N

HAL

open science

Fast Short and Fast Linear Cramer-Shoup

Pascal Lafourcade, Léo Robert, Demba Sow

» To cite this version:

Pascal Lafourcade, Léo Robert, Demba Sow. Fast Short and Fast Linear Cramer-Shoup. Foundations
and Practice of Security - 13th International Symposium, FPS, Dec 2020, Montreal, France. hal-

03419449

HAL Id: hal-03419449
https://hal.science/hal-03419449

Submitted on 8 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://hal.science/hal-03419449
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Fast Short and Fast Linear Cramer-Shoup

Pascal Lafourcade!, Léo Robert! and Demba Sow?

L University Clermont Auvergne, LIMOS, CNRS UMR 6158, Aubiére, France
firstname.lastnameQuca.fr,
2 LACGAA, University Cheikh Anta Diop of Dakar, Senegal
dembal.sow@ucad.edu.sn

Abstract. A linear Cramer-Shoup encryption scheme version was pro-
posed by Shacham in 2007. Short Cramer-Shoup encryption scheme was
designed by Abdalla et al. in 2014. This scheme is a variant of the
Cramer-Shoup encryption scheme that has a smaller size. They proved
that it is an IND-PCA secure encryption under DDH and the collision-
resistance assumptions. We design a faster version of Short Cramer-
Shoup encryption scheme denoted Fast Short Cramer-Shoup encryption.
We also, proposed a faster version of linear Cramer-Shoup encryption
called Fast Linear Cramer-Shoup. We prove that the Fast Short Cramer-
Shoup is IND-PCA secure under DDH and the collision-resistance as-
sumptions. We also, show that our linear encryption is CCA secure under
the Linear assumption. Finally we run an evaluation of performances of
our schemes.

keywords: Short Cramer-Shoup, Linear Cramer-Shoup, Linear Assumption,
IND-CCA, IND-PCA.

1 Introduction

Cramer-Shoup cryptosystem was introduced in 1998 by Cramer et al. in [?]. It
is an encryption scheme based on ElGamal encryption that is IND-CCA secure.
In [?], a linear version of Cramer-Shoup scheme was proposed. A short Cramer-
Shoup scheme was also proposed in [?]. This scheme improves the performance
of Cramer-Shoup scheme by reducing the number of generators in G and the
number of parameters of the keys. This scheme is also IND-PCA secure which is
lower security notion than IND-CCA and stronger than IND-CPA. But applied
to small messages, IND-PCA implies IND-CCA.

Contributions. Our main aim is to improve the efficiency of Short and Linear
Cramer-Shoup public key schemes. Our contributions are as follows:

— We design a cryptographic encryption scheme, called Fast Short Cramer-
Shoup, based on the Generalized ElGamal encryption scheme [?]. We follow
the spirit of Short Cramer-Shoup versions introduced in [?]. We modify the
key generation and the decryption algorithm to be faster. We prove its se-
curity against Plaintext-Checking Attack (IND-PCA) under the Decisional
Diffie-Hellman (DDH) and the collision-resistance assumptions.

— We also design a Fast Linear Short Cramer-Shoup scheme. We prove that
our linear scheme is secure in the CCA sense if HF a secure UOWHF
family and the Linear assumption hold in a group G.

— Finally, we implement all these schemes with GMP [?] to demonstrate that
Fast Short Cramer-Shoup and Fast Linear Cramer-Shoup are significantly
faster than Short Cramer-Shoup and Linear Cramer-Shoup respectively.

Related works. ElGamal cryptosystem was proposed in 1984 by T. ElGa-
mal in [?]. It was one of the first cryptosystems whose security was based on
the problem of the discrete logarithm (DLP). ElGamal’s scheme is IND-CPA
secure under the Decisional Diffie-Hellman (DDH) hypothesis. Cramer-Shoup
is a cryptosystem proposed by Cramer et al. in [?]. It is based on ElGamal’s
scheme and it is IND-CCAZ2 secure under the DDH assumption. Many versions
based on Original Cramer-Shoup scheme [?] have been introduced. The origi-
nal Cramer-Shoup’s scheme presented in the eprint version [?], then the stan-
dard Cramer-Shoup’s version published in CRYPTO’98 [?], the efficient Cramer-
Shoup’s version also proposed in [?] and finally Short Cramer-Shoup’s version
proposed in [?]. The main difference of Original and Standard Cramer-Shoup
schemes is that the Standard scheme uses only one exponent z to compute the
public parameter h instead of two exponents z; and z3 in the Original scheme. In
Section 4 of [?], the efficient variant of the Cramer-Shoup scheme is presented.
Note that Original and Efficient Cramer-Shoup encryption algorithms are ex-
actly the same. But theirs key generation and decryption algorithms are slightly
different. In Efficient Cramer-Shoup, the key generation uses less elements and
then less exponentiations. Short Cramer-Shoup scheme [?] is a variant of the
above Cramer-Shoup scheme [?]. In Short Cramer-Shoup, key generation algo-
rithm uses less generator and less elements in public and secret keys. Original,
Standard and Efficient Cramer-Shoup schemes are IND-CCA secure under DDH
but Short Cramer-Shoup scheme is IND-PCA secure under the DDH and the
collision-resistance assumptions. In [?], Boneh et al. introduced the Decisional
Linear Assumption (DLin) and proposed a linear scheme based on ElGamal.
The linear ElGamal scheme is IND-CPA secure under the (DLin). In [?], Lin-
ear Cramer-Shoup scheme is presented. As Original Cramer-Shoup scheme, the
Linear Cramer-Shoup scheme is IND-CCA secure under DDH. We improve both
Short and Linear Cramer-Shoup schemes.

Outline. In Section 2] we recall public key encryption and the existing Cramer-
Shoup schemes. In Section [3] we present our Fast Short Cramer-Shoup encryp-
tion scheme. In Section[4] we also propose a Fast Linear version of Cramer-Shoup.
In Section [5] we show the results of our performance evaluations. The security
proofs of our proposed schemes are available in [?].

2 Preliminaries

Boneh et al. [?] introduced a Decisional assumption, called Linear, intended to
take the place of DDH in groups - in particular, bilinear groups [?] - where DDH
is easy. For this setting, the Linear problem has desirable properties, as they have

shown: it is hard if DDH is hard, but, at least in generic groups [?], it remains
hard even if DDH is easy. Let G be a cyclic multiplicative group of prime order
p, and let g1, g2, and g3 be arbitrary generators of G, we consider the following
problem:

Linear Problem in G: Given g1, g2, g3, 9%, g5, 95 € G as input, output yes if
a + b = ¢ and no otherwise. The advantage of an algorithm A in deciding the

linear

Linear problem in G is denoted by Adv 4" and it is equal to:
3 $
‘PT[A(glag27937 9?79Z2)>9§+b) =Yyes : g1, 92,93 < G7a7 b+ Zp]

$ $
—Pr[A(g1, 92, 93, 9%, 95, m) = yes : g1, 92, 93,1 ¢ G, a,b < L]
with the probability taken over the uniform random choice of the parameters
to A and over the coin tosses of A. We say that an algorithm .A(¢, €)-decides

Linear in G if A runs in time at most ¢, and Adv'?*™ is at least e.

Definition 1. We say that the (t,€)-Decision Linear Assumption holds in G if
no algorithm (t,€)-decides the Decision Linear problem in G.

The Linear problem is well defined in any group where DDH is well defined. It
is mainly used in bilinear groups like in [?,7,7?].

2.1 Original Cramer-Shoup Scheme

We recall the original Cramer-Shoup encryption scheme presented in the eprint

version [?]. It is composed of a key generation algorithm, an encryption and

a decryption algorithm. The decryption algorithm consists into two algorithms

one for recovering from the ciphertext the plaintext and one to check the non-

malleability of the ciphertext in order to ensure IND-CCA2 security. We define
three functions: the setup function, denoted CS.KG(), the encryption function,
denoted CS.Enc() and the decryption function, denoted CS.Dec().

CS.KG(1*): Select a group G of prime order q. Choose eight random elements:
91,92 € G and x1,2,y1, Y2, 21, 22 € Zg.

Compute in G: ¢ = g7'g5%, d = g{* g5* and h = g;*¢5%. Choose a hash function
H that hashes messages to elements of Z,. Return (pk,sk) where pk =
(gla g2, ¢,d,h, H) and sk = (‘xlv T2,Y1, Y2, 21, 22)'

CS.Enc(pk, M): To encrypt message m with pk = (g1,92,¢,d, h, H), choose
a random element r € Z,. Compute u; = gl,us = g5, = h'm,a =
H(uy,uz,e) and v = ¢"d"®. Return the following ciphertext: (u,us,e,v).

CS.Dec(sk, ct): Knowing sk, decrypt a ciphertext (u1,us,e,v). Compute a =
H(uy,ug,e). Verify if uf*™¥1%u32T92% = 4 Output m = euj *'u;y ** if the
condition holds, otherwise output ”reject”.

Correctness:

Verification: Since u; = ¢{ and uy = g3, we have: u
(ui'ug®)* = (97 95*)" (91" 957)"" = 'd"* = v.

Decryption: euj **uy*? = h"mg; gy " = h"mh™" = m.

T1ty1, roty2x | x:1, T2
1 Ug = Uy U

2.2 Linear Cramer-Shoup Scheme

We recall the Linear Cramer-Shoup Encryption [?]. We define three functions:
the setup function, denoted LCS.KG(), the encryption function, denoted LCS.Enc()
and the decryption function, denoted LCS.Dec().

LCS.KG(1*): Choose random generators gi, g2, g3 & G and exponents

$ T T3
T1, T2, T3, Y1, Y2, Y3, 21, 22, 23 < Ly and set ¢ < g7 g5, di < g7' g5, b1

971 93% 2 + 952952, da + g2 9%%, ho + ¢3%g5°. Choose a UOWHF H &

‘HF. The public key is pk = (g1, g2, g3, €1, C2,d1, d2, hi, hs); the secret key is
sk = (z1,T2,73,Y1, Y2, Y3, 21, 22, 23)-

LCS.Enc(pk, M): To encrypt a message M € G, using pk = (g1, g2, g3, 1, Ca,
d1,ds, hi, he). Choose random exponents r1, 9 <i Zy, and set uy < g1t ug
952, uz + g5 7" and e + Mh}'h5?; now compute a < H(uy,us,us,e) and
finally, v <= (c1d$)™ (c2d)™. The ciphertext is ¢t = (uy, ua,us, e, v).

LCS.Dec(sk, ct): Parse pk as (g1, g, g3, €1, C2, d1,da, h1, ha, H), the private key
sk as (z1, z2, T3, Y1, Y2, Ys, 21, 22, 23) and the ciphertext ct as (u1, us, us, e, v).
Compute o < H(uy,uz,uz,e) and test that uf!T*¥iyl2T v, Fstavs Ly
holds. If it does not, output "reject”.

Otherwise, compute and output M <+ e/(uj'u3?u3®).

Correctness: If the keys and encryption are generated according to the algo-

rithms above, the test in LCS.Dec is satisfied, since we have

v = (c1d})" (c2d3)"™

r1toyr T3toys\ry Totoy2 Tztoys\ra
S) '(92 g3)

= (5
_ (9;1)x1+ay1 . <g;‘2)$2+04y2 . (g§1+r2)x3+ays
=u

T1tayy To2+ay2 T3t+ays
1 " Ug U3

Next, decryption algorithm computes M as follows,

riz1 , roze (T1+T2)23

e/(“ilu?ugs) = e/(gl 92" "33)
(e)/((97'95°)" (957 95°)"™)
= (M - hi"hg?) - (hy'hy?)

= M.

Security proof of Linear Cramer-Shoup (LCS).

Theorem 1. [?]. LCS scheme is IND-CCA secure if HF is a secure UOWHF
family and if the Linear assumption holds in G.

2.3 Short Cramer-Shoup Scheme

The Short Cramer-Shoup (SCS) encryption scheme [?] is a variant of the above
Cramer-Shoup encryption scheme [?], but with one less element. It is defined as
follows, in a cyclic group G of prime order p, with a generator g, together with a

hash function H randomly drawn from a collision-resistant hash function family
HF [?] from the set {0, 1}* x G? to the set G\ {1}. We define three functions: the
setup function, denoted SCS.KG(), the encryption function, denoted SCS.Enc()
and the decryption function, denoted SCS.Dec(). We now describe how these
functions work.
SCS.KG(1*): Pick five random elements s,a,b,a’,b’ € Z,,.
Compute h = ¢°,c = g*hb,d = ga/hb/.
Return (pk, sk), where pk = (g, h,c,d, H) and sk = (s,a,b,a’,b’).
SCS.Enc(pk,m): To encrypt a message m with pk = (g, h, ¢, d, H), choose ran-
dom element r € Z,. Compute v = ¢g",e = h"m,a = H(u, e) and
v = (c(d*))". Output the ciphertext (u,e,v).
SCS.Dec’(sk,ct): To decrypt a ciphertext (u,e,v) using sk, compute a =
H(u,e). Then compute m = eu~* and check v = u®+t%'®(em =12+ Qutput
m if the condition holds, otherwise output "reject”.
Correctness.
Decryption: eu™° = g*"mg~°" = m, since u = ¢", e = h"m and h = g°.
Verification: uaJra/a(emfl)bij'a — (gr)a+a'a(gsr)b+b/a — (gaha (ga' hb/)a)r
= (c(d¥))" =v.
Security proof of Short Cramer-Shoup.
Theorem 2. [?]. The Short Cramer-Shoup (SCS) is IND-PCA under the DDH
and the collision-resistance assumptions:
AdvisPeo(t) < Advdd () + Succsd (t) +2(qp +1)/p, where g, is the number
of queries to the OPCA oracle.

S ST

3 Fast Short Cramer-Shoup

We define three functions: the setup function FSCS.KG(), the encryption func-

tion FSCS.Enc() and the decryption function FSCS.Dec().

FSCS.KG(1?): Select a cyclic group G of prime order p and a generator g.
Pick two random elements k, g € Z,, such that the size of ¢ is half of the size
of p, i.e., loga(q) = %. Compute s',t € Z, such that kp = ¢s’ + ¢ and
s = s'(mod p). Note that the size of ¢ is smaller or equal to the size of g,
ie., loga(t) < logs(q). Pick four random elements a,b,a’,b’" € Z,. Compute
g1=g%h=gc=giht d= g‘f/hb/. Choose a hash function H that hashes
messages to elements of G. Return (pk, sk), where pk = (g1, h,¢,d, H) and
sk =(q,a,b,a’,b).

FSCS.Enc(pk,m): To encrypt a message m with pk = (g1, h,c,d, H), choose
random element r € Z,. Compute v = g],e = h"m,a = H(u,e) and v =
(¢(d*))". Output the ciphertext ¢t = (u, e, v).

FSCS.Dec(sk,ct): To decrypt a ciphertext ¢t with sk = (g, a,b,a’,b"). Com-
pute a = H(u,e). Compute m = eud and verify if v = u®+t@'®(em=1)b+0'e,
Output m if the condition holds, otherwise output "reject”.

Correctness.

Decryption: eu? = ¢"mg*"? = mg" 9Tt = mg™? = m, since u = ¢°", e =
h™m and h = gt.

Verification: 0t @ (em~1)bH0'e — (gsryata’a(prybttia — (gapb(ga’pbtyayr

= (c(d*))" = v.
IND-PCA Security Proof of Fast Short Cramer-Shoup Scheme. We use
the same notions and follows the same proof technique as in [?,7].

Theorem 3. The Fast Short Cramer-Shoup (FSCS) is IND-PCA under the
DDH and the collision-resistance assumptions:

Adv}?gagc“() < Advl™ ()4 Succs (t)+2(gp+1) /p, where gy, is the number
of queries to the OPCA oracle.

The full proof is given in [?] and follows the proof of [?].

4 Fast Linear Cramer-Shoup

We define three functions: the setup function, denoted FLCS.KG(), the en-
cryption function, denoted FLCS.Enc() and the decryption function, denoted
FLCS.Dec().

FLCS.KG(1%): Choose a random generator g & G of order p and random el-

ements ki, ko, ks, q1,q2,q3, 1,22, T3, Y1, Y2, Y3 & Z, such that the size of
¢ (i € {1,2,3}) is half of the size of p, i.e., loga(q;) = %. Com-
pute si,s2,53,t1,t2,t3 € Z, such that k;p = ¢;s; +t; and 0 < 55 < p
(i € {1,2,3}) and set by = g°t, by = g°?, by = g%3, c1 b9101b§37 dy
bIPY, hy <+ gt co <+ b32D53, do <+ bY?DY®, ho < g¢"2t'3. The pub-
lic key is pk = (b1,be,bs,c1,c2,d1,da, h1,he) and the secret key is sk =
(CI17(127QB7$17$2>$3ay17y27§l/3)-

FLCS.Enc(pk, M): To encrypt a message M using pk, choose random expo-
nents 71,79 & Z,, and set uy < bI*, ug <+ b3?, ug bgl+r2 and e
MhTthi?. Now compute o <— H (uy, us, us, €) and finally, v < (c1d§)" (cadg).
The ciphertext is ct = (u1,ua,us3,e,v) € G°.

FLCS.Dec(pk, sk, ct): Parse the ciphertext ct as (uy,ug,us,e,v) € G®. Com-

T1t+ay: uarz +aya ugd +ays

pute a « H(uy,uz, us,e) and check wuj Lo It not,
q1,,92 %).

output "reject”. Otherwise, compute and output M < e(u]'ug’ui
Correctness. If the keys and encryption are generated accordmg to the algo-
rithms above, the test in FLCS.Dec is satisfied, since we then have

= (a1d})" (cads)™
= () () (b)

_ u;:ri-ayl ~u§2+ay2 . u§3+ay3

T
98111+53r3 (51y1+83y3)04) . <95212+53I3g(szyz-i-ssys)oé) 2

g%t 1(z1tay) h. (g52(91’2+ozyz))r2 . (953(13+ay3)>(T1+T2)

(z3+ays)

Next, decryption algorithm recovers the correct M,

e(u?lugﬁag"‘) =M - h;l h72“2 . b71“1(11 . bgqu . bgsqs
- M- g(tl +t3)r1 g(t2+t3)7"2gsl7"1<h 9827”2(129837“3(13
— Mgh(tlthhSl) ,gT2(t2+lZ252) . 97"3(153+Q353)
_ Mgﬁklp . grzkzp . gT3k3P
= M.

Security proof of Fast Linear Cramer-Shoup (FLCS). We now show that
the the FLCS scheme is CCA secure.

Theorem 4. The FLCS scheme is secure in the CCA sense if HF a secure
UOWHTF family and the Linear assumption hold in G.

The full proof is given in [?] and follows the proof of [?].

5 Performances Evaluation

We compare efficiency between our proposed schemes and existing ones. We
first study the complexity and the performance of the short Cramer-Shoup vari-
ant, namely Fast Short Cramer-Shoup encryption scheme (Section [3|) and Short
Cramer-Shoup encryption scheme (Section . Next, we study the complexity
and the performance of the linear construction, namely Fast Linear Cramer-
Shoup encryption scheme (Section with Linear Cramer-Shoup encryption
scheme (Section [2.2)).

In both cases (short and linear variants), we chose to compare them algo-
rithm by algorithm. Hence, we study key generation, encryption and decryption
algorithms apart. Note that the decryption algorithm is composed of two steps: a
verification and the actual decryption (for retrieving the initial message). Thus,
the full decryption algorithm is divided in two, each part corresponding to those
specific phases (verification and actual decryption).

For all algorithms, we split the study in two approaches to conduct such
comparison. The first one is relative to the theoretical complexity; we look the
number of operations needed for each algorithm. The second one is an exper-
imental study. For this, we have implemented the schemes using the C-library
GMP [?] for computing the average execution time of algorithms. In all schemes,
there are 1000 execution trials where new security parameters and messages are
randomly generated for each execution. For a complete comparison though, the
security parameters (such as prime number) and messages are the same for the
schemes. The curves shown are the average execution time for a given size of
security parameter (from 2° = 512 to 2'2 = 4096 bits). Our proposed schemes
are always represented by (black) circle points whereas standard schemes (Linear
CS and Short CS) are represented by (blue) square points.

Public Key Parameters
Number of|Short CS|Fast Short CS

Elements 4 4
Secret Key Parameters
Elements ‘ 5 ‘ 5 ‘

Table 1. Comparison of Short and Fast Short Cramer-Shoup for key parameters.

N Key Generation algorithms
-107
T T T

—&— Original
[[|—e— Fast B

6

®

Time in seconds

I I
29 910 9l1 912

Size parameter

Fig. 1. Key Generation comparison of Short and Fast Cramer-Shoup.

5.1 Short and Fast Short Cramer-Shoup

Key Generation Algorithms. We look for the differences between the key
generation algorithm of Fast Short CS (Section[3) and Short CS protocol (Sec-
tion [2.3)). Table [I] shows that our scheme has the same number of parameters
in the public and secret keys. Table [2] gives the number of parameters needed
in this phase. The most noticeable difference lies in the number of modular ex-
ponentiations. Indeed, the short version uses only 5 of them while our uses 6.
The additional exponent comes from the term g; = ¢g°; our construction implies
to use this element instead of a simple generator (as in the standard version).
This computation’s difference can be observed in Fig. [} as expected. We con-
clude that key generation is slightly slower for our proposed scheme. However,

Key Generation

Number of Short CS|Fast Short CS
Generator 1 1
Random 5 7
Multiplication 2 2
Exponentiation 5 6

Table 2. Comparison of Short and Fast Short Cramer-Shoup. We emphasize
the minimum for each row with bold.

Encryption

Number of Short CS|Fast Short CS
Random 1 1
Multiplication 2 2
Exponentiation 4 4

Table 3. Comparison of Short and Fast Short Cramer-Shoup for encryption.

Encryption algorithms
1072
T T

—&— Original
—e— Fast

41

Time in seconds

I I I
29 910 o1 912

Size parameter

Fig. 2. Encryption comparison of Short and Fast Cramer-Shoup.

this inconvenient will be greatly rewarded during the decryption algorithm. Note
that the key generation algorithm is ran only once per party thus the balance is
in favour of the Fast Short Cramer-Shoup if several messages are sent/received
with the same pair of key (i.e., the practical case).
Encryption Algorithms. We now study the encryption algorithm. Since both
schemes use the same encryption algorithm, we have the same number of oper-
ations, as it is shown in Table [3] This matches with the average execution time
given in Fig. 2|
Decryption Algorithms. Our contribution lies on a faster decryption algo-
rithm. The average execution time is given in Fig. [

The decryption algorithms are composed of two distinct phases: a verification
to check integrity of the message sent, and the actual decryption where the
message is decrypted. Note that the full decryption algorithm from the short

Decryption
Number of Short CS|Fast Short CS
Inverse 1 0
Multiplication 1 1
Exponentiation 1 1

Table 4. Comparison of Short and Fast Short Cramer-Shoup for decryption.

10-2 Full Decryption algorithms
T T T

—&— Original
[[|—e— Fast }

3k

=~

Time in seconds

I I
99 910 91l 912

Size parameter
Fig. 3. Full decryption comparison of Short and Fast Cramer-Shoup.

; Decryption phases
1072
T T T

—&— Original
—o— Fast

10

Time in seconds

I I
99 910 91l 912

Size parameter

Fig. 4. Comparison of Short and Fast Cramer-Shoup for the actual decryption.

variant of Cramer-Shoup is reversed toward the standard Cramer-Shoup. The
actual decryption is done first then the verification is computed from the message
previously retrieved.

Actual Decryption. Our construction is dedicated to improve the actual de-
cryption. There are two explanations for understanding the improvement of the
average execution time (Fig. 4) during this phase. Firstly, The number of mul-
tiplication and modular exponentiation are the same, but the number of opera-
tions is reduced for the Fast Short CS. As depicted in Table[d] there is no inverse
computation while the Short CS needs one. The second explanation lies on the
modular exponentiation itself (from a purely computational point of view).

Indeed, despite the fact that both algorithms have the same computation
there is a major difference, namely the size of the exponent. In the Fast Short
CS, the exponent ¢ has its size half of the security parameter leading to a faster
modular exponentiation.

Verification phase. Both schemes have the same verification computations
thus we have the same average execution time as shown in Fig.

) Verification phases
1072
T T T

|| —=— Original B
—o— Fast

21

w

Time in seconds

I I
99 910 91l 912

Size parameter

Fig. 5. Comparison of Short and Fast Cramer-Shoup for verification.

Verification
Number of Short CS|Fast Short CS
Inverse 1 1
Multiplication 2 2
Exponentiation 2 2

Table 5. Comparison of Short and Fast Short Cramer-Shoup for verification.

5.2 Linear and Fast Linear Cramer-Shoup

We study the complexity and average execution time of the algorithms of Linear
CS and Fast Linear CS. We compare the key generation algorithms of Linear
CS and Fast Linear CS. From Table[6] we can see that there is one less modular
exponentiation in the standard scheme. However, the fast version has two expo-
nentiations: h; = ¢"* 7% and h; = ¢g*21?, where elements ¢; are computed as the
rest of the euclidean division (recall that the equations are : k;p = ¢;s; + t; for
i =1,2,3). We have t; < ¢; where the size of ¢; is the half of the size of p. Thus
elements ¢; have in average a size half of the size of ¢; leading to smaller expo-
nentiation of h; and hs in the fast version. In addition, the fast variant has two
less multiplications than the standard scheme. The results of our experiences,

Key Generation

Number of Linear CS|Fast Linear CS
Generator 3 1
Random 9 9
Multiplication 6 4
Exponentiation 12 13

Table 6. Key Generation comparison of Linear and Fast Linear Cramer-Shoup.

Public Key Parameters
Number of|Linear CS|Fast Linear Fast CS

Elements 9 9
Secret Key Parameters
Elements ‘ 9 ‘ 9 ‘

Table 7. Key Parameters comparison of Linear and Fast Linear Cramer-Shoup.

Key Generation algorithms

015 —&— Original B
—6— Fast

Time in seconds

I I
29 910 oll 912

Size parameter

Fig. 6. Key Generation comparison of Linear and Fast Linear Cramer-Shoup.

presented in Fig. [6] confirm this slight improvement. As shown in Table [7] both
schemes have the same number of key parameters.

Encryption algorithms

T

012 e Original b
—— Fast

0.1} b

> Time ingecongds
=)
&
T

)
[
15
|
©
T

I I
99 910 91l 912

Size parameter

Fig. 7. Encryption comparison of Linear and Fast Linear Cramer-Shoup.

Encryption
Number of Linear CS|Fast Linear CS
Random 2 2
Multiplication 5 5
Exponentiation 9 9

Table 8. Comparison of Linear and Fast Linear Cramer-Shoup for encryption.

10-2 Full Decryption algorithms
T T T

[| —=— Original b
—o— Fast

6

3

Time in seconds
T

I I
99 910 91l 912

Size parameter

Fig. 8. Full Decryption comparison of Linear and Fast Linear Cramer-Shoup.

Verification
Number of Linear CS|Fast Linear CS
Multiplication 2 2
Exponentiation 3 3

Table 9. Verification comparison of Linear and Fast Linear Cramer-Shoup.

Encryption Algorithms. Both schemes use the same encryption algorithm
thus the number of operations (Table 8] is the same so as the average execution
time (Fig. [7).

Decryption Algorithms. We observe in Fig. [§] that our proposed scheme has
a faster decryption algorithm.

Verification phase. The verification is identical in both schemes. Hence they
have same execution time. The results given in Table [9] and Fig. [9] corroborate
it.

Actual Decryption. The construction of the Fast Linear CS aims at reducing
the execution time of this phase. In Table[I0] we observe that the number of mul-
tiplication and modular exponentiation are the same. However, there is no inverse
computation in the fast version unlike the standard scheme. This is the first ex-

Verification phases

1072
T T

T
| | —=— Original i}
—o— Fast

3

=

Time in seconds
o
T

I I I
29 910 ol 912

Size parameter

Fig. 9. Verification comparison of Linear and Fast Linear Cramer-Shoup.

Decryption

Number of Linear CS|Fast Linear CS
Inverse 3 0
Multiplication 3 3
Exponentiation 3 3

Table 10. Comparison of Linear and Fast Linear Cramer-Shoup for decryption.

N Decryption message phases
-10™

4 —=— Original b
—e— Fast

3l 4

Time in seconds
o
T

I I
29 910 9l1 912

Size parameter

Fig.10. Actual decryption Comparison of Linear and Fast Linear Cramer-
Shoup.

planation for the result given in Fig.[I0] This cannot be the only reason yet since
the Fast Linear CS decryption is about twice as fast as the Linear CS. Indeed,
the second explanation for such result concerns the modular explanation itself.
Recall the decryption computations of the schemes: LCS: M = e/(uj'u3?u3?)
and Fast LCS: M = e(uf'uf*ul®). The exponents z1, 29, 23 of standard scheme
are drawn from Z, while the exponents g1, g2, g3 of fast version have their size
equal to the half of the security parameter. Hence, in average, the modular ex-
ponentiation costs less from the latter elements. This conclude the study of the
actual decryption where our proposed scheme needs only half of the execution
time of the standard scheme. Yet, this important gain is relative to the full
decryption algorithm where verification phase constitutes the majority of the
execution time.

6 Conclusion

We designed two schemes to improve Short and Linear Cramer-Shoup schemes.
We prove the same security as the original schemes for our faster schemes and
under the same hypothesis. We also confirm experimentally the significant gain
in our decryption algorithms.

References

1.

10.

11.

12.

13.

14.

15.

16.

M. Abdalla, F. Benhamouda, and D. Pointcheval. Public-key encryption indistin-
guishable under plaintext-checkable attacks. Cryptology ePrint Archive, Report
2014/609, 2014.

. M. Abdalla, F. Benhamouda, and D. Pointcheval. Public-key encryption indistin-

guishable under plaintext-checkable attacks. In J. Katz, editor, Public-Key Cryp-
tography — PKC 2015, pages 332-352, Berlin, Heidelberg, 2015. Springer Berlin
Heidelberg.

anonymous. Full version our paper, 2020. https://drive.google.com/file/d/
1V-RwpHLK-sFCCOOU-QNAgwFD-sjbLVGV/view?usp=sharing.

D. Boneh and M. Franklin. Identity-based encryption from the weil pairing. STAM
J. Computing, 32(3):586—615, 2003.

R. Cramer and V. Shoup. A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In Proc. of the 18th Annual Interna-
tional Cryptology Conference on Advances in Cryptology, crypto’98, pages 1325,
1998.

R. Cramer and V. Shoup. A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. Cryptology ePrint Archive: Report
1998/006, march 1998.

B. L. D. Boneh and H. Shacham. Short signatures from the weil pairing. J.
Cryptology, 17(4):297-319, Sept. 2004.

X. B. D. Boneh and H. Shacham. Short group signatures. In In M. Franklin,
editor, Proceedings of Crypto 2004, volume 3152, pages 41-55, Aug. 2004.

T. ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. In CRYPTO, IT-81(4), volume 4, pages 469-472, 1985.

T. Granlund and the GMP development team. GNU MP: The GNU Multiple
Precision Arithmetic Library, 6.2.0 edition, 2020.

A. Joux and K. Nguyen. Separating decision diffie-hellman from computational
diffie-hellman in cryptographic groups. J. Cryptology, 16(4):239-47, Sept. 2003.
M. Naor and M. Yung. Universal one-way hash functions and their cryptographic
applications. ACM Press, May 1989.

K. Paterson. Cryptography from pairings. Cambridge University Press, 317 of
London Mathematical Society Lecture Notes:215-51, 2005.

H. Shacham. A cramer-shoup encryption scheme from the linear assumption and
from progressively weaker linear variants. Cryptology ePrint Archive, Report
2007,/074, 2007.

V. Shoup. Lower bounds for discrete logarithms and related problems. In In W.
Fumy, editor, Proceedings of Eurocrypt 1997, volume 1233 of LNCS, pages 25666,
May 1997.

D. Sow and D. Sow. A new variant of el gamal’s encryption and signatures schemes.
JP Journal of Algebra, Number Theory and Applications, 20(1):21-39, 2011.

https://drive.google.com/file/d/1V-RwpHLK-sFCC00U-QNAgwFD-sjbLVGV/view?usp=sharing
https://drive.google.com/file/d/1V-RwpHLK-sFCC00U-QNAgwFD-sjbLVGV/view?usp=sharing

	Fast Short and Fast Linear Cramer-Shoup

