
HAL Id: hal-03419423
https://hal.science/hal-03419423

Submitted on 8 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast Cramer-Shoup Cryptosystem
Pascal Lafourcade, Léo Robert, Demba Sow

To cite this version:
Pascal Lafourcade, Léo Robert, Demba Sow. Fast Cramer-Shoup Cryptosystem. 18th Inter-
national Conference on Security and Cryptography, SECRYPT 2021, Jul 2021, Online, France.
�10.5220/0010580607660771�. �hal-03419423�

https://hal.science/hal-03419423
https://hal.archives-ouvertes.fr

Fast Cramer-Shoup Cryptosystem

Pascal Lafourcade1 a, Léo Robert1 b and Demba Sow2 c

1Université Clermont Auvergne, LIMOS CNRS (UMR 6158), Campus des Cézeaux, Aubière, France
2LACGAA, Université Cheikh Anta Diop de Dakar, Sénégal

{pascal.lafourcade, leo.robert}@uca.fr, demba1.sow@ucad.edu.sn

Keywords: Public Key Encryption, Cramer-Shoup, IND-CCA2.

Abstract: Cramer-Shoup was the first practical adaptive CCA-secure public key encryption scheme. We propose a faster
version of this encryption scheme, called Fast Cramer-Shoup. We show empirically and theoretically that
our scheme is faster than three versions proposed by Cramer-Shoup in 1998. We observe an average gain of
60% for the decryption algorithm. We prove the IND-CCA2 security of our scheme. The proof only relies on
intractability assumptions like DDH.

1 Introduction

Provable security is an important issue in mod-
ern cryptography. It allows us to formally prove the
security of the encryption schemes by reduction to
difficult problems such as discrete logarithm prob-
lem (DL), Computational Decisional Diffie-Hellman
problem (CDH), Decision Diffie-Hellman problem
(DDH) (Boneh, 1998; Joux and Guyen, 2006) or the
quadratic residuosity problem. For instance, the DDH
problem is used to prove the IND-CPA security of the
ElGamal encryption scheme (Elgamal, 1985). In or-
der to have security against adaptive chosen ciphertext
attacks (IND-CCA2), a notion introduced in 1991 by
Dolev et al. (Dolev et al., 1991), Cramer and Shoup
proposed in 1998 an encryption scheme (Cramer and
Shoup, 1998) that has a verification mechanism in the
decryption algorithm to avoid malleability of the ci-
phertext and also uses one hash function.

Fujisaki and Okamoto in (Fujisaki and Okamoto,
1999) proposed a generic conversion from any IND-
CPA cryptosystem into an IND-CCA2 one, in the
random oracle model (ROM) (Bellare and Rogaway,
1993). However the design of an IND-CCA2 encryp-
tion scheme is not easy, as the story of Optimal Asym-
metric Encryption Padding (OAEP) (Bellare and Rog-
away, 1994; Pointcheval, 2011) can show. After a first
try by Bellare and Rogaway (Bellare and Rogaway,
1994) in 1995, V. Shoup found a problem in (Shoup,

a https://orcid.org/0000-0002-4459-511X
b https://orcid.org/0000-0002-9638-3143
c https://orcid.org/0000-0002-1917-2051

2001), that was fixed in (Phan and Pointcheval, 2004;
Pointcheval, 2011). Finally to conclude the story of
OAEP, an computer verified proof has been made
in (Barthe et al., 2011).

Our goal is to design a faster version of Cramer-
Shoup scheme. For this, we use the approach pro-
posed in (Sow and Sow, 2011) to improve the decryp-
tion algorithm of ElGamal (Elgamal, 1985).

Contributions: Our main aim is to improve the ef-
ficiency of the Cramer-Shoup public key scheme:
1. We design a public key cryptosystem, called Fast

Cramer-Shoup, based on the Generalized ElGa-
mal encryption scheme (Sow and Sow, 2011).

2. We implemented all these schemes with
GMP (Granlund, 2020) to demonstrate that
Fast Cramer-Shoup is the fastest one with a gain
of 60% for decryption algorithm .

3. We prove its security against the adaptive chosen
ciphertext attack (IND-CCA2) under the (DDH)
assumption.

Related works: Shoup and Gennaro (Shoup and
Gennaro, 1998) give two ElGamal-like practical
threshold cryptosystems that are secure against adap-
tive chosen ciphertext attack in the random oracle
model. They use H(hr)⊕m to encrypt the message
m, unfortunately the trick of Sow et al. (Sow and Sow,
2011) cannot be applied in this case.

In (Cramer and Shoup, 2002), the authors pro-
posed a construction by considering an algebraic
primitive called universal hash proof systems. They

showed that this framework yields not only the origi-
nal DDH-based Cramer-Shoup’s scheme but also en-
cryption schemes based on quadratic residuosity and
on Paillier’s assumption (Paillier, 1999).

In 2011, a modified variant of ElGamal’s encryp-
tion scheme was presented (Sow and Sow, 2011),
and it is called Generalized ElGamal’s encryption
scheme. This version is faster than ElGamal, encryp-
tion algorithm is the same as ElGamal’s encryption
mechanism, the key generation algorithm is slower
but the decryption process is faster. We adapt this idea
to improve Cramer and Shoup’s encryption scheme.

Outline: In Section 2, we propose our public key
cryptosystem, called Fast Cramer-Shoup. In Sec-
tion 3, we present the result of our empirically per-
formance comparison and our complexity analysis for
the key generation, encryption and decryption algo-
rithms for all versions of Cramer-Shoup.

2 Fast Cramer-Shoup’s Encryption
Scheme

We present our Fast Cramer-Shoup’s scheme and
prove that it is IND-CCA2 secure. Let us recall some
notions and definitions like the set of non-negative in-
tegers Z≥0, a security parameter λ, a group descrip-
tion Γ, a computational group scheme G , a probabil-
ity distribution of group descriptions Sλ, hash func-
tions (HF), target collision resistant (TCR) assump-
tion for hash function (HF), some random variables
as Coins used in the following are defined in (Cramer
and Shoup, 2003) (see also (Naor and Yung, 1989)).

Fast Key Generation Algorithm:
G1 : On input 1λ for λ∈Z≥0, select a group Ĝ, along

with a prime-order subgroup G and choose a gen-
erator g2 ∈ G of order q.

G2 : Pick random elements x,y,k, t ∈ Zq with
log2(t) =

log2(q)
2 , and compute w′,z∈Zq such that

kq = tw′+ z and then compute w≡ w′(mod q).
G3 : Compute g1 = gw

2 ,c = gwx
2 ,d = gwy

2 and h = gz
2.

G4 : Choose a hash function H R←HF.
G5 : Return (pk,sk), where pk = (Γ,H,g1,c,d,h)

and sk = (Γ,H, t,x,y,z).

Fast Encryption Algorithm:
E1 : Choose a random element r ∈ Zq and compute,
E2 : u1 = gr

1; E3 :u2 = gr
2;E4 :u3 = hr;E5 :e = u3m;

E6 : α = H(u1,u2,e);
E7 : v = crdrα and output ψ = (u1,u2,e,v).

Fast Decryption Algorithm:
D1 : Parse ψ← (u1,u2,e,v) ∈ G4; output reject if ψ

is not of this form.
D2′ : Test if u1 and u2 belong to G; reject otherwise.
D3 : Compute α = H(u1,u2,e).
D4′ : Test if ut

1uz
2 = 1 and v= ux+yα

1 ; otherwise reject.
D5′ : Compute β = ut

1; D6 : Output m = βe.

Correctness Verification: We have βuz
2 = ut

1uz
2 =

(gr
1)

tgrz
2 = (gwr

2)tgrz
2 = gr(tw+z)

2 = grkq
2 = 1 since the

order of g2 is q and ux+yα

1 = (gr
1)

x+yα = (gwr
2)x+yα =

(gwx
2)r(gwy

2)rα = crdrα = v.
Decryption: The decryption message is βe =

ut
1e = gwrt

2 gzr
2 m = gr(tw+z)

2 m = grkq
2 m = m, since the

order of g2 is q.

2.1 Security Proof of Fast
Cramer-Shoup Scheme

As CS1’s proof in (Cramer and Shoup, 2003), to
prove that Fast Cramer-Shoup (FCS) is secure against
adaptive chosen ciphertext attack if the DDH assump-
tion holds for G and the TCR assumption holds for
HF, we need some notions.

Suppose PKE is a public-key encryption scheme
that uses a group scheme in the following natural
way: on input 1λ, the key generation algorithm runs
the sampling algorithm of the group scheme on in-
put 1λ, yielding a group description Γ. For a given
probabilistic, polynomial-time oracle query machine
A ,λ ∈ Z≥0, and group description Γ, let us define
AdvCCAPKE,A(λ|Γ) to be A’s advantage in an adap-
tive chosen ciphertext attack where the key generation
algorithm uses the given value of Γ, instead of running
the sampling algorithm of the group scheme. For all
probabilistic, polynomial-time oracle query machines
A , for all λ ∈ Z≥0, let QA(λ) be an upper bound on
the number of decryption oracle queries made by A
on input 1λ. We assume that QA(λ) is a strict bound
in the sense that it holds regardless of the probabilis-
tic choices of A , and regardless of the responses to its
oracle queries from its environment.
Theorem 2.1. The Fast Cramer-Shoup is secure
against adaptive chosen ciphertext attack if:
1. the DDH assumption holds for G;
2. and the target collision resistance (TCR) assump-

tion holds for HF.
In particular, for all probabilistic, polynomial-time
oracle query machines A , for all λ ∈ Z≥0, and all
Γ[Ĝ,G,g2,q] ∈ [Sλ], we have∣∣AdvCCAFCS,A(λ|Γ)−AdvCCACS1,A(λ|Γ)

∣∣≤QA(λ)/q.
(1)

Description of games: Suppose that pk =
(Γ,H,g1,c,d,h) and sk = (Γ,H, t,x,y,z). Let
w = logg2

g1, and define x,y,z ∈ Zq as follows:
x = x1 + x2w, y = y1 + y2w and z = z1 + z2w. We
have x = loggw

2
c, y = loggw

2
d, and z = logg2

h.
As a notation convention, whenever a particular

ciphertext is under consideration in some context, the
following values are also implicitly defined in that
context: u1,u2,u3,e,v∈G where ψ=(u1,u2,e,v) and
u3 = uz

2; the random r ∈ Zq, where r = loggw
1

u1.
For the target ciphertext ψ∗, we also denote by

u∗1,u
∗
2,u
∗
3,e
∗,v∗ ∈ G and r∗ ∈ Zq the corresponding

values. The probability space defining the attack
game is then determined by the following, mutually
independent, random variables: the coin tosses Coins
of A ; the values H,w,x1,x2,y1,y2,z1,z2 generated by
the key generation algorithm; the values σ ∈ {0,1}
and r∗ ∈ Zq generated by the encryption oracle.

G0 : Original attack game, let σ̂ ∈ {0,1} be
the output of A and T0 the event σ = σ̂, so
AdvCCAFCS,A(λ|Γ) = |Pr[T0]−1/2|

G1 : We now modify game G0 to obtain game G1.
These two games are identical, except that instead of
using the encryption algorithm as given to compute
the target ciphertext ψ∗, we use a modified encryption
algorithm, in which steps E4 and E7 are replaced by
E4′ :u3 = uz

2 and E7′ :v = ux+yα

1 . The change we have
made is purely conceptual. The values of u∗3 and v∗

are exactly the same in game G1 as they were in G0
so Pr[T1] = Pr[T0]

G2 : We modify the encryption oracle, replacing
step E3 by E3′ : r̂ R← Zq \{r};u2← gr̂

2

Lemma 2.2. There exists a probabilistic algorithm
A1, whose running time is essentially the same as that
of A , such that

|Pr[T2]−Pr[T1]| ≤ AdvDDHG ,A1(λ|Γ)+3/q. (2)

G3 : We modify the decryption algorithm, replac-
ing steps D4 and D5 with D4′ : Test if u1 = uw

2 and
v = ux+yα

1 ; output reject and halt if this is not the
case. D5′ :u3 = uz

2. Note that the decryption ora-
cle now make use of w, but does not make use of
x1,x2,y1,y2,z1,z2, except indirectly through the val-
ues x,y,z. Now, let R3 be the event that in game G3,
some ciphertext ψ is submitted to the decryption or-
acle that is rejected in step D4′ but that would have
passed the test in step D4. Note that if a ciphertext
passes the test in D4′, it would also have passed the
test in D4. It is clear that games G2 and G3 proceed
identically until the event R3 occurs. In particular, the
events T2 ∧¬R3 and T3 ∧¬R3 are identical. So by
difference lemma |Pr[T3]−Pr[T2]| ≤ Pr[R3], and so
it suffices to bound Pr[R3]. We introduce auxiliary
games G4 and G5 below to do this.

G4 : We replace step E5 by E5′ : r R← Zq;e← gγ

so Pr[T4] = 1/2, since in game G4, the variable σ is
never used. Define the event R4 to be the event in
game G4 analogous to the event R3 in game G3; that
is, R4 is the event that in game G4, some ciphertext ψ

is submitted to the decryption oracle that is rejected
in step D4′ but that would have passed the test in step
D4. We show that this modification has no effect;
more precisely: Pr[T4] = Pr[T3], and pr[r4] = pr[r3]

G5. We modify the decryption oracle with a spe-
cial rejection rule: if the adversary submits a ci-
phertext ψ for decryption at a point in time after
the encryption oracle has been invoked, such that
(u1,u2,e) 6= (u∗1,u

∗
2,e
∗) but α = α∗, then the decryp-

tion oracle immediately outputs reject and halts (be-
fore executing step D4′). to analyze this game, we
define two events. first, we define the event C5 to be
the event that the decryption oracle in game G5 re-
jects a ciphertext using the special rejection rule. We
define the event R5 to be the event in game G5 that
some ciphertext ψ is submitted to the decryption or-
acle that is rejected in step D4′ but that would have
passed the test in step D4. note that such a cipher-
text is not rejected by the special rejection rule, since
that rule is applied before step D4′ is executed. Now,
it is clear that games G4 and G5 proceed identically
until event C5 occurs. By difference lemma, we have
|Pr[R5]−Pr[R4]| ≤ Pr[C5]. Now, if event C5 occurs
with non-negligible probability, we immediately get
an algorithm that contradicts the target collision re-
sistance assumption;

Lemma 2.3. There exists a probabilistic algorithm
A2, whose running time is essentially the same as that
of A , such that:

Pr[C5]≤ AdvTCRHF,A2(λ|Γ)+1/q. (3)

Finally, we show that R5 occurs with negligible
probability, based on information theoretic consider-
ations: we have Pr[R5]≤ QA(λ)/q.

Theorem 2.1. To prove this theorem, let us fix A , λ,
and Γ[Ĝ,G,g2,q]. Consider the attack game G0 as
defined above (or see §6.2 in (Cramer and Shoup,
2003)). This is the game that attacker A plays against
the scheme FCS for the given values of λ and Γ. We
adopt all the notations conventions established at the
beginning of §6.2 in (Cramer and Shoup, 2003). We
now modify game G0 to obtain a new game GFCS.

GameFCS. In this game, we modify the decryp-
tion oracle so that in place of steps D4 and D5 in
CS1, we execute steps D4′ and D5′ as in the scheme
FCS. (Note that in the FCS encryption algorithm the
random parameter generated is r instead of u in CS1
scheme. So the parameter u∗ in CS1 corresponds

to r∗ here). We emphasize that in game GFCS, we
have x = x1 + x2w,y = y1 + y2w, and z = z1 + z2w,
where w,x1,x2,y1,y2,z1, and z2 are generated by the
key generation algorithm of CS1.

Let TFCS be the event that σ = σ′ in game GFCS.
We remind the reader that games G0 and GFCS all op-
erate on the same underlying probability space: all
of the variables Coins,H,w,x1,x2,y1,y2,z1,z2,σ,r∗

that ultimately determine the events T0, and TFCS
have the same values in games G0 and GFCS; all
that changes is the functional behavior of the de-
cryption oracle. It is straightforward to verify that
AdvCCAFCS,A(λ|Γ) = |Pr[TFCS]−1/2|

Let us define the event RFCS to be the event that
some ciphertext is rejected in game GFCS in step D4′
that would have passed the test in D4 in CS1 scheme
in (Cramer and Shoup, 2003). It is clear that games
G0 and GFCS all proceed identically until event RFCS
occurs. In particular, we have the events T0∧¬RFCS,
and TFCS ∧ ¬RFCS are identical. So by difference
lemma, we have |Pr[T0]−Pr[TFCS]| ≤ Pr[RFCS]. So it
suffices to show that Pr[RFCS]≤QA(λ)/q. To do this,
for 1 ≤ i ≤ QA(λ), let R(i)

FCS be the event that there is
an ith ciphertext submitted to the decryption oracle in
game GFCS, and that this ciphertext is rejected in step
D4′, but would have passed the test in step D4 in CS1
scheme in (Cramer and Shoup, 2003). The bound will
follow immediately from the following lemma.

Lemma 2.4. For all 1 ≤ i ≤ QA(λ), we have
Pr[R(i)

FCS]≤ 1/q.

Proof. The proof of this lemma is almost identical to
Lemma 10 in (Cramer and Shoup, 2003). Note that
in game GFCS, the encryption oracle uses the ”real”
encryption algorithm, and so itself does not leak any
additional information about (x1,x2,y1,y2). This is in
contrast to game G5, where the encryption oracle does
leak additional information.

Fix 1≤ i≤ QA(λ). Consider the quantities: X :=
(Coins,H,w,z,σ,r∗) and X ′ := (x,y). The values of X
and X ′ completely determine the adversary’s entire
behavior in game G5, and hence determine if there
is an ith decryption oracle query, and if so, the value
of the corresponding ciphertext. Let us call X and
X ′ relevant if for these values of X and X ′, there is
an ith decryption oracle query, and the correspond-
ing ciphertext passes steps D1 and D2 in CS1 scheme
in (Cramer and Shoup, 2003).

It will suffice to prove that conditioned on any
fixed, relevant values of X and X ′, the probability that
R(i)

FCS occurs is bounded by 1/q. The remainder of the
argument is exactly as in Lemma 10 in (Cramer and

29 210 211 212

0

2 ·10−2

4 ·10−2

6 ·10−2

8 ·10−2

0.1

Size parameter

Ti
m

e
in

se
co

nd
s

Key Generation Algorithms

Original
Standard
Efficient

Fast

Figure 1: Average execution time for key generation algo-
rithms depending of the security parameter size.

Key Generation
Number of Original Standard Efficient Fast
Generator 2 2 111 111
Random 6 5 444 444
Multiplication 3 2 000 3
Exponentiation 6 5 444 444

Table 1: Comparison of Original, Standard, Efficient and
Fast Cramer-Shoup (minimum in bold).

Shoup, 2003), except using X , X ′, and the notion of
relevant as defined here.

3 Performances Evaluation

We study the complexity and the performance of
Fast Cramer-Shoup encryption scheme with the fol-
lowing variants of Cramer-Shoup encryption scheme:
Original CS, Standard CS, Efficient CS, Fast Cramer-
Shoup protocols. We study the number of operations
performed for key generation, encryption and decryp-
tion. We present complexity results in Table 1 to Ta-
ble 3. We also implemented those with the library
GMP (Granlund, 2020).

The tests are performed with security parameters
of size 512, 1024, 2048 and 4096 bits. The average
execution time of all schemes is carried out under the
same conditions in terms of generation of the values
and sizes of the security parameters. Indeed, given
the size of a security parameter, we perform 1000 tri-
als with new parameters: a prime number and some
random plaintexts that are generated for each trial.
Then, we measure the execution time during one ex-
ecution of each algorithm. Finally, we compute the
mean value for each algorithm (we do not present the
corresponding standard deviations since they are very
low).

Key Generation Algorithms. By studying the
complexity of the key generation algorithm of Ta-
ble 1, we notice that Fast CS and Efficient CS are the

Public Key Parameters
Number of Original Standard Efficient Fast
Elements 555 555 555 555

Secret Key Parameters
Elements 6 5 444 444

Table 2: Comparison for key parameters.

fastest in terms of number of operations. The differ-
ence lies in the multiplication where Fast CS has three
of them while Efficient CS has none. One would ex-
pect a longer execution time for Fast CS but this is
not the case (Figure 1). It can be explained by the fact
that the Fast CS key generation algorithm computes
an Euclidean division leading to kq = wt + z where k
is generated in Zq. Hence its size is the same as q but t
is generated in Z∗√q and its size is half of q. Since z is
the remainder of the euclidean division, its order size
is the same as t. Thus the cost for computing h = gz is
half of the cost for computing h = gz where z has an
order size equal to the size of q. This gain seems to
be compensated with the three additional multiplica-
tions. To conclude for key generation, the two fastest
algorithms are Efficient CS and Fast CS, while the two
slowest are Original CS and Standard CS. Moreover,
the number of secret parameters are also in favour of
Efficient CS and Fast CS as depicted in Table 2.

Encryption Algorithms. We can see that all
schemes have the same number of exponents, multi-
plication and generation of random number in the en-
cryption algorithm. Thus the average execution time
is the same. We observe empirically that timings are
equal for all protocols since the number of computa-
tions are equals. In all protocols, the ciphertexts are
mainly computed with parameters of the same order
size. We do not give the curve results since the aver-
age execution time is the same in all cases.

Decryption Algorithms. We observe in Figure 2a
that the fastest is Fast Cramer-Shoup followed by Ef-
ficient CS which is not obvious when we are looking
at the number of total computations.

Indeed there are two components in this algo-
rithm, the verification phase and the actual decryp-
tion. The verification is used for checking the in-
tegrity of messages if the outputs are valid and the de-
cryption computation is executed leading to retrieve
the plaintext. In Figure 2a, we observe that Fast
Cramer-Shoup has a faster execution time. For verifi-
cation phase, we observe in Figure 2b that the average
execution time of the Fast CS and Efficient CS proto-
cols have the same average execution time. In both
cases the second verification is the same. The differ-
ence is then on the first verification. The Efficient CS
protocol uses one modular exponent, uw

1 = u2; while

Verification
Number of Original Standard Efficient Fast
Sum 2 2 111 111
Multiplication 3 3 111 2
Exponentiation 222 222 222 3

Decryption
Number of Original Standard Efficient Fast
Inverse 2 1 1 000
Multiplication 2 111 111 111
Exponentiation 2 1 1 000

Table 3: Comparison for decryption algorithms.

ours uses two modular exponents, βuz
2 = uw

1 uz
2 = 1.

Despite the result given in Table 3, there is actually no
difference between those two computations in terms
of execution time since elements t and z of Fast CS
have their size equal to half the size of w in the Ef-
ficient CS. Hence, the overall execution time for the
verification of our protocol Fast CS is the same as Ef-
ficient CS protocol. For the decryption phase, it is
clear that Fast CS protocol is faster than Original for
decryption since the number of exponents is reduced.
We can also say from Table 3 that Fast CS is faster
than Standard CS and Efficient CS at decryption. We
observe in Figure 2c that Standard CS and Efficient
CS have the same execution time. This result is ex-
pected since they both use the same computation with
the same elements size, i.e., eu−z

1 = m. The latter
computation uses one exponentiation and one inver-
sion to end with a multiplication. The Fast Cramer-
Shoup decryption algorithm requires to recover m as
follows βe=m where β has been computed in the ver-
ification phase. Thus, the decryption consists of only
one multiplication. The gain comes from the fact that
we have one inverse less to compute, and also one
exponentiation less to compute. The gain of the over-
all execution time of decryption phase for our proto-
col is more than 60%. Note that the curve related to
Fast Cramer-Shoup is not zero but since this curve is
composed of only one multiplication, the comparison
with a modular exponent, an inversion and a multipli-
cation, is in favor of the stand alone multiplication.

4 Conclusion

We propose an IND-CCA2 Public Key cryptosys-
tem called Fast Cramer-Shoup. It is an improvement
of Cramer-Shoup scheme. We prove the IND-CCA2
security of this new scheme. We also implement in
GMP (Granlund, 2020) our scheme to compare it to
Cramer-Shoup schemes. In the future, we aim at ap-
plying our technique to other schemes that are based
on Cramer-Shoup like for instance (Kurosawa and
Trieu Phong, 2014; Abdalla et al., 2015).

29 210 211 212

0

2

4

6

8

·10−2

Size parameter

Ti
m

e
in

se
co

nd
s

Full Decryption algorithms

Original
Standard
Efficient

Fast

(a) Full decryption.

29 210 211 212

0

2

4

·10−2

Size parameter

Ti
m

e
in

se
co

nd
s

Verification algorithms

Original
Standard
Efficient

Fast

(b) Verification phases.

29 210 211 212

0

1

2

·10−2

Size parameter

Ti
m

e
in

se
co

nd
s

Actual Decryption computations

Original
Standard
Efficient

Fast

(c) Decryption phases.
Figure 2: Average execution time for decryption algorithms.

REFERENCES

Abdalla, M., Benhamouda, F., and Pointcheval, D.
(2015). Public-key encryption indistinguishable un-
der plaintext-checkable attacks. In Katz, J., editor,
Public-Key Cryptography – PKC 2015, pages 332–
352, Berlin, Heidelberg. Springer Berlin Heidelberg.

Barthe, G., Grégoire, B., Lakhnech, Y., and Zanella
Béguelin, S. (2011). Beyond provable security. Verifi-
able IND-CCA security of OAEP. In Topics in Cryp-
tology – CT-RSA 2011, volume 6558 of Lecture Notes
in Computer Science, pages 180–196. Springer.

Bellare, M. and Rogaway, P. (1993). Random oracles are
practical: A paradigm for designing efficient proto-
cols. In Proceedings of the 1st ACM Conference
on Computer and Communications Security, CCS 93,
page 6273, New York, NY, USA. Association for
Computing Machinery.

Bellare, M. and Rogaway, P. (1994). Optimal asymmetric
encryption. In Santis, A. D., editor, Advances in Cryp-
tology - EUROCRYPT ’94, Workshop on the Theory
and Application of Cryptographic Techniques, Peru-
gia, Italy, May 9-12, 1994, Proceedings, volume 950
of Lecture Notes in Computer Science, pages 92–111.
Springer.

Boneh, D. (1998). The decision diffie-hellman problem.
In In Proceedings of the Third Algorithmic Number
Theory Symposium, volume 1423, pages 48–63.

Cramer, R. and Shoup, V. (1998). A practical public key
cryptosystem provably secure against adaptive chosen
ciphertext attack. In Proc. of the 18th Annual Interna-
tional Cryptology Conference on Advances in Cryp-
tology, crypto’98, pages 13–25.

Cramer, R. and Shoup, V. (2003). Design and analy-
sis of practical public-key encryption schemes secure
against adaptive chosen ciphertext attack. SIAM Jour-
nal on Computing, 33(1):167–226.

Cramer, R. and Shoup, V. (May 2002). Universal hash
proofs and a paradigm for adaptive chosen ciphertext
secure public-key encryption. In In L. Knudsen, ed-
itor, Proceedings of Eurocrypt 2002, volume 2332 of
LNCS, pages 45–64.

Dolev, D., Dwork, C., and Naor, M. (1991). Non-malleable
cryptography. In Proceedings of the Twenty-Third
Annual ACM Symposium on Theory of Computing,
STOC 91, page 542552, New York, NY, USA. As-
sociation for Computing Machinery.

Elgamal, T. (1985). A public key cryptosystem and a
signature scheme based on discrete logarithms. In
CRYPTO, IT-31(4), volume 4, pages 469–472.

Fujisaki, E. and Okamoto, T. (1999). How to enhance the
security of public-key encryption at minimum cost. In
Public Key Cryptography, pages 53–68, Berlin, Hei-
delberg. Springer Berlin Heidelberg.

Granlund, T. (2020). GNU MP: The GNU Multiple Preci-
sion Arithmetic Library, 6.2.0 edition.

Joux, A. and Guyen, K. (2006). Separating decision diffie-
hellman to diffie-hellman in cryptographic groups.

Kurosawa, K. and Trieu Phong, L. (2014). Kurosawa-
desmedt key encapsulation mechanism, revisited. In
Pointcheval, D. and Vergnaud, D., editors, Progress
in Cryptology – AFRICACRYPT 2014, pages 51–68,
Cham. Springer International Publishing.

Naor, M. and Yung, M. (1989). Universal one-way hash
functions and their cryptographic applications. In In
21st Annual ACM Symposium on Theory of Comput-
ing.

Paillier, P. (May 1999). Public-key cryptosystems based on
composite degree residuosity classes. In In J. Stern,
editor, Proceedings of Eurocrypt 1999, volume 1592
of LNCS, pages 223–38.

Phan, D. H. and Pointcheval, D. (2004). Oaep 3-round: A
generic and secure asymmetric encryption padding. In
Advances in Cryptology - ASIACRYPT 2004, 10th In-
ternational Conference on the Theory and Application
of Cryptology and Information Security, Jeju Island,
Korea, December 5-9, 2004, Proceedings, volume
3329 of Lecture Notes in Computer Science, pages
63–77. Springer.

Pointcheval, D. (2011). OAEP: Optimal Asymmetric En-
cryption Padding, pages 882–884. Springer US,
Boston, MA.

Shoup, V. (2001). Oaep reconsidered. In Proceedings of the
21st Annual International Cryptology Conference on
Advances in Cryptology, CRYPTO 01, page 239259,
Berlin, Heidelberg. Springer-Verlag.

Shoup, V. and Gennaro, R. (1998). Securing threshold cryp-
tosystems against chosen ciphertext attack. In In Ad-
vances in Cryptology-Eurocrypt ’98.

Sow, D. and Sow, D. (2011). A new variant of el gamal’s en-
cryption and signatures schemes. JP Journal of Alge-
bra, Number Theory and Applications, 20(1):21–39.

