Pascal Lafourcade

Léo Robert

Demba Sow
email: demba1.sow@ucad.edu.sn

Fast Fast Short

Cramer-Shoup Linear

Fast Short and Fast Linear Cramer-Shoup

Keywords: Short Cramer-Shoup, Linear Cramer-Shoup, Linear Assumption, IND-CCA, IND-PCA. -

à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

Cramer-Shoup cryptosystem was introduced in 1998 by Cramer et al. in [?]. It is an encryption scheme based on ElGamal encryption that is IND-CCA secure. In [?], a linear version of Cramer-Shoup scheme was proposed. A short Cramer-Shoup scheme was also proposed in [?]. This scheme improves the performance of Cramer-Shoup scheme by reducing the number of generators in G and the number of parameters of the keys. This scheme is also IND-PCA secure which is lower security notion than IND-CCA and stronger than IND-CPA. But applied to small messages, IND-PCA implies IND-CCA. Contributions. Our main aim is to improve the efficiency of Short and Linear Cramer-Shoup public key schemes. Our contributions are as follows:

-We design a cryptographic encryption scheme, called Fast Short Cramer-Shoup, based on the Generalized ElGamal encryption scheme [?]. We follow the spirit of Short Cramer-Shoup versions introduced in [?]. We modify the key generation and the decryption algorithm to be faster. We prove its security against Plaintext-Checking Attack (IND-PCA) under the Decisional Diffie-Hellman (DDH) and the collision-resistance assumptions.

Preliminaries

Boneh et al.

[?] introduced a Decisional assumption, called Linear, intended to take the place of DDH in groups -in particular, bilinear groups [?] -where DDH is easy. For this setting, the Linear problem has desirable properties, as they have shown: it is hard if DDH is hard, but, at least in generic groups [?], it remains hard even if DDH is easy. Let G be a cyclic multiplicative group of prime order p, and let g 1 , g 2 , and g 3 be arbitrary generators of G, we consider the following problem: Linear Problem in G: Given g 1 , g 2 , g 3 , g a 1 , g b 2 , g c 3 ∈ G as input, output yes if a + b = c and no otherwise. The advantage of an algorithm A in deciding the Linear problem in G is denoted by Adv linear A and it is equal to:

|P r[A(g 1 , g 2 , g 3 , g a 1 , g b 2 , g a+b 3) = yes : g 1 , g 2 , g 3 $ ← G, a, b $ ← Z p] -P r[A(g 1 , g 2 , g 3 , g a 1 , g b 2 , η) = yes : g 1 , g 2 , g 3 , η $ ← G, a, b $ ← Z p]
| with the probability taken over the uniform random choice of the parameters to A and over the coin tosses of A. We say that an algorithm A(t,)-decides Linear in G if A runs in time at most t, and Adv linear A is at least . Definition 1. We say that the (t,)-Decision Linear Assumption holds in G if no algorithm (t,)-decides the Decision Linear problem in G.

The Linear problem is well defined in any group where DDH is well defined. It is mainly used in bilinear groups like in [?,?,?].

Original Cramer-Shoup Scheme

We recall the original Cramer-Shoup encryption scheme presented in the eprint version [?]. It is composed of a key generation algorithm, an encryption and a decryption algorithm. The decryption algorithm consists into two algorithms one for recovering from the ciphertext the plaintext and one to check the nonmalleability of the ciphertext in order to ensure IND-CCA2 security. We define three functions: the setup function, denoted CS.KG(), the encryption function, denoted CS.Enc() and the decryption function, denoted CS.Dec(). CS.KG(1 λ): Select a group G of prime order q. Choose eight random elements:

g 1 , g 2 ∈ G and x 1 , x 2 , y 1 , y 2 , z 1 , z 2 ∈ Z q . Compute in G: c = g x1 1 g x2 2 , d = g y1 1 g y2 2 and h = g z1 1 g z2 2 .
Choose a hash function H that hashes messages to elements of Z q . Return (pk, sk) where pk = (g 1 , g 2 , c, d, h, H) and sk = (x 1 , x 2 , y 1 , y 2 , z 1 , z 2). CS.Enc(pk, M): To encrypt message m with pk = (g 1 , g 2 , c, d, h, H), choose a random element r ∈ Z q . Compute u

1 = g r 1 , u 2 = g r 2 , e = h r m, α = H(u 1 , u 2 , e) and v = c r d rα . Return the following ciphertext: (u 1 , u 2 , e, v). CS.Dec(sk, ct): Knowing sk, decrypt a ciphertext (u 1 , u 2 , e, v). Compute α = H(u 1 , u 2 , e). Verify if u x1+y1α 1 u x2+y2α 2 = v. Output m = eu -z1 1 u -z2 2
if the condition holds, otherwise output "reject". Correctness: Verification: Since u 1 = g r 1 and u 2 = g r 2 , we have:

u x1+y1α 1 u x2+y2α 2 = u x1 1 u x2 2 (u y1 1 u y2 2) α = (g x1 1 g x2 2) r (g y1 1 g y2 2) rα = c r d rα = v. Decryption: eu -z1 1 u -z2 2 = h r mg -rz1 1 g -rz2 2 = h r mh -r = m.

Linear Cramer-Shoup Scheme

We recall the Linear Cramer-Shoup Encryption [?]. We define three functions: the setup function, denoted LCS.KG(), the encryption function, denoted LCS.Enc() and the decryption function, denoted LCS.Dec().

LCS.KG(1 λ): Choose random generators g 1 , g 2 , g 3 $ ← G and exponents

x 1 , x 2 , x 3 , y 1 , y 2 , y 3 , z 1 , z 2 , z 3 $ ← Z p and set c 1 ← g x1 1 g x3 3 , d 1 ← g y1 1 g y3 3 , h 1 ← g z1 1 g z3 3 c 2 ← g x2 2 g x3 3 , d 2 ← g y2 2 g y3 3 , h 2 ← g z2 2 g z3 3 . Choose a UOWHF H $ ← HF. The public key is pk = (g 1 , g 2 , g 3 , c 1 , c 2 , d 1 , d 2 , h 1 , h 2); the secret key is sk = (x 1 , x 2 , x 3 , y 1 , y 2 , y 3 , z 1 , z 2 , z 3). LCS.Enc(pk, M): To encrypt a message M ∈ G, using pk = (g 1 , g 2 , g 3 , c 1 , c 2 , d 1 , d 2 , h 1 , h 2). Choose random exponents r 1 , r 2 $ ← Z p , and set u 1 ← g r1 1 , u 2 ← g r2 2 , u 3 ← g r1+r2 3 and e ← M h r1 1 h r2 2 ; now compute α ← H(u 1 , u 2 , u 3 , e) and finally, v ← (c 1 d α 1) r1 (c 2 d α 2) r2 . The ciphertext is ct = (u 1 , u 2 , u 3 , e, v). LCS.Dec(sk, ct): Parse pk as (g 1 , g 2 , g 3 , c 1 , c 2 , d 1 , d 2 , h 1 , h 2 , H), the private key sk as (x 1 , x 2 , x 3 , y 1 , y 2 , y 3 , z 1 , z 2 , z 3) and the ciphertext ct as (u 1 , u 2 , u 3 , e, v). Compute α ← H(u 1 , u 2 , u 3 , e) and test that u x1+αy1 1 u x2+αy2 2 u x3+αy3 3 ? = v holds. If it does not, output "reject".
Otherwise, compute and output M ← e/(u z1 1 u z2 2 u z3 3). Correctness: If the keys and encryption are generated according to the algorithms above, the test in LCS.Dec is satisfied, since we have

v = (c 1 d α 1) r1 (c 2 d α 2) r2 = (g x1+αy1 1 g x3+αy3 3) r1 • (g x2+αy2 2 g x3+αy3 3) r2 = (g r1 1) x1+αy1 • (g r2 2) x2+αy2 • (g r1+r2 3) x3+αy3 = u x1+αy1 1 • u x2+αy2 2 • u x3+αy3 3
Next, decryption algorithm computes M as follows,

e/(u z1 1 u z2 2 u z3 3) = e/(g r1z1 1 g r2z2 2 g (r1+r2)z3 3) = (e)/((g z1 1 g z3 3) r1 (g z2 2 g z3 3) r2) = (M • h r1 1 h r2 2) • (h r1 1 h r2 2) = M.
Security proof of Linear Cramer-Shoup (LCS). Theorem 1. [?]. LCS scheme is IND-CCA secure if HF is a secure UOWHF family and if the Linear assumption holds in G.

Short Cramer-Shoup Scheme

The Short Cramer-Shoup (SCS) encryption scheme [?] is a variant of the above Cramer-Shoup encryption scheme [?], but with one less element. It is defined as follows, in a cyclic group G of prime order p, with a generator g, together with a hash function H randomly drawn from a collision-resistant hash function family HF [?] from the set {0, 1} * ×G 2 to the set G\{1}. We define three functions: the setup function, denoted SCS.KG(), the encryption function, denoted SCS.Enc() and the decryption function, denoted SCS.Dec(). We now describe how these functions work. Then compute m = eu -s and check v = u a+a α (em -1) b+b α . Output m if the condition holds, otherwise output "reject". Correctness. Decryption: eu -s = g sr mg -sr = m, since u = g r , e = h r m and h = g s . Verification:

u a+a α (em -1) b+b α = (g r) a+a α (g sr) b+b α = (g a h a (g a h b) α) r = (c(d α)) r = v. Security proof of Short Cramer-Shoup.
Adv ind-pca SCS (t) ≤ Adv ddh G (t)+Succ coll H (t)+ 2(q p +1)/p
, where q p is the number of queries to the OPCA oracle.

Fast Short Cramer-Shoup

We define three functions: the setup function FSCS.KG(), the encryption function FSCS.Enc() and the decryption function FSCS.Dec(). FSCS.KG(1 λ): Select a cyclic group G of prime order p and a generator g.

Pick two random elements k, q ∈ Z p such that the size of q is half of the size of p, i.e., log 2 (q) = log2(p)

2

. Compute s , t ∈ Z p such that kp = qs + t and s ≡ s (mod p). Note that the size of t is smaller or equal to the size of q, i.e., log 2 (t) ≤ log 2 (q). Pick four random elements a, b, a , b ∈ Z p . Compute

g 1 = g s , h = g t , c = g a 1 h b , d = g a 1 h b .
Choose a hash function H that hashes messages to elements of G. Return (pk, sk), where pk = (g 1 ,h,c,d,H) and sk = (q, a, b, a , b). Output m if the condition holds, otherwise output "reject". Correctness. Decryption: eu q = g tr mg srq = mg r(sq+t) = mg rkp = m, since u = g sr , e = h r m and h = g t .

Next, decryption algorithm recovers the correct M ,

e(u q1 1 u q2 2 u q3 3) = M • h r1 1 h r2 2 • b r1q1 1 • b r2q2 2 • b r3q3 3 = M • g (t1+t3)r1 g (t2+t3)r2 g s1r1q1 g s2r2q2 g s3r3q3 = M g r1(t1+q1s1) • g r2(t2+q2s2) • g r3(t3+q3s3) = M g r1k1p • g r2k2p • g r3k3p = M.
Security proof of Fast Linear Cramer-Shoup (FLCS). We now show that the the FLCS scheme is CCA secure.

Theorem 4. The FLCS scheme is secure in the CCA sense if HF a secure UOWHF family and the Linear assumption hold in G.

The full proof is given in [?] and follows the proof of [?].

Performances Evaluation

We compare efficiency between our proposed schemes and existing ones. We first study the complexity and the performance of the short Cramer-Shoup variant, namely Fast Short Cramer-Shoup encryption scheme (Section 3) and Short Cramer-Shoup encryption scheme (Section 2.3). Next, we study the complexity and the performance of the linear construction, namely Fast Linear Cramer-Shoup encryption scheme (Section 4) with Linear Cramer-Shoup encryption scheme (Section 2.2).

In both cases (short and linear variants), we chose to compare them algorithm by algorithm. Hence, we study key generation, encryption and decryption algorithms apart. Note that the decryption algorithm is composed of two steps: a verification and the actual decryption (for retrieving the initial message). Thus, the full decryption algorithm is divided in two, each part corresponding to those specific phases (verification and actual decryption).

For all algorithms, we split the study in two approaches to conduct such comparison. The first one is relative to the theoretical complexity; we look the number of operations needed for each algorithm. The second one is an experimental study. For this, we have implemented the schemes using the C-library GMP [?] for computing the average execution time of algorithms. In all schemes, there are 1000 execution trials where new security parameters and messages are randomly generated for each execution. For a complete comparison though, the security parameters (such as prime number) and messages are the same for the schemes. The curves shown are the average execution time for a given size of security parameter (from 2 9 = 512 to 2 12 = 4096 bits). Our proposed schemes are always represented by (black) circle points whereas standard schemes (Linear CS and Short CS) are represented by (blue) square points.

Short and Fast Short Cramer-Shoup

Key Generation Algorithms. We look for the differences between the key generation algorithm of Fast Short CS (Section 3) and Short CS protocol (Section 2.3). Table 1 shows that our scheme has the same number of parameters in the public and secret keys. Table 2 gives the number of parameters needed in this phase. The most noticeable difference lies in the number of modular exponentiations. Indeed, the short version uses only 5 of them while our uses 6.

The additional exponent comes from the term g 1 = g s ; our construction implies to use this element instead of a simple generator (as in the standard version). This computation's difference can be observed in Fig. 1, as expected. We conclude that key generation is slightly slower for our proposed scheme. However, this inconvenient will be greatly rewarded during the decryption algorithm. Note that the key generation algorithm is ran only once per party thus the balance is in favour of the Fast Short Cramer-Shoup if several messages are sent/received with the same pair of key (i.e., the practical case). Encryption Algorithms. We now study the encryption algorithm. Since both schemes use the same encryption algorithm, we have the same number of operations, as it is shown in Table 3. This matches with the average execution time given in Fig. 2. Decryption Algorithms. Our contribution lies on a faster decryption algorithm. The average execution time is given in Fig. 3. The decryption algorithms are composed of two distinct phases: a verification to check integrity of the message sent, and the actual decryption where the message is decrypted. Note that the full decryption algorithm from the short

Decryption Number of Short CS Fast Short CS Inverse 1 0 Multiplication 1 1 Exponentiation 1 1
Table 4. Comparison of Short and Fast Short Cramer-Shoup for decryption. Actual Decryption. Our construction is dedicated to improve the actual decryption. There are two explanations for understanding the improvement of the average execution time (Fig. 4) during this phase. Firstly, The number of multiplication and modular exponentiation are the same, but the number of operations is reduced for the Fast Short CS. As depicted in Table 4, there is no inverse computation while the Short CS needs one. The second explanation lies on the modular exponentiation itself (from a purely computational point of view).

Indeed, despite the fact that both algorithms have the same computation there is a major difference, namely the size of the exponent. In the Fast Short CS, the exponent q has its size half of the security parameter leading to a faster modular exponentiation.

Verification phase. Both schemes have the same verification computations thus we have the same average execution time as shown in Fig. 5. Table 5. Comparison of Short and Fast Short Cramer-Shoup for verification.

Linear and Fast Linear Cramer-Shoup

We study the complexity and average execution time of the algorithms of Linear CS and Fast Linear CS. We compare the key generation algorithms of Linear CS and Fast Linear CS. From Table 6, we can see that there is one less modular exponentiation in the standard scheme. However, the fast version has two exponentiations: h 1 = g t1+t3 and h 1 = g t2+t3 , where elements t i are computed as the rest of the euclidean division (recall that the equations are : k i p = q i s i + t i for i = 1, 2, 3). We have t i ≤ q i where the size of q i is the half of the size of p. Thus elements t i have in average a size half of the size of q i leading to smaller exponentiation of h 1 and h 2 in the fast version. In addition, the fast variant has two less multiplications than the standard scheme. The results of our experiences, Fig. 6. Key Generation comparison of Linear and Fast Linear Cramer-Shoup.

presented in Fig. 6, confirm this slight improvement. As shown in Table 7 both schemes have the same number of key parameters. Encryption Algorithms. Both schemes use the same encryption algorithm thus the number of operations (Table 8) is the same so as the average execution time (Fig. 7). Decryption Algorithms. We observe in Fig. 8 that our proposed scheme has a faster decryption algorithm. Verification phase. The verification is identical in both schemes. Hence they have same execution time. The results given in Table 9 and Fig. 9 corroborate it.

Actual Decryption. The construction of the Fast Linear CS aims at reducing the execution time of this phase. In Table 10, we observe that the number of multiplication and modular exponentiation are the same. However, there is no inverse computation in the fast version unlike the standard scheme. This is the first ex-

 SCS.KG(1 λ): Pick five random elements s, a, b, a , b ∈ Z p . Compute h = g s , c = g a h b , d = g a h b . Return (pk, sk), where pk = (g, h, c, d, H) and sk = (s, a, b, a , b). SCS.Enc(pk, m): To encrypt a message m with pk = (g, h, c, d, H), choose random element r ∈ Z p . Compute u = g r , e = h r m, α = H(u, e) and v = (c(d α)) r . Output the ciphertext (u, e, v). SCS.Dec (sk, ct): To decrypt a ciphertext (u, e, v) using sk, compute α = H(u, e).

Theorem 2 .

 2 [?]. The Short Cramer-Shoup (SCS) is IND-PCA under the DDH and the collision-resistance assumptions:

 FSCS.Enc(pk, m): To encrypt a message m with pk = (g 1 , h, c, d, H), choose random element r ∈ Z p . Compute u = g r 1 , e = h r m, α = H(u, e) and v = (c(d α)) r . Output the ciphertext ct = (u, e, v).FSCS.Dec(sk, ct):To decrypt a ciphertext ct with sk = (q, a, b, a , b). Compute α = H(u, e). Compute m = eu q and verify if v = u a+a α (em -1) b+b α .

Fig. 1 .

 1 Fig. 1. Key Generation comparison of Short and Fast Cramer-Shoup.

Fig. 2 .

 2 Fig. 2. Encryption comparison of Short and Fast Cramer-Shoup.

Fig. 3 .

 3 Fig. 3. Full decryption comparison of Short and Fast Cramer-Shoup.

Fig. 4 .

 4 Fig. 4. Comparison of Short and Fast Cramer-Shoup for the actual decryption.

Fig. 5 .

 5 Fig. 5. Comparison of Short and Fast Cramer-Shoup for verification.

Fig. 9 .

 9 Fig. 9. Verification comparison of Linear and Fast Linear Cramer-Shoup.

Table 1 .

 1 Comparison of Short and Fast Short Cramer-Shoup for key parameters.

		Public Key Parameters
	Number of Short CS Fast Short CS
	Elements	4	4
		Secret Key Parameters
	Elements	5	5

Table 2 .

 2 Comparison of Short and Fast Short Cramer-Shoup. We emphasize the minimum for each row with bold.

		Key Generation
	Number of	Short CS Fast Short CS
	Generator	1	1
	Random	5	7
	Multiplication	2	2
	Exponentiation	5	6

Table 3 .

 3 Comparison of Short and Fast Short Cramer-Shoup for encryption.

		•10 -2	Encryption algorithms
			Original	
			Fast	
	Time in seconds	2 4		
		0		
		2 9	2 10	2 11	2 12
			Size parameter

Table 6 .

 6 Key Generation comparison of Linear and Fast Linear Cramer-Shoup.

		Key Generation
	Number of	Linear CS Fast Linear CS
	Generator	3	1
	Random	9	9
	Multiplication	6	4
	Exponentiation	12	13

Table 7 .

 7 Key Parameters comparison of Linear and Fast Linear Cramer-Shoup.

		Key Generation algorithms	
	0.15	Original Fast		
	5 • 10 -2 0.1 Time in seconds			
	0			
	2 9	2 10	2 11	2 12
		Size parameter	

Table 8 .

 8 Encryption comparison of Linear and Fast Linear Cramer-Shoup. Comparison of Linear and Fast Linear Cramer-Shoup for encryption. Full Decryption comparison of Linear and Fast Linear Cramer-Shoup.

		Encryption algorithms
	0.12	Original	
	0.1	Fast	
	8 • 10 -2 Time in seconds		
			Size parameter
	Fig. 7. Encryption
	Number of	Linear CS Fast Linear CS
	Random		2	2
	Multiplication	5	5
	Exponentiation	9	9

Table 9 .

 9 Verification comparison of Linear and Fast Linear Cramer-Shoup.

Conclusion

We designed two schemes to improve Short and Linear Cramer-Shoup schemes. We prove the same security as the original schemes for our faster schemes and under the same hypothesis. We also confirm experimentally the significant gain in our decryption algorithms.

Verification: u a+a α (em -1) b+b α = (g sr) a+a α (h r) b+b α = (g a 1 h b (g a 1 h b) α) r = (c(d α)) r = v. IND-PCA Security Proof of Fast Short Cramer-Shoup Scheme. We use the same notions and follows the same proof technique as in [?,?].

Theorem 3. The Fast Short Cramer-Shoup (FSCS) is IND-PCA under the DDH and the collision-resistance assumptions:

Adv ind-pca F SCS (t) ≤ Adv ddh G (t)+Succ coll H (t)+2(q p +1)/p, where q p is the number of queries to the OPCA oracle.

The full proof is given in [?] and follows the proof of [?].

Fast Linear Cramer-Shoup

We define three functions: the setup function, denoted FLCS.KG(), the encryption function, denoted FLCS.Enc() and the decryption function, denoted FLCS.Dec().

FLCS.KG(1 λ): Choose a random generator g $ ← G of order p and random el-

and the secret key is sk = (q 1 , q 2 , q 3 , x 1 , x 2 , x 3 , y 1 , y 2 , y 3). 1 u q2 2 u q3 3). Correctness. If the keys and encryption are generated according to the algorithms above, the test in FLCS.Dec is satisfied, since we then have

Table 10. Comparison of Linear and Fast Linear Cramer-Shoup for decryption. planation for the result given in Fig. 10. This cannot be the only reason yet since the Fast Linear CS decryption is about twice as fast as the Linear CS. Indeed, the second explanation for such result concerns the modular explanation itself.

Recall the decryption computations of the schemes: LCS: M = e/(u z1 1 u z2 2 u z3 3) and Fast LCS: M = e(u q1 1 u q2 2 u q3 3). The exponents z 1 , z 2 , z 3 of standard scheme are drawn from Z p while the exponents q 1 , q 2 , q 3 of fast version have their size equal to the half of the security parameter. Hence, in average, the modular exponentiation costs less from the latter elements. This conclude the study of the actual decryption where our proposed scheme needs only half of the execution time of the standard scheme. Yet, this important gain is relative to the full decryption algorithm where verification phase constitutes the majority of the execution time.