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Background: Base excision repair (BER) is the major pathway for repair of single oxidized nucleobases.
Results: Bifunctional DNA glycosylases and AP endonucleases are able to remove cross-linked guanine in guanine(C8)-thymi-
ne(N3) intrastrand cross-links.
Conclusion: BER pathways can repair the intrastrand cross-links.
Significance: Oxidatively generated intrastrand cross-linked DNA lesions can be repaired in HeLa cell extracts not only by
nucleotide excision repair, but also by multiple BER pathways.

Oxidatively generated guanine radical cations in DNA can
undergo various nucleophilic reactions including the formation of
C8-guanine cross-links with adjacent or nearby N3-thymines in
DNA in the presence of O2. The G*[C8-N3]T* lesions have been
identified in the DNA of human cells exposed to oxidative stress,
and are most likely genotoxic if not removed by cellular defense
mechanisms. It has been shown that the G*[C8-N3]T* lesions are
substrates of nucleotide excision repair in human cell extracts.
Cleavage at the sites of the lesions was also observed but not further
investigated (Ding et al. (2012) Nucleic Acids Res. 40, 2506–2517).
Using a panel of eukaryotic and prokaryotic bifunctional DNA gly-
cosylases/lyases (NEIL1, Nei, Fpg, Nth, and NTH1) and apurinic/
apyrimidinic (AP) endonucleases (Apn1, APE1, and Nfo), the anal-
ysis of cleavage fragments by PAGE and MALDI-TOF/MS show
that the G*[C8-N3]T* lesions in 17-mer duplexes are incised on
either side of G*, that none of the recovered cleavage fragments
contain G*, and that T* is converted to a normal T in the 3�-frag-
ment cleavage products. The abilities of the DNA glycosylases to
incise the DNA strand adjacent to G*, while this base is initially
cross-linked with T*, is a surprising observation and an indication

of the versatility of these base excision repair proteins.

Reactions of reactive intermediates such as free radicals and
oxidizing agents with DNA can give rise to interstrand and
intrastrand cross-linked DNA lesions. Interstrand cross-linked
DNA lesions (ICL)6 that result from reactions of a variety of
bifunctional agents such as cisplatin (1) with DNA, have
received much attention because they are difficult to remove by
DNA repair mechanisms and are therefore highly genotoxic (2,
3). While ICL lesions arise from the covalent coupling of two
nucleotides on opposite DNA strands, the coupling of two
nucleotides on the same strand gives rise to intrastrand cross-
linked (IntraCL) lesions. Well known examples are the UV pho-
to-induced cyclobutanepyrimidine dimers (CPD) and 6 – 4
photoproducts (4). Oxidatively generated IntraCL lesions
include cross-links between the C8-atom of guanine and a
3�-adjacent 5-methyl group of thymine (G[8 –5m]T) (5), and
the analogous G[8 –5]C (6), and G[8 –5m]C (7) intrastrand tan-
dem lesions. Other forms of intrastrand lesions are the
intranucleotide 8,5�-cyclo-2�-deoxypurine lesions that are
characterized by covalent linkages between the C5� deoxyri-
bose and C8 carbon atoms of adenine (cdA) or guanine (cdG);
these types of lesions were first discovered in dilute DNA solu-
tions exposed to �-radiation (8, 9).

Recently, the novel guanine(C8)-thymine(N3) tandem
lesions (G*[C8-N3]T*) were identified in vitro (10) and
detected in human HeLa cells by isotope dilution LC-MS/MS
methods (11). In these IntraCLs, guanine and thymine bases are
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either adjacent to one another (G*T*) or separated by one inter-
vening cytosine (G*CT*) linked by a covalent bond between the
C8(G) and N3(T) atoms (Fig. 1A). Like the cdG and cdA lesions
embedded in double-stranded DNA (12–16), the G*T* and
G*CT* lesions are moderate to good substrates, respectively, of
the human nucleotide excision repair (NER) system in extracts
from HeLa cells (17). Furthermore, evidence was presented that
both types of IntraCL lesions are also incised at the sites of the
lesions. The origins of these incisions were not further investi-
gated (17), but suggested that a base excision repair (BER) path-
way could have been responsible for these incisions. However,
BER repair enzymes are not known to incise intrastrand DNA
cross-links. Here, we considered whether conventional BER
pathways (18 –20) and/or the nucleotide incision repair (NIR)
pathway (21, 22) could account for the non-NER incisions
reported earlier by Ding et al. (17).

To gain insights into these mechanisms of incision of the
G*CT* and G*T* IntraCLs embedded in double-stranded DNA,
we incubated the 17-mer double-stranded constructs with dif-
ferent Escherichia coli and human DNA glycosylases/AP lyases
Nei and NEIL1 (endonuclease VIII and oxidized pyrimidine-
specific DNA glycosylase), Nth and NTH1 (endonuclease III
and thymine glycol-DNA glycosylase), respectively, E. coli Fpg
(8-oxoguanine DNA glycosylase), and E. coli Nfo, Saccharomy-
ces cerevisiae Apn1 and human APE1 proteins, and monitored
the formation of incision products. We demonstrate here that
the bacterial, yeast, and human bifunctional DNA glycosylases
and AP endonucleases cleave the strands adjacent to the G*CT*

and G*T* IntraCL (Fig. 1A) embedded in site-specifically mod-
ified oligonucleotide duplexes. Analysis of the cleavage prod-
ucts by denaturing polyacrylamide gel electrophoresis (PAGE)
and MALDI-TOF/MS methods showed that the DNA glycosy-
lases/AP lyases excise the cross-linked guanine and cleave the
resulting abasic sites via �- and �,�-elimination mechanisms. In
turn, the AP endonucleases of E. coli Nfo, yeast Apn1 and
human APE1 cleave the duplex DNA containing G*[C8-N3]T*
lesions 5� next to cross-linked guanine initiating the nucleotide
incision repair (NIR) pathway (22).

Experimental Procedures

G*T* and G*CT* Duplexes and Proteins—The 17-mer oligo-
nucleotides containing the G*T* or G*CT* lesions were synthe-
sized as described by Crean et al. (10). Before the enzymatic
assays, oligonucleotides were either 5�-end-labeled by T4 poly-
nucleotide kinase (New England Biolabs) in the presence
of [�-32P]ATP (3,000 Ci/mmol, PerkinElmer-Life Science
Research), or 3�-end-labeled by terminal deoxynucleotidyl
transferase (TdT, New England Biolabs) in the presence of
3�-[�-32P]dATP (cordycepin 5�-triphosphate, 5,000 Ci/mmol)
employing the standard protocols. The radioactively labeled
oligonucleotides were desalted on a Sephadex G-25 column
equilibrated in water and then annealed to the required com-
plementary strand for 3 min at 65 °C in a buffer containing 20
mM Hepes-KOH (pH 7.6) and 50 mM KCl, and then slowly
cooled to room temperature. The purified E. coli uracil-DNA
glycosylase (Ung), Fpg, Nth, and human NTH1 and APE1 pro-
teins were from laboratory stock and prepared as described
(23). Purifications of the E. coli Nfo and S. cerevisiae Apn1 pro-
teins were performed as described (22, 24). The expression vec-
tors phNEIL1 (25) and pET24b-EndoVIII (26) were generously
provided by Drs. Hiroshi Ide (Hiroshima University, Japan) and
Dmitry Zharkov (ICBFM, Novosibirsk, Russia), respectively.
The E. coli Nei and full-length native NEIL1 proteins were puri-
fied as described (25, 26).

Generation of DNA Size Markers—The 5�-[32P]-labeled
17-mer oligonucleotide duplexes d(CCACCAACUCTAC-
CACC) containing single uracil residues at position 9 were
incubated with Ung to generate an AP site. Subsequently, the
DNA was treated either with the Nfo protein, or heated in 10%
(v/v) aqueous piperidine at 37 °C, or at 90 °C for 15 min to
generate 5�- 32P-labeled 8-mer cleavage fragments containing
3�-hydroxyl (3�-OH), or 3�-phosphoaldehyde (3�-PUA), or
3�-phosphate (3�-P) ends, respectively.

Repair Assays—The standard reaction mixtures (20 �l) con-
tained 5 nM concentrations of the 32P-labeled G*T* or G*CT*
duplexes and 50 nM of the purified repair protein, were incu-
bated for 30 min at 37 °C unless stated otherwise. The DNA
repair activities of APE1 protein were tested either in the NIR
buffer, which is optimal for the nucleotide incision activity and
contained 50 mM KCl, 20 mM Hepes-KOH (pH 6.9), 0.1 mg/ml
BSA, 1 mM DTT, and 0.1 mM MgCl2, or in the BER�Mg2�

buffer, which is optimal for the AP endonuclease activity, con-
taining 50 mM KCl, 20 mM Hepes-KOH (pH 7.6), 0.1 mg/ml
BSA, 1 mM DTT, and 5 mM MgCl2. The same buffer was used
for the S. cerevisiae Apn1 protein whereas, for the E. coli Nfo
protein, MgCl2 was omitted. The incision activities were deter-
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FIGURE 1. A, structures of the G*[C8-N3]T* intrastrand cross-links and the
sequences of the DNA duplexes used in the experimental studies. The starred
bases denote the modified sites. B, BER (18) and NIR (21) pathways of removal
of oxidatively generated DNA lesions.
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mined from the amount of cleaved oligonucleotide substrates.
The DNA glycosylase activity was measured in the BER�EDTA
buffer containing 5 nM of an oligonucleotide duplex, 50 mM

KCl, 20 mM Hepes-KOH (pH 7.6), 0.1 mg/ml BSA, 1 mM DTT,
1 mM EDTA, and 50 nM of the required purified protein for 30
min at 37 °C unless stated otherwise. All reactions were termi-
nated by adding 10 �l of a stop solution containing 0.5% SDS
and 20 mM EDTA, and then desalted by hand-made spin-down
columns filled with Sephadex G25 (Amersham Biosciences)
equilibrated in 7.5 M urea. The purified reaction products were
separated by electrophoresis in denaturing 20% (w/v) polyacryl-
amide gel (7.5 M urea, 0.5� TBE, 42 °C). The gels were exposed
to a Fuji FLA-3000 Phosphor Screen, then scanned with Fuji
FLA-3000 or FLA-9500, and analyzed using Image Gauge V4.0
software.

MALDI-TOF/MS Analysis of the Cleavage Products—Mass
spectrometry measurements were performed as described pre-
viously (45). Typically, 10 pmol of the non-labeled lesion-con-
taining oligonucleotide duplexes (in 100 �l) were incubated
with repair proteins (100 nM) in the relevant buffer solution at
37 °C either for 1 h with APE1 or for 15 min with NEIL1 and
NTH1. The reaction products were precipitated with 2% lith-
ium perchlorate in acetone, desalted, and then dissolved in
water prior to analysis by MALDI-TOF/MS. The mass spectra
were obtained in the negative mode on a time-of-flight Micro-
flex mass spectrometer (Bruker), equipped with a 337-nm
nitrogen laser and pulsed delay source extraction. The matrix
was prepared by dissolving 3-hydroxypicolinic acid in 10 mM

ammonium citrate buffer. Prior to MALDI-TOF mass analysis,
oligonucleotide solutions were purified and concenterd on Zip-
Tip pipette tips (Millipore). A mixture of purified DNA sample
(10 pmol; 1 �l) was added to matrix (1 �l) and spotted on a
polished stainless target plate using the dried droplet method.
Spectra were calibrated using reference oligonucleotides of
known masses.

Results

Characterization of Duplexes with G*[C8-N3]T* Cross-
links—Such duplexes are referred to as G*CT* and G*T*,
depending on the nature of the cross-linked lesion (Fig. 1A).
The 17-mer sequences used are defined in Fig. 1A. The differ-
ences in molar mass between the G*CT* and G*T* duplexes and
the normal duplexes without these cross-links are only 2 Da.
Since the absorption spectra of these cross-linked and normal
duplexes are identical, it is not straightforward to verify the
presence of these lesions (10). While mass spectrometry com-
bined with two-dimensional 13C NMR yields definitive charac-
terization (10), a more simple approach is to monitor the step-
wise degradation of the single-stranded oligonucleotides using
exonucleases that stall at the sites of the cross-linked nucleo-
tides (27). The MALDI-TOF/MS analysis of the digestion prod-
ucts of G*CT* and G*T* duplexes generated by snake venom
phosphodiesterase 1 (digestion from the 3�-end) and calf spleen
phosphodiesterase 2 (digestion from the 5�-end) clearly dem-
onstrated the presence and integrity of the intrastrand cross-
links in these duplexes (Fig. 2).

Overall Approach—In this work, the 17-mer duplexes con-
taining the G*CT* and G*T* lesions were exposed to either

bifunctional DNA glycosylases (BER) or AP endonucleases that
are involved in the NIR pathway. In the case of BER, DNA
glycosylases recognize the lesions and then cleave the N-glyco-
syl bond releasing the damaged base, thus producing abasic
sites (18) (Fig. 1B). Bifunctional DNA glycosylases, in addition
to base excision, also exhibit AP lyase activity and cleave the
abasic sites formed, leaving single-strand breaks flanked by
5�-phosphates and either 3�-phosphate groups (generated by
�,�-elimination), or a 3�-�,�-unsaturated aldehyde (PUA)
group (�-elimination). In the NIR pathway, AP endonucleases
incise the phosphodiester bond adjacent to and on the 5�-side
of the damaged bases in a DNA glycosylase-independent man-
ner, leaving single-strand breaks flanked by proper 3�-OH ter-
mini for subsequent primer extension, and 5�-damaged nucle-
otides in the 3�-downstream cleavage fragments (21) (Fig. 1B).
These cleavage products, generated by BER or NIR mecha-
nisms, were distinguished by denaturing PAGE and identified
by MALDI-TOF/MS methods (18, 28).

DNA duplexes with either 32P-labeled 5�-strands (17-mers)
or 32P-labeled 3�-strands (18-mers) containing G*CT* (Fig. 3,
A–C) or G*T* lesions (Fig. 3, D and E) were incubated with
either (i) E. coli or the human DNA glycosylases Nei and NEIL1
(endonuclease VIII or oxidized pyrimidine-specific DNA glyco-
sylase), (ii) Nth or NTH1 (endonuclease III or thymine glycol-
DNA glycosylase), (iii) E. coli Fpg (8-oxoguanine DNA glycosy-
lase), (iv) E. coli Nfo, (v) S. cerevisiae Apn1, or (vi) human APE1.

G*CT* Oligonucleotide Duplexes—The bifunctional DNA
glycosylases NEIL1, Nei, and Fpg cleave the 5�-32P-labeled
DNA strand, thus giving rise to fast migrating �8-mers with a
3�-phosphate end (Fig. 3A, lanes 1–3), as expected for the
bifunctional DNA glycosylases that exhibit �,�-elimination
activity as depicted in Fig. 1B. On the other hand, APE1, Apn1,
and Nfo generate slower migrating 8-mer cleavage fragments
with 3�-OH ends (Fig. 3A, lanes 4 – 6), which are expected from
the hydrolytic mechanism of action of AP endonucleases (29).
Finally, the bifunctional DNA glycosylase Nth that gives rise to
�-elimination (Fig. 1B) generates the most slowly migrating
8-mer fragments containing the 3�-�,�-unsaturated aldehyde
group (Fig. 3A, lane 8). The latter is unstable and typically exists
in the hydrated form (PUAH) (30, 31). These cleavage frag-
ments were therefore identified as the 5�-CCACCAAC-p-
PUAH sequence, which was confirmed by MALDI-TOF/MS
methods (see below). Lane 7 in Fig. 3A depicts a control exper-
iment (untreated G*CT* duplex). To corroborate the chemical
nature of the 3�-terminal residue of the cleavage products of
G*CT* duplexes, the electrophoretic mobilities of the reaction
products were compared with standard 8-mer oligonucleotide
markers with 3�-P, 3�-PUA and 3�-OH ends. As expected, the
cleavage products of NEIL1, Nth and Nfo acting upon 5�-32P-
labeled G*CT* duplexes co-migrated with 8-mer 3�-P, 8-mer
3�-PUA, and 8-mer 3�-OH size markers, respectively (Fig. 3B,
lanes 3– 8).

In the case of the 3�-labeled G*CT* duplexes, the modified
strands are longer by one nucleotide because of the 3�-end-
labling method. The bifunctional DNA glycosylases NEIL1,
Nei, and Fpg yield fast-migrating �9-mer fragments with a
5�-phosphate end that are consistent with cleavage of the G*
site (Fig. 3C, lanes 1–3). The NTH1 and Nth glycosylases also
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yield the same fast-migrating 3�-end-labeled cleavage frag-
ments (Fig. 3B, lanes 7 and 8) since the bulky PUA groups
remain on the 5�-unlabeled fragment rather than on the 3�-end-
labeled one (29) according to the cleavage mechanism (Fig. 1B).
As expected from the established mechanism of action of
NIR-AP endonucleases, Apn1, APE1, and Nfo generate slower
migrating DNA cleavage fragments (Fig. 3C, lanes 4 – 6). Based
on their mobilities, these fragments could be identified either as
10-mers with a phosphorylated damaged guanine residue G* at
its 5�-end (21), or as slower migrating 9-mer fragments with a
5�-OH end, which is more consistent with the MALDI-
TOF/MS results (see below). It should be noted that all three
NIR-AP endonucleases exhibit nonspecific 3�35� exonuclease
activity (32, 33), which degrades 5�- and 3�-end-labeled 17-mer
and 18-mer oligonucleotides, respectively (Fig. 3, A and C). This
activity accounts for the dark bands on the bottom of the gels in
lanes 4 – 6 (Fig. 3, C and E) that are due to cordycepin mono-
phosphate 3�-dAM32P, which are products of the 3�35� exo-
nuclease activity of AP endonucleases. Similarly, some degra-
dation of the 5�-end-labeled 17-mers is observable in Fig. 3, A
and D (lanes 4 and 5).

G*T* Oligonucleotide Duplexes—Incubation of the G*T*
17-mer duplexes (Fig. 3, D and E) with the same enzymes as the
G*CT* 17-mer duplexes (Fig. 3, A and C) yields similar results.
Bifunctional DNA glycosylases excise the G* residue and the
resulting AP sites thus formed are subsequently cleaved on

their 3�-sides generating a 3�-deoxyribose-phosphate group
at the 5�-cleavage fragment. The AP endonucleases on the
other hand, incise the damaged strand on the 5�-side and
adjacent to G*.

MALDI-TOF/MS Analysis of Cleavage Fragments—Further
insights into the identities of the cleavage fragments generated
by BER and NIR pathways were obtained using negative mode
mass spectrometric methods. Here we focus on the results
obtained with G*CT* duplexes (Fig. 4), since the G*T* and
G*CT* duplexes yield similar cleavage products (Fig. 3). Results
obtained with untreated G*CT* 17-mer duplexes are depicted
in Fig. 4A. The two peaks shown are due to the G*CT* IntraCL-
containing strand and the complementary strand, and the lack
of other smaller molecular mass products indicates that the
starting material is not degraded (Fig. 4A). On the other hand,
after treatment with NEIL1, two additional, closely spaced frag-
ments are observed at m/z 2402.1 and 2393.3 (Fig. 4B). These
peaks are identified as the 5�-CCACCAAC-p and p-CTAC-
CACC-3� 8-mer fragments that are the expected cleavage prod-
ucts induced by bifunctional glycosylase (Fig. 1B). These results
are also consistent with the gel electrophoresis results (Fig. 3, A
and C, lane 1) and the conclusion that the cross-linked base G*
is excised.

After treatment with NTH1, one of the cleavage fragments is
p-CTACCACC-3� (m/z 2393.3 (Fig. 4C) which is also observed
in the case of NEIL1 (Fig. 4B). The other one at m/z 2518.5 is the

FIGURE 2. MALDI-TOF/MS analysis of the mixture of oligonucleotides arising from the incubation of the 17-mer G*CT* and G*T* duplexes with
phosphodiesterases 1 and 2. Typically, 40 pmol of the lesion containing oligonucleotide duplexes were incubated with either 100 nM of PDE1 or PDE2 in the
appropriate reaction buffer (100 �l) at 37 °C for 5 h (PDE1) or overnight (PDE2). The products were desalted on a MicroSpin G-25 column, prior subjection to the
MALDI-TOF/MS measurements. The experimental m/z values are agreed with those calculated from monoisotopic masses provided below in brackets. A,
treatment of G*CT* duplex with PDE1; peak 11: 5�-CCACCAACG*CT* (m/z 3241.6). B, treatment of G*T* duplex with PDE1; peak 14: 5�-CCACCAACG*T* (m/z
2952.5). C, treatment of G*CT* duplex with PDE2 for overnight; peak 12: 5�-CG*CT*ACCACC (m/z 2928.5), peak 13: 5�-G*CT*ACCACC (m/z 2639.5). D, treatment
of G*T* duplex with PDE2; peak 15: 5�-G*T*CACCACC (m/z 2639.5).
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fragment 5�-CCACCAAC-3�-p-PUAH (Fig. 4C), as expected
for NTH1 (Fig. 3A, lane 8). In this fragment the PUAH is the
hydrated form (-CH2CHOHCHOHCH2CHO, M � 117.0 Da)
of the aldehyde since its mass is 18 Da higher than the mass of
the �,�-unsaturated aldehyde (-CH2CHOHCH � CHCHO,
M � 99.0 Da) (30, 31). Again the G* base is missing from all of
these oligonucleotide fragments; furthermore the former T*
base is present in its intact form T in all 3�-downstream cleav-
age fragments.

The negative mass spectra of the products of APE1-catalyzed
incision of G*CT* duplexes exhibits a series of molecular ions
(Fig. 4D): 1) The cleavage fragment at m/z 2323.2 is 5�-CCAC-
CAAC generated by the cleavage adjacent to and on the 5�-side
of G*, as expected from Fig. 3A (lane 5). Two other fragments at
m/z 2034.4 and 1720.2, corresponding to the 7-mer oligonucle-
otides 5�-CCACCAA-3� and the 6-mer 5�-CCACCA-3�,
respectively, are attributed to degradation catalyzed by the
known 3�35� exonuclease activity of APE1 (32, 33). 2) The
APE1-cleavage fragments at m/z 2394.7 and 2314.9, assigned to
the 8-mer oligonucleotide 5�-p-CTACCACC-3� and its de-
phosphorylated form 5�-CTACCACC-3�, respectively, both
released from the cleavage of the strand on the 3�-side of G* in

the G*CT* duplexes. As in the case of 5�-upstream cleavage
fragments, these are shorter by one nucleotide than a 9-mer
with a G (or G*) at the 5�-end of the 3�-downstream cleavage
fragment (21, 22).

Taken together, these results suggest that all the DNA glyco-
sylases tested excise the guanine G* in G*CT* and G*T* cross-
links and then cleave the DNA strands on the 3�-side of the
apurinic site generated by the removal of G*, either via � or
�,�-elimination mechanisms (Fig. 1B). The AP endonucleases
tested, cleave the modified strands on the 5�-side of G* of the
G*T* and G*CT* cross-links and induce further degradation of
the cross-link with the release of the G* base that is missing
from the 3�-side cleavage fragments analyzed by mass spectro-
metric methods.

Discussion

The primary DNA base target of oxidizing agents, that prin-
cipally function via one electron transfer mechanisms, is gua-
nine (34), the most easily oxidizable nucleic acid base (35). Oxi-
datively modified guanines include a diverse group of different
single guanine base oxidation products and tandem lesions
such as intra- and interstrand crosslinks; the latter are more

FIGURE 3. Denaturing PAGE analysis of the cleavage patterns generated by DNA glycosylases/AP lyases (BER) and NIR-AP endonucleases (NIR) in
duplexes containing G*CT* and G*T* lesions. A and D, duplexes constructed from either 5�-32P-labeled 17 mer G*CT* (A), or G*T* (D) strands hybridized with
their natural complementary strands. B, size marker 8-mer oligonucleotide standards with 5�-[32P]-labeled 8-mer containing 3�-hydroxyl (3�-OH), or 3�-phos-
phoaldehyde (3�-PUA), or 3�-phosphate (3�-P) ends are shown in lanes 3, 5, and 7, respectively. These standards were derived from the parent 17-mer strands
containing uracil as described under “Experimental Procedures.” C and E, duplexes constructed from cordycepin 3�-32P-endlabeled 18 mer G*CT* (C) or G*T*
(E) strands hybridized with their complementary 17-mer complementary strands. DNA glycosylase activities were performed in BER�EDTA buffer containing
5 nM of 5�- or 3�-32P-labeled duplex and 50 nM of pure enzyme. Apn1 activity was measured in BER buffer containing 5 mM MgCl2. The NIR activity of APE1
protein was performed in NIR buffer containing 0.1 mM MgCl2. After 30 min of incubation at 37 °C, the enzymatic reactions were stopped, and the DNA was
purified before denaturing PAGE analysis. UT indicates untreated oligonucleotide. For details see “Experimental Procedures.”
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genotoxic than single oxidized bases (2). The tandem lesions
detected in cells include 8,5�-cyclo-2�-deoxypurine (36 –38),
guanine(C8)-thymine(5-methyl) (39), and guanine(C8)-cyto-
sine(C5) (40) IntraCLs. The repair of such oxidatively gener-
ated lesions is a crucial factor in maintaining genomic stability
during oxidative stress (20).

It is well established that the 8,5�-cyclo-2�-deoxypurine
lesions are not repaired by DNA glycosylase-mediated BER
mechanisms, but are excellent substrates of mammalian NER
(12, 13, 16, 41, 42) and prokaryotic NER repair pathways (43).
However, a limited amount of information is available about
IntraCLs that involve covalent bonds between two different
nucleotides on the same strand. It has been shown that the
G[8 –5m]C, G[8 –5mT] and G[8 –5m]C IntraCLs are substrates
of the prokaryotic UvrABC system (44, 45). Based on differ-
ences of levels of these lesions in NER-deficient and proficient
mammalian cells and tissues, it was concluded that the G[8 –
5m]T IntraCL is a substrate of NER in vivo (15). The G*CT* and
G*T* IntraCLs embedded in 135-mer DNA were found to be
excellent-to-modest NER substrates, respectively, in human
cell extracts as shown in Fig. 5 (17). In the same cell extract
incubation experiments, substantial amounts of 67-mer cleav-
age fragments, corresponding to cleavage at the sites of the
lesions, were also noted, but not further investigated (17).

Our in vitro biochemical studies suggest that all the DNA
glycosylases/AP lyases tested excise the guanine G* in G*CT*
and G*T* cross-links and then cleave the DNA strands on the
3�-side of the apurinic site resulting from the removal of G*, via
either � or �,�-elimination mechanisms (Fig. 1B). All of the
NIR-specific AP endonucleases tested, cleave the damaged
strands on the 5�-side of G* and appear to generate cordycepin-
labeled �9-mers with either phosphate or OH-groups at the
5�-ends, the latter exhibiting a mobility similar to that of a
10-mer with a phosphate residue at its 5�-end. However, the
MALDI-TOF/MS results are consistent with the 9-mer inter-
pretation. Nevertheless, incision at the 3�-side of a lesion by
NIR mechanisms is not supported by previous studies (21) (Fig.
1B), and we cannot exclude that the initially formed 3�-frag-
ment does contain a G* residue at its 5�-end and that AP endo-
nucleases induce further degradation of DNA with the loss of
the G* nucleotide to yield the observed 5�-p-CTACCCCACC
and 5�-CTACCACC fragments (Fig. 4D, peaks 9 and 10), under
conditions used to prepare samples for MALDI-TOF/MS
analysis.

It is interesting to note that the bifunctional DNA glycosy-
lases and AP endonucleases studied are capable of excising the
cross-linked G* in the G*T* and G*CT* duplexes, but not the
originally cross-linked T* according to the denaturing gel elec-

FIGURE 4. Negative MALDI-TOF mass spectra of the cleavage fragments generated by DNA repair proteins in the 17-mer G*CT* duplexes incubated
with NEIL1, NTH1, and APE1 proteins. Typically, 40 pmol of the lesion-containing oligonucleotide duplexes were incubated with either 100 nM NEIL1 and
NTH1 or 20 nM APE1 in the appropriate reaction buffer (100 �l) at 37 °C for 60 min. The products were desalted prior to the MALDI-TOF/MS measurements. The
experimental m/z values of the molecular ions, [M-H]� are consistent with those calculated from monoisotopic masses provided below in brackets; the doubly
charged ions, [M-2H]2� are marked as 1⁄2(m/z). A, control non-treated duplex; peak 1: 5�-CCACCAACG*CT*ACCACC (m/z 5023.9), peak 2: 5�-GGTGGTAGCGT-
TGGTGG (m/z 5349.9). B, duplex treated with NEIL1; peak 3: 5�-CCACCAAC-p (m/z 2401.4), peak 4: 5�-p-CTACCACC (m/z 2392.4). C, duplex treated with NTH1;
peak 5: 5�-CCACCAAC-3�-p-PUAH (hydrated form, m/z 2518.6). D, duplex treated with APE1; peak 6: 5�-CCACCAAC (m/z 2321.5); peak 7: 5�-CCACCAA (m/z
2032.4), peak 8: 5�-CCACCA (m/z 1720.2), peak 9: 5�-p-CTACCACC (m/z 2392.4), peak 10: 5�-CTACCACC (m/z 2313.6). For details see “Experimental Procedures.”
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trophoresis results (Fig. 3) and MALDI-TOF/MS analysis (Fig.
4). In contrast, denaturing gel electrophoresis showed that
the standard hot piperidine treatment cleaves 5�-CCA-
TCG*CT*ACC at G* and T* sites with the release of
5�-CCATCp and 5�-pACC fragments according to MALDI-
TOF/MS analysis (27). This is clear evidence that hot alkali is
unable to hydrolyze the G*[C8-N3]T* bond to form the intact T
that is generated by the bifunctional DNA glycosylases and AP
endonucleases (Figs. 3 and 4). The G*[C8-N3]T* bond is also
resistant to nuclease P1, which generates cross-linked dinucle-
otide d(G*-T*) and d(G*pT*) fragments after complete hydro-
lysis of the single-stranded DNA containing G*CT* and G*T*
IntraCL, respectively (10, 27). The phosphodiesterases 1 and 2
do not cleave the phosphodiester bonds between the cross-
linked nucleotides (Fig. 2), and the combined action of these
enzymes generates only d(G*pCpT*) and d(G*pT*) fragments
(10, 27).

The cross-linked guanine has two covalent N-C bonds, one is
the normal G*[N7-C1�] glycosydic bond, and the second
involves the C8 atom on the same imidazole ring linked to N3 of
thymine in G*T* or to the T on the 3�-side of C in G*CT*
duplexes (Fig. 1A). Based on our data we propose that the
bifunctional DNA glycosylases and AP endonucleases are able
to cleave both the G*[C8-N3]T* and the G*[N7-C1�] bonds.

To summarize, we have shown that the cleavage observed in
cell extracts at the sites of the G*T* and G*CT* intrastrand
lesions in double-stranded DNA (17) can be attributed to BER
mechanisms. It should be noted that in the same experiments

both G*CT* and G*T* lesions are also removed by NER mech-
anisms as shown in Fig. 5 (17). It is noteworthy that the higher
yield of NER products in the case of G*CT* is accompanied by a
lower yield of BER products (Fig. 5A). By contrast, the yield of
NER products is �5 times smaller in the case of G*T* while the
BER yield is significantly higher (Fig. 5B). This inverse correla-
tion between BER and NER product yields suggests that these
two processes may be competing with one another. The origins
of these effects are presently under investigation. It is remark-
able that both BER and NER can function in parallel in incising
the G*T* and G*CT* intrastrand cross-links in DNA in the
same human cell extract experiments (17). These observations
suggest that these two pathways may complement one another
in cellular environments.
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