of light liquid, referred to as fluid 1, is placed in the
bottom part of a cubic box filled with a heavier liquid, referred to as fluid 2. The size of the box is
(H,H,H), while the size of the blob of light fluid is (H/2, H/2, H/2). All the outer walls are considered
as free-slip impermeable walls, so that the normal velocity is zero and the tangential components obey
a symmetry, i.e. shear-free, condition. A π/2 static contact angle is implicitly prescribed on the walls
through the boundary condition imposed on the volume fraction (in the VOF approach) or the level-set
approach. This is implemented by enforcing a null Neumann (symmetry) boundary condition n · ∇φ = 0,
where φ is either the volume fraction or the level-set function. The gravitational acceleration is chosen
as g = (0,−9.81, 0). Besides the simplicity of the initial and final configurations of the phase inversion
problem, another of its advantages is that it provides the possibility to observe multiple coalescence and
break-up events, although that introduces an additional complexity since in a simulation, coalescence is
conditioned by numerical rather than physical properties.

2.2 Physical parameters of the test cases

Two test cases with different characteristics of the fluids are considered. The fluid properties may be
expressed in terms of Re and We. In order to define these numbers, a velocity scale is required. We obtain
it from energy considerations. In all of what follows, we use the characteristic or color function C that
is defined with respect to fluid 1, so that C = 1 in fluid 1 and C = 0 in fluid 2. The potential energy of
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phase n (n = 1, 2) is

Ep,n =

∫
Ω

Cnρngy dV , (1)

where Cn is the characteristic function of phase n, i.e. C1 = C, C2 = 1 − C, and g = ‖g‖. The kinetic
energy of phase n is

Ek,n =
1

2

∫
Ω

Cnρnu
2 dV , (2)

where u stands for the velocity field. Due to the simple topology of the interface in the initial and final
stages, the potential energies are trivially found. At t = 0, Eip,1 = ρ1gH

4/32 and Eip,2 = 15ρ2gH
4/32

while for t → ∞, Efp,1 = 15ρ1gH
4/128 and Efp,2 = 49ρ2gH

4/128. An upper bound on the kinetic energy
is

Ek,1 + Ek,2 ≤ Eip,1 + Eip,2 − E
f
p,1 − E

f
p,2 =

11

128
(ρ2 − ρ1)gH4 , (3)

and an upper bound on the velocity is ||u||2 < (2Ek/ρ1)1/2. (Note that the initial surface energy 3σH2/4
provides a small contribution to the total energy; however we neglect surface energy in this reasoning for
simplicity.) Identifying the velocity with the upper bound, we obtain the velocity scale

UK =

√
11

8

√
ρ2 − ρ1

ρ1
gH .

The dimensionless numbers are then defined based on UK and properties of fluid 2, namely

Re =
ρ2HUK
µ2

, (4)

We =
ρ2HU

2
K

σ
. (5)

As is customary in atomization problems, the Reynolds and Weber numbers may be combined in a way
that eliminates the velocity scale, yielding the Laplace number La=σρ2H/µ

2
2 = Re2/We.

To allow comparison with previous work on this setup, we may also adopt the same velocity scale as in
previous studies by some of us [19, 27, 37], namely Ug = (ρ2 − ρ1)/ρ1

√
gH/2, and a characteristic time

scale tc = H/(2Ug).

The viscosities and densities considered here correspond approximately to a light oil or hydrocarbon (fluid
1) and water (fluid 2). These configurations are interesting in so far as they provide interface and turbulent
characteristics similar to those of jet atomization with simpler and more easily controlled initial conditions,
and are as a result more convenient for numerical simulations. These liquid-liquid two-phase flows make
it possible to select easily a Reynolds number range smaller, or even equivalent, to those encountered
in real atomization processes while exhibiting equivalent dynamics. The characteristics of the fluids and
related dimensionless numbers are given in Tables 1, 2 and 3. Case 1 corresponds to a configuration
with moderate fragmentation. The box used in case 2 has a larger size and thus yields a larger Reynolds
number (by a factor of 30 compared to case 1). The Weber number is also higher in case 2, (by a factor
of 10 compared to case 1) but is increased less than the Reynolds number since surface tension was also
artificially increased. This was done specifically to avoid having an exceedingly large Weber number which
would lead to excessive fragmentation of the interface, making it even harder than it is now to capture
most of the small-scale structures and droplets.

The small scales of the flow may be characterized by the Kolmogorov scale ηK = Re−3/4H and the Hinze
scale ηH = We−3/5H. Both scales are given in Table 3. While the Kolmogorov scale is very small, and
prevents any attempt at DNS with the grids used in the paper (up to 2048 grid points in each direction),
the Hinze scale is larger, and as ηH/H > 1/100, it should be easily possible to resolve droplets at the
Hinze scale. We note, however, that droplet sizes much smaller than the Hinze scale have been observed
in numerical simulations of atomization [11] and that one can estimate the diameter of the Taylor-Culick
rims involved in the atomization process to be dT = We−1H � ηH (see [41] for a detailed derivation of
dT and its significance). Notice that for both reference simulations below, the cell size ∆x is such that
∆x < dT /4.
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ρ1 ρ2 µ1 µ2 g
(kg.m−3) (kg.m−3) (Pa.s) (Pa.s) (m.s−2)

900 1000 0.1 0.001 9.81

Table 1: Fluid and physical properties common to both cases.

Case σ H
(kg.s−2) (m)

1 0.045 0.1
2 0.45 1

Table 2: Fluid and physical properties that depend on the considered case.

2.3 Quantities of interest

Several quantities characterizing the evolution of the flow field are of primary interest. Among these
physically relevant quantities we select the following.

• The potential energy which helps to measure the advancement of the relaxation from a high energy
state with the light fluid located below the heavy fluid to the equilibrium state with the light fluid
on top, and provides a characterization of the density stratification.

• The kinetic energy which characterizes the agitation of the system and allows to monitor the amount
of dissipation.

• The total mechanical energy minus the surface energy which is the sum of the previous two. As the
Weber numbers are large, the surface energy is negligible and the above sum characterizes well the
dissipation of energy in the system. It can also be used to characterize how far the system is from
the possible universal high Re and We state discussed above.

• The time evolution of the volume integral of the enstrophy in both fluids. This quantity is defined
as Er,n = 1

2

∫
Ω
Cnω

2 dV , with ω = ∇× u denoting the vorticity.

3 Model and numerical methods

As is now well established, incompressible two-phase flows involving fluid-fluid interfaces and Newtonian
fluids can be modeled by a single set of incompressible Navier-Stokes equations with phase-specific densities
and viscosities and capillary forces, together with the transport equation of the phase function C. The
resulting model takes implicitly into account the mass and momentum jump relations at the interface
[42, 43], whereas the continuity of the fluid-fluid and fluid-solid interfaces is taken into account by the C
equation. The entire set of equations reads

∇ · u = 0 , (6)

ρ

[
∂u

∂t
+ (u · ∇)u

]
= −∇p+ ρg +∇ ·

[
µ
(
∇u + (∇u)T

)]
+ Fst , (7)

∂C

∂t
+ u · ∇C = 0 , (8)

where p is the pressure, Fst is the interfacial force per unit volume and ρ and µ are the local density and
viscosity of the two-phase medium, respectively. Capillary effects are inserted in the source term Fst in
the form Fst = σκniδi, where σ denotes the surface tension, κ is the local mean curvature of the interface,
ni is the unit vector normal to the interface and δi is the interface delta function [44].
The above one-fluid system is the classical model for multiphase incompressible flows with sharp interfaces
and effects of uniform surface tension. Localizing the interface requires solving a transport equation for
the characteristic function C. This can be performed using the volume fraction (also noted C in VOF
methods) or using a continuous level-set function φ such that φ = 0 at the interface and φ > 0 (resp.
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Case Re We La=Re2/We ηK/H ηH/H dT /H
1 1.37 104 41.6 4.5 106 7.9 10−4 0.107 0.02
2 4.33 105 416 4.5 108 5.9 10−5 0.03 0.002

Table 3: Dimensionless numbers for the considered cases. ηK is the Kolmogorov scale at which inertia
balances viscous stresses in a cascade, ηH is the Hinze scale at which inertia balances capillary effects in
a cascade, and dT is the diameter of a Taylor-Culick rim.

< 0) in fluid 2 (resp. 1). In this case, the characteristic function is obtained as C = H(φ) where H is the
Heaviside function [45].
Note that the above equations are distinct from those involved in various models of multiphase turbulence,
that may involve Reynolds stresses, terms accounting for unresolved eddies, turbulent viscosities and
diffusivities, and non-sharp interfaces.

3.1 The Thétis code

Thétis is a CFD code developed in the TREFLE department of the I2M laboratory. It solves the one-fluid
Navier-Stokes equations discretized with implicit finite-volumes on an irregular staggered Cartesian grid.
A second-order centered scheme is used to approximate the spatial derivatives while a second-order Euler
or Gear scheme is used for time integration [46]. All terms are written at time (n + 1)∆t, except the
inertial term which is expressed in the following semi-implicit manner:

un+1 · ∇un+1 ≈
(
2un − un−1

)
· ∇un+1. (9)

It has been shown that this approximation allows to reach second-order convergence in time [47]. The
coupling between velocity and pressure is ensured by using an implicit algebraic adaptive augmented
Lagrangian method [48]. The augmented Lagrangian methods used in this work are independent of the
chosen discretization and could for instance be implemented in a finite-element framework [49]. In two
dimensions, the standard augmented Lagrangian approach [50] can be used to deal with two-phase flows
since direct solvers [51] are efficient in this case. However, as soon as three-dimensional problems are
considered, the linear system resulting from the discretization of the augmented Lagrangian terms has to
be treated with a BiCG-Stab II solver, preconditioned by a Modified and Incomplete LU method [52].
As for the interface tracking and advection of C, two different volume of fluid (VOF) methods have been
implemented in Thétis [53] [54]. They are evaluated here. The above numerical methods and the one-fluid
model have been validated in previous works, e.g. [55] and [56].

3.2 The Gerris Flow Solver code

The Gerris Flow Solver (GFS) is an open source code implementing finite volume solvers on an octree
adaptive grid together with a piecewise linear VOF interface-tracking method [5,57]. The variables are lo-
cated on the octree grid in a collocated manner. Time-advancement is achieved through a Bell-Collela-Glaz
scheme for advection and a Crank-Nicolson algorithm for viscous stresses. Incompressibility is satisfied
at the end of each time step through a projection method, with a second MAC projection of the face
velocities. The resulting code is second-order accurate in both time and space for single-phase flows. The
simulations reported in this paper use a VOF method of the piecewise linear type, in which the interface
segments are reconstructed using the mixed-Youngs-centered (MYC) approximation [58]. While not the
most accurate for very fine grids, the MYC approximation is easily implemented when using only infor-
mation from the nearest-neighbour cells, an important advantage when domain-decomposition on octrees
is used. Advection of C is performed using the Lagrangian-Explicit or “CIAM” method first published
by Li [59] and discussed in [60–62]. While not volume-conserving to machine accuracy, it has very good
volume and mass conservation properties. Surface tension is a vexing question in multiphase flow simula-
tions. As density and viscosity ratios become very large or very small, the simulations become increasingly
difficult with standard methods [62]. The problem has been considerably improved in Gerris as a result of
the use of Height-Function methods [5] and a so-called balanced-force algorithm [63, 64]. For a review of
surface-tension methods including a discussion of the differences between those used in Gerris and in other
codes, see [65]. Gerris has been used with success in two-dimensional [66] and three-dimensional [67, 68]
atomization and droplet impact studies.
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3.3 The Jadim code

JADIM is a versatile code developed for a number of years at IMFT. In JADIM, the momentum equations
are discretized on a staggered orthogonal grid using a finite-volume approach. Spatial discretization is
performed using second-order centered differences. Time-advancement is achieved through a third-order
Runge-Kutta algorithm for advection/source terms and a Crank-Nicolson algorithm for viscous stresses.
Incompressibility is satisfied at the end of each time step through a projection method. More details may
be found in [69]. The resulting code is second-order accurate in both time and space for single-phase flows.

In two- and three-phase configurations, a VOF method with no interface reconstruction is used. The
advection equation for C is solved using a Zalesak flux-corrected scheme [70] split into successive one-
dimensional steps [71] in order to avoid the well-known tendency of the multidimensional version of this
scheme to distort iso-C surfaces. Owing to the splitting procedure, the overall transport scheme is not
rigorously conservative. Therefore a local mass error control which improves upon the global control
technique described in [71] is employed here. The corresponding strategy is based on the detection of drop
or bubbles (through an index function and a topological monitoring of each bubble or drop) and on an
iterative solution which modifies the volume fraction within the transition regions (i.e. those in which
0 < C < 1) in order to keep the volume of each bubble or drop constant. Since no interface reconstruction
step is involved, smearing of interfaces frequently occurs in high-shear regions. The original strategy
described in [71] is employed to keep this smearing within reasonable bounds. In the most difficult cases
(e.g. break-up and coalescence), this approach is supplemented by an antidiffusion technique in which the
local volume is redistributed in the direction normal to the interface so as to eliminate spurious values of
the volume fraction outside interfacial regions.

The capillary force is represented using a modified version of the Continuum Surface Force (CSF) model
[44]. This modification consists in defining the interfacial region as that in which the capillary force takes
non-zero values rather than that in which the volume fraction takes intermediate values. By doing so, it
improves the control of the thickness of the transition region between the two fluids. The above strategy
for the transport of C makes the approach selected in JADIM intermediate between VOF and Level Set
techniques: it is based on the transport of the local volume fraction of one of the fluids but this transport
is not achieved in a strictly conservative manner and no explicit reconstruction of the interface is carried
out, the position of the interface being merely identified a posteriori with the C = 0.5 iso-surface.

3.4 The Archer code

Archer is a CFD code developed at CORIA laboratory, mainly devoted to multiphase flows. It was
previously applied to compute atomization [30], vaporization and mixing [72], and other complex interfacial
flows [39]. The Level Set (LS) method [45] is used for tracking interfaces and shapes. It is based on a
continuous distance function φ defined as the signed distance between any point of the domain and the
interface. Similar to the volume fraction C, φ obeys a pure advection equation.

To avoid singularities in the φ field, the fifth-order conservative WENO [73] scheme is applied to discretize
convective terms. When the LS advection is carried out, high velocity gradients can cause wide spreading
or stretching of φ which then no longer remains a distance function. A redistancing algorithm [74] is
thus applied at every time step to restore the distance property of φ, i.e. |∇φ| = 1. Advancement of
the φ-equation and the redistancing algorithm can induce mass loss in under−resolved regions [39]. This
is the main drawback of LS methods. To improve mass conservation, the Coupled Level-Set Volume of
Fluid (CLSVOF) method [75] is used. The main idea of this approach is to benefit from the advantages
of each tracking strategy: minimize the mass loss using VOF and keep a fine description of interface
properties with the smooth LS function. (A study of the performance of various VOF variants was
recently published [39] using Archer in the CLSVOF context; the phase inversion problem is also discussed
therein.) The coupling between LS and VOF is maintained using a correction scheme based on a geometric
reconstruction of both VOF and LS interfaces [37]. The LS method itself is coupled with a projection
method for the incompressible Navier-Stokes equations, where the density and the viscosity depend on
the sign of the LS function (with appropriate interpolations used in interfacial cells). To finalize the
description of the two-phase flow, jump conditions across the interface are taken into account using the
Ghost Fluid (GF) approach. In this approach, ghost cells are defined on each side of the interface [76] [77]
and appropriate discretization schemes are applied to the jump of each quantity. As defined above, the
interface is characterized through the distance function, and jump conditions are extrapolated on some
nodes on each side of the interface. Following the jump conditions, the discontinued functions are extended
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continuously and then derivatives are estimated. Heaviside functions are designed according to the distance
function in order to provide a characteristic function for the two-phase medium. They follow the functions
proposed in formula (6) of [78] . Discrete delta functions are built in a similar way and are regularized
using a properly set cosine function. These techniques have been presented and validated in previous
works, e.g. [30].

3.5 The DyJeAT code

DyJeAT( Dynamics of Jet ATomisation) is an in-house computational fluid dynamics library developped
at ONERA to deal with atomization processes in aircraft or launcher engines. It is based on the one-
fluid formulation for incompressible two-phase flows with specific interface capturing features. Classical
projection methods are used to ensure the incompressibility constraint [79,80]. The spatial discretization
is based on staggered uniform Cartesian grids for the velocity components, all others quantities such as
density, pressure and level-set function φ being cell-centered. Advection terms in the momentum equations
are approximated in a conservative way with 5th-order accurate WENO schemes [73]. This particular choice
was motivated by the robustness and low numerical dissipation of these schemes observed in DNS studies
[81]. Viscous terms are discretized with second-order centered scheme. Time integration is performed with
a second-order accurate Adams-Bahsforth scheme. The Poisson equation for the pressure is solved by a
fast multigrid preconditioned conjugate gradient method [82]. A level-set method [45] is used to capture
the interface, implicitly defined as the zero level of the smooth function φ. Similar to the momentum
equation, the level-set equation is solved with a 5th-order WENO scheme for the spatial discretization and
a 3rd-order TVD Runge-Kutta scheme for time advancement. During its transport by the fluid velocity,
the level-set function no longer remains a distance function. Since redistancing is mandatory for curvature
computation, and as is standard practice, the level-set implicit function is repeatedly reinitialized to
the signed distance. Redistancing in the level-set scheme, including the associated resolution issues and
mass conservation properties, is discussed in detail in [83] (see in particular figures 3.8 and 3.9 therein).
Jump conditions at the interface for both pressure and viscous terms are handled with a Ghost Fluid
approach [76,77].

3.6 Pros and cons of the different codes

Code Interface Navier-Stokes Capillary Grids Solvers
tracking velocity-pressure forces

coupling

Archer CLSVOF Projection Ghost Cartesian BiCGStab
method fluid staggered Multigrid

DyJeAT Level set Projection Ghost Cartesian BiCGStab
method fluid staggered Multigrid

Gerris Geometrical Projection CSF with Collocated BiCGStab
VOF method height functions and AMR Multigrid

Jadim Implicit Projection CSF Cartesian BiCGStab
VOF method staggered Multigrid

Thetis Geometrical Augmented CSF with Cartesian BiCGStab
VOF Lagrangian smooth VOF Staggered ILU

Table 4: Summary of the numerical methods used in the various codes.

All the codes used in the present work are based on finite volumes but with different variants of the meth-
ods. Obviously, each code can lead to a different result on a given grid, due to variations in the methods
used. Table 4 is given to clarify the comparison of the model and numerical methods used. Schematically,
the codes cover the broad range of numerical methods that can be found in the literature for simulating
multiphase flows using the sharp interface approximation described above. This approach is sometimes
called direct or detailed, to contrast it with other approaches that depart from the sharp interface ap-
proximation. Four of the codes use staggered grids while one (Gerris) is based on collocated unknowns.
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Staggered grids have several advantages: a more accurate pressure solution, and the avoidance of spurious
“red-black” velocity oscillations. However, Gerris has demonstrated high accuracy on test cases [5,68] and
ten years of experience with Gerris show almost no occurrence of spurious oscillations. Four codes are us-
ing a projection technique achieving a velocity-pressure coupling that contains a time splitting error, while
one code (Thetis) uses an exact augmented Lagrangian approach. This technique is exact if the residual
of the iterative solver is zero at machine accuracy. In terms of interface tracking, Gerris and Thetis are
using a geometrical VOF-PLIC technique while Jadim employs a FCT scheme to directly approximate
the advection of the volume fraction without reconstructing explicitly the interface geometry (this is why
the corresponding approach may be thought of as Implicit VOF). DyJeAT uses the Level Set method
whereas Archer couples this technique with VOF-PLIC in order to improve mass conservation and also
to better evaluate advective effects in the momentum transport. Concerning capillary effects, the Ghost
Fluid approach based on jump relations at the interface and the CSF formulation with height functions [5]
are the most accurate. Thetis and Jadim use less sophisticated capillary force approximations that are
known to generate larger spurious currents than the other methods. To finish with numerical methods,
all projection steps except for Gerris are achieved with an iterative BiCGStab II solver preconditioned
with a multigrid algorithm, while Thetis and the coupled augmented Lagrangian method use BiCGStab
II and an incomplete LU preconditioner because the linear system is not symmetric. The major drawback
of the Thetis solver is that its parallelization has a good speed-up until 1000 processors but can hardly
handle in its present form a larger number of processors due to the ILU preconditioner. In contrast, the
multigrid preconditioner used in the projection approach is nicely extendable in parallel computations until
100, 000 processors. In Gerris, the projection step is achieved thanks to an in-code multigrid Poisson solver.

4 Detailed numerical simulations using DyJeAT

We used the DyJeAT code to obtain results at very high resolution. The grids we used are still too coarse
to reach the Kolmogorov scale but can be considered suitable to provide “detailed numerical simulations”
offering a view of the large-scale vortical structures. The meaning of such detailed simulations for interfacial
structures may be understood from a study of the convergence of the flow properties. As we shall see,
some of the characteristics of the flow linked to its multiphase character, such as the PDF of droplet sizes,
also seem to converge. We can thus consider that the detailed numerical simulations also offer a view of
the large-scale properties of the interfacial structure. As a preliminary result relevant to both cases, we
show in Figure 3 the evolution of the total mechanical energy

Em = Ep,1 + Ek,1 + Ep,2 + Ek,2 ,

obtained on a 5123 grid in both cases which, as we shall see, are well converged. The initial energy is
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Figure 3: Evolution of the rescaled (see text) total mechanical energy for both cases using DyJeAT.

Em(0) = Eip. As t → ∞ one expects the system to converge to a state in which the light fluid occupies

exactly the cuboid Ωup and the kinetic energy vanishes, so we expect Em → Efm = Efp . We rescale Em(t)
for both cases as

E
′

m(t) =
Em(t)− Eip
Efp − Eip

.
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The plot shows a remarkable similarity in both cases, especially at the end of the process where the
two curves nearly superpose. Energy in case 1 is somewhat lower, presumably because a fraction of
it was transferred to surface energy. For the same reason, one observes more fluctuations in the curve
corresponding to case 1. The similarity between the two cases is an indication of the possibility of the Re-
and We-independent fully developed turbulent regime discussed in the introduction.

4.1 Case 1: a phase inversion problem with few fragmentation events

In this section we present the numerical results pertaining to case 1 obtained on 1283, 2563 and 5123

grids with DyJeAT. The characteristics of this case are summarized in Tables 1-3. Dimensionless data are
considered according to the definitions indicated in Table 5.

A representation of a sequence of interfacial shapes is shown in Figure 4. It is seen that the interface
forms a thin sheet with expanding holes that lead to the formation of ligaments and then droplets. The
expanding holes are surrounded by a characteristic Taylor-Culick rim [84,85].

Figure 4: A sequence of interface shapes for case 1, using DyJeAT at 5123 resolution. The dimensionless
times are (from left to right) t∗ = 2, t∗ = 2.25 and t∗ = 2.5. One can see a large sheet pierced by two
expanding holes (arrows).

The potential and kinetic energies are mostly dependent on the large scales of the flow and are thus
“macroscopic” quantities which, by definition, are related to the large scales and should for that reason
be well resolved on moderately fine grids. A simple verification that this is indeed the case is achieved by
plotting the total mechanical energy as done in Figure 5 for case 1. It is seen that the energy evolves in a
nearly monotonic manner, and that it asymptotes to the expected value Efp at long times.
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Figure 5: Evolution of the dimensional total mechanical energy (without the surface energy), Em, as a
function of dimensionless time for case 1. The horizontal line is the expected value Efp .
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The corresponding results for the kinetic and potential energies are reported in Figures 6 and 7, respec-
tively. There is still some difference between the 2563 grid and the 5123 grid for fluid 2 around time t∗ = 2.5,
although not in fluid 1. We note that, since the kinetic energy is scaled by (1/16)ρnU

2
gH

3 for fluid n (see
Table 5), the maximum kinetic energy of fluid 2 in the scaled variables is 8(UK/Ug)

2(ρ1/ρ2) = 11.1375.
This is close to the maximum of the curve for fluid 2 in Figure 6. The fact that the kinetic energy is close
to its upper bound also means that UK is close to the L2-norm velocity, and that our Reynolds and Weber
number estimates are consistent with the observed L2-norm velocity.

Parameter Value Units

t∗ = t/tc
t

0.643
-

Efp,1 the potential energy in fluid 1 for t→∞ 0.1035 J

Efp,2 the potential energy in fluid 2 for t→∞ 0.3755 J

E∗k,1 =
Ek,1

(1/16)ρ1U2
gH

3

Ek,1
0.000341

-

E∗k,2 =
Ek,2

(1/16)ρ2U2
gH

3

Ek,2
0.000378

-

H3/8 the final volume of fluid 1 in the top part of the box 0.000125 m3

Maximum of enstrophy in fluid 1 (DyJeAT on a 5123 grid) 0.0733 m3.s−2

Maximum of enstrophy in fluid 2 (DyJeAT on a 5123 grid) 1.3759 m3.s−2

Table 5: Parameters used to define the dimensionless variables in case 1.

Figure 6: Grid convergence of kinetic energies for case 1.
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Figure 7: Grid convergence of potential energies for case 1.

The grid convergence results for the enstrophy are illustrated in Figure 8. Although the enstrophy seems
to converge in fluid 1, its peak increases with the grid resolution in fluid 2 and no convergence is reached
even on the 5123 grid. Therefore, although primary moments such as potential and kinetic energies or
volume ratio of the light fluid suggest that a real DNS was achieved, the analysis of higher-order moments
such as enstrophy invalidates this hope.
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Figure 8: Grid convergence of enstrophy for case 1.

Figure 9: Vorticity structures and interface shape for case 1: iso-60 vorticity magnitude (blue) and iso
C = 0.5 interface (orange surface) obtained with DyJeAT on the 1283 grid (left) and 2563 grid (right).

The interface shape and isovalues of vorticity magnitude at t∗ = 3 (which corresponds to the peak within
fluid 2 in Figure 8) are reported in Figure 9. Finer vortical structures are clearly captured by the finer grid
inside fluid 2 (near the bottom corners for instance). As pointed out in Table 3, the 5123 grid does not
reach the Kolmogorov scale ηK and thus does not resolve the finest vortical structures. In addition, as we
are considering two-phase flows with jumps in the physical properties, especially viscosity, properly cap-
turing the interfacial vortical layers requires that a sufficient number of grid points be located around the
interfaces. Therefore, we may suspect that the way the local viscosity is estimated as a function of the local
volume fraction plays a role in the local vorticity magnitude. Indeed, an arithmetic average between µ1

and µ2 is generally used but there are good reasons to rather favor an harmonic average [86–88]. To avoid
this possible influence, we re-computed case 1, still with DyJeAT, while considering the same viscosity in
both fluids. The corresponding results are discussed in Appendix B. They show that grid convergence of
enstrophy is still not achieved when the viscosity is set to 0.1Pa.s (the corresponding Reynolds number
is 137) although the enstrophy excursions are less violent. A similar study was performed by some of
us [89] with the conclusion that sheet breakup may be responsible for spurious large enstrophy even at
reduced Re and La. The obvious conclusion of these additional computations is that the differences found
among the various enstrophy evolutions are not due to the effects of an inaccurate numerical evaluation
of the viscosity jump but to other effects requiring further study. We also note that in the atomization
simulations performed by some of us [11], enstrophy as measured statistically is not diverging upon grid
refinement. Hence the results do not correspond to a true Direct Numerical Simulation: convergence is
achieved on quantities dominated by the large-scale motions, such as the kinetic and potential energies,
but it is not on enstrophy for which the main contribution is from the small scales.
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4.2 Droplet sizes

We now briefly analyze the evolution of the droplets size observed in results for case 1 obtained with
DyJeAT. We saw in Figure 4 that the interface forms a thin sheet with expanding holes that lead to
the formation of ligaments and then droplets. This hole formation mechanism was already observed in
simulations of atomizing jets [90] or mixing layers [20] and is critical in the atomization or fragmentation
process [91, 92]. It is likely that the control of the hole formation process is essential for obtaining a
convergent droplet size distribution upon grid refinement [93].
Figure 10 shows how the distribution of the largest drops observed with DyJeAT varies with the grid
resolution and dimensionless time. At later times, no droplets are found. The number of droplets decreases
in time as droplets reach the top of the box and merge with the bulk of fluid 1. Overall, at a given t∗, the
number of droplets also decreases as the resolution increases. Similarly, for a given resolution, the average
size of the droplets decreases as time proceeds.
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Figure 10: A representation of the sizes of the largest droplets (assuming H = 0.1 m) found in case 1, as
a function of time and grid resolution.

4.3 Case 2: a phase inversion problem involving many fragmentation events

In this section we present the numerical results pertaining to case 2. The characteristics of this case are
also provided in Tables 1-3. Dimensionless data are considered according to the definitions indicated in
Table 6. In order to examine grid convergence, the numerical simulations were run on five grids i.e. 1283,
2563, 5123, 10243 and 20483. (It is worth noting that over 30 million hours of CPU time were necessary
to perform the simulation on the finest 20483 grid.)

A plot of the total mechanical energy is shown in Figure 11. As in case 1, the energy decreases mono-
tonically. It is seen that the convergence is irregular, as the 10243 simulation is further away from the
reference 20483 simulation than the 5123 one. This effect will be seen in more detail in the separate plots
for the kinetic and potential energies shown below. At long times, the computed energy is clearly above
the expected asymptotic value Efp .

The results for the potential and kinetic energies are displayed in Figures 12 and 13, respectively. The data
obtained on the three finest grids superpose until t∗ = 4.5 approximately. We characterized the rate of
convergence by comparing the potential energies at t∗ = 2.63. The corresponding conclusions are reported
in Table 7. The order of convergence is near p = 2 for the low-resolution grids and near p = 1 for the high-
resolution ones. It is likely that at low resolution, the error on the flow characteristics away from interfaces
dominates, while at high resolution the error near the interfaces is dominant. Since discontinuities in the
pressure gradients and the derivatives of the velocity field are present near the interfaces, the discretization
schemes lose an order of accuracy there and the decrease of the order of convergence to p = 1 is expected.

After that time, the comparison of the three finest grids shows that a well-characterized convergence no
longer exists: the predicted kinetic energy varies irregularly with the grid size, the difference between the
20483 and 10243 grids being often larger than that between the 10243 and the 5123 grids. This behavior
starts at t∗ = 1.75 and becomes pronounced beyond t∗ = 5. This can only indicate one thing: despite the
kinetic energy resulting mostly from large-scale motions, the small scales influence strongly the evolution of
the kinetic energy. These small scales may for instance be involved in coalescence events, which themselves
display the perforation of thin liquid sheets. Whether the sheets perforate and are destroyed or not has a
strong influence on the large scales. Because of the observed convergence behavior of DyJeAT, its 20483
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Figure 11: Evolution of the dimensional total mechanical energy (without the surface energy), Em, as a
function of dimensionless time. The horizontal line is the expected value Efp .

Parameter Value Units

t∗ = t/tc
t

2.03
-

Efp,1 the potential energy in fluid 1 for t→∞ 1035 J

Efp,2 the potential energy in fluid 2 for t→∞ 3755 J

E∗k,1 =
Ek,1

(1/16)ρ1U2
gH

3

Ek,1
3.41

-

E∗k,2 =
Ek,2

(1/16)ρ2U2
gH

3

Ek,2
3.78

-

H3/8 the final volume of fluid 1 in the top part of the box 0.125 m3

Maximum of enstrophy in fluid 1 (DyJeAT on a 20483 grid) 103 m3.s−2

Maximum of enstrophy in fluid 2 (DyJeAT on a 20483 grid) 1049 m3.s−2

Table 6: Parameters used to define the dimensionless variables in case 2.
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Figure 12: Grid convergence of potential energies for case 2.

kinetic energy can be taken as a reference, with certainty until t∗ = 1.75, and as a reasonable estimate
until t∗ = 5.

An oscillating behavior is still present in the kinetic energy evolution, even though it is less regular than
in case 1. In all simulations, the kinetic energy decays as t∗−2 in fluid 2, as already found with case
1. In fluid 1, the exponential Stokes decay law (see Appendix A) is clearly more difficult to obtain, as
large amplitude variations are observed. Compared to case 1, the turbulent intensity in fluid 2 is larger,
especially in the bottom part of the box, and thus provides a strong forcing to the large blob of light fluid
that stands on top of it. This is why the oscillatory motion of fluid 1 is more complex and its decay does
not strictly follow the purely viscous Stokes law.

The time histories of enstrophy are plotted in Figure 14. The delay observed in the development of
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n cells |E∗p(n+ 1)− E∗p(n)| p

1 1283 0.0281 1.6674
2 2563 0.0088 2.4120
3 5123 0.0017 0.9675
4 10243 0.0008 -
5 20483 - -

Table 7: Case 2. Order of convergence p of the dimensionless potential energy of fluid 1 at t∗ = 2.63.

Figure 13: Grid convergence on kinetic energies for case 2 in log-linear (left) and log-log (right) coordinates.

Figure 14: Convergence of enstrophy for case 2.

enstrophy in fluid 2 (compared to fluid 1) was not observed in case 1. This newly found delay is a
consequence of the higher Reynolds number: vortical layers develop quite quickly in the more viscous fluid
1, but a significantly longer time is required for shear regions to develop in fluid 2, owing to the prevalence
of inertial effects.

Again, the enstrophy magnitude increases with the grid resolution. Compared to case 1, this tendency is
reinforced by the large number of break-up events which result in a large population of droplets of fluid 1
that modulates the motion of fluid 2. Whatever the grid resolution, including 20483, convergence is not
achieved and the finer the grid, the larger the enstrophy magnitude. As Figure 14 shows, the difference
between the peak magnitudes obtained with two successive resolutions increases as the grid is further
refined. This is an indication that the highest resolution considered here is still far from that required to
achieve a true DNS. However, it is observed that the width of the time interval in which the enstrophy
differs is decreasing with the refinement of the grid, testifying that grid convergence may be reached on a
finer mesh.

A view of the interfacial structure is provided in Figure 15. Many lenticular (or “flattened” ) droplets
are seen, an effect of the large rising speed that results in inertial effects frequently stronger than surface
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tension effects. This relative weakness of capillary effects occurs at fairly large scales, with a threshold
that seems to be close to 0.05H. This length is close to the Hinze scale ηH = 0.03H given in Table 3,
which was to be expected. Smaller droplets are seen to remain nearly spherical. The interface rendered
in Figure 15 is also seen to be much smoother than in Figure 2, indicating that most of the droplets are
well-resolved. We will return to the issue of the resolution of the smallest scales in Section 4.4.

Figure 15: Topology of interfaces for case 2 at t∗ = 3.5 (near the enstrophy peak) in fluid 2 using DyJeAT
on a 10243 grid. The interface is much smoother than in Figure 2, indicating that most of the droplets
are well-resolved.

4.4 Droplet size distributions in case 2

We performed a study of the droplet size distributions in case 2 at various times. The corresponding
results are summarized in Figure 16.

The droplet volumes V are measured in the simulations and a corresponding equivalent radius is obtained
for each drop as re = (3V/(4π))1/3. The equivalent radius may belong in any of a number of adjacent
bins Bi defined as the interval Bi = (ri − ∆i/2, ri + ∆i/2) where ri and ∆i are the bin center and
width, respectively. We consider regularly spaced bins with ∆i = 1/256, ri = (i − 1/2)/256 and Bi =
((i − 1)/256, i/256). Then the number of droplets whose equivalent radius lies in Bi is noted Ni. Ni
is approximately proportional to an asymptotic probability f such that f(ri) = Ni/∆i; however this
approximation is inappropriate for the first bin because ∆1/r1 is far from small. The function f(ri)
defines the Probability Distribution Function (PDF) of the droplet sizes. In Figures 16 and 17, we plot
Ni versus ri at various times or various resolutions.

The observation of these distributions leads to several remarks. First, as time progresses (see Figure 16),
the number of droplets increases, but the number of large drops increases faster than the number of small
droplets. Beyond a radius of 0.02 m, the distribution roughly follows an exponential law with an average
droplet size 〈r〉 that increases in time.
In Figure 17, a convergence study of the droplet size distribution is performed at time t∗ = 4. First,
it is seen that the 2563 grid result does not match the results obtained on finer grids. Instead, droplet
populations obtained with that grid are systematically less numerous than with the other grids, indicating
that the total mass of droplets obtained with that grid is smaller. This can be easily explained by the fact
that poorly resolved droplets “evaporate” in a Level Set method such as that used in DyJeAT. Second,
the 5123, 10243 and 20483 grid results almost superpose in a region of variable size, going from a minimum
radius rm(N) to a maximum radius rM (N), with rm and rM both depending on the grid resolution
N . To be specific, the minimum radius of agreement decreases with increasing N until approximately
rm(2048) ' 0.005 m which indicates a range of convergence extending to very small droplet radii for the
20483 grid. The upper boundary rM (N) of the range of convergence is harder to determine, because
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Figure 16: Droplet radius frequency Ni at various dimensionless times obtained with DyJeAT at maximum
resolution. The droplet radii are in meters, assuming the box size to be H = 1 m.
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Figure 17: Droplet radius frequency Ni obtained with DyJeAT at t∗ = 4. The droplet radii are in meters,
assuming the box size to be H = 1 m.

large radii are affected by statistical noise. However, it is seen that few additional very large droplets
(r > 0.07 m) are identified as the resolution increases from 2563 to 20483. Moreover, grids 10243 and
20483 are in agreement over a wide range with rM (2048) ' 0.05 m. Finally, we note that the behavior at
very small radii differs between the 20483 grid and the other grids: while the latter have a cutoff (a fall in
droplet counts N1 and/or N2) at small sizes, the 20483 grid does not. This is due to the fact that in the
20483 case, the fall in droplet count can only be seen if instead of the peculiar bin B1 defined above, one
subdivides the interval (0, 1/256) into several smaller bins. We have actually done that and did observe
the cutoff even for the 20483 case.

Similar effects of the grid refinement, including cutoffs or drops in frequency, have been reported for
atomization of liquid jets, especially with Level Set methods [94] and less markedly for VOF approaches
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Figure 18: Droplet radius frequencies (PDF) in logarithmic coordinates, with rf(r) versus r. A log-normal
distribution and an exponential one are shown to guide the eye.

[20]. This indicates that 5123 grids are a minimum requirement to reach an approximately accurate droplet
count at any scale, and that 2563 simulations are poorly resolved in the whole range of scales. On the
other hand, the absence of convergence of the enstrophy does not imply a non-convergence of the droplet
sizes in the intermediate range rm(N) < r < rM (N). Another interesting fact is that the large scales are
influenced by how the small scales are computed: more large droplets are seen with finer grids, probably
because a higher grid resolution implies less breakup of thin layers or filaments, thus reducing the rate
at which large structures break into smaller ones. In order to better understand the PDF, we plot the
computed frequencies for the two most refined grids as a graph of ln(riNi) versus ln ri in Figure 18. The
first bin B1 was excluded due to its particular character, and only results for the most refined grids 10243

and 20483 are shown. Using these coordinates has the advantage that the log-normal PDF appears as a
parabola. This specific PDF is defined as

f(r) =
A

r
exp

[
− (ln r − ln µ̂)2

2σ̂2

]
, (10)

where A is a normalization constant, ln µ̂ is the logarithmic average and σ̂ is the logarithmic standard
deviation. A parabolic curve corresponding to such a log-normal distribution is shown on Figure 18 to aid
the interpretation. This parabola is built with µ̂ = 10−3 m, σ̂ = 1.7 and A = 3. While the value of µ̂ is
very uncertain, it is clear that extrapolating the trend of the distribution leads to expect a larger value
of rf(r) at smaller r. These larger values of rf(r) could be revealed in simulations with yet more refined
grids than the current ones. This strongly reinforces the expectation that many smaller droplets would
be seen in a true DNS. However, these droplets would contribute little to the interfacial area. Indeed the
interfacial area scales as

ΣS =

∫ ∞
0

4πr2f(r) dr , (11)

which for a log-normal f(r) or a simpler f(r) ∼ 1/r converges at the r = 0 bound. Note that we
took the assumption of spherical droplets to estimate ΣS . The latter assumption is likely to be a good
approximation for the smallest droplets. Thus, the absence of such droplets in the integral does not affect
much the interfacial area.

A very simple Pareto distribution of the form f(r) ∼ A/r would be a horizontal line in the variables of
Figure 18. That approximation is in fact a good fit in the intermediate range of droplet sizes with A ' 1,
and is reminiscent of distributions seen in other contexts [95, 96]. As a third alternative, an exponential
distribution f(r) = B exp(−r/rm) is also plotted on Figure 18 with rm = 0.02 m. The exponential
distribution provides a better fit for the largest r. With this distribution, the interfacial area integral
converges for ∆x� rm = 0.02 m and thus for 2563 grids.
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Finally, we note that none of the distributions yields a very good fit throughout the entire range of scales.
It is possible that the PDF is in fact bimodal, with different “modes” corresponding to different physical
mechanisms being superimposed at various scales.

5 Results of the benchmark using all codes at moderate resolu-
tion

The teams involved in the present benchmark ran their own code each. Throughout, 2563 grids were used.

5.1 Case 1 results for all codes

We first compare the performance of all codes in terms of mass conservation in Figure 19. DyJeAT is also
run at 2563 resolution for this purpose. In the case of DyJeAT, the issue of mass conservation is quite
specific, since the mass decrease or increase is computed at each time step before the level-set function
is shifted to bring the mass deviation back to zero. In doing so, mass may be transferred in a non-local
manner. Thus the interface is rearranged locally, making for instance small droplets disappear. What
is plotted in Figure 19 in the case of DyJeAT is the cumulative absolute value of the deviation before
the level-set shift. All codes have fair mass conservation properties with the worse volume error always
smaller than 1.6% of the volume of light fluid. This is a nevertheless quite significant error that should
be reflected in energy conservation, since conservation of the total mechanical energy is closely related to
volume and mass conservation. Here, since almost all of fluid 1 goes to the top, the final potential energy
of the system, equal to the final total mechanical energy minus the surface energy, is determined to a very
good approximation by the final mass of fluid 1 in the top region. Thus, any error in the final volume
(hence the mass) of fluid 1 in the top region should result in an error on the final mechanical energy.
Figure 20 shows that all codes predict a final mechanical energy close to the reference value. More precisely,
normalizing differences by the total energy variation from t = 0 to t→∞, it is found that the departure
from the reference value is less than 1.4% for all codes, which is consistent with the error found on mass
conservation. More specifically, it is seen in Figure 20 that Archer and Jadim agree with the reference
within the thickness of the line, while Thetis and Gerris perform somewhat worse, with Thetis even below
the theoretical asymptotic value. This ranking of the codes may be partially inferred from Figure 19 which
confirms the good mass conservation behavior of Archer and Jadim but does not show a significantly worse
behavior for Thetis. Indeed there are other aspects that can affect the final potential energy: droplets of
light fluid that remain attached to the bottom wall by capillary forces increase the final potential energy,
as do droplets of heavy fluid attached to the top. This effect is counterbalanced by mass conservation: an
excess (resp. deficit) of light fluid at the end of the simulation, near the top, decreases (resp. increases)
potential energy. It is seen that the mass of light fluid increases with Thetis, which agrees with the
undershoot seen in the corresponding energy. Finally, DyJeAT with a 2563 resolution is the only code
that is slightly above the theoretical asymptotic value. This is probably related to the specific treatment
of mass conservation described above.
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Figure 19: Mass conservation for case 1. The dimensional volume deviation of fluid 1 (light fluid) is plotted
as a function of the dimensionless time.
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Figure 20: Evolution of the dimensional total mechanical energy in case 1 (without the surface energy),
Em, for all codes as a function of the dimensionless time. The horizontal line is the expected value Efp .

Three macroscopic quantities, namely the kinetic and potential energies and the volume of fluid 1 “in the
top part” were computed with the four codes other than DyJeAT. The evolution of the potential and

Figure 21: Potential energies for case 1.

Figure 22: Kinetic energies for case 1 in log-linear (left) and log-log (right) coordinates.

kinetic energies is plotted in Figures 21 and 22, respectively, together with the DyJeAT reference solution.
The results provided by all five codes on various grids are in approximate agreement with each other and
with the reference solution. Around time t∗ = 3, differences are seen between all codes during the first
oscillation arc of the potential energy. At later times, the oscillations of all codes are superposed, except
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Figure 23: Deviation of the energies from the reference in case 1. DyJeAT 2563 is compared to the DyJeAT
5123 reference.

for the two versions of Thetis, and to a lesser degree the Jadim code. The behavior of the kinetic energy
is more complex as differences between the behavior in fluids 1 and 2 are noticed. However, at large times
the kinetic energy predicted by the Archer code for both fluids is the closest to the reference solution.
This may be due to the non-converged character of the DyJeAT reference solution for t∗ > 2.5, which
would make the agreement with Archer easier since both codes are at least partially based on the Level Set
approach. In other words, Archer being the code most similar to DyJeAT is the most likely to agree with
the reference. Figure 21 indicates that phase separation is achieved after a dimensionless time t∗ ≈ 15.
The dimensionless frequency of the waves observed at the surface of the light fluid is about 0.6. Again,
it is observed that all codes predict evolutions close to each other and to the reference solution.

To better view the various predictions of kinetic and potential energies by the different codes in another
perspective, we plot in Figure 23 the deviation of the energies of all codes with respect to the DyJeAT
reference. This deviation is shown for the kinetic energy, the potential energy, and the sum of these
two components (total mechanical energy minus the surface energy). Interestingly, for some of the codes
(especially Thetis) the differences are oscillatory while for others there is a less coherent drift. Note also
that the energy deviations shown in Figure 23 are of O(10−3) and thus much smaller than the total
potential energy which is of O(0.1) (This value of the potential energy in Joules can be deduced from the
characteristic energies used for the normalization defined in Table 5.)
The code-to-code comparison provided by Figures 23 indicates some phase shifts and various damping
rates at large times. In this limit, Thetis is the furthest from the DyJeAT reference, followed by Gerris,
while Jadim is very close to that reference. Archer has fluctuations that make the energy at large times
slightly unsteady. The codes exhibit the largest difference with the reference at time t∗ = 2.5, close to the
kinetic energy peak (see Figure 22). These differences, while all of the same order of magnitude are clearly
the largest for Thetis followed by Archer, then Jadim and Gerris, and are the smallest for DyJeAT 2563.
A possible explanation for these code-to-code differences could be the quality of mass conservation in each
of them, since it directly influences the amount of fluid in the top part. Another explanation would be
the accuracy of energy conservation since it drives the observed oscillations. A third explanation is the
accuracy of the computation of the surface tension force, since it can remove or add energy proportional
to (i) the interfacial area and (ii) the “spurious currents” generated by small imbalances with the other
terms in the momentum equation (see [97]).

Figures 24 and 25 display the instantaneous values of the enstrophy in both fluids. Although all codes
were shown to agree well on other macroscopic quantities, the magnitude of the enstrophy peak differs
dramatically for each of them. The location of this peak is found to occur at t∗ ≈ 2 (resp. 3) for all codes
in fluid 1 (resp. fluid 2). However, differences in magnitude up to 80% are observed, depending on the
grid and the code. Despite the large discrepancies noticed between all codes, it is interesting to observe
that they all provide a t∗−3 temporal decay law which may be shown to correspond to a turbulent scaling
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Figure 24: Enstrophy for case 1.

Figure 25: Enstrophy for case 1 in log-log coordinates.

(see Appendix A).

5.2 Case 2 results for all codes

We first compare all codes in terms of mass conservation in Figure 26. DyJeAT is also run at 2563 resolution
for this purpose. The same remark as above applies to the technique involved for mass conservation in
DyJeAT. The codes have very dispersed mass conservation properties. As above, conservation of the total
mechanical energy approximately deduced from the analysis of Figure 27 indicates how each code conserves
volume, since the final potential energy is related to the final volume of fluid 1 in the top region. It is seen
in Figure 27 that Archer and Gerris agree with the reference within the thickness of the line, while Thetis
and Jadim perform worse, with Thetis again below the theoretical asymptotic value. Unlike case 1, this
ranking of the codes can also be deduced from the mass conservation error plotted in Figure 26, where
Gerris and Archer perform much better than the other codes. In this case, both Gerris and DyJeAT 2563

end up above the DyJeAT reference value at late times. The reason why mass conservation deteriorates in
Jadim beyond t∗ = 5 is that the local mass error control strategy described in Section 3.3 was not designed
to handle topological changes, and presumably fails during coalescence and breakup events. Such events
being much more frequent in case 2 than in case 1, departures from exact mass conservation are much
larger in the former case.

Similar to the observations reported for case 1, the results provided by the five codes are in approximate
agreement as far as the time evolution of the potential and kinetic energies is concerned, even if larger
discrepancies are observed compared to case 1. These evolutions are displayed in Figures 28 and 29. The
behaviors of the codes are diverse. For example, the Gerris code performs well for the kinetic energy of
fluid 2. However, it predicts a significantly different oscillatory dynamics for the kinetic energy of fluid 1
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Figure 26: Mass conservation for case 2.
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Figure 27: Evolution of the dimensional total mechanical energy in case 2 (without the surface energy),
Em, as a function of dimensionless time for all the codes. The horizontal line is the expected value Efp .

beyond t∗ = 1.5. In fact, for fluid 1, all codes are close to the reference, except Gerris, until time t∗ = 2.5.
Then they all diverge from the reference. For fluid 2, Gerris and Thetis behave better than the other codes
within the time interval 2 < t∗ < 3.

Similar to case 1, to view the different predictions of kinetic and potential energies by the different codes
in another perspective, we plot the deviation of the energies predicted by all codes with respect to the
DyJeAT reference in Figure 30. This deviation is shown for the kinetic energy, the potential energy, and
the sum of these two components (total mechanical energy minus the surface energy). For some of the
codes (especially Gerris), the sum of the kinetic and potential energies remains close to the reference at
early times, with both components deviating in an oscillatory manner and in phase opposition. In the case
of Gerris, the plot also includes the deviation of the surface energy from the “reference” DyJeAT case. This
deviation mainly serves to show that the surface energy fluctuations are of the same order as the deviations
in kinetic and potential energies. It does not seem that the performance of the codes in terms of prediction
of the kinetic and potential energies is related to their performance in the accounting for surface tension
forces, since, at least in the case of Gerris, the deviations in these various energies are not correlated.
For some other codes, the deviation from the reference is much less oscillatory, indicating that the error
is dispersed in a non-oscillatory manner. Finally, in some cases the total mechanical energy (minus the
surface energy) is not conserved, indicating a possible dissipative error or a mass conservation error. In
the long time limit, Thetis and to a lesser extent Jadim have energies that deviate from the reference,
while Gerris and Archer are very close to it. This behavior is consistent with the mass conservation of
these codes. DyJeAT 2563 is close to the reference (obtained with DyJeAT itself). Unlike case 1, there is
no clear maximum of the error around t∗ = 2 or 3 for all the codes, although maxima are found around
t∗ = 2 for some of them and either the total, potential or kinetic energies. These “maximum errors” are
of the same order of magnitude, between 2.5 and 5 Joules. Note also that these energy deviations need to
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be compared with the total kinetic energy which is of the order of 40 Joules (see Table 6 and Figure 29).

Figure 28: Potential energies for case 2.

Figure 29: Kinetic energies for fluid 1 in log-linear coordinates (left) and fluid 2 in log-log coordinates
(right) (case 2).

The time histories of enstrophy are plotted in Figures 31, 32 and 14. Again, all codes find the peak value
nearly at the same time, namely t∗ ≈ 2.5 in fluid 1 and t∗ ≈ 4 in fluid 2, although the code-to-code
differences are significantly larger than in case 1. Again, the enstrophy magnitude increases with grid
resolution and is code-dependent.
The uncertainty surrounding the 2563 grid results for the PDF of droplets sizes leads us not to discuss the
results provided by the other codes for this PDF, since these codes were not run at higher resolution. When
droplets are counted in these low-resolution simulations, an exceedingly large number of small droplets
resulting from numerically dominated breakup, – so called debris, flotsam or jetsam or wisp droplets – is
found, precluding a meaningful analysis in the small droplet range. This type of debris droplet is absent
or rare in pure Level Set simulations.

6 Summary and future work

A computational benchmark based on the phase inversion of two immiscible fluids of different densities
confined in a closed cubic box has been set up. The purpose of this benchmark was to check the capabilities
and limitations of current codes and grid resolutions. The first observation made with the reference code,
DyJeAT, is that the total mechanical energy converges easily with grid resolution and can be rescaled
so that it exhibits a very similar behavior in both cases. This effect was unexpected and it would be
interesting to see if it applies to a wider range of cases. The second observation, put simply, is that the
various codes, all run at much lower resolution than the reference, reproduce easily the results of the
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Figure 30: Deviation of the energies from the reference in case 2. Results shown for Gerris also include
the deviation of the surface energy from the “reference” DyJeAT case. DyJeAT 2563 is compared to the
DyJeAT 20483 reference.

Figure 31: Enstrophy for case 2.

Figure 32: Enstrophy for case 2 in log-log coordinates.
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reference for quantities tied to the large scales, such as kinetic and potential energies, but fail to reproduce
quantities related to the small scales, such as the PDF of droplet sizes or the enstrophy integral.

The first problem we considered, case 1, is characterized by an integral scale Reynolds number Re =
1.37 104. Computational results have been analyzed by considering the time evolution of several volume-
averaged indicators, namely the potential and kinetic energies in each fluid, the relative volume of light fluid
in the top part of the box and the enstrophy in each fluid. The results reveal that all codes provide close
evolutions for the first three quantities, indicating that reliable predictions are obtained when quantities
essentially determined by large-scale motions are considered. The long-term decay rates of the kinetic
energies have been found to be in good agreement with the viscous Stokes law (in fluid 1) and the turbulent
decay law (in fluid 2) discussed in Appendix A, respectively. In addition, all codes agree on the sloshing
frequency of the light fluid. The situation has been found to be much more problematic when enstrophy
is considered: all codes provide markedly different values of the enstrophy maximum (although they agree
on the time at which this maximum occurs) and none of them converges when the grid is refined.

A second phase inversion test case, involving a higher Reynolds number, Re= 4.33 105, was subsequently
considered. The same general conclusions apply to this configuration. All codes provide converging
predictions as long as only kinetic and potential energies are considered, whereas large discrepancies
are observed on enstrophy. Here again, the true DNS conditions are not satisfied and much finer grids
should be considered to expect convergence on quantities such as enstrophy and dissipation which are
governed by small-scale processes, especially multiple break-up events. It has to be noticed that despite
the discrepancies observed on enstrophy, approximate convergence is obtained for PDFs of droplet sizes as
soon as a 10243 grid is used. Clearly, case 2 is an implicit LES rather than a DNS. As a conclusion, this
benchmark illustrates the fact that implicit LES simulations on fine grids allow to reach convergence on
first-order moments such as kinetic or potential energies while they fail to converge as soon as small-scale
statistics are investigated. Explicit LES models may be implemented in this case [19, 27, 28, 37, 98, 99], or
much finer meshes should be employed to achieve a true DNS.

Future work of some of the partners will first be devoted to the consideration of cases with smaller Re
and We in order to perform true DNS with convergence of the small scales. Multiscale Eulerian VOF or
Level Set approaches coupled to a Lagrangian description of small droplets may also be introduced by
some of them with the goal of reaching convergence on all physical quantities on “reasonable” grids. Last,
adaptive mesh refinement (AMR) techniques will be considered to concentrate numerical efforts in flow
regions where the vorticity magnitude is expected to approach its maxima.
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A Appendix A: Scaling laws for the kinetic energy decay

After the acceleration stage induced by buoyancy forces, during which most of the lighter fluid goes to the
top part of the box, the phase inversion problem is characterized in a second stage by a wavy behavior
which makes it look quite similar to a sloshing flow progressively damped by shearing and viscous effects.
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The classical analysis of Stokes regarding the viscous damping of gravity waves (see e.g. [100], pp. 623-
624), makes it possible to predict the time evolution of the kinetic energy in a weakly viscous flow driven
by a surface wave. First, the time evolution of the mechanical energy, which is the sum of the potential
and kinetic energies, is known to result from the internal viscous dissipation, so that

dEm
dt

= −1

2
µ

∫
Ω

(
∇u + (∇u)T

)2
dV . (12)

If we assume the shear layer at the free surface to have negligible effect owing to the moderate velocity
gradients expected in this region, the flow can be considered irrotational. Then the velocity potential, Φ,
and rate of change of the mechanical energy, Em, read

Φ = Φ0e
kzcos(kx− ωt) , (13)

dEm
dt

= −8µk4

∫
Ω

Φ2 dV , (14)

where k and ω are the wave number and radian frequency, respectively, and the overbar denotes the
time average value. In the framework of linear wave theory, the potential and kinetic energies are equal.
However the wave amplitude is not small in the present phase inversion problem. Nevertheless, as soon
as most light fluid stands in the top part of the box, the potential energy stays almost constant, making
the time variation of Em mainly governed by that of the kinetic energy. Therefore, still in the linear
approximation, we can approximately write

Em =
1

2
ρ

∫
Ω

u2 dV ≈ 1

2
ρ

∫
Ω

∇Φ · ∇Φ dV = ρk2

∫
Ω

Φ2 dV . (15)

Now, two markedly different flow situations can be met in the phase inversion problem, namely a “gentle”
configuration in which break-up and coalescence events of the light fluid scarcely occur and a “violent”
configuration in which such events are much more numerous. Combining (14) and (15), the time evolution
of the kinetic energy in the first regime is found to obey

Em =
1

2
ρ

∫
Ω

u2 dV = Ke−8νk2t = Ke
−8ν ω4

g2
t
, (16)

where K is a constant, ν = µ/ρ, and use has been made of the dispersion relation ω2 = gk.
Let us now consider the “violent” configuration. In this case, averaging throughout the whole volume Ω,
(13)-(14) simply yields

ũ2 = ˜∇Φ · ∇Φ = k2Φ̃2 , (17)

dEm
dt

= −8µk2ũ2 , (18)

where ·̃ denotes the mean value over Ω. In other words, one has

dũ2

dt
= −16νk2ũ2 . (19)

In this configuration, the flow is expected to be turbulent and the molecular viscosity is no longer relevant
to estimate the damping rate of the flow. As a crude surrogate, we can introduce an effective turbulent
viscosity νt scaling as lũ, where l is a characteristic length of the large-scale flow, which can be taken as
the box size. Replacing ν by νt in (19), we then obtain

dũ2

dt
= −16lk2ũ3 . (20)

Assuming the volume-averaged velocity to follow a power law, i.e. ũ to be of the form ũ0t
−n, yields n = 1,

from which we infer
Em ∼ t−2 . (21)

This prediction is to be compared with the exponential decay predicted by (16) in the “gentle” regime.
The result (21) is reminiscent of the approximate decay law of the kinetic energy in decaying homogeneous
isotropic turbulence (e.g. [101]). This is expected since, according to Taylor’s estimate, the dissipation
rate ε is known to scale as u3

0/l0, where u0 and l0 stand for the large-scale velocity and length scales,
respectively. Therefore, when l0 is constant, (21) is immediately recovered and the dissipation rate is
predicted to decay as t−3.
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B Appendix B: influence of viscosity on the flow dynamics

In order to better understand the origin of code- and grid-dependencies of the volume-averaged enstrophy
in cases 1 and 2, we performed an extra series of computations with DyJeAT with the same viscosity in
both fluids. In this way, any possible influence of the averaging procedure selected to compute the local
viscosity as a function of the volume fraction and of the numerical treatment of the viscosity jump in the
interfacial grid cells is removed. We make use of the physical parameters of case 1, except for viscosity
which is set to 0.1Pa.s (case 1a), 0.01Pa.s (case 1b) and 0.001Pa.s (case 1c), respectively. The conver-
gence study was performed on three different grids, namely 1283, 2563 and 5123 in case 1a, whereas four
grids ranging from 1283 to 10243 were considered in cases 1b and 1c.

Figure 33: Grid convergence of enstrophy for case 1a in fluid 1 (left) and fluid 2 (right) - linear-linear
(top) and log-linear (bottom) coordinates.

Figure 34: Grid convergence of enstrophy for case 1b in fluid 1 (left) and fluid 2 (right) - linear-linear
(top) and log-log (bottom) coordinates.

The evolution of the volume-averaged enstrophy is reported in Figures 33, 34 and 35 for cases 1a, 1b and
1c, respectively. In case 1a, the Reynolds number is 130 and the enstrophy while still not converging as
the grid is further refined, has less violent excursions. In this configuration, the enstrophy decay at large
time follows an exponential law, a behavior typical of the viscous decay of gravity waves (see Appendix
A). In case 1b, grid convergence is again not achieved in both fluids, the Reynolds number in fluid 2 being
1300. At large time, the enstrophy obeys a t∗−3 decay law typical of turbulent conditions (see Appendix
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Figure 35: Grid convergence of enstrophy for case 1c in fluid 1 (left) and fluid 2 (right) - linear-linear (top)
and log-log (bottom) coordinates.

A). In case 1c, enstrophy convergence is not achieved in either fluid. The Reynolds number is 1.37 104

and it is observed that, even though the results concerning energy and relative volume in the upper part
of the box converge, as shown with case 1, the grid is not thin enough to capture the small-scale eddies.
Again, the decay law at large times is found to correspond to turbulent conditions.
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