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ABSTRACT

Various detection schemes are currently investigated in the terahertz frequency range (<2THz), as an alternative to the widespread
bolometers and Golay cells that feature very high sensitivity but low modulation frequencies (<10 kHz). In this work, we report an
alternative concept based on an optomechanical detector able to read out an arbitrary periodic modulation imprinted on a terahertz beam.
The detector is a based on a combination of a split-ring resonator, acting as a terahertz antenna, and a high-quality mechanical resonator
with typical resonant frequency x0/2p¼ 1MHz. We demonstrate two methods for Fourier sampling the envelope of the terahertz signal, in
which the mechanical resonator is used as a reference oscillator. With our methods, signals with an arbitrary period T can be sampled, even
those that are much faster than the oscillation period of the mechanical resonator, 1/T� x0.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0068852

The terahertz frequency range (1–10THz) of the electromagnetic
spectrum is currently a playground of intense research.1,2 There are
many potential applications such as imaging, high speed communica-
tion, and noninvasive diagnosis of materials and thin films.1–3 Those
applications call for suitable detection technologies that rely on com-
pact, sensitive, and possibly room temperature detectors. For frequen-
cies above 2THz, bolometric and pyroelectric detectors are currently
extremely widespread. Being very sensitive (noise equivalent power
�pW/Hz0.5), helium cooled Si or Ge bolometers are still the best solu-
tion, even though they are extremely slow (typical modulation
bandwidth< 100Hz).4 Therefore, in recent decades, there has been an
important research effort to provide THz detectors that are viable
alternative to bolometers: THz quantum well infrared detectors,5,6

Schottky diodes,7 semiconductor nanowires,8 graphene-based plas-
mon detectors,9 as well as optomechanical detectors10–13 to cite a few.
The emerging optomechanical detectors appear as an interesting solu-
tion as they can be very compact, relatively fast (10 kHz to few MHz
bandwidths) and can operate at room temperature.

We recently proposed a THz detector concept based on high
quality factor mechanical nano-oscillators with a typical resonance in
the MHz range, in which a modulated THz field acts as an external
force on the oscillator.10,13 Typically, very high mechanical quality fac-
tors are required in order to achieve high responsivity. Therefore,
incoming THz radiation must be modulated at a frequency x0, which

ideally matches the mechanical resonance. It, therefore, appears that
the ability of this highly resonant detector to follow the temporal evo-
lution of a complex THz signal, composed of several different Fourier
components, is limited. In this paper, we show that this limitation can
be lifted, and arbitrary periodic signals can be sampled. In our
approach, inspired from RF lock-in amplifier techniques,14 the high-
quality factor of the mechanical resonator becomes an asset instead of
a drawback. Furthermore, we show that signals with an arbitrary
period T can be sampled, even those that are much faster than the
oscillation period of the mechanical resonator, 1/T � x0. This tech-
nique, therefore, overcomes the limitation of other methods demon-
strated so far, such as those based on frequency phased locked loops,11

where the detection bandwidth is limited between 0 and 1/s, where s
is a photothermal response time that is typically s� 20/x0.

15

The device architecture employed in these studies is recalled in
Fig. 1(a). The mechanical oscillator is a nanocantilever that is inte-
grated into a rectangular split-ring resonator (SRR) with a fundamen-
tal resonance at 2.7THz.10 The lowest frequency modes of the
nanocantilever are two flexural modes around 1MHz, vibrating,
respectively, in the plane and out of the plane of the device.10 The
nanocantilever is set in motion by illuminating the SRR with a THz
wave, which excites resonantly the electromagnetic mode of the sys-
tem. For this work, we exploit the out-of-plane mode, vibrating at
1.2MHz, which is excited by a photothermal mechanism that provides
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the highest response.10 As shown in Fig. 1(b), the source of THz radia-
tion is a quantum cascade laser. The mechanical movement of the can-
tilever is read out with an optical setup, using a 930nm laser that is
focused on the cantilever. Part of the laser beam is reflected from the
cantilever and sent to a balanced photodetector (BPD) unit through a
sharp edge mirror. In this configuration, the sensitivity of the system
allows us to measure the cantilever displacement when it is only lim-
ited by the 300K Brownian motion.10 The latter is clearly visible in the
RF spectrum of the BPD signal, which is measured using a spectrum
analyzer as shown in Fig. 1(c). From the Brownian motion spectrum,
it is possible to accurately measure the frequency and linewidth of the
mechanical resonance, as well as to calibrate the absolute value of the
mechanical displacement.10,16 To observe the THz induced force, we
apply a sine modulation on the driving QCL current with a modula-
tion frequency xmod close to the mechanical resonance of the cantile-
ver. The THz induced signal then appears as a delta-like peak on top
of the Brownian spectrum [Fig. 1(c)]. When the modulation frequency
xmod is swept in the RF range around the resonance x0, we can also
plot the amplitude and phase of the THz mechanical response, as
shown in Fig. 1(d). For this purpose, the BPD signal is fed in a lock-in
amplifier that is locked to xmod. As seen from Fig. 1(d), the amplitude
of the displacement follows the bandpass filter form, expected for a
driven oscillator: jz xmodð Þj ¼ jz0x2

0=ðx2
0 � x2

mod þ ix0xmod=QÞj (Q
� 300 is the mechanical quality factor), while the phase of the signal
undergoes a p jump as the modulation frequency xmod crosses the

resonant frequency x0 (here, z0 is the static displacement of the reso-
nator,xmod ! 0).

We are first going to show how this system can sample signals
with the fundamental frequencies xmod between 0 and x0. The signal
is written as an amplitude modulation on the THz beam and then sent
to the SRR-coupled nano-cantilever. Our method allows us to extract
both the amplitude and phase of the Fourier components of the peri-
odic signal written on the incoming THz wave. Let us consider a very
general situation, where the modulated signal is an arbitrary time-
periodic function S(t) such as S(tþTm) ¼ S(t). We can express the sig-
nal as a Fourier series in a complex notation

S tð Þ ¼
X
n

Snexp inxmodtð Þ: (1)

Because S(t) is a real signal, we have Sn¼ S�n
�, and therefore, it is suffi-

cient to consider only positive values of n. The THz signal induces a
photothermal force,10 and the equation of motion of the cantilever is
that of a driven harmonic oscillator subject to a retarded force15

€z þ _z
x0

Q

� �
þ zx2

0 ¼
ðt
�1

S t0ð Þe�t�t0
s dt0=s: (2)

Here, s is the heat diffusion time.
In our experiments, we measure the mechanical displacement of

the cantilever with the help of a spectrum analyzer in the zero scan

FIG. 1. (a) Scanning electron microscope picture of the optomechanical detector. (b) Schematics of the setup used to excite and probe the mechanical response of the split-
ring coupled nanocantilever. (c) Output of the spectrum analyzer (see 1(b)), which shows the Brownian motion of the nanocantilever as well as the response induced by modu-
lation of the THz laser beam. A fit of the Brownian motion spectrum allows determining a quality factor Q¼ 300 for the mechanical resonance. (d) Response obtained by scan-
ning the frequency of the THz envelope. The spectrum analyzer is at the zero-scan mode, while its internal clock is set to the frequency of the nanobeam.
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mode, where the internal clock frequency is set on the mechanical res-
onance of the cantilever, x0 and, therefore, allows the measurements
of the two quadratures of the mechanical movement

R ¼ 1=T0

ðT0

0
z tð Þcos x0tð Þdt; I ¼ 1=T0

ðT0

0
z tð Þsin x0tð Þdt: (3)

Here, T0¼ 2p/x0. Using decomposition (1) and solving Eq. (2) for
periodic excitation, we obtain the following expressions for the quad-
ratures defined in (3)

R xð Þ ¼ 1
px2

0

X
n>0

Re T ynð ÞSneipyn
n o

�1ð Þn
yn sin pynð Þ
y2n � 1

; (4)

I xð Þ ¼ � 1
px2

0

X
n>0

Im T ynð ÞSneipyn
n o

�1ð Þn
sin pynð Þ
y2n � 1

; (5)

T ynð Þ ¼
1

1� y2n þ iyn=Q
� 1
1þ ibyn

: (6)

In the above equations, the variable x is defined as x¼x0/xmod and
the variable yn¼nxmod/x0¼ n/x. The quantity T(yn) defined in Eq.
(6) arises from the response function of the harmonic oscillator: the
first term on the right hand side is related to the transmission function
1=ðx2

0 � x2 þ ix0x=QÞ, while the second arises from the retardation
factor 1/(1þ ixs), which is the Fourier image of the exponential func-
tion in Eq. (2). In Eq. (6), we have defined b¼x0s, where b¼ 20.5 for
our particular device. These equations are valid also in the case where
the cantilever is excited by an instantaneous force such as the
Coulomb force;13 it is sufficient to set the photothermal time to zero in
the above expression, s¼ 0 (b¼ 0).

The spectrum analyzer provides us with the amplitude
A(x)¼ (R2þI2)1/2 and the phase /(x)¼ atan(I/R) of the mechanical
oscillations. By varying the modulation frequency xmod, we can plot
the functions A(x) and /(x) for any type of the periodic signal S(t). As
a first example, as depicted in Fig. 2, we consider a THz envelope that
is a pulse train with a duty cycle of 2%. The profile S(t) was obtained
by a standard function generator and was superimposed with a con-
stant component of the driving current, which does not play any role
for the following discussion. We perform the same experiment
described in Fig. 1(d), while the modulation frequency xmod is varied
around x0. Instead of a single peak at x0, we now observe series of
peaks in the amplitude mechanical response, Fig. 2(a). To relate this
observation with the above model, the amplitude is retraced as a func-
tion of the variable x¼x0/xmod. The peaks now appear regularly
spaced for x¼ n. From expressions (4)–(6), it is straightforward to
show that the amplitudes A(x¼ n) are proportional to the Fourier
components jSnj of the periodic signal. In particular, in Fig. 2(b), we
observe that the amplitude of the peaks vanishes around n¼ 50 and
n¼ 100, as expected for a square pulse wave, where Sn ¼ sin nfpð Þ=n
with a duty cycle f¼ 0.02. Notably, a total of nmax¼ 106 Fourier har-
monics have been scanned in this experiment.

Our Fourier reconstruction can be understood intuitively as fol-
lows. The condition x¼ n is equivalent to nxmod¼x0, that is, the
n-th Fourier harmonic of the signal, Sneinxmodt , matches the resonant
oscillation frequency of the cantilever, x0. The mechanical response is
then dominated by the response to the excitation, Sneinxmodt ; all other
Fourier components are filtered out by the passband transmission
function of the oscillator. Similarly, the phase of the n-th Fourier

harmonics, /(x), can also be retrieved (not shown). In summary, by
scanning the modulation frequency xmod of an arbitrary periodic sig-
nal S(t) and measuring the corresponding amplitude A(x) and phase
functions /(x), we can determine the amplitude and the phase of each
of its Fourier component Sn; this allows the reconstruction of signals
through Eq. (1). In Fig. 2(c), we show the corresponding reconstruc-
tion of the pulse train from the data. The temporal shape is compared
with the shape that is obtained from the analytical formula by sum-
ming up to nmax¼ 106 Fourier harmonics. In both cases, we apply a
Lancsoz factors correction.17 Very good correspondence is observed
between the data and the expected Fourier reconstruction.

We have further examined a 25% duty cycle square wave and a
sawtooth signal, Figs. 3 and 4. In Figs. 3(a) and 3(b), we provide the
corresponding measurements of the amplitude A(x) already trans-
formed for the x¼x0/xmod axis. The measurements are compared
with the model based on Eqs. (3)–(6). For these measurements, up to
32 harmonics for each signal were recorded. The square wave is

FIG. 2. (a) Mechanical response induced by a THz modulation envelope in the
form of a 2% pulse train. The fundamental frequency of the signal, xmod, is swept
from x0 to 0, where x0 is the resonant frequency of the nanobeam. (b) Same data
as in (a) plotted as a function of the inverse frequency ratio x0/xmod. “DC¼ 2%”
indicates the expected ratio x0/xmod where the peak amplitude becomes zero for
a pulse train with a 2% duty cycle. (c) Temporal profile of the THz envelope recon-
structed from the data. The experimental curve is compared to a model based on
the Fourier series that uses the same number of Fourier harmonics and their ana-
lytical expressions for a 2% pulse train.
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modeled with Sn ¼ sin nf pð Þ=n, with f¼ 0.252, while for the sawtooth
wave, we have Sn ¼ ið�1Þn=n. We have also recorded the phase/(x) for
both signals; as they are real and either odd or even, the phase /(x) has
only p shift at x¼ n arising from the transfer function Tn(x) (not shown).

First, let us consider the 25% square wave [Fig. 3(a)]. In the case of
a perfect 25% signal, every fourth harmonics is zero. We, however,
observe a non-zero residual signal: this effect can be modeled by consid-
ering slightly a higher filling factor of 25.2%. The model also predicts
very sharp minima around every fourth harmonics. These are actually
not observed in our experiment because of the noise floor of the spec-
trum analyzer. A good agreement with the experimental amplitude is
observed by adding a constant contribution to the amplitude A(x) in
order to model the noise floor. For the sawtooth signal, Fig. 3(b), excel-
lent match is observed without the need of a noise floor contribution.

Using the experimental results in Fig. 3, we have extracted the
amplitudes for each peak, obtaining, thus, an experimental evaluation of
the Fourier amplitudes Sn. The temporal shape of the signal S(t) has
been reconstructed in Fig. 4 using (1) and Lanczos factors.17 The data
are compared with reconstruction with nmax¼ 32 harmonics using the
analytical expressions Sn ¼ sin nfpð Þ=n [Fig. 4(a)] and Sn ¼ ið�1Þn=n
[Fig. 4(b)]. Good agreement with the expected shapes is observed, apart
from some residual oscillations in the experimental data. Our method,
thus, clearly renders the temporal shape of the THz modulation.

The set-back of the approach discussed so far comes from the
necessity to vary the modulation frequency of the signal xmod between
0 and x0. In practice, one is rather interested in measuring an enve-
lope with a fixed frequency xmod. Therefore, we have generalized our
approach in order to achieve such measurements, as described in
Fig. 5(a). We assume that the waveshape to be determined is
imprinted on the THz QCL laser beam with a fixed xmod. Before
reaching the mechanical oscillator, the beam is passed through an
intensity modulator, driven by an RF input cos(xsweept), where the fre-
quency xsweep can be varied. The output of the system is then of the
form S(t)x(1þ e cos(xsweept)). Using the same derivation as described

above, we find that the optomechanical response of the system is still
provided in Eqs. (3)–(6) if the variable yn is defined as yn¼ (xsweep

� nxmod)/x0. Now the peaks that correspond to the n-th Fourier
component appear for the condition xsweep¼ nxmodþx0. To test this
idea, we performed an experiment where the modulation, cos(xsweept),
is synthetized directly in the current driving the QCL. For our demon-
stration, we set S(t) as a pulse train of squared pulses with 20% duty
cycle and a fundamental frequency xmod¼ 1MHz, while xsweep was
varied from 2 to 13MHz. To reduce the acquisition time, we scanned
only frequency intervals of 100 kHz, where the Fourier peaks are
expected to occur. The experimental results are shown in Fig. 5(b). In
Fig. 5(c), we have plotted the Fourier amplitudes extracted from the
data in Fig. 5(b), and we have compared them with the analytical
expression Sn ¼ sin nfpð Þ=n with f¼ 0.2. Finally, in Fig. 5(d) we plot
the signal temporal shape of the experimental data in comparison with
the one obtained by using the first 11 Fourier components, Sn, derived
by the analytical expression. Fairly good agreement is observed, which
confirms that the period of the THz modulation Tmod¼ 2p/xmod is no
longer dependent on the frequency of the mechanical resonator; in
principle, arbitrary fast signals can be sampled. Furthermore, high
mechanical quality factors Q can be very beneficial, as the mechanical
response at resonance is proportional to Q. As shown above, it is suffi-
cient to scan in a frequency interval �x0/Q around each Fourier peak
at xsweep¼ nxmodþx0, and the experimental procedure can, thus, be
optimized.

In conclusion, we have demonstrated two methods for sampling
the Fourier components of a periodic signal imprinted on a Terahertz
carrier. Both methods use a mechanical nanocantilever as an efficient
bandpass filter, in which the very high-quality factor achievable in
such systems becomes an important asset for the detection of the
Fourier harmonics. When our device is combined with an external
amplitude modulator, signals with arbitrary periods can be sampled.
These methods are not restricted to a particular domain of the electro-
magnetic spectrum and are not bound to a specific material platform
for the realization of the device. Specifically, for the THz range, several

FIG. 3. Mechanical response acquired under the same conditions as Fig. 2(a),
where the THz envelope is a 25% duty cycle square wave (a) and a sawtooth wave
(b). Data are compared with models described in the main text.

FIG. 4. Temporal reconstruction of the 25% square wave (a) and the sawtooth
wave (b). The reconstructed signals are compared with the ones expected form the
analytical expressions of the Fourier harmonics, using the same number of harmon-
ics as in the experiments.
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types of modulators have been demonstrated so far.18 For the typical
frequency of operation of the QCL, a possible technology is modula-
tors based on unipolar devices,19 which can have cutoff frequencies on
the order of 10GHz.20 On the other hand, nano-mechanical resona-
tors with resonant frequencies up to 2GHz have already been demon-
strated.21 Therefore, signals with frequencies on the order of
100MHz–1GHz could be sampled with our method.
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as financial support from the ANR-18-CE24-0025 project TIGER
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