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Abstract Consider a compact surface equipped with a fixed quadrangulation. One may identify each quadrangle on the surface by a Euclidean rectangle to obtain a singular flat metric on the surface with conical singularities. We call such a singular flat metric a rectangular structure. We study a metric on the space of unit area rectangular structures which is analogous to Thurston's asymmetric metric on the Teichmüller space of a surface of finite type. We prove that the distance between two rectangular structures is equal to the logarithm of the maximum of ratios of edges of these rectangular structures. We give a sufficient condition for a path between two points of the this Teichmüller space to be geodesic and we prove that any two points of the space can be joined by a geodesic. We also prove that this metric is Finsler and give a formula for the infinitesimal weak norm at the tangent space of each point. We identify the space of unit area rectangular structures with a submanifold of a Euclidean space and we show that the subspace topology and the topology induced by the metric we introduced coincide. We show that the space of unit area rectangular structures on a surface with a fixed quadrangulation is in general not complete.

Introduction

The Teichmüller metric on the space of marked Riemann surfaces was introduced in 1940 by Teichmüller in his paper [START_REF] Teichmüller | Extremale quasikonforme Abbildungen und quadratische Differentiale[END_REF] (cf. the English translation [START_REF] Teichmüller | Extremal quasiconformal mappings and quadratic differentials (Extremale quasikonforme Abbildungen und quadratische Differentiale)[END_REF]). In this metric, the distance between two such surfaces is the logarithm of the least quasiconformal dilatation of quasiconformal mappings between them. In 1985, Thurston introduced an asymmetric metric on Teichmüller space, seen as a space of marked hyperbolic surfaces, defined in a way that is analogous to the Teichmüller metric but where the stress is on the hyperbolic geometry of the surfaces instead of its conformal geometry. Here, the distance between two marked hyperbolic surfaces is the logarithm of the best Lipschitz map, that is, the map realizing the least Lipschitz dilatation between them (see [START_REF] Thurston | Minimal stretch maps between hyperbolic surfaces[END_REF]). Thurston's metric, like Teichmüller's metric, has been studied from different points of view during the last decades, see e.g. the papers [START_REF] Dumas | Coarse and fine geometry of the Thurston metric[END_REF][START_REF] Huang | Optimal Lipschitz maps on one-holed tori and the Thurston metric theory of Teichmüller space[END_REF][START_REF] Guéritaud | Maximally stretched laminations on geometrically finite hyperbolic manifolds[END_REF][START_REF] Papadopoulos | On the Finsler structure of the Teichmüller and the Lipschitz metrics[END_REF], see also the recent survey [START_REF] Papadopoulos | Ideal triangles, hyperbolic surfaces and the Thurston metric on Teichmüller space[END_REF] and the problem set [START_REF] Su | Problems on the Thurston metric[END_REF].

It turns out the theory of Thurston's metric is also interesting for Teichmüller spaces of surfaces equipped with flat structures and singular flat structures. One of the first published papers in this setting is [START_REF] Belkhirat | Thurston's weak metric on the Teichmüller space of the torus[END_REF] in which the authors gave explicit formulae for two different versions of the analogue of Thurston's asymmetric metric on the Teichmüller space of marked flat tori (identified with the upper half-space). Several properties of this asymmetric metric are proved, and in particular, its symmetrization is shown to be the hyperbolic metric (a fact which does not hold for Thurston's metric on higher dimensional Teichmüller spaces). In the recent paper [START_REF] Ohshika | Tangent spaces of the Teichmüller space of the torus with Thurston's weak metric[END_REF], the authors show that this metric is weak Finsler and they prove several results on its unit ball at each point in the tangent space to Teichmüller space. The results are analogues of Thurston's results on the Finsler structure of the metric he introduced in his paper [START_REF] Thurston | Minimal stretch maps between hyperbolic surfaces[END_REF].

It turns out that the analogue of Thurston's metric between marked Euclidean triangles leads to a variety of questions with interesting developments. In the paper [START_REF] Saglam | From Euclidean triangles to the hyperbolic plane[END_REF], the author gives a model of the hyperbolic plane based on the notion of stretch maps between triangles. In the paper [START_REF] Saglam | Minimal stretch maps between Euclidean triangles[END_REF], the authors study an analogue of Thurston's metric on the Teichmüller space of marked acute Euclidean triangles with fixed area, showing that it is a symmetric Finsler metric, giving a necessary and sufficient condition for a path in this metric space to be geodesic and determining the isometry group of this metric space. Finally, we mention the work [START_REF] Wolenski | Thurston's metric on Teichmüller space of semi-translation surfaces[END_REF] in which the author studies analogues of Thurston's metric on Teichmüller spaces of certain semi-translation surfaces.

In the present paper, we study the Euclidean analogue of Thurston's metric on the moduli space of singular flat metrics on a surface having a fixed combinatorial quadrangulation. It turns out that the L-shaped Euclidean polygons (see Figure 3) play an important role in this theory, and we study in detail the geometry of the space of such figures. It is interesting to recall in this respect that Teichmüller, after he developed his general theory of extremal quasiconformal mappings between surfaces, dedicated a paper on the special case of L-shaped surfaces, see [START_REF] Teichmüller | Vollständige Lösung einer Extremalaufgabe der quasikonformen Abbildung[END_REF]. It turned out that the theory he developed in this special case is very rich and leads to results which do not show up in the general case, see the recent English translation in [START_REF] Teichmüller | Complete solution of an extremal problem of the quasiconformal mapping (Vollständige Lösung einer Extremalaufgabe der quasikonformen Abbildung)[END_REF] and the commentary in [START_REF] Alberge | A commentary on Teichmüller's paper Vollständige Lösung einer Extremalaufgabe der quasikonformen Abbildung[END_REF].

We now present more precisely the main results of the present paper.

Let S be a compact surface equipped with a quadrangulation Q, that is, a cellular decomposition into quadrangles, i.e. topological discs with 4 distinguished points on their boundary. A distinguished points of triangles is calleda vertex. A rectangular structure on (S, Q) is a singular flat metric with conical singularities obtained by identifying each quadrangle of Q with a Euclidean rectangle. Two such rectangular structures are said to be equivalent if they are related by an isotopy which preserves the vertices and which sends each rectangle isometrically to itself. We denote by R(Q) the set of rectangular structures on (S, Q).

Let f : S → S be a homeomorphism which fixes the vertices of Q and which is isotopic to the identity map relative to the vertices.

Given two elements µ and µ of R(Q), we define

L(f ) = sup x =y∈S d µ (f (x), f (y)) d µ (x, y) and L(µ, µ ) = inf φ id log φ
where the infimum is taken over all homeomorphisms which are isotopic to the identity and which preserve the vertices. We also define another function K on R(Q) × R(Q), by setting K(µ, µ ) to be the logarithm of the maximum of ratios of lengths of edges connecting the same vertices, with respect to the rectangular structures µ and µ . Here are the main results that we obtain.

1. We prove that L = K.

2. We prove that L is a genuine metric (that is, it is symmetric) when it is restricted to the space of unit area rectangular structures on (S, Q).

We denote this space by R(Q) 1 .

3. We identify R(Q) 1 with a subset of some Euclidean space and show that the subspace topology and the topology induced by L coincide.

4. We give a sufficient condition for a path in R(Q) 1 to be a geodesic. We prove that any two points on R(Q) 1 can be a joined by a geodesic.

5. We prove that the restriction of the metric L to R(Q) 1 is Finsler and we give a formula for the infinitesimal weak norm of the tangent space of each point in R(Q) 1 .

6. We prove that the space R(Q) 1 is not complete when its dimension is greater than 1.

The rest of the paper is orgaanized as follows. In Section 2 we deal with the case of rectangles. In Section 3 we introduce quadrangulations and rectangular structures on a surface. We identify the space of rectangular structures with a subset of some Euclidean space. The analogues of Thurston's asymmetric metric and the metric K are introduced in Section 4. In Section 5 we give a family of geodesics in the space of unit area rectangular structures. We prove that the metric L is Finsler in Section 6. In Section 7, we discuss the topology of R(Q) 1 and some metric properties of L.

The case of rectangles

Let R and R be two rectangles in the Euclidean plane. Label their vertices by v 1 , v 2 , v 3 , v 4 and v 1 , v 2 , v 3 , v 4 , respectively. Let a, b and and a , b be the lengths of edges of R and R , respectively. See Figure 1.

A homeomorphism from R to R is said to be label-preserving if for every i = 1, . . . , 4, we have f (v i ) = v i . For such a homeomorphism we define

L(f ) = sup x,y∈Rx =y d euc (f (x), f (y)) d euc (x, y)
Figure 1: The affine map between the two rectangles is a best Lipschitz map.

We then define L(R, R ) := inf log(L(f )), where the infimum is taken over the set of label-preserving homemorphisms. If for some homeomorphism g we have L(g) = exp(L(R, R )), then we call g a best Lipschitz map.

Proposition 1. We have L(R, R ) = log(max{ a a , b b }), and the affine map between R and R is a best Lipschitz map.

Proof. Any label-preserving homeomorphism sends

v i to v i , therefore it is evident that exp(L(R, R )) ≥ max{ a a , b b }.
Now we prove that for the affine map A, we have L(A) ≤ max{ a a , b b }. This will imply both statements of the proposition.

By performing some isometries of the Euclidean plane R 2 we may suppose that v 1 and v 1 are at the origin, v 2 , v 2 are on the x-axis and v 4 , v 4 are on the y-axis. Consider the following affine map A : R → R :

A(x, y) = ( b b
x, a a y).

Let q 1 = (x 1 , y 1 ) and q 2 = (x 2 , y 2 ). We have

d euc (A(q 1 ), A(q 2 )) = d euc (( b b x 1 , a a y 1 ), ( b b x 2 , a a y 2 )) = ( b b ) 2 (x 2 -x 1 ) 2 + ( a a ) 2 (y 2 -y 1 ) 2 ≤ max{ a a , b b } (x 2 -x 1 ) 2 + (y 2 -y 1 ) 2 = max{ a a , b b }d euc (q 1 , q 2 ).
Hence we obtain

L(A) ≤ max{ a a , b b }.
Let us denote a rectangle with unit area by R a . This means that the edge lengths of R a are a and 1 a . In this way, we may naturally identify the set of unit area rectangles with the set of positive real numbers R * + , using the map sending R a to a. In this case we have

L(R a , R a ) = L(a, a ) = log(max{ a a , a a }) = |log a -log a|. Remarks 1. (1)
The metric L on the space of rectangles comes from the infinitesimal metric |da| a on R * + and it is Finsler. (We shall discuss more thoroughly Finsler structure on manifolds and Finsler metrics Section 6.)

(2) The case of best Lipschitz maps between rectangles considered here is the analogue of the case of best quasiconformal maps between rectangles considered by Grötzsch in the paper [START_REF] Grötzsch | Über möglichst konforme Abbildungen von schlichten Bereichen[END_REF] (English translation in [START_REF] Grötzsch | On closest-to-conformal mappings ( Über möglichst konforme Abbildungen von schlichten Bereichen)[END_REF]).

Quadrangulations and rectangular structures

Let S be a compact surface, possibly with boundary. Note that we do not exclude the case where S is not orientable. Definition 2. A quadrangulation Q of S is a collection of maps e i : [0, 1] → S, i ∈ I, where I is a finite set, such that 1. Each e i is continuous;

2. e i | (0,1) is a homeomorphism onto its image for all i ∈ I;

3. e i ([0, 1]) ∩ e j ([0, 1]) ⊂ e i ({0, 1}
) ∩ e j ({0, 1}) for all i = j; 4. when we cut the surface S along the images of the e i s, we get quadrangles whose vertices all come from the e i s.

Given a quadrangulation as above, a quadrangle is called a face of it; the set of faces of the quadrangulation Q will be denoted by F (Q). The e i s (or their images) form the edges of the quadrangulation and their union will be denoted by E(Q). Each element in e i ({0, 1}) is called an endpoint of e i . The union of the endpoints is called the vertex set of the quadrangulation and will be denoted by V (Q).

Fix a quadrangulation Q of S. For each face of Q, we say that opposite edges are parallel. This generates an equivalence relation on E(Q) where we say that e i ∼ e j if i = j or there are edges e i 1 , . . . e i k such that i 1 = i, i k = j and e i l and e i l+1 are parallel for all 1 ≤ l ≤ k -1.

By abuse of language, we say that e i and e j are parallel if e i ∼ e j .

Example 3. In Figure 2 we have two examples of quadrangulations of surfaces. On the left of this figure, we have a qudrangulation of the sphere. We see that e i ∼ e j if 1 ≤ i, j ≤ 4, 5 ≤ i, j ≤ 8 or 9 ≤ i, j ≤ 12. On the right of Figure 2, after identifying the two edges having label e 1 , we obtain a quadrangulation of a disc with three edges. In this case all edges e 1 , e 2 and e 3 are parallel.

Fix a surface S with a quadrangulation Q. Definition 4. A rectangular structure on (S, Q) is a singular flat metric with conical singularities whose set of singular points is a subset of V (Q) such that if we cut the surface along the edges e i of (S, Q) we get Euclidean rectangles.

In other words, a rectangular structure is obtained by filling in the surface with Euclidean rectangles according to the combinatorics specified by the rectangular structure.

A rectangular structure µ on (S, Q) comes equipped with several additional structures since it is a singular flat metric. First of all, there is a well-defined area measure which coincides with the 2-dimensional Lebesgue measure on each rectangle. We can also define the length l µ (c) of a piecewise smooth curve c : [a, b] → S using the following rules:

1. If c is contained in a face of Q, then l µ (c) is its Euclidean length. 2. If c is a concatenation of curves c 1 and c 2 , then l µ (c) = l µ (c 1 ) + lµ(c 2 ).
We can then define a metric d µ for each rectangular structure on a surface where the distance between two points is given by the infimum of lengths of piecewise smooth paths joining these two points. Observe that by compactness, this infimum is attained for any two distinct points on S.

We say that two rectangular structures µ and µ are equivalent if by cutting the surface through the edges, we get the same Euclidean rectangles. We denote the edge length of e i with respect to µ by l µ (e i ). It follows that two rectangular structures µ and µ on S are equivalent if and only if l µ (e i ) = l µ (e i ) for all i. We denote an equivalence class of µ by [µ].

We may also define this equivalence relation in terms of d µ . By a homeomorphism of (S, Q) we mean a homeomorphism h : S → S which leaves each edge of Q invariant. It follows that µ and µ are equivalent if and only if there is a homeomorphism of h of (S, Q) such that h * (d µ ) = d µ .

We denote the set of equivalence classes of rectangular structures by R(Q). The set R(Q) has a subset R(Q) A which consists of equivalence classes of rectangular structures having fixed area A.

From now on we fix a set of representatives e i 1 , . . . e i k for the equivalence relation of parallelism on E(Q) defined on the set of edges after Definition 3.

Proposition 2. The map Ψ : R(Q) → (R * + ) k , sending [µ] to (l µ (e i l )
) is a bijection.

Proof. Injectivity follows from the fact that the rectangular structure is determined by the lengths of the e i s and that parallel edges have the same length. Let (a 1 , . . . , a k ) ∈ (R * + ) k . To prove surjectivity we define a function

f : E(Q) → R * + by declaring f (e i ) = a l if e i ∼ e i l .
Cut the surface S through the e i s. We have a finite number of quadrangles whose edges are labeled with e i s. Identify each such quadrangle with a Euclidean rectangle so that if an edge is labeled by e i the corresponding edge of the rectangle has length f (e i ). Glue back these rectangles along their edges appropriately to obtain a rectangular structure on the surface. In this way we get a rectangular structure µ such that Ψ(µ) = (a 1 , . . . , a k ) Identifying R(Q) with (R * + ) k = {(a 1 . . . , a k )} we see that the area of a rectangular structure gives us a quadratic form with variables a 1 , . . . , a k , q(a 1 , . . . , a k ) = i≤j c ij a i a j , so that each c ij is non-negative. We also we see that for each l there exists l such that c l,l is positive.

Example 5. An L-shaped polygon consists of three rectangles glued as in Figure 3. Note that such a polygon is determined by the edge lengths a 1 , a 2 , a 3 , a 4 . There corresponding area quadratic form is:

q(a 1 , a 2 , a 3 , a 4 ) = a 1 a 4 + a 3 a 4 + a 2 a 3 .

Thurston's asymmetric metric on the space of rectangular structures

The surface S is equipped with a fied triangulation. We are interested in maps S → S which fixes the vertices of Q. Therefore when we say that a homeomorphism f : S → S is isotopic to the identity, f ≡ id, it should be understood that the vertices of Q are fixed during the isotopy. Keeping this in mind, we introduce two ways of giving a metric on the space of rectangular structures.

Assume that µ and µ are two rectangular structures on (S, Q). Let f : S → S be a homeomorphism. We define In the last formula, the infimum is taken over all homeomorphisms isotopic to the identity. Note that the value L(µ, µ ) depends only on the equivalence classes [µ] and [µ ], of µ and µ . Thus, L([µ], [µ ]) is well defined. For λ ∈ R * + , let us denote by λµ the rectangular structure on (S, Q) such that l λµ (e i ) = λl µ (e i ) for all i ∈ I. This gives an action of R * + on the set of equivalence classes of rectangular structures R(Q):

L(f ) = sup x =y∈S d µ (f (x), f (y)) d µ (x, y) .
λ[µ] = [λµ].
The following formula is clear:

exp(L(λµ, λ µ )) = λ λ exp(L(µ, µ )); (1) 
Now we define another function on R(Q) × R(Q). Definition 6. Let [µ] and [µ ] be two elements in R(Q). We define

K([µ], [µ ]) = K(µ, µ ) := log(sup i∈I |e i | µ |e i | µ ).
Note that since e i ∼ e j implies that l µ (e i ) = l µ (e j ), it follows that

K([µ], [µ ]) = log(sup l l µ (e i l ) l µ (e i l )
).

We also have the following formula:

exp(K(λµ, λ µ )) = λ λ exp(K(µ, µ )). (2) 
Since any homeomorphism f : S → S that we consider fixes Q, we have the following inequality

K ≤ L. (3) 
Now we fix two rectangular structures µ and µ . Let {R α } α∈A be the set of rectangles of S with respect to the rectangular structure µ.

Let us define

L(f | Rα ) := sup x =y∈Rα d µ (f (x), f (y)) d µ (x, y) Proposition 3. L(f ) = max α {L(f )| Rα }.
Proof. To prove the statement we use the identification of R(Q) with (R * + ) k . In this identification µ and µ correspond to two elements (a 1 , . . . , a k ) and (b 1 , . . . , b k ) such that q(a 1 , . . . ,

a k ) = q(b 1 , . . . , b k ) = A > 0. Note that L = K implies that exp(L(µ, µ )) = max{ b 1 a 1 , . . . , b k a k } ≤ 1. If exp(L(µ, µ )) < 1, then it follows that q(a 1 , . . . , a k ) > q(b 1 , . . . , b k ), which is a contradiction. If L(µ, µ ) = 0 then it follows that a i ≤ b i for all 1 ≤ i ≤ k.
If there is a j such that a j < b j , then q(a 1 , . . . , a k ) < q(b 1 , . . . , b k ), which is a contradiction. Hence a i = b i for all i. This means that µ ∼ µ .

Theorem 9. The restriction of L to R(Q) A × R(Q) A gives a metric.
Proof. The statement follows from Lemma 1 and Lemma 2.

Geodesics on the spaces of rectangular structures

Let (X, d) be a metric space where d is not necessarily symmetric. Let I be an interval of R. We say that a map h : I → X is geodesic if for every ordered ordered triple t 1 ≤ t 2 ≤ t 3 in I, we have

d(h(x 1 ), h(x 3 )) = d(h(x 1 ), h(x 2 )) + d(h(x 2 ), h(x 3 )).
Note that if the metric is not symmetric, then the map obtained from h by reversing the direction of a geodesic is not necessarily a geodesic.

In this section we show that any two elements in R(Q) 1 can be joined by a geodesic. Recall that we identified R(Q) and (R * + ) k . We know that there is a quadratic form q on R k such that under this identification, R(Q) 1 corresponds to the set

(R * + ) k 1 = {(a 1 , . . . , a k ), a i > 0, q(a 1 , . . . , a k ) = 1}. Let a = (a 1 , . . . , a k ) and a = (a 1 , . . . , a k ) be two elements in (R * + ) k 1 . We know that L(a , a ) = log max i { a i a i }.
Assume that L(a , a ) = a j a j for some j ∈ {1, 2, . . . , k}.

Lemma 3. Let α(t) = (a 1 (t), . . . , a k (t)) be such that α(0) = a and α(1) = a . Furthermore, assume that each a i is C 1 and ȧi (s)

a i (s) ≤ ȧj (s) a j (s) (4) 
for all i = 1, . . . k and for all s ∈ [0, 1]. Let λ(t) be the unique positive real number such that λ(t)α(t)

∈ (R * + ) k 1 .
Then

α (t) = λ(t)α(t) = (λ(t)a 1 (t), . . . , λ(t)a k (t))
is a geodesic in (R * + ) k 1 and it joins a and a .

Proof. It is clear that the image of α lies in (R * + ) k 1 and that α joins a and a . We will show that α is a geodesic. Before this, we need to make some calculations.

First of all, we have

L(α(t), α(t )) = max i log( a i (t ) a i (t) ) = max i t t ȧi (s) a i (s) ds = t t ȧj (s) a j (s) ds = log a j (t ) -log a j (t).
By combining the above equation with Equation 1, we get

L(λ(t)α(t), λ(t )α(t )) = log λ(t ) -log λ(t) + L(α(t ), α(t)) (5) 
= log λ(t ) -log λ(t) + log a j (t ) -log a j (t).

Now we prove that α is a geodesic, that is, we show that if

t 1 ≤ t 2 ≤ t 3 in [0, 1], then L(α (t 1 ), α (t 3 )) = L(α (t 1 ), α (t 2 )) + L(α (t 2 , t 3 )).
Equations 5 and 6 imply that

L(α (t 1 ), α (t 3 )) = log λ(t 3 ) -log(λ(t 1 )) + log a j (t 3 ) -log a j (t 1 ) = log λ(t 3 ) -log λ(t 2 ) + log λ(t 2 ) -log λ(t 1 ) + log a j (t 3 ) -log a j (t 2 ) + log a j (t 2 ) -log a j (t 1 ) = L(α (t 1 ), α (t 2 )) + L(α (t 2 , t 3 )).
Example 10. We note that α(t) = ((a 1 ) 1-t (a 1 ) t , . . . , (a k ) 1-t (a k ) t ) satisfies the inequality 4.

The following corollary is immediate.

Corollary 1. For any two points in R(Q) 1 , there exists a geodesic joining them.

6 Finsler structure on spaces of rectangular structures

In this section we show that the metric L on R(Q) 1 is Finsler. Before doing this, we need to show that R(Q) 1 is a differentiable manifold. Recall that we identified R(Q) with (R * + ) k and that there is a quadratic form q on R k such that there is a one-to-one correspondence between R(Q) 1 and the following set:

(R * + ) k 1 = {(a 1 , . . . , a k ), a i > 0, q(a 1 , . . . , a k ) = 1}
. Thus we will show that this set is a differentiable manifold.

Proposition 4. (R * + ) k 1 is an embedded submanifold of (R * + ) k .
Proof. We have q(a 1 , . . . , a k ) = i≤j c ij a i a j . Note that each c ij is nonnegative and for each i there is a j such that c ij is positive. Consider q as a function (R * + ) k → R. It follows that

dq = i<j c ij (a i da j + a j da i ) + i 2c ii a i da i
does not vanish anywhere. Thus (R * + ) k 1 is an embedded submanifold of (R * + ) k . Now weintroduces our setting of Finsler structures. We follow [START_REF] Papadopoulos | Weak Finsler structures and the Funk weak metric[END_REF], in particular §6, where we define the notion of weak Finsler structure. We start by recalling the definition of a weak norm. Definition 11. Let V be a real vector space. A weak norm on V is a function V → [0, ∞), v → ||v|| such that for every v ∈ V the following properties hold for every v and w in V :

1. ||v|| = 0 if v = 0, 2. ||tv|| = t||v|| for every t > 0, Definition 13. A metric d on a differentiable manifold M is said to be Finsler if it is the length metric associated to a Finsler structure, that is, if there exist a Finsler structure F on M such that for every x, y ∈ M we have

d(x, y) = inf{l F (c)}
where c ranges over all piecewise C 1 curves such that c(0) = x and c(1) = y. Now we start the proof of the fact that the metric L on R(Q) 1 is Finsler. Instead of R(Q) 1 , we will consider (R * + ) k 1 . We will consider the following function F on the tangent space T (R * + ) k 1 of (R * + ) k 1 :

F : (a 1 , . . . , a k , v 1 , . . . v k ) → max i { v i a i }.
Here, a = (a 1 , . . . , a k ) is a point in (R * + ) k 1 and (v 1 , . . . v k ) are coordinates of tangent vectors at the point a = (a 1 , . . . , a k ). Note that it is not evident that

F | Ta(R * + ) k 1 is non-negative.
The other properties of a weak norm are clearly satisfied. We will show that for any a = (a 1 , . . . , a k ) and a = (a 1 , . . . , a k ) in (R * + ) k 

l F (c) = 1 0 max i { ȧi (t) a i (t) } dt ≥ max i { 1 0 ȧi (t) a i (t) } = max i {log( a i a i )} = L(a , a ).
Now we prove that L F (c) = L(a , a ) for the geodesics in Section 5. Assume that It follows that

max i { a i a i } = a j a j . Let d : [0, 1] → (R * + ) k be such that d(t) = (
l F (c) = 1 0 max i { d dt (λ(t)a i (t)) λ(t)a i (t) } dt = 1 0 d dt (λ(t)a j (t)) λ(t)a j (t) dt = log a j -log a j = L(a , a ). Proposition 6. F | Ta(R * + ) k 1 is a weak norm for each a ∈ (R * + ) k 1 .
Proof. We need only to prove that F | Ta(R * + ) k 1 is non-negative. If it were negative for some vector in T a (R * + ) k 1 , then there would be another point a such that L(a, a ) < 0, since L(a, a ) is given by inf{l F (c)}, where c joins a to a , which is a contradiction.

The following theorem follows easily from Proposition 5 and Proposition 6.

Theorem 14. Let F be the following function on the tangent space T

(R * + ) k 1 of (R * + ) k 1 : (a 1 , . . . , a k , v 1 , . . . v k ) → max i { v i a i }.
The metric L is induced by the Finsler structure on (R * + ) k 1 given by F .

7 The topology og R(Q) 1 and the metric properties of L = K H. Busemann [START_REF] Busemann | Recent synthetic differential geometry[END_REF] developed extensively a theory of non-symmetric metric spaces (X, δ) which satisfy additionally the following property: δ(x n , x) → 0 if and only if δ(x, x n ) → 0.

In this section we prove that this property is satisfied for (R(Q) 1 , L). Note that we identified R(Q) 1 with the set (R * + ) k 1 = {(a 1 , . . . , a k ) : a i > 0, q(a 1 , . . . , a k ) = 1} where q(a 1 , . . . , a k ) = i≤j c ij a i a j such that for each i there is a j such that c ij > 0. Also, by Theorem 7, we have L((a 1 , . . . , a k ), (a 1 , . . . , a k )) = K((a 1 , . . . , a k ), (a 1 , . . . , a k )) = log(max i { a i a i }).

Proposition 7. Let a = (a 1 , . . . , a k ) ∈ (R * + ) k 1 and a n = (a 1,n , . . . , a k,n ) be a sequence in (R * + ) k 1 . Then the following properties hold:

1. K(a n , a) → 0 if and only if a i,n → a i for each 1 ≤ i ≤ k.

2. K(a, a n ) → 0 if and only if a i,n → a i for each 1 ≤ i ≤ k.

Proof. We will prove only the first part of the proposition. The proof of the other part is similar to the proof of the first part. One implication is obvious, that is, it is clear that if for each i, a i,n → a i , then max i { a i a i,n } → 1, and hence K(a n , a) → 0 as n → ∞. For the other implication assume that K(a n , a) → 0. It follows that max i { a i a i,n } → 1 as n → ∞. Assume that there exists i such that lim n→∞ a i a i ,n = 1. It is clear that each a i,n is bounded. Passing to some subsequences we may suppose that 1. lim n→∞ a i,n exists, 2. lim n→∞ a i ,n < a i .

Note that it is also true that lim n→∞ a i,n ≤ a i . Hence we have 1 = q(a 1 , . . . , a k ) > q( lim n→∞ a 1,n , . . . , lim n→∞ a k,n ) = 1, which is a contradiction.

The following corollary is immediate.

Corollary 2. L(x n , x) → 0 if and only if L(x, x n ) → 0.

Note that it means that (R(Q) 1 , L) satisfies Busemann's axioms for metric spaces.

There are at least two ways in which a non-symmetric metric d can be symmetrized:

1. d arith (x, y) = 1 2 (d(x, y) + d(y, x)).

2. d max (x, y) = max{d(x, y), d(y, x)}.

These two metrics, d arith and d max , are equivalent, that is, there are constants C and C such that for all x and y we have It follows that these two metrics induces the same topology on the space that they are defined. By the topology induced by an asymmetric metric, we mean the topology induced by one of its symmetrizations (following again Busemann [START_REF] Busemann | Recent synthetic differential geometry[END_REF]).

Remark 15. Let a = (a 1 , . . . , a k ) and a n = (a 1,n , . . . , a k,n ) be in (R * + ) k 1 . Proposition 7 states that the following are equivalent:

1. a i,n → a i for all 1 ≤ i ≤ k, 2. K(a n , a) → 0, 3. K(a, a n ) → 0.

It follows that a i,n → a i for each i if and only if K max (a n , a) → 0 if and only if K arith (a n , a) → 0. This implies that the usual topology on (R * + ) k 1 as a subspace of R k and the topology induced by K max (or equivalently K arith ) are the same.

We will prove that (R(Q) 1 , L) is not complete in general. Let us first define completeness in case of asymmetric metrics. Definition 16. A space X equipped with an asymmetric metric δ satisfying Busemann's axioms is complete if for any sequence x n the following property holds:

if δ(x n , x n+m ) → 0 as n and m → ∞, then x n converges to a point in X. This means that δ(x n , x) → 0, or equivalently, δ(x, x n ) → 0, as n → ∞, for some x ∈ X.

Proposition 8. If k > 2, then ((R * + ) k 1 , K) is not complete.
Proof. There is a = (a 1 , . . . , a k ) such that a i = 0 for some 1 ≤ i ≤ k and a j > 0 when j = i. Now the point a can be chosen so that q(a) = 1. Let a n = (a 1,n , . . . , a k,n ) so that a i,n = 1 2 n and a j,n = a j when j = i. Let b n = an √ q(an,an)

. Then K(b n , b n+m ) → 0 as n and m → ∞, and b n does not converge to any point in (R * + ) k 1 .

Figure 2 :

 2 Figure 2: A quadranguation of sphere and a quadrangulation of disc.

Figure 3 :

 3 Figure 3: An L-shaped polygon.
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 3 ||tv + (1 -t)w|| ≤ t||v|| + (1 -t)||w|| for every t ∈ [0, 1]. Now let M be a differentiable manifold and let T M be the tangent bundle of M . Definition 12. A Finsler structure on M is a function F : T M → [0, ∞) such that 1. F is continuous, 2. for each x ∈ M , F | TxM is a weak norm. Let F be a Finsler structure on a manifold M . For each C 1 curve c : [a, b] → M , we define its length by l(c) = l F (c) = b a ( ċ(t))dt.

1 1 0FProposition 5 .

 115 we have L(a , a ) = inf{l F (c)} where c ranges over all C 1 curves such that c(0) = a , c(1) = a and l F (c) = ( ċ(t))dt. Then we will use this to prove that F | Ta(R * + ) k 1 is non-negative. Let a = (a 1 , . . . , a k ) and a = (a 1 , . . . , a k ) be in (R * + ) k 1 . Then L(a , a ) = inf{l F (c)} where c ranges over all C 1 curves such that c(0) = a , c(1) = a . Proof. Let c(t) = (a 1 (t), . . . , a k (t)) be a C 1 curve in (R * + ) k 1 such that c(0) = a and c(1) = a . Then

1 C

 1 d arith (x, y) ≤ d max (x, y) ≤ C d arith (x, y).
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  a 1 (t, . . . , a k (t))) and

			ȧi (t) a i (t)	≤	ȧj (t) a j (t)		
	(R * + ) k 1 . We have							
	d dt (λ(t)a i (t)) λ(t)a i (t)	=	λ(t) λ(t)	+	ȧi (t) a i (t)	≤	d dt (λ(t)a j (t)) λ(t)a j (t)	.

for all i. Let λ(t) be the unique real number such that c(t) = λ(t)d(t) ∈
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Proof. It is clear that L(f ) ≥ max α {L(f )| Rα }. We prove the reverse inequality. Let x, y ∈ S and let g be a length minimizing geodesic joining these two points. It suffices to prove that there exists α ∈ A and x , y ∈ R α such that

Assume that this is not true. Choose a finite set of points x 1 = x, x 2 , . . . , x m = y on the geodesic g such that for each i = 1 . . . m -1, x i and x i+1 lie on the same rectangle. Thus for each i, we have

Clearly this contradicts the triangle inequality. Now we define a homeomorphism φ µ,µ : S → S which is isotopic to the identity. For each rectangle R α of the rectangular structure µ, let R α be the corresponding rectangle in the rectangular structure µ . We know that there is an affine map sending R α to R α , see Section 2. Gluing these affine maps, we get a homeomorphism φ µ,µ isotopic to identity. Now we can prove the following:

Theorem 7. For every two rectangular structures µ and µ on (S, Q), we have K(µ, µ ) = L(µ, µ ).

Moreover the map φ µ,µ is a best Lipchitz map.

Proof. We know that log(sup

On the other hand, by Proposition 1 and Proposition 3, we get log(L(φ µ,µ )) = log(sup

).

This observation implies both statements of the present theorem.

We will show that the restriction of L to R(Q) 1 × R(Q) 1 is a metric. First we define the notion of metric that we use. This definition is different than the usual one since we drop the symmetry axiom.

• η(x, y) + η(y, z) ≥ η(x, z) for all x, y, z ∈ X.

The pair (X, d) or the set X is called a metric space. If η(x, y) = η(y, x) for all x, y ∈ X, then the metric is said to be symmetric. Otherwise, and if we want to emphasize the asymmetry, the metric is said to be asymmetric. Lemma 1. Let µ, µ and µ be three rectangular structures on (S, Q). Then L(µ, µ ) ≤ L(µ, µ ) + L(µ , µ ).

Proof. Let f and g be homeomorphisms S → S which are isotopic to the identity. The statement follows from the fact that L(f • g) ≤ L(f )L(g). Lemma 2. Let µ and µ be two rectangular structures of equal area. If L(µ, µ ) ≤ 0, then L(µ, µ ) = 0 and µ ∼ µ .