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Abstract—Microservice architectures focus on developing mo-
dular and independent functional units, which can be automa-
tically deployed, enabling agile DevOps. One major challenge is
to manage the rapid evolutionary changes in microservices and
perform continuous redeployment without interrupting the appli-
cation execution. The existing solutions provide limited capacities
to help software architects model, plan, and perform version
management activities. The architects lack a representation of a
microservice architecture with versions tracking. In this paper,
we propose runtime models that distinguishes the type model
from the instance model, and we build up an evolution graph
of configuration snapshots of types and instances to allow the
traceability of microservice versions and their deployment. We
demonstrate our solution with an illustrative application that
involves synchronous (RPC calls) and asynchronous (publish-
subscribe) interaction within information systems.

Index Terms—Microservice architecture, version management,
model at runtime.

I. INTRODUCTION

In the recent trend to migrate from monolithic architectures
to microservice architectures, business logic is split into a
set of loosely coupled microservices. Each microservice acts
as an independent unit that implements one (small) func-
tionality, and that communicates with other microservices
through lightweight communication [1]. The modularity of
microservices facilitates their independent replacement and
upgradeability [2]. Updating a microservice means bringing
into play a new version, configuring new instances to deploy,
removing instances of the replaced version, etc. Of course,
not all the microservices evolve and are upgraded at the same
rate. In addition, every microservice can change at any time
and even disrupt the system in some way.

In the ecosystem of enterprises, particularly industrial ones,
microservices of an application are usually developed and
maintained by different internal teams or subcontractors with-
out a global governance. In addition, the co-existence of legacy
systems should be taken into account and the outages of
some critical systems can only be once a year. Microservice
providers often deploy multiple versions in parallel, offering
some specific versions to certain customers or older versions
for legacy systems. In this case, the updates of these hetero-
geneous microservices may go through organisational boun-
daries, and add dynamics and complexity to reconfiguration
deployment. Therefore, it becomes necessary to help software
architects model evolving microservices in a uniform manner
and take decisions dynamically on version changes while the

system is running. Once the decisions of version changes are
made by architects, another issue concerns planning and exe-
cuting the deployment and redeployment of changed microser-
vice applications in an automatic manner. In our approach, we
follow the MAPE-K principle of causality between the control
loop and the managed system for autonomic computing [3].

The contributions of this paper are twofold. Firstly, we
propose runtime models to represent the essential elements
of microservice architectures into two views: microservice
type model and microservice instance model, respectively de-
scribing a structural abstraction of microservice architectures
and their specific deployment configurations, which them-
selves conform to the type model. In addition, these models
distinguish synchronous from asynchronous communication.
Secondly, we build up an evolution graph: the first part
made of configuration type snapshots and the second part
of configuration instance snapshots. Every time new or old
microservice types are added or removed from the implemen-
tation repository, a new node is created and committed in the
part of configuration types. Such a node represents the set
of software artefacts (microservices, connectors, etc.) that can
be used for building the managed system. The second part
corresponds to the snapshots of deployed configurations. Every
time a decision is made by architects and a change occurs in
the managed elements, a new node is created and committed
to the part of configurations. Such a node represents the
set of deployed entities (deployed instances of microservices,
connectors, etc.). Each node of the second part refers to a
node of the first graph, i.e. the set of deployed instances
conform to the set of available types. Not presented in this
paper, but engineered in the prototype, when a new node of the
configuration graph is committed, an AI Planner can compute
a plan of actions to reconfigure the managed system to obtain
the new configuration.

This paper is organised as follows. In section II, we mo-
tivate our approach and give the objectives of our work. In
Sections III and IV, we describe our main contributions of
the runtime model and the evolution graph for microservice
architectures by using an illustrative use case and its version
management scenarios. In Section V, we review some related
works. Finally, we conclude the paper in Section VI.

II. MOTIVATIONS AND OBJECTIVES

Microservices have advantages in terms of agility and
scalability because each microservice becomes an independent



unit of development, deployment, and operation [4]. However,
this leads to large numbers of microservices, increasing the
runtime management cost. Semantic Versioning (SemVer) [5]
is commonly used in software development and microservice
versioning to limit the configuration and growth of version
numbers [6], [7]. It introduces a set of rules and requirements
on how to assign version numbers and whether a new version
is backward compatible [8]. Considering the version format
of X.Y.Z (Major.Minor.Patch), SemVer informs architects and
system administrators, and helps IT teams to anticipate po-
tential breaking changes. We follow this policy to express the
versions of all the type elements that need to be versioned in
microservice architectures.

Our proposal addresses especially the following typical
requirements identified in industrial contexts: (i) In order to
rationalise the cost of evolution and maintenance of hetero-
geneous software solutions, a global and unified view of the
ecosystem evolution is necessary; (ii) The continuity of service
should be ensured while updating, including the recovery in
case of an invalid configuration or any other abnormality;
(iii) Evolutionary changes to the system should be traceable.

In fostering automation, self-adaptive systems are able to
dynamically adapt their structure and behaviour in a changing
environment [3], [9]. In this work, we apply the MAPE-K
control loop with microservice versioning. This loop is or-
ganised around four activities “Monitor”, “Analyze”, “Plan”,
and “Execute” that share a “Knowledge base”. More precisely,
in this paper, we focus on the knowledge base, and in a
secondary manner, the prototype, which is not presented in this
paper, automatically plans and executes actions to reconfigure
the managed application1. Therefore, considering the degree
of automation, our proposition is semi-automatic: certain
activities of MAPE-K, such as deciding which versions of
microservices to use, is done manually by software architects,
while the activities of planning and executing are performed
automatically.

In order to control and trace changes, we follow the “model
at runtime” approach [12]. A runtime model provides a re-
duced representation of the heterogeneous software elements
that are available in the implementation repository and of the
managed elements of the running application. This approach
has been used in self-adaptive systems to manage complex
runtime behaviours [13]. Software adaptations are applied to
models maintained at runtime before being executed in the
managed applications. In this paper, we propose runtime mo-
dels as the Knowledge base to abstract and mirror microservice
applications. If there are changes occurring in the model, the
applications will also change, and vice versa.

To illustrate our contributions, we use a microservice appli-
cation of a Scientific Research Data Management System as
an use case; it is displayed in Figure 1. The main objective
of this system is to characterise scientific research data that
are produced or used by researchers and engineers during

1The planning is performed using a PDDL AI planner [10], [11] and the
executor uses the Kubernetes API to reconfigure the managed application.

simulation activities. It consists of six microservices. The
Project service and File service manage scientific
simulation projects metadata and related research data. The
User service manages the information on application users
and the Permission service controls their access permis-
sions. The Authentication service verifies the users’
login and password via Single Sign-On and the Logger

service records login history. Each Microservice has its own
database and communicates with others through synchronous
or asynchronous publish-subscribe interaction modes.
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Fig. 1. Illustrative application architecture

III. RUNTIME MODEL FOR MICROSERVICE VERSIONING

In this section, we present the model that we use to abstract
a microservice architecture and its versioning. We use model
at runtime concepts to provide an unified representation of up-
to-date elements in the system driving evolutionary changes.
Our proposed model is divided into two parts: the types model
(Section III-A) and the instance model (Section III-B). The
types model captures the structure of instantiable elements of
the evolving microservice applications, and the instance model
captures the replicas of corresponding deployable elements of
the managed system.

A. Model of types

The model of types is shown in Figure 2. It presents the core
elements to specify the configuration types of microservice
applications. For reasons of space, the root class of the types,
namely ConfigurationType, is not drawn in this diagram. As
its name implies, a configuration type aggregates all the types
that the configuration [14] of a managed system may contain.
These are the types that are available, for example, as code
artefacts or as container images in the implementation repos-
itories, i.e. available microservice types, available connector
types, and available database system types. Naturally, all the
types are uniquely identified by a name and a version: e.g. the
authentication_service in version 1.0.0 or rabbitmq
in version 3.9.1.

The central concept of the model is the microservice type.
Each microservice type exposes a set of contract types, which
are the “interfaces” provided or required by an instance of the
microservice type. These contracts are intermediate entities to
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Fig. 2. Model of available types of a configuration type

connectors [15] and are where architects specify the quality
of service of the connections, e.g. for producer and consumer
contracts [16]. For instance, client-server connectors may be
synchronous channels using HTTP-based REST communica-
tion and the attribute mustHaveConnectorAttached indicates
whether the connection to a server microservice is mandatory,
i.e. whether the client may operate in degraded mode without
a connection to a compatible server. By definition, considering
invariance in static type checking [17], a client contract type
is compatible with a server contract type if and only if all the
operation declarations of the client contract type are present
in the server contract type. Extrapolating from Figure 1, there
are six types of microservices. For instance, microservice type
authentication_service provides contract types to others
and requires a server contract type from microservice type
user_service.

The other two categories of connector types are the database
and publish-subscribe connector types. Database contract types
are where architects specify the connections to database sys-
tems. Every declared database contract types of a microservice
type is mandatory. Extrapolating from Figure 1, five of the
six microservice types have their own database system type.
Publish-subscribe connector types are asynchronous channels.
For example, microservice type authentication_service

publishes its logs that are forwarded to microservice type
logger_service. Not displayed in Figure 2, we differentiate
channel-based and topic-based publish-subscribe systems [18],
[19]. Publish-subscribe connectors are typically brokers, e.g.
MQTT2 and AMQP3 brokers. Microservice applications usu-
ally do not involve an enterprise service bus so that producers
and consumers must exchange compatible event types [20].
Thus, considering channel-based filtering, a producer contract
type is compatible with a set of consumer contract types if
and only if the channel names are equal and all the event

2MQTT: https://mqtt.org/
3AMQT: https://www.amqp.org/

types produced are accepted by one of the consumer contract
types. For topic-based filtering, a producer contract type is
compatible with a set of consumer contract types if and
only if its topic or routing key (resp. in MQTT and AMQP)
matches one of the subscriptions or binding keys (resp. in
MQTT and AMQP), and all the event types produced are
accepted by the corresponding consumer contract types. In
addition, the mustHaveConsumers attribute indicates whether
the connection to the producer microservice is mandatory, i.e.
whether the producer microservice can operate in degraded
mode without compatible consumers.

All of these types of microservices, database systems,
contracts and connectors constitute a configuration type of the
application. A configuration type is instantiable, namely an
instance model can be created that conforms to these types, if
and only if (1) client contract types are compatible to attached
server contract types, (2) client contract types that must have
connectors attached are indeed linked, (3) producer contract
types are compatible with connected consumer contract types,
(4) producer contract types that must have consumers actually
have consumers, and (5) all the database contract types are
indeed connected to database systems via database connec-
tors. Any version change of a microservice creates a new
microservice type with the same identifier but a changed
version. It is up to the software architects to decide which
microservice types on which versions can be included in the
current configuration type. This is the same for contract types,
connector types, and database system types. Finally, every
time a change is committed in the type model, the instantiable
property is checked.

B. Model of instances

The model of instances is shown in Figure 3. Grey elements
come from the model of types. Each instance conforms to
a type. A microservice type may have multiple microservice
replicas that represent deployed microservice instances. Sim-
ilarly, a database type may have multiple instances, and a

https://mqtt.org/
https://www.amqp.org/
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Fig. 3. Model of deployed instances of a configuration

publish-subscribe connector type may have multiple instances.
A configuration is composed of a set of microservices, connec-
tors, and database systems. Microservice instances are created
from the microservice type, i.e. the type acts as a template
such that, for each contract type of the microservice type, a
contract instance is created.

In the model of types, the contract types and database
types are created first; then, microservice types and connectors
are created. In the model of instances, database systems and
connectors are created first; then microservices with their
contracts are instantiated; and finally, microservice contracts
are linked to database systems or connectors.

Whenever there are changes occurring in the current con-
figuration, architects can check whether instances are deploy-
able. A microservice is deployable if and only if (1) its
client contracts are deployable, i.e. the contract is attached
to a connector when its type specifies that it must have a
connector attached, (2) its producer contracts are deployable,
and (3) its database contracts are deployable. Everytime a
change is committed in the instance model, the deployable
property is checked. Therefore, a model of instances repre-
sents the topology of the managed system with deployable
microservices, connectors and database systems.

IV. EVOLUTION GRAPH

Configuration types and configurations are organised in a
graph as depicted in Figure 4. This graph shows the evolution
trajectory of a microservice architecture from the two points
of view of types and instances. When version changes are
adopted in the code base, architects take a sequence of change
actions in the type model, such as adding a new microservice
type or a new connector type to the current configuration

type. This creates the next configuration type to commit. A
configuration type can be committed only if it is instantiable.
Once the commit is made, a new node representing a valid
configuration type is created in the evolution graph. In the
figure, the graph has several branches, for example when a
configuration type such as CT3 is abandoned.
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Reconfiguration 

Plan

Conforms to 
CT1

CT2

CT4

CT3

C1

C2

C3: last deployed

Current configuration

C4:

abandoned

configuration

Fig. 4. Evolution graph of configuration snapshots and configuration types

Regarding the configurations from the instance model, each
node corresponds to a configuration and has a unique link to
a configuration type, i.e. to the configuration type it conforms
to. In addition, every configuration node, except the current
configuration in preparation, represents a valid configuration,
i.e. the configuration is deployable and each commit creates
a new node in the evolution graph. Based on the evolution
graph, we use an AI planner to generate a reconfiguration plan
to transit from a departure configuration node (source archi-
tecture) to an arrival configuration node (target architecture).
The generated plan can then be transmitted to an executor for



automatic deployment.
Considering using SemVer, we put in action the evolution

graph composed of configuration type nodes and configura-
tion nodes into three scenarios: incompatible major changes,
compatible minor changes and impactless patch changes. We
illustrate the simplest scenario of patch changes as an example.
Patch changes are for example due to correcting code bugs
or improving implementation, and have no impact on other
elements. With the use case of Figure 1, let us suppose that a
new version, e.g. 1.0.1, of the authentication_service

microservice comes out. The old version 1.0.0 will continue
to be supported and may still be instantiated. Architects first
create and commit a new configuration type node. Then, they
create and commit a new configuration node by choosing
which instances are replaced for executing the new version,
and which instances keep executing the previous version. As
shown in Figure 4, in case of problem when executing the
reconfiguration plan, it is possible to return to the previous
configuration, which, in the scenario, is based on the previous
configuration type.

V. RELATED WORK

Some recent works have discussed multi-version microser-
vice management with contributions complementary to ours.

In [21], the authors propose to build a microservice evolu-
tion model by observing the managed system under execution.
The model combines together architectural, infrastructure and
instance information. It includes versioning of only some of
the model elements, namely, application, service, and ope-
ration. Similarly, the model in [22] is derived in a bottom-
up approach from the concepts of a specific ecosystem of
microservice technologies. The two works focus on syn-
chronous interactions between microservices. By contrast, our
proposal separates the type model from the instance model and
exposes the conformity between the two models. Hence, all
the elements of the type model are versioned. In addition, we
include database systems and asynchronous communication.

In [7], the authors track microservice dependencies and
versions by analysing code (JAVA annotations) and runtime
entities (JAVA reflection mechanism), i.e. dependency errors
are detected at runtime. The dependency graph is computed
through a series of chain searches and version management
is based on chain manipulations. Communications can be
synchronous or asynchronous. In our work, the dependency
graph is included in the model so that errors are detected at
design time at configuration commit, and version management
is based on model element manipulation and is logged.

In [23], the authors propose a tool to record microservice
dependencies at every version update by taking an OS-like
package management approach. They create a version timeline
per microservice that includes version dependencies to record
revision histories, e.g. major or minor updates and dependency
requirements about compatible versions of other microser-
vices. In our work, we present microservice relationships in
a more detailed manner and we trace evolution histories at

the granularity of a configuration, which includes a set of
microservices, not just at a single microservice.

VI. CONCLUSION

In this paper, we discussed how our proposed runtime mo-
dels and evolution graph can help engineers manage microser-
vice version management, abstract architectural evolution and
perform reconfiguration deployment. Our models separate
types from instances, and consider both synchronous and
asynchronous communication modes (either channel-based or
topic-based publish/subscribe systems). In addition, the evolu-
tion graph tracks the evolution trajectory of the microservice
architecture. In our future work, we plan to refine the models
by adding other asynchronous communication modes (such
as stream communication), and position technologies such as
Kafka that provides more than one communication mode, or
such as service mesh platforms that bring into play software
defined networking entities to microservice architectures.
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[19] G. Mühl, L. Fiege, and P. Pietzuch, Distributed Event-Based Systems.
Springer, 2006.

[20] F. Rademacher, S. Sachweh, and A. Zündorf, “Differences between
model-driven development of service-oriented and microservice archi-
tecture,” in IEEE ICSA Workshops, 2017, pp. 38–45.

[21] A. Sampaio et al., “Supporting Microservice Evolution,” in 33rd IEEE
Conf. Software Maintenance and Evolution, Sep. 2017.

[22] J. Sorgalla et al., “AjiL: enabling model-driven microservice develop-
ment,” in Proc. 12th ECSA Companion, 2018, pp. 1–4.

[23] S. Rajagopalan and H. Jamjoom, “App–Bisect: Autonomous Healing for
Microservice-Based Apps,” in Proc. 7th USENIX HotCloud, Jul. 2015.

https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html

	Introduction
	Motivations and objectives
	Runtime Model for Microservice Versioning
	Model of types
	Model of instances

	Evolution Graph
	Related Work
	Conclusion
	References

