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First Order Approximation of Model Predictive Control Solutions for
High Frequency Feedback

Ewen Dantec a,b,*, Michel Taix a, Nicolas Mansard a,b

Abstract— The lack of computational power on mobile robots
is a well-known challenge when it comes to implementing a real-
time MPC scheme to perform complex motions. Currently the
best solvers are barely able to reach 100Hz for computing the
control of a whole-body legged model, while modern robots
are expecting new torque references in less than 1ms. This
problem is usually tackled by using a handcrafted low-level
tracking control whose inputs are the low-frequency trajectory
computed by the MPC. We show that a linear state feedback
controller naturally arises from the optimal control formulation
and can be used directly in the low-level control loop along
with other sensitivities of relevant time-varying parameters of
the problem. When the optimal control problem is solved by
DDP, this linear controller can be computed for cheap as a
by-product of the backward pass, and corresponds in part to
the classical Riccati gains. A side effect of our proposition is to
show that Riccati gains are valuable assets that must be used
to achieve an efficient control and that they are not stiffer
than the optimal control scheme itself. We propose a complete
implementation of this idea on a full-scale humanoid robot and
demonstrate its importance with real experiments on the robot
Talos.

I. INTRODUCTION

Model-predictive control (MPC) amounts to frequently
optimizing a prediction of the robot motion and executing
the beginning of the resulting trajectory while waiting for
a prediction update [1]. It has lately become popular in
robotics to control complex multi-variable systems such as
legged or aerial robots. MPC offers a viable method to solve
large-scale optimal control problem (OCP) over a receding
finite horizon, while efficiently dealing with constraints,
non-linearity, model uncertainties and unforeseen distur-
bances [2], [3]. Historically, MPC was introduced to handle
constrained, multi-variable industrial continuous processes
which can be transcribed into linear models [4], [5], as
found in the chemical or refining industry. Over the time,
the ever increasing computational power of our computers
has allowed the MPC paradigm to be applied to more
complex systems such as 4-legged robots [6], collaborative
manipulation involving dynamic obstacle [7] or quadrotor
control [8].

MPC belongs to the class of trajectory optimization meth-
ods, where the trajectory planning problem is interpreted as
an OCP. This approach allows to optimize simultaneously
a task-related path and the associated control policy, while
taking into account constraints and limitations [9], [10]. The
tasks are classically described by a non-linear cost function
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Fig. 1. The full scale humanoid Talos, used in the experiments, expects new
torque references every 0.5ms. While such high frequencies is needed to
unlock torque control, current MPC solvers cannot yet solve a whole-body
problem at such a frequency. Another feedback must then be implemented,
here to handle measurements of the robot state and target location.

which enforces constraints and defines the objectives hierar-
chy through cost weights. At each control cycle, starting
from a state estimate of the system, an OCP is solved
over a receding finite-time horizon and the first elements
of the resulting trajectories are forwarded to a low-level
execution process. The problem is then shifted from one
sampling period before being solved again. Although this
method works well for linear problems, a series of challenges
arises when considering non-linear systems and complex
tasks such as obstacle avoidance or contact planning. Since
complexity varies with the cube of the system dimension,
finding a global minimum in real time to a large-scale non-
linear problem is very difficult to achieve [11]. For these
reasons, the use of MPC in robotics has been, until recently,
limited to systems with reduced dynamics [12], [13] or small
scale [14], [15], [16].

Among the various numerical optimization schemes used
to implement MPC, direct shooting [17] is a popular class
of methods used in robotics. One of the most famous
shooting algorithms is Differential Dynamic Programming
(DDP) [18], [19], an efficient method featuring superlinear
convergence rate with linear complexity in the horizon
length, hence its success in robotics [20], [21], [22]. While
it is originally formulated as a single shooting algorithm, it
can be turned into a multiple shooting one [23], [17] at no
extra cost [24], as we will recall later. This makes it easier
to warm start the solver, either using the solution found at
the previous control cycle [25], or deduced from an offline
database of optimal solutions [26].

In order to tackle brutal disturbances and model uncer-
tainties, it seems desirable to run the MPC at the highest
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possible frequency [27], [28], ideally around 1kHz. Direct
MPC feedback at slower frequency is possible but dras-
tically reduces the performances of the movements [29].
For large-scale systems such as legged robots, this may
not be achievable despite some on-going exploratory works,
e.g. contact-aware Linear Quadratic Regulator (LQR) con-
trollers [30], parallelized LQR resolution [31] or multi-core
GPU optimization solver [32]. Other works propose to use
feedback MPC to provide an optimal feedback policy at
a higher update rate than the re-computation of the whole
problem. Those policies are either computed separately using
another optimal control transcription [33] or based on an
efficient Newton-type scheme [23]. In [34], a MPC scheme
is deployed on a reduced model to rapidly generate a
CoM trajectory and contact sequence, which are provided
to a whole-body control block based on inverse dynamics.
In [35], the feedback gains satisfy by design the contact
constraints and dynamics constraints, and efficiently close
the gap between the low-frequency high-level MPC and the
low-level controller. However, both methods need to rely on
a dedicated controller to produce a torque policy based on a
state trajectory, bringing on an additional layer of complexity
which should be fine-tuned.

It is known that the control solution of a constraint LQR
is a continuous piece-wise affine function of the initial
state [36]. Following this observation, we propose to deduce
the optimal feedback policy from the OCP formulation and
we show the connection between this policy and the DDP-
induced Riccati gains. The important step is to demonstrate
that Riccati gains can be interpreted as the sensitivities of the
optimal solution with respect to the initial state of the OCP,
and as such can be used to interpolate the optimal control
between two DDP computations. Sensitivities have already
been used to improve the warm-start in a receding horizon
scheme [23] or for bilevel optimization [37]. Differentiating
an MPC has also been proposed in the purpose of adding it as
a layer of a neural network [38]. While we are only interested
in getting the derivative of the initial control with respect to
any external parameter, our proposed derivation leads to a
more efficient backward pass to compute the corresponding
gain, and elegantly connects it with the Riccati matrix.
This is necessary as we are proposing to use it for high-
frequency control. For small state changes, this is equivalent
to computing a new solution of the MPC at a much higher
frequency, reaching the expected computation of the low-
level control. The same approach can be generalized to
any parameter of the OCP, leading to a set of Riccati-
like feedback gains which can be computed at low cost by
extending the classical DDP backward pass. To illustrate our
method, we performed a reactive reaching task involving 28
degrees of freedom, contacts and balance over a frequency
rate of 100 Hz for the MPC, optimally interpolated at 2 kHz.
We provide a demonstration of our whole-body MPC on the
torque-controlled humanoid robot TALOS [39].

The paper is structured as follows. Sec. II introduces
the basic formulation of optimal control for whole body
motion in contact. Sec. III proves that Riccati gains can

be interpreted as sensitivity of the problem with respect to
the initial state, and gives a generic method to extract other
sensitivities. Sec. IV explains the implementation of these
gains in the low-level control of our scheme. Sec. V presents
the experimental results on the humanoid robot TALOS.

II. WHOLE BODY OPTIMAL CONTROL WITH CONTACT

A. Contact-Constrained Rigid body dynamics

Similarly to [40] and [21], we consider a rigid body
system with nj joints and np rigid contacts with the environ-
ment and model the dynamics of this constrained multi-body
system through the following equation:[

M J>c
Jc 0

] [
q̈
−λ

]
=

[
S>τ − b
−J̇cq̇

]
(1)

where M is the joint-space inertia matrix, b the generalized
non-linear forces, q ∈ SE(3)×Rnj the configuration vector
which accounts for the nj actuated joints positions and the
free-flyer joint, q̇ the velocity vector laying in the tangent
space of SE(3) × Rnj , q̈ the acceleration vector, S the
actuation matrix typically selecting the actuated joints, τ the
joint torques, λ = [λ1 · · ·λnp ]T and Jc = [J1 · · ·Jnp ]T the
concatenation of vectors of contact forces and concatenation
of contact Jacobian matrices. In this context, forces λ
abstractly represents either 3D forces for punctual contacts
or spatial 6D forces for planar contacts, expressed in their
respective contact frame. They have to respect the contact
model described by the cone Kp:

∀p = 0..np, λp ∈ Kp. (2)

We then classically consider the state of the robot to be
x = (q, q̇) ∈ Rnx , ẋ = (q̇, q̈) ∈ Rndx , and the control to be
u = τ ∈ Rnu . In [21], we showed that with this formulation,
forces become consequences of the state (q, q̇) and the
control u, and thus our dynamics becomes independent from
these variables. Consequently, (1) leads to a force-free partial
derivative equation which we numerically integrate into a
next-state equation:

xt+1 = f(xt,ut) (3)

B. Optimal control for legged robots

Based on (3), we can formulate a continuous OCP then
transcript it into a nonlinear programm in order to be solved.
We use a multiple-shooting formulation, as it combines
the efficiency of shooting formulations [41] with numerical
stability [17]. Our discretized OCP then takes the following
form:

min
x,u

T−1∑
t=0

`(xt,ut, t) + `T (xT )

s.t. x0 = f0

∀t = 0..T, xt+1 = f(xt,ut)

(4)

where the decision variables are the state x = (xt)t=0..T and
control u = (ut)t=0..T−1 trajectories, T is the number of
knots, ` and `T are the running and terminal cost functions,
used to define the tasks the robot has to perform (goal



tracking, center of mass tracking, etc.) and to regularize state
and control trajectories, and f0 is the initial state. An OCP
for locomotion often contains admissibility constraints on
state and control; however, as recent progresses in handling
hard constraints for large OCP [20], [42], [43] still suffer
from practical limitations in the perspective of real robot
experiments, we focus here on constraint-free OCP (without
loss of generality for our theoretical developments [38], but
targeting our experimental setup). Thus, we formulate these
constraints as penalties of various forms in our cost function,
and describe them in Section IV.

C. Formulating the LQR

Our LQR formulation is obtained by linearizing (4) around
an initial trajectory (x,u):

min
∆x,∆u

( T−1∑
t=0

1

2

[
∆x>t ,∆u

>
t

] [Lxx Lxu
Lux Luu

] [
∆xt
∆ut

]
+
[
`x `u

] [∆xt
∆ut

]
+

1

2
∆x>TLxx∆xT + `x∆xT

)
s.t. ∆x0 = f0

∀t = {0, · · · , T − 1},
∆xt+1 = Fx∆xt + Fu∆ut + ft+1

(5)

For the sake of readability, we will denote Ab = ∂A
∂b ,

except when not suitable (e.g. ∂∆u
∂x ). In (5), `x, `u and

Lxx,Lxu,Luu are the gradients and Hessians of the cost
function (indices t have been dropped to simplify derivative
notations). Similarly, Fx and Fu are the Jacobians of the
dynamics computed at each (xt,ut). We write ft the drift
in dynamics, which represents the change in state when
the control is 0. Note that ft is typically omitted in DDP,
but is introduced here to handle our multiple shooting
transcription.

The optimum of (5) is characterized by the gradients of
the associated Lagrangian vanishing. This condition can be
formulated as a linear equality called Karush-Kuhn-Tucker
(KKT) condition, which binds the primal variables ∆z =
(∆x,∆u) to the dual Lagrange multipliers µ = (µ0, ..µT )
associated with the dynamics constraints:[

Lzz hTz
hz 0

] [
∆z
µ

]
=

[
−Lz
g

]
(6)

where the notations adopted here will become clear when
each block will be properly defined in the next section. While
we will later exploit the KKT equation to formulate our
contribution, it is in general not easy to efficiently invert the
KKT matrix to solve the OCP.

D. Solving the OCP using the KKT conditions

DDP solves (5) by using Bellman’s principle [44], which
naturally exploits the sparsity of the Markovian nature of
the dynamics constraints. Eventually, each descent step can
be produced by an iterative scheme which pre-computes the
descent direction in a backward pass (going from N to 0),
and then finds the optimal step by line search along this
direction in a forward pass (going from 0 to N ) [45]. In this

forward pass, the optimal state and control (∆xt,∆ut) and
optimal dual variable µt ∀t = 0..T −1 can be expressed as:

∆ut =Kt∆xt + kt

µt+1 = Vt+1(Fx∆xt + Fu∆ut) + vt+1

xt+1 = f(xt,ut)

(7)

Here the gains and value fonction are computed during
the backward pass of the DDP: starting from VT = Lxx
and vT = `x +LxxfT , we have, ∀t = 0..T − 1:

Kt = −Q−1
uuQux

kt = −Q−1
uuqu

Vt = Qxx −QxuKt

vt = qx −Qxukt + Vt+1ft

(8)

The backward pass also computes the derivative of the
quality function:

qx = `x + F Tx vt+1

qu = `u + F Tu vt+1

Qxx = Lxx + F Tx Vt+1Fx

Qxu = Lxu + F Tx Vt+1Fu

Quu = Luu + F Tu Vt+1Fu

(9)

III. SENSITIVITY ANALYSIS OF THE OPTIMAL SOLUTION

Suppose that our OCP depends on a parameter θ which
varies with time. If the variation of θ is non-negligible
over the computation duration of the OCP, then the optimal
solution is no longer correct since it has been computed over
an outdated value of θ. Determining the sensitivity of the
OCP with respect to θ will allow us to approximate a control
correction proportional to the variation of the parameter.
Such approach, where we differentiate optimization prob-
lems, has already been studied for contact simulation [46]
and neural network applied to QP [47].

A. Defining sensitivity as partial derivative of the OCP

Let us view the OCP described by (4) as a classical non-
linear problem parametrized by a given θ ∈ Rnθ . We define
the optimal state and control trajectory x∗ = (x∗t )t=0..T and
u∗ = (u∗t )t=0..T−1. For the sake of simplicity we denote by
z∗ = (x∗,u∗) ∈ Rnz with nz = Tnu + (T + 1)nx solution
of the following discretized problem:

P(θ) = z∗ = min
z

`(z,θ)

s.t. h(z,θ) = 0
(10)

with h : Rnz × Rnθ −→ R(T+1)×nx the T + 1 discretized
dynamics constraints given by xt+1 = f(xt,ut) ∀t =
0..T − 1 and x0 = f0. We assume ` and h are con-
tinuously twice differentiable, and that the Mangasarian-
Fromovitz constraint qualification holds for our nonlinear
problem, in order to be able to apply the KKT optimality
conditions. From here the Lagrangian of the problem writes
L(z,µ,θ) = `(z,θ) + µTh(z,θ) and the KKT optimality



conditions state that if z∗ is solution of the problem (10) for
θ, then:

Lz(z∗,µ,θ) = `z(z
∗,θ) + µThz(z

∗,θ) = 0

h(z∗,θ) = 0
(11)

Finally we suppose that for each µ ∈ R(T+1)·nx satisfying
the KKT conditions and each δz 6= 0 ∈ Rnz so that
hz(z

∗,θ)δz = 0, we have the following inequality:

δzTLzz(z∗,µ,θ)δz > 0 (12)

Under these assumptions, Shapiro [48] showed that the
function P(·) is directionally differentiable and that for each
θ ∈ Rnθ , d ∈ Rnθ , there exists λ verifying the KKT
conditions such that P ′(θ;d), derivative along the direction
d, is the unique solution of the following quadratic program:

min
δz

1

2
δzTLzz(z,µ,θ)δz + δzTLzθ(z,µ,θ)d

s.t. hz(z,θ)δz = 0
(13)

Since in our case, the Lagrangian multiplier µ is unique due
to the upper diagonal form of the constraints matrix, it turns
out we can easily compute the directional derivative of our
problem along the direction d:[

δz
δµ

]
=

[
Lzz hTz
hz 0

]−1 [−Lzθd
0

]
(14)

with δµ a Lagrangian multiplier increment we are not
interested in.

One can recognize in (14) the inverse of the KKT matrix
already met in (6), yet not multiplied here by (−Lz, g) but
by (−Lzθ, 0). As explained in Sec. II-D, DDP can be seen
as an efficient way of computing the inverse of the KKT
matrix; we then propose to extend the DDP to compute (14).
This is equivalent to replacing the terms (`x, `u,ft) in (8)
and (9) with (Lxθ,Luθ, 0), then solving the backward pass
as usual. Note here that only the quantities (qx, qu,vt,kt)
are affected by this change:

kθ = −Q−1
uuQuθ

vθ = Lxθ for t = T

vθ = Qxθ −Qxukθ
Qxθ = Lxθ + F Tx v′θ
Quθ = Luθ + F Tu v′θ

(15)

As before, t is dropped in index when it conflicts with
another notation to improve readability. The value derivative
vθ at time t+1 is denoted v′θ. Equation (7) then becomes:

∂∆ut
∂θ

=Kt
∂∆xt
∂θ

+ kθ (16)

This gives us ∂∆u0

∂θ , sensitivity of the first control of the
linearized problem with respect to the parameter θ. Since the
OCP (4) has the same derivatives as the LQR (5) at each

Fig. 2. Left: matrix of the absolute Riccati gain K0 for a whole-body
OCP involving end-effector tracking and biped stabilization. Right: matrix
of the absolute placement (position and rotation) gains for a whole-body
OCP involving tracking a reference placement with the left hand while
stabilizing balance.

knot, the sensitivity of both problems are equal and we can
write

∂u∗0
∂θ

=
∂∆u∗0
∂θ

(17)

B. Interpreting Riccati gains as sensitivity to initial state

A feedback policy can be obtained from (16) when θ is
measured at a higher frequency than the DDP solves (4). In
the experimental part of this paper, we demonstrate a visual
feedback policy where θ is the position of an end-effector
target. Another noticeable case of interest arises when θ is
the initial robot state x0 over which the DDP is computed.

Considering a second order approximation, the only
derivatives of the problem which depend on x0 are Lx,0 and
Lu,0, so by recurrence with (15), it is straightforward to de-
duce that vθ = 0 ∀t = 1..T and that kθ = −Q−1

uuLuθ ∀t =
0..T . The derivative of the first optimal control with respect
to its initial state then simply writes:

∂∆u0

∂x0
=K0

∂∆x0

∂x0
+ kθ =K0 + kθ (18)

For problems where Lux is null at t = 0, (18) becomes
∂∆u0

∂x0
=K0. As a consequence, the Riccati gainsK0 can be

used as a feedback term to approximate the optimal control
between two DDP computations, given that the current state
of the robot is provided at a sufficiently high frequency.
The resulting feedback policy can be seen as a first order
Taylor development of the MPC: suppose that the MPC has
been solved at a given observed state x̂, denoted by u =
mpc(x̂). The linear feedback at a new observation x̂′ will
then approximate the MPC solution:

mpc(x̂′) ≈ mpc(x̂) +K0(x̂
′ − x̂) (19)

It has been considered that the Riccati gains might be too
stiff to be actually used for feedback [49]. Yet we see here
that they are nothing more than a linear interpolation of the
MPC feedback, and, for a sufficiently high frequency, they
lead to a fair numerical approximation of the MPC, hence
are not stiffer than the MPC itself.

The structure of a typical Riccati gain is presented in
Fig. 2. It is interesting to note that the Riccati matrix
presents a strong diagonal in position: the most contributing
correction of a given joint torque strongly depends on the



position error of this joint. It can also be noted that the
feedback correction associated to the base position of the
robot is very high, and affects mainly the leg controls. This is
expected since the legs are the main drivers of the robot base
position. Finally, one can notice that the velocity feedback
term of the Riccati matrix are small compared to the position
feedback terms, which is reassuring since velocity estimates
are typically more noisy, and LQR controllers tend to create
brutal velocity feedbacks [30].

IV. MPC IMPLEMENTATION WITH RICCATI FEEDBACK

A. An OCP for reaching, balancing and switching contacts

The OCP formulated for the experiments is composed of
five different costs:
• a state regularization cost:

`1(x) = (x − x0)
TRx(x − x0) with Rx a positive

definite weight matrix and x0 the default state;
• a control regularization cost:

`2(u) = (u − u0)
TRu(u − u0) with Ru a positive

definite weight matrix and u0 the gravity-compensating
torque in default state;

• a goal-tracking cost:
`3(x) = a(p(x) − pd) with a : R3 −→ R a quadratic
activation function, p(x) current end-effector position
and pd desired end-effector position;

• a CoM tracking cost:
`4(x) = ||c(x) − cd|| with c(x) current CoM and cd
desired CoM;

• a kinematic limit cost:
`5(x) = ||max(x−xu,0)+min(x−xl,0)|| with xu
the upper bound and xl the lower bound of the joints
positions and velocities.

This OCP is solved until convergence before starting
the motion. Then, a single DDP iteration is performed,
using the previous solution as an initial warm-start, before
iterating with the latest sensor measurements. Two quantities
are estimated from sensors: the robot state x0 (from joint
encoders and base IMU), and the tracking target position pd
(from motion capture camera). This formulation is sufficient
to ensure stable reaching motions with both feet in contact
and to reject external disturbances in real time.

B. Low-level control

The low-level torque control is composed of a
proportional-derivative feedback on the joint torque mea-
surement, plus a feedforward term which compensates for
the intrinsic dynamics of the joints which are not consid-
ered in the whole-body model. Unexpected dynamics such
as motor inertia, high frictions or inner flexibility of the
harmonic-drive are thus handled by the low-level control.
This way every joint behaves as an ideal joint from the point
of view of the high-level control MPC.

C. Riccati interpolation of the MPC

Our DDP scheme produces the optimal control along with
the sensitivities associated with the initial state and desired
position of the end-effector. The first sensitivity K0 = ∂u0

∂x0

has been introduced in Sec. III-B and is directly obtained

Fig. 3. Diagram of the ROS implementation of the Riccati feedback MPC.

during the backward pass of the DDP. The second sensitivity
Kp = ∂u0

∂pd
is obtained by noting that the only cost which

depends on the target position is the goal-tracking cost `3(x).
The only non-zero derivative of the Lagrangian gradient then
writes:

Lxp,t = −J>eeA (20)

with Jee(x) Jacobian of the end-effector when the state is
x and A Hessian of the activation function. Re-injecting
in (15), we obtained the sensitivity Kp whose structure is
presented Fig. 2. The optimal torque sent to the low-level
control finally writes:

u∗ = u0 +K0(x̂− x0) +Kp(p̂− p0) (21)

with u0, K0, Kp the feedforward, state feedback and target
feedback terms updated at about 60 Hz, x̂ the measured state
updated at 2 kHz, p̂ the current target position updated at
100Hz, and x0, p0 the initial state and target position at the
time of the last DDP computation.

D. ROS architecture

The architecture is illustrated in Fig. 3, and is composed
of two parallel processes running on independent CPUs: one
for the MPC, the other for the low-level torque control.
In addition, a motion capture system (mocap) measures at
100Hz the position of the target to be reached and sends it
to the other two nodes.

In order to synchronise the different frequencies of our
processes, a ROS publisher-subscriber architecture is used
to build the communication framework between all running
nodes. Every ROS node uses the latest available data on
the topics it subscribes to, and publishes the output once
computation is done.

V. EXPERIMENTAL RESULTS

A. Disturbances experiment

B. Experimental setup

Our experimental setup aims at proving two hypothesis:
1) The Riccati gains introduced in Sec. (III-B) play the

role of a state-feedback term and contribute to improve
the overall behaviour of the MPC by approximating



Fig. 4. Whole-body tracking experiment without Riccati gains. After 4
seconds, the desired torque oscillations become too large, and the securities
of the robot are triggered, shutting down all motors.

Fig. 5. Whole-body tracking experiment with Riccati gains. Although
some oscillations remain, the overall tracking behaviour is good.

the optimal control policy at the low-level control
frequency;

2) Other sensitivities can be used as well inside the low-
level control in order to adapt the solution to a fast
variation of one of the parameters of the problem, or
even to replace the MPC node in case it stops working.

In order to prove these hypotheses, three different experi-
mental protocols have been set up on the TALOS robot [39],
in which the MPC node is running on a powerful external
computer (AMD Ryzen 5950X, 32 cores and 4.9GHz with
64 Go of RAM) whereas the low-level control node is
running on the robot internal computer. We used Pinocchio
to enable fast computations of costs, dynamics and their
derivatives [50], [51]. Two of the experiments are based on
the same whole-body tracking task, which requires the robot
to reach a moving target with the end-effector, here its left
hand, while standing on the ground and keeping its balance.
We used 22 joints in our model (wrists and neck are kept
fixed for practical reasons), plus the free flyer state which is

Fig. 6. Disturbance experiment: the MPC is shut down and external
disturbances are manually applied.

estimated by an observer provided by the manufacturer. The
tracking weights have been selected to be high as compared
to others gains, in order to make the problem dynamically
challenging to solve in real time.

Our companion video, also available at
https://link.infini.fr/riccatifeedbackdantec, illustrates these
experiments as well as other dynamic motions made
possible by the use of Riccati interpolation.

C. Riccati feedback experiment

To validate hypothesis 1), the whole-body tracking task
was performed with and without the use of Riccati gains in
the low-level control loop. For this experiment, the target
pd is not estimated from sensor but set to an arbitrary
sinusoidal trajectory. Fig. 4 shows that for this particular
task, the MPC alone produces an unstable control trajectory
which will eventually trigger the robot inner securities on
torque and velocity. On the contrary, Fig. 5 illustrates the
good control trajectory computed by the MPC node and
interpolated between each control cycle using the Riccati
gains. In this example the oscillatory behaviour remains
limited and the task is successfully performed.

Our second experimental protocol aims at showing that
the Riccati gains alone produce a decent feedback control
able to stabilize the robot under external disturbances. The
experiment consists in launching the MPC with no goal-
tracking cost, then shutting it down and applying external
disturbances to the robot. The policy sent to the low-level
control then becomes u∗ = u0 +K0(x̂−x0), with x̂ being
the only varying quantity. This policy is an approximation
of the optimal stabilizing policy around x0. Here (u0, K0,
x0) are drawn from the last DDP computation of the high-
level control. As can be seen in Fig. 6, the Riccati gains
efficiently reject the perturbations and keep the robot in a
default stabilizing position. While our goal is not to promote
a purely linear feedback, this experiment illustrates how
large the stable domain of our linear policy can be.

D. Placement feedback experiment

Our third experimental protocol aims at implementing
feedback policy on the target position, as described in
Sec. IV-C. This time the mocap system is used to provide



Fig. 7. Placement feedback experiment state and control plot: MPC is shut
down at t = 18s, and external disturbances start to be applied at t = 33s.

Fig. 8. Placement feedback experiment tracking plot.

the desired placement of the end-effector at a frequency of
approximately 100 Hz. Given that this frequency is similar
to the MPC node frequency, the target feedback is small
compared to the feedforward term u∗0. To better observe the
feedback effect, the MPC has been intentionally shut down
so that the drift in desired end-effector placement becomes
significant over time.

The experiment is composed of three different parts:
first, the MPC node is started and the OCP is solved at
approximately 60 Hz. Then, at t = 18s, we shut down the
MPC but keep the target moving to illustrate the effect of
the placement feedback gains. From this moment the control
is only due to state and target feedbacks. Finally, at t = 33s,
the target is kept fixed and external disturbances are applied
on the robot. Using the sensitivities as an approximation for
the optimal solution is relevant as long as the current OCP,
defined by the current state and target position, does not vary
too much from the OCP computed just before shutting down
the MPC. The architecture of this scheme is the same as in
Fig. 3, without the MPC node to update the terms u0,p0,x0.

The resulting plots of this experiment are presented in
Fig 7 and Fig. 8. As expected, switching off the MPC and
relying only on the Riccati gains force the robot state to
remain in the vicinity of the initial state used by the MPC
node to compute the last OCP solution. As a consequence,

Fig. 9. Placement feedback experiment time plot.

the joints 1 and 2 are barely moving after switching off the
MPC, because their inertial load is higher than the two other
arm joints. Nevertheless, placement gains provide a coarse
approximation of the optimal control and are sufficient to
move the end effector toward the desired target and reject
external perturbations, as observed in Fig. 8.

Fig. 9 provides the computation cost of the DDP and the
extra loop computing Kp. As expected, Kp is much cheaper
to compute as it always corresponds to back-propagating
only 6 columns, as opposed to the classical backward pass
which works with the nx columns of K.

VI. CONCLUSION

This paper highlights the idea that the classical feedback
gains obtained during the Riccati recursion of the DDP
can be used as sensitivities with respect to the initial state
of the OCP. These gains allow to interpolate the optimal
control at 2kHz in order to produce dynamical yet stable
motions which would otherwise fail because of the MPC
computation time delay. This has been illustrated on a whole-
body tracking movement on the full scale humanoid robot
Talos. Additionally, other sensitivities can be computed and
used at 2kHz in order to adapt the control to a rapidly
changing parameter, e.g. the desired end-effector position.
This is especially useful to deduce at high frequency a good
approximation of the optimal policy when small perturba-
tions are observed by fast sensors. This work paves the way
for the implementation of a real-time whole-body torque
MPC with dynamic contacts, able to perform challenging
tasks like walking or interacting with the environment, at
arbitrary high feedback frequency. Theoretical extensions
to hand constraints and contact-invariant formulation and
experimental extensions to dynamic locomotion will be
considered in the future.
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