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First Order Approximation of Model Predictive Control Solutions
for High Frequency Feedback

Ewen Dantec a,b,*, Michel Taı̈x a, Nicolas Mansard a,b

Abstract— The lack of computational power on mobile robots
is a well-known challenge when it comes to implementing a real-
time MPC scheme to perform complex motions. Currently the
best solvers are barely able to reach 100Hz for computing the
control of a whole-body legged model, while modern robots
are expecting new torque references in less than 1ms. This
problem is usually tackled by using a handcrafted low-level
tracking control whose inputs are the low-frequency trajectory
computed by the MPC. We show that a linear state feedback
controller naturally arises from the optimal control formulation
and can be used directly in the low-level control loop along
with other sensitivities of relevant time-varying parameters of
the problem. When the optimal control problem is solved by
DDP, this linear controller can be computed for cheap as a
by-product of the backward pass, and corresponds in part to
the classical Riccati gains. A side effect of our proposition is to
show that Riccati gains are valuable assets that must be used
to achieve an efficient control and that they are not stiffer
than the optimal control scheme itself. We propose a complete
implementation of this idea on a full-scale humanoid robot and
demonstrate its importance with real experiments on the robot
Talos.

I. INTRODUCTION

Model-predictive control (MPC) amounts to frequently
optimizing a prediction of the robot motion and executing
the beginning of the resulting trajectory while waiting for
a prediction update [1]. It has lately become popular in
robotics to control complex multi-variable systems such as
legged or aerial robots. MPC offers a viable method to solve
large-scale optimal control problem (OCP) over a receding
finite horizon, while efficiently dealing with constraints,
non-linearity, model uncertainties and unforeseen distur-
bances [2]. Over the time, the ever increasing computational
power of our computers has allowed the MPC paradigm to
be applied to complex systems such as 4-legged robots [3],
collaborative manipulation involving dynamic obstacle [4]
or quadrotor control [5].

MPC belongs to the class of trajectory optimization meth-
ods, where the trajectory planning problem is interpreted as
an OCP. This approach allows to optimize simultaneously
a task-related path and the associated control policy, while
taking into account constraints and limitations [6]. The tasks
are classically described by a non-linear cost function which
enforces constraints and defines the objectives hierarchy
through cost weights. At each control cycle, starting from
a state estimate of the system, an OCP is solved over a
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Fig. 1. The full scale humanoid Talos, used in the experiments, expects new
torque references every 0.5ms. While such high frequencies is needed to
unlock torque control, current MPC solvers cannot yet solve a whole-body
problem at such a frequency. Another feedback must then be implemented,
here to handle measurements of the robot state and target location.

receding finite-time horizon and the first elements of the
resulting trajectories are forwarded to a low-level execution
process. The problem is then shifted from one sampling
period before being solved again. Although this method
works well for linear problems, a series of challenges arises
when considering non-linear systems and complex tasks such
as obstacle avoidance or contact planning. Since complexity
varies with the cube of the system dimension, finding a
global minimum in real time to a large-scale non-linear
problem is very difficult to achieve [7]. For these reasons,
the use of MPC in robotics has been, until recently, limited
to systems with reduced dynamics [8] or small scale [9].

Among the various numerical optimization schemes used
to implement MPC, direct shooting [10] is a popular class
of methods used in robotics. One of the most famous
shooting algorithms is Differential Dynamic Programming
(DDP) [11], [12], an efficient method featuring superlinear
convergence rate with linear complexity in the horizon
length, hence its success in robotics [13], [14], [15]. While
it is originally formulated as a single shooting algorithm, it
can be turned into a multiple shooting one [16], [10] at no
extra cost [17], as we will recall later. This makes it easier
to warm start the solver, either using the solution found at
the previous control cycle [18], or deduced from an offline
database of optimal solutions [19].

In order to tackle brutal disturbances and model uncer-
tainties, it seems desirable to run a whole-body MPC at the
highest possible frequency [20], [21], ideally around 1kHz.
Direct MPC feedback at slower frequency is possible but
drastically reduces the performances of the motions [22].
Moreover, most whole-body control schemes for legged
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robots work with frequencies of 400 Hz or higher [23],
[24], [25], and slower frequencies are expected to decrease
performances [21], [26]. For large-scale systems such as
humanoid robots, recomputing the MPC at such rate may
not be achievable despite some on-going exploratory works,
e.g. contact-aware Linear Quadratic Regulator (LQR) con-
trollers [27], parallelized LQR resolution [28] or multi-core
GPU optimization solver [29]. Other works propose to use
feedback MPC to provide an optimal feedback policy at
a higher update rate than the re-computation of the whole
problem. Those policies are either computed separately using
another optimal control transcription [30] or based on an
efficient Newton-type scheme [16]. In [31], a MPC scheme
is deployed on a reduced model to rapidly generate a
CoM trajectory and contact sequence, which are provided
to a whole-body control block based on inverse dynamics.
In [32], the feedback gains satisfy by design the contact
constraints and dynamics constraints, and efficiently close
the gap between the low-frequency high-level MPC and the
low-level controller. However, both methods need to rely on
a dedicated controller to produce a torque policy based on a
state trajectory, bringing on an additional layer of complexity
which should be fine-tuned.

It is known that the control solution of a constraint LQR
is a continuous piece-wise affine function of the initial
state [33]. Following this observation, we propose to deduce
the optimal feedback policy from the OCP formulation and
we show the connection between this policy and the DDP-
induced Riccati gains. It is commonly acknowledged that
those gains can be interpreted as the sensitivities of the opti-
mal solution with respect to the initial state of the OCP. Sen-
sitivities have already been used to improve the warm-start in
a receding horizon scheme [16], for bilevel optimization [34]
and contact simulation [35]. Differentiating an MPC has also
been proposed in the purpose of adding it as a layer of a
neural network [36], [37]. Because we are only interested
in getting the derivative of the initial control with respect to
any external parameter, our proposed derivation leads to a
more efficient backward pass to compute the corresponding
gain, and elegantly connects it with the Riccati matrix.
This is necessary as we are proposing to use it for high-
frequency control. For small state changes, this is equivalent
to computing a new solution of the MPC at a much higher
frequency, reaching the expected computation of the low-
level control. The same approach can be generalized to
any parameter of the OCP, leading to a set of Riccati-
like feedback gains which can be computed at low cost by
extending the classical DDP backward pass. To illustrate our
method, we performed a reactive reaching task involving 28
degrees of freedom, contacts and balance over an update
frequency of ∼ 60 Hz for the MPC and the Riccati gains,
while the low-level control is working at 2 kHz. We provide
a demonstration of our whole-body MPC on the torque-
controlled humanoid robot TALOS [38].

The paper is structured as follows. Sec. II introduces
the basic formulation of optimal control for whole body
motion in contact. Sec. III proves that Riccati gains can

be interpreted as sensitivity of the problem with respect to
the initial state, and gives a generic method to extract other
sensitivities. Sec. IV explains the implementation of these
gains in the low-level control of our scheme. Sec. V presents
the experimental results on the humanoid robot TALOS.

II. WHOLE BODY OPTIMAL CONTROL WITH CONTACT

A. Contact-Constrained Rigid body dynamics

Similarly to [39], we consider a rigid body system with
nj joints and np rigid contacts with the environment and
model the dynamics of this constrained multi-body system
through the following equation [40]:[

M J⊤
c

Jc 0

] [
q̈
−λ

]
=

[
S⊤τ − b

−J̇cq̇

]
(1)

where M is the joint-space inertia matrix, b the generalized
non-linear forces, q ∈ SE(3)×Rnj the configuration vector
which accounts for the nj actuated joints positions and the
free-flyer joint, q̇ the velocity vector laying in the tangent
space of SE(3) × Rnj , q̈ the acceleration vector, S the
actuation matrix typically selecting the actuated joints, τ the
joint torques, λ = (λ1 · · ·λnp) and Jc = (J1 · · ·Jnp) the
concatenation of vectors of contact forces and concatenation
of contact Jacobian matrices. In this context, forces λ
abstractly represents either 3D forces for punctual contacts
or spatial 6D forces for planar contacts, expressed in their
respective contact frame. They have to respect the contact
model described by the cone Kp:

∀p = 0..np, λp ∈ Kp. (2)

We then classically consider the state of the robot to be
x = (q, q̇) ∈ Rnx , ẋ = (q̇, q̈) ∈ Rndx , and the control
to be u = τ ∈ Rnu . In [14], we showed that with
this formulation, forces become consequences of the state
(q, q̇) and the control u, and thus our dynamics becomes
independent from these variables. Consequently, (1) leads to
a force-free partial derivative equation, where contact phases
are fixed and imposed in (1), which we numerically integrate
into a next-state equation:

xt+1 = f(xt,ut) (3)

B. Optimal control for legged robots

Based on (3), we can formulate a continuous OCP then
transcript it into a nonlinear programm in order to be solved.
We use a multiple-shooting formulation, as it combines
the efficiency of shooting formulations [13] with numerical
stability [10]. Our discretized OCP then takes the following
form:

min
x,u

T−1∑
t=0

ℓ(xt,ut, t) + ℓT (xT )

s.t. x0 = f0

∀t = 0..T, xt+1 = f(xt,ut)

(4)

where the decision variables are the state x = (xt)t=0..T and
control u = (ut)t=0..T−1 trajectories, T is the number of
knots, ℓ and ℓT are the running and terminal cost functions,



used to define the tasks the robot has to perform (goal
tracking, center of mass tracking, etc.) and to regularize state
and control trajectories, and f0 is the initial state. An OCP
for locomotion often contains admissibility constraints on
state and control; however, as recent progresses in handling
hard constraints for large OCP [41], [42], [43] still suffer
from practical limitations in the perspective of real robot
experiments, we focus here on constraint-free OCP (without
loss of generality for our theoretical developments [36], but
targeting our experimental setup). Thus, we formulate these
constraints as penalties of various forms in our cost function,
and describe them in Section IV.

C. Formulating the LQR
Linearizing (4) around an initial trajectory (x,u) results

in a LQR. Let us note ℓ(∆x,∆u) the trajectory cost:

ℓ(∆x,∆u) =

T−1∑
t=0

(1
2

[
∆x⊤

t ,∆u⊤
t

] [Lxx Lxu

Lux Luu

] [
∆xt

∆ut

]
+
[
ℓx ℓu

] [∆xt

∆ut

])
+

1

2
∆x⊤

TLxx∆xT + ℓx∆xT

(5)

The LQR then writes:

min
∆x,∆u

ℓ(∆x,∆u)

s.t. ∆x0 = f0

∀t = {0, · · · , T − 1},
∆xt+1 = Fx∆xt + Fu∆ut + ft+1

(6)

For the sake of readability, we will denote Ab = ∂A
∂b ,

except when not suitable (e.g. ∂∆u
∂x ). Bold capital letters

indicate matrices and bold letter indicate vectors. In (5),
ℓx, ℓu and Lxx,Lxu,Luu are the gradients and Hessians
of the cost function (indices t have been dropped to simplify
derivative notations). Similarly, Fx and Fu are the Jacobians
of the dynamics computed at each (xt,ut). We write ft

the drift in dynamics, which represents the change in state
when the control is 0. Note that ft is typically omitted in
DDP, but is introduced here to handle our multiple shooting
transcription.

The optimum of (6) is characterized by the gradients of
the associated Lagrangian vanishing. Let us pose ∆z =
(∆x,∆u) and write the Lagrangian as:

L(∆z,µ) = ℓ(∆z) + µTh(∆z) (7)

with h(∆z) the vector of the T+1 dynamics equality con-
straints given by (6). The optimality condition can now be
formulated as a linear equality called Karush-Kuhn-Tucker
(KKT) condition, which binds the primal variables ∆z to the
dual Lagrange multipliers µ associated with the dynamics
constraints h and drift f = (f0, ..,fT ). Assuming the KKT
matrix to be invertible, the LQR solution writes:[

∆z
µ

]
= −

[
Lzz hT

z

hz 0

]−1 [
ℓz
f

]
(8)

While we will later exploit the KKT equation to formulate
our contribution, it is in general not easy to efficiently invert
the KKT matrix to solve the OCP.

D. Solving the OCP using the KKT conditions

DDP solves (6) by using Bellman’s principle [44], which
naturally exploits the sparsity of the Markovian nature of
the dynamics constraints. Eventually, each descent step can
be produced by an iterative scheme which pre-computes the
descent direction in a backward pass (going from N to 0),
and then finds the optimal step by line search along this
direction in a forward pass (going from 0 to N ) [45]. In this
forward pass, the optimal state and control (∆xt,∆ut) and
optimal dual variable µt ∀t = 0..T −1 can be expressed as:

∆ut = Kt∆xt + kt (9a)
µt+1 = Vt+1(Fx∆xt + Fu∆ut) + vt+1 (9b)

Here the gains and value fonction are computed during
the backward pass of the DDP: starting from VT = Lxx

and vT = ℓx +LxxfT , we have, ∀t = 0..T − 1:

Kt = −Q−1
uuQux (10a)

kt = −Q−1
uuqu (10b)

Vt = Qxx −QxuKt (10c)
vt = qx −Qxukt + Vtft (10d)

The backward pass also computes the derivatives of the
quality function:

qx = ℓx + F T
x vt+1 (11a)

qu = ℓu + F T
u vt+1 (11b)

Qxx = Lxx + F T
x Vt+1Fx (11c)

Qxu = Lxu + F T
x Vt+1Fu (11d)

Quu = Luu + F T
u Vt+1Fu (11e)

DDP indeed accounts for the second-order derivatives of the
dynamics, that we ignore here for simplicity. This approach
is classically described as iterative LQR (iLQR) [46]. All the
following derivations, that we write without the hessian of
the dynamics, directly extend to the full DDP formulation.
As exploited next, DDP can be interpreted as an operator to
efficiently evaluate the left multiplication by the inverse of
the KKT (8).

III. SENSITIVITY ANALYSIS OF THE OPTIMAL SOLUTION

Suppose that our OCP depends on a parameter θ which
varies with time. If the variation of θ is non-negligible
over the computation duration of the OCP, then the optimal
solution is no longer correct since it has been computed over
an outdated value of θ. Determining the sensitivity of the
OCP with respect to θ will allow us to approximate a control
correction proportional to the variation of the parameter.

A. Defining sensitivity as partial derivative of the OCP

Let us view the OCP described by (4) as a classical non-
linear problem parametrized by a given θ ∈ Rnθ . We define
the optimal state and control trajectory x∗ = (x∗

t )t=0..T and
u∗ = (u∗

t )t=0..T−1. For the sake of simplicity we denote by



z∗ = (x∗,u∗) ∈ Rnz with nz = Tnu + (T + 1)nx solution
of the following discretized problem:

P(θ) = z∗ = argmin
z

ℓ(z,θ)

s.t. h(z,θ) = 0
(12)

with h : Rnz × Rnθ −→ R(T+1)×nx the T + 1 discretized
dynamics constraints given by xt+1 = f(xt,ut) ∀t =
0..T − 1 and x0 = f0. We assume ℓ and h are con-
tinuously twice differentiable, and that the Mangasarian-
Fromovitz constraint qualification holds for our nonlinear
problem, in order to be able to apply the KKT optimality
conditions. From here the Lagrangian of the problem writes
L(z,µ,θ) = ℓ(z,θ) + µTh(z,θ) and the KKT optimality
conditions state that if z∗ is solution of the problem (12) for
θ, then:

Lz(z
∗,µ,θ) = ℓz(z

∗,θ) + µThz(z
∗,θ) = 0

h(z∗,θ) = 0
(13)

Finally we suppose that for each µ ∈ R(T+1)·nx satisfying
the KKT conditions and each ∆z ̸= 0 ∈ Rnz so that
hz(z

∗,θ)∆z = 0, we have the following inequality:

∆zTLzz(z
∗,µ,θ)∆z > 0 (14)

Under these assumptions, Shapiro [47] showed that the
function P(·) is directionally differentiable and that for
each θ ∈ Rnθ , ∆θ ∈ Rnθ , there exists µ verifying
the KKT conditions such that P ′(θ;∆θ), derivative along
the direction ∆θ, is the unique solution of the following
quadratic program:

argmin
∆z

1

2
∆zTLzz(z,µ,θ)∆z +∆zTLzθ(z,µ,θ)∆θ

s.t. hz(z,θ)∆z = 0
(15)

Since in our case, the Lagrangian multiplier µ is unique due
to the upper diagonal form of the constraints matrix, it turns
out we can easily compute the directional derivative of our
problem along the direction ∆θ, and from it immediately
deduce the sensitivities of (12) under a KKT-like shape:[∂∆z

∂θ
∂µ
∂θ

]
= −

[
Lzz hT

z

hz 0

]−1 [Lzθ

0

]
(16)

In this equation, ∂µ
∂θ is the derivative of a Lagrangian multi-

plier increment we are not interested in. On the other hand,
∂∆z
∂θ ∆θ is the correction to apply to the state and control

trajectories when the parameter error is ∆θ. As literally
solving (16) would be inefficient to find the derivatives, we
now show how to exploit DDP to evaluate the sensitivities.

B. Computing the sensitivity through the backward pass

Let us go back to the linearized problem described by (6).
The matrix in (16) is the inverse of the KKT matrix already
met in (8), yet not multiplied here by (−ℓz,−f) but by
(−Lzθ, 0). As explained in Sec. II-D, DDP can be inter-
preted as an efficient operator evaluating the multiplication

by the inverse of the KKT matrix. We then propagate DDP
backward and forward recurrences in (16) by replacing the
terms (ℓx, ℓu,ft) of (10) and (11) with (Lxθ,Luθ, 0). This
immediately leads to the following backward pass:

Kθ = −Q−1
uuQuθ (17a)

Vθ = Lxθ for t = T (17b)
Vθ = Qxθ −QxuKθ (17c)

Qxθ = Lxθ + F T
x V ′

θ (17d)

Quθ = Luθ + F T
u V ′

θ (17e)

where (17a) reflects (10a), (17c) reflects (10c), and (17d)-
(17e) reflect (11a)-(11b). As before, t is dropped in index
when it conflicts with another notation to improve readabil-
ity. The value derivative Vθ at time t + 1 is denoted V ′

θ .
Similarly propagating the forward pass on (16) gives:

∂∆ut

∂θ
= Kt

∂∆xt

∂θ
+Kθ

∂∆xt+1

∂θ
= Fx

∂∆xt

∂θ
+ Fu

∂∆ut

∂θ

(18)

In what follows, we are mostly interested by ∂u0

∂θ , sen-
sitivity of the first control with respect to the parameter θ.
Since the OCP (4) has the same derivatives as the LQR (6)
at each knot, the sensitivity of both problems are equal:

∂u∗
0

∂θ
=

∂∆u∗
0

∂θ
(19)

C. Interpreting Riccati gains as sensitivity

A feedback policy can be obtained from (18) when θ is
measured at a higher frequency than the DDP solves (4). In
the experimental part of this paper, we demonstrate MPC
feedback from state and vision, where θ contains the robot
state x0 and visual target p.

Consider first the case where θ = x0. The only derivatives
of the problem which depend on x0 are Lx,0 and Lu,0, so
by recurrence with (17), it is straightforward to deduce that
Vx0

= 0 ∀t = 1..T and that Kx0
= −Q−1

uuLux0 = 0 ∀t =
0..T . The derivative of the first optimal control with respect
to its initial state then simply writes:

∂∆u0

∂x0
= K0

∂∆x0

∂x0
+Kx0

= K0 (20)

This equation shows, as it is already known, that the Riccati
gains K0 can be interpreted as the sensitivity to the initial
state. Given that the current state of the robot is provided
at a sufficiently high frequency, the Riccati gains act as
a feedback term which approximates the optimal control
between two LQR computations.

Let us now suppose that θ = p, defining a visual target.
Since ∂∆x0

∂p = 0, the derivative of the optimal control
simply writes ∂∆u0

∂p = Kp, with Kp depending on the cost
derivatives through the back-propagation (17).

The resulting feedback policy is a first order Taylor
development of the MPC: suppose that the MPC has been
solved at a given observed state (x0,p0), denoted by u0 =



Fig. 2. Left: matrix of the absolute Riccati gain K0 for a whole-body
OCP involving end-effector tracking and biped stabilization. Right: matrix
of the absolute placement (position and rotation) gains for a whole-body
OCP involving tracking a reference placement with the left hand while
stabilizing balance.

mpc(x0,p0). The linear feedback at a new observation
(x̂, p̂) will then approximate the MPC solution:

mpc(x̂, p̂) ≈ mpc(x0,p0)+K0(x̂−x0)+Kp(p̂−p0) (21)

It has been considered that the Riccati gains might be too
stiff to be actually used for feedback [48]. Yet we see here
that they are nothing more than a linear interpolation of the
MPC feedback, and, for a sufficiently high frequency, they
lead to a fair numerical approximation of the MPC, hence
are not stiffer than the MPC itself.

The structures of typical feedback gains for initial state
and tracking target are presented in Fig. 2. It is interesting to
note that the Riccati matrix for initial state presents a strong
diagonal in position: the most contributing correction of a
given joint torque strongly depends on the position error of
this joint. It can also be noted that the feedback correction
associated to the base position of the robot is very high,
and affects mainly the leg controls. This is expected since
the legs are the main drivers of the robot base position.
Finally, one can notice that the velocity feedback term
of the Riccati matrix are small compared to the position
feedback terms, which is reassuring since velocity estimates
are typically more noisy, and LQR controllers tend to create
brutal velocity feedbacks [27].

The feedback gains for the target p presented in Fig. 2
mainly act on the 4 joints of the left arm, as expected since
the end-effector considered in this figure is the left wrist.

IV. MPC IMPLEMENTATION WITH RICCATI FEEDBACK

A. An OCP for reaching, balancing and switching contacts

The OCP formulated for the experiments is composed of
five different costs:

• a state regularization cost (weight 0.02):
ℓ1(x) = (x − xd)

TRx(x − xd) with Rx a positive
definite weight matrix and xd the default state;

• a control regularization cost (weight 0.001):
ℓ2(u) = (u − ud)

TRu(u − ud) with Ru a positive
definite weight matrix and ud the gravity-compensating
torque in default state;

• a goal-tracking cost (weight 15):
ℓ3(x) = a(p(x) − pd) with a : r 7→ log(1 + ||r||

α ) a

logarithmic activation function with p(x) current end-
effector position, pd desired end-effector position and
α = 0.2;

• a Center of Mass (CoM) tracking cost (weight 600):
ℓ4(x) = ||c(x)− cd||2 with c(x) current CoM and cd
desired CoM;

• a kinematic limit cost (weight 1000):
ℓ5(x) = ||max(x−xu,0)+min(x−xl,0)||2 with xu

the upper bound and xl the lower bound of the joints
positions and velocities.

For all experiments, the contact phases are imposed and
the CoM position reference remains fixed in the center of the
support polygon in order to prevent the CoM from drifting
out of balance. The friction constraint described in (2) is
then trivially respected.

The OCP is composed of 100 different knots separated
by a 10ms time step. It is first solved until convergence
before starting the motion; then, a single iLQR iteration is
performed, using the previous solution as an initial warm-
start, before iterating with the latest sensor measurements.
Two quantities are estimated from sensors: the robot state x0

(from joint encoders and base IMU), and the tracking target
position pd (from motion capture camera). This formulation
is sufficient to ensure stable reaching motions with both feet
in contact and to reject external disturbances in real time.

B. Low-level control

The low-level torque control is composed of a
proportional-derivative feedback on the joint torque mea-
surement, plus a feedforward term which compensates for
the intrinsic dynamics of the joints which are not consid-
ered in the whole-body model. Unexpected dynamics such
as motor inertia, high frictions or inner flexibility of the
harmonic-drive are thus handled by the low-level control.
This way every joint behaves as an ideal joint from the point
of view of the high-level control MPC.

C. Riccati interpolation of the MPC

Our DDP scheme produces the optimal control along with
the sensitivities associated with the initial state and desired
position of the end-effector. The first sensitivity K0 = ∂u0

∂x0

has been introduced in Sec. III-C and is directly obtained
during the backward pass of the DDP. The second sensitivity
Kp = ∂u0

∂p is obtained by noting that the only cost which
depends on the target position is the goal-tracking cost ℓ3(x).
The only non-zero derivative of the Lagrangian gradient then
writes:

Lxp,t = −J⊤
eeA (22)

with Jee(x) Jacobian of the end-effector when the state is
x and A Hessian of the activation function. Re-injecting in
(17), we obtained the sensitivity Kp which is represented
by the first three columns of the right matrix of Fig. 2.

D. ROS architecture

The architecture is illustrated in Fig. 3, and is composed
of two parallel processes running on independent CPUs: one
for the MPC, the other for the low-level torque control.



Fig. 3. Diagram of the ROS implementation of the Riccati feedback MPC.

Fig. 4. Experiment A: whole-body tracking experiment: without Riccati
gains, the desired torque oscillations become too large after 4 seconds, and
the securities of the robot are triggered, shutting down all motors. With
Riccati gains, the torque trajectory remains stable.

In addition, a motion capture system (mocap) measures at
100Hz the position of the target to be reached and sends it
to the other two nodes. In order to synchronise the different
frequencies of our processes, we re-use the same ROS
publisher-subscriber architecture presented in [22].

V. EXPERIMENTAL RESULTS

The experiments evaluate the interest of the linear feed-
back for direct state feedback using ∂u0

∂x0
(H1) and direct

feedback to the target position p using ∂u0

∂p (H2).
In order to benchmark these feedbacks, three different

experimental protocols have been set up on the TALOS
robot [38], in which the MPC node is running on a pow-
erful external computer (AMD Ryzen 5950X, 32 cores and
4.9GHz with 64 Go of RAM) whereas the low-level control
node is running on the robot internal computer. We used
Pinocchio to enable fast computations of costs, dynamics
and their derivatives [49], [50], allowing the OCP to be
solved at approximately 60 Hz. Two of the experiments
are based on the same whole-body tracking task, which
requires the robot to reach a moving target with the end-
effector, here its left hand, while standing on the ground
and keeping its balance. We used 22 joints in our model
(wrists and neck are kept fixed for practical reasons), plus

Fig. 5. Experiment A: tracking plot for the MPC scheme with Riccati
gains. Tracking weights are two times higher than in Fig. 4 (30 instead of
15).

Fig. 6. Experiment B: the MPC is shut down and external disturbances
are manually applied on the left arm and shoulder.

the free flyer state which is estimated by an observer
provided by the manufacturer. Our companion video, also
available at https://gepettoweb.laas.fr/articles/dantec22.html,
illustrates these experiments as well as other dynamic mo-
tions made possible by the use of Riccati interpolation.

A. Experience A: Riccati feedback experiment

To test (H1), the whole-body tracking task was performed
with and without the use of Riccati gains in the low-
level control loop. For this experiment, the target pd is
not estimated from sensor but set to an arbitrary sinusoidal
trajectory. Fig. 4 shows that the MPC alone produces higher
reaction peaks (due to delay) which will eventually trigger
the robot inner securities on torque and velocity. With the
Riccati gains, the oscillatory peaks remain limited. Tracking
accuracy can then be safely improved by raising the weight
of the tracking cost, leading to Fig. 5. Note that without
Riccati gains, it is not safe to use such weight on the robot.

We also experimented with a fixed gain matrix. While our
robot is torque controlled (i.e. low-level motor controllers
feedback on measured torques), we have copied the PD gains
typically used when the robot is position controlled. Yet the
behavior in simulation remains unstable and similar to no
feedback. As shown in Fig. 2, the off-diagonal Ricatti terms
cannot be ignored.



Fig. 7. Experiment C: placement feedback state and control plots: MPC
is shut down at t = 18s, and external disturbances start to be applied at
t = 38s.

Fig. 8. Experiment C: placement feedback tracking plot.

B. Experience B: disturbances experiment

Our second experimental protocol aims at showing that
direct state feedback (H1) alone produces a decent control
policy able to stabilize the robot under external disturbances.
The experiment consists in launching the MPC with no goal-
tracking cost, then shutting it down and applying external
disturbances to the robot. The policy sent to the low-level
control then becomes u∗ = u0+K0(x̂−x0), with x̂ being
the only varying quantity. This formulation is approximating
the optimal stabilizing policy around x0. Here (u0, K0, x0)
are drawn from the last DDP computation of the high-level
control. As can be seen in Fig. 6, the Riccati gains efficiently
reject the perturbations and produce a smooth stabilizing
torque in response to it. While our goal is not to promote a
purely linear feedback, this experiment illustrates how large
the stable domain of our linear policy can be.

C. Experiment C: placement feedback experiment

Our third experimental protocol aims at testing (H2) by
implementing a feedback policy on the target position, as
described in Sec. IV-C. This time the mocap system is used
to provide the desired placement of the end-effector at a
frequency of 100 Hz. Given that this frequency is similar
to the MPC node frequency, the target feedback is small
compared to the feedforward term u∗

0. To better observe the
feedback effect, the MPC has been shut down so that the
drift in desired placement becomes significant over time.

Fig. 9. Experiment C: placement feedback time plot.

The experiment is composed of three different parts:
first, the MPC node is started and the OCP is solved at
approximately 60 Hz. Then, at t = 18s, we shut down the
MPC but keep the target moving to illustrate the effect of the
placement feedback gains. From this moment the control is
only due to state and target feedbacks. Finally, starting from
t = 38s, external disturbances are applied to the left arm
the robot. Using the sensitivities to approximate the optimal
solution is relevant as long as the current OCP, defined by
the current state and target position, does not vary too much
from the OCP computed just before shutting down the MPC.

The resulting plots of this experiment are presented in
Fig 7 and Fig. 8. Switching off the MPC and relying only on
the Riccati gains lead the robot state to remain in the vicinity
of the initial state used by the MPC node to compute the
last OCP solution. As a consequence, the accuracy of the
tracking decreases after the MPC shutdown. Nevertheless,
placement gains provide a coarse approximation of the
optimal control and are sufficient to move the end effector
toward the desired target and reject external perturbations,
as observed in Fig. 8.

Fig. 9 provides the computation cost of the DDP and the
extra loop computing Kp. As expected, Kp is much cheaper
to compute as it always corresponds to back-propagating
only 3 columns, as opposed to the classical backward pass
which works with the nx columns of Kt.

VI. CONCLUSION

This paper highlights the idea that the classical feedback
gains obtained during the Riccati recursion of the DDP
can be used as sensitivities with respect to the initial state
of the OCP. These gains allow to interpolate the optimal
control at 2kHz in order to produce dynamical yet stable
motions which would otherwise fail because of the MPC
computation time delay. This has been illustrated on a whole-
body tracking movement on the full scale humanoid robot
Talos. Additionally, other sensitivities can be computed and
used at 2kHz in order to adapt the control to a rapidly
changing parameter, e.g. the desired end-effector position.
This is especially useful to deduce at high frequency a good
approximation of the optimal policy when small perturba-
tions are observed by fast sensors. This work paves the way
for the implementation of a real-time whole-body torque
MPC with dynamic contacts, able to perform challenging
tasks like walking or interacting with the environment, at
arbitrary high feedback frequency. Theoretical extensions
to hand constraints and contact-invariant formulation and
experimental extensions to dynamic locomotion will be
considered in the future.
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