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Fluctuations of non-ergodic stochastic processes

We investigate the standard deviation δv(∆t) of the variance v[x] of time series x measured over a finite sampling time ∆t focusing on non-ergodic systems where independent "configurations" c get trapped in meta-basins of a generalized phase space. It is thus relevant in which order averages over the configurations c and over time series k of a configuration c are performed. Three variances of v[x ck ] must be distinguished: the total variance δv 2 tot = δv 2 int +δv 2 ext and its contributions δv 2 int , the typical internal variance within the meta-basins, and δv 2 ext , characterizing the dispersion between the different basins. We discuss simplifications for physical systems where the stochastic variable x(t) is due to a density field averaged over a large system volume V . The relations are illustrated for the shear-stress fluctuations in quenched elastic networks and low-temperature glasses formed by polydisperse particles and free-standing polymer films. The different statistics of δvint and δvext are manifested by their different system-size dependences.

Introduction

Expectation values O and standard deviations δO of properties O[x] averaged over finite time series x of stochastic processes x(t) [START_REF] Press | Numerical Recipes in FORTRAN: the art of scientific computing[END_REF][START_REF] Van Kampen | Stochastic processes in physics and chemistry[END_REF] are of relevance for a large variety of problems in scientific computing in general [START_REF] Press | Numerical Recipes in FORTRAN: the art of scientific computing[END_REF][START_REF] Pang | An Introduction to Computational Physics[END_REF] and especially in condensed matter [START_REF] Chaikin | Principles of condensed matter physics[END_REF][START_REF] Doi | The Theory of Polymer Dynamics[END_REF][START_REF] Rubinstein | Polymer Physics[END_REF][START_REF] Hansen | Theory of simple liquids[END_REF][START_REF] Ferry | Viscoelastic properties of polymers[END_REF][START_REF] Graessley | Polymeric Liquids & Networks: Dynamics and Rheology[END_REF], material modeling [START_REF] Tadmor | Continuum Mechanics and Thermodynamics[END_REF][START_REF] Tadmor | Modeling Materials[END_REF] and computational physics [START_REF] Allen | Computer Simulation of Liquids[END_REF][START_REF] Landau | A Guide to Monte Carlo Simulations in Statistical Physics[END_REF]. We consider ensembles of equidistant time series x = {x i = x(t i = iδt), i = 1, . . . , n t }

(1) each containing n t data entries x i . The data sequence is taken from t 1 = δt up to the "sampling time" ∆t = n t δt. 1 Examples of such time series obtained in a generalized phase space are sketched in Fig. 1. If the stochastic process x(t) is stationary it may be characterized by means of the mean-square displacement

h(|t i -t j |) ≡ h i-j ≡ (x i -x j ) 2 /2, (2) 
of the data entries x i . Note that h(t) = c(0) -c(t) is closely related to the common autocorrelation function (ACF) c(t) = x(t)x(0) [START_REF] Hansen | Theory of simple liquids[END_REF]. 2 Ensemble averages . . . are commonly estimated by "c-averaging" over many independently prepared systems c, called here "configurations". An example with n c = 3 is given in Fig. 1. As in our previous work [START_REF] Klochko | [END_REF]15], we shall focus on the "empirical a joachim.wittmer@ics-cnrs.unistra.fr 1 The term "sampling time" is elsewhere often used for the time-interval δt between neighboring data points. 2 The response function due to an externally applied "force" conjugated to x switched on at t = 0 is given within linear response by h(t) [START_REF] Doi | The Theory of Polymer Dynamics[END_REF]. The open circles mark tempering steps between different time series k of each independently prepared "configuration" c. The solid lines mark barriers of different height in some phase space. We assume that the system is non-ergodic, i.e. the configurations c are permanently trapped in the meta-basins marked by the thickest lines.

sample variance"3 

O[x] = v[x] ≡ 1 n t nt i=1 (x i -x) p with x = 1 n t nt i=1
x i [START_REF] Pang | An Introduction to Computational Physics[END_REF] and p = 2. Importantly, its expectation value v = v[x] and variance δv 2 = (v[x] -v) 2 are given by [START_REF] Klochko | [END_REF]15] 

v = 2 n 2 t nt-1 i=1
(n t -i) h i and ( 4)

δv 2 = δv 2 G [h] ≡ 1 2n 4 t nt i,j,k,l=1
g 2 ijkl with g ijkl ≡ (h i-j + h k-l ) -(h i-l + h j-k ) [START_REF] Doi | The Theory of Polymer Dynamics[END_REF] in terms of the ACF h(t). While Eq. ( 4) is a direct consequence of the stationarity of the process, Eq. ( 5) assumes in addition that x(t) is both Gaussian and ergodic [15]. Note that v and δv depend in general on the sampling time ∆t of the time series. 4 As sketched by the thickest solid lines in Fig. 1, if some large barriers are present in the generalized phase space the stochastic processes of independent configurations c must get trapped in meta-basins [29,30], at least for sampling times ∆t τ α with τ α being the terminal relaxation time of the system. For such non-ergodic systems and for sufficiently large sampling times ∆t (to be specified below) it was found [16,[START_REF] Klochko | [END_REF]15] that δv(∆t) becomes similar to a constant "non-ergodicity parameter" ∆ ne > 0. δv thus differs from the rapidly decaying Gaussian prediction δv G ∝ 1/ √ ∆t [START_REF] Klochko | [END_REF]15]. To understand the observed discrepancy an extended ensemble of time series x ck is needed where for each configuration c one samples n k 1 time series k. 5 k-averages and k-variances may then depend on the configuration c and it becomes relevant in which order c-averages over configurations c and k-averages over time series k of a given configuration c are performed. As described in Sec. 2.2, three variances must be distinguished:

the standard "total variance" δv 2 tot (∆t) obtained by lumping together the quantities v[x ck ] for all c and k, the c-averaged "internal variance" δv 2 int (∆t, n k ) of the meta-basins and the "external variance" δv 2 ext (∆t, n k ) describing the dispersion between the different meta-basins.

δv tot is commonly probed in previous computational work on fluctuations of v [16-20, 14, 15]. Importantly,

δv 2 tot (∆t) = δv 2 int (∆t, n k ) + δv 2 ext (∆t, n k ) (6) 
holds rigorously for large n c and the n k -dependence on the right-hand side becomes rapidly irrelevant with increasing n k for non-ergodic systems. As will be discussed in Sec. 2.3, Eq. ( 6) can be simplified in many cases such that the total variance δv tot (∆t) can be traced back to the ACF h(t) and the "non-ergodicity parameter" ∆ ne properly defined in Sec. 2.2. This leads especially to δv int (∆t) τ b /∆t and δv ext (∆t) ∆ ne [START_REF] Hansen | Theory of simple liquids[END_REF] for ∆t τ b with τ b being the typical basin relaxation time. Corroborating Ref. [15] it will be seen that systemsize effects become rapidly irrelevant for physical systems 4 As seen by analyzing Eq. ( 5) [START_REF] Klochko | [END_REF]15], the standard deviation δv(∆t) is small if h(t) is essentially constant for t ≈ ∆t but may become of order of v(∆t) if h(t) changes strongly for t ≈ ∆t. 5 The time series k may be obtained by first tempering the configuration c over a time interval ∆ttemp larger than the basin relaxation time τ b and by sampling then n k time intervals ∆t separated by constant spacer intervals ∆tspac τ b .

where x(t) is the average over a statistically uniform density field (Sec. 2.4). Various relations and issues discussed theoretically in Sec. 2 are tested numerically in Sec. 4 for the fluctuations of the shear stresses in three strictly or in practice nonergodic coarse-grained model systems described in Sec. 3. Temperature-effects are briefly discussed in Sec. 4.6, system-size effects in Sec. 4.7. The paper concludes in Sec. 5 with a summary and an outlook to future work. Appendix A presents further details on the power-law exponents describing the system-size dependence of v and ∆ ne , Appendix B the distribution of the frozen v c for different configurations c.

Theoretical considerations 2.1 Some notations

To state compactly the expressions developed below it is useful to introduce a few notations. The l-average operator

E l O lmn... ≡ 1 n l n l l=1 O lmn... ≡ O mn... (n l ) (8) 
takes a property O lmn... depending possibly on several indices l, m, . . . and projects out the specified index l, i.e. the generated property O mn... (n l ) does not depend any more on l, but it may depend on the upper bound n l as marked by the argument. The latter dependence drops out for large n l (formally n l → ∞) if O lmn... is stationary or converges with respect to l. The l-variance operator V l is defined by

V l O lmn... ≡ 1 n l n l l=1 O lmn... -E l O lmn... 2 . ( 9 
)
Introducing the power-law operator P α O ≡ O α , with the exponent α = 2 being here the only relevant case, and using the standard commutator [A, B] ≡ AB -BA for two operators A and B, the l-variance operator may be written

V l = [E l , P 2 ]. The result δO 2 mn... (n l ) = V l O lmn.
.. of this operation on O lmn... depends in general on the upper bound n l . In the cases considered below δO 2 mn... (n l ) converges for large n l and the n l -dependency again drops out. This large-n l limit is written

δO 2 mn... (. . .) ≡ lim n l →∞ δO 2 mn... (n l , . . .) (10) 
where the dots . . . indicate possible additional variables. We emphasize finally that we have defined the l-variance operator V l , as above in Eq. (3) for v[x], as an "uncorrected biased sample variance" without the often used Bessel correction [START_REF] Press | Numerical Recipes in FORTRAN: the art of scientific computing[END_REF][START_REF] Landau | A Guide to Monte Carlo Simulations in Statistical Physics[END_REF], i.e. we normalize with 1/n l and not with 1/(n l -1). If the n l contributions l are uncorrelated this can be readily shown to underestimate the asymptotic variance by a factor of (n l -1)/n l [START_REF] Landau | A Guide to Monte Carlo Simulations in Statistical Physics[END_REF], i.e. δO 2 mn... (n l , . . .) = 1 -

1 n l δO 2 mn... (. . .). (11) 
2.2 Extended ensembles of time series x ck

Ergodic systems

We remind first that in ergodic systems the terminal relaxation time τ α is short relative to reasonable experimental or computational sampling times ∆t, i.e. the time series can easily cross all barriers. One may thus either compute the averages

E c O[x c ] and V c O[x c ] over n c independent configurations c (with n k = 1) or the averages E k O[x k ] and V k O[x k ] over n k 1 different time series k of one long trajectory (with n c = 1). Hence, E c O[x c ] E k O[x k ] and V c O[x c ] V k O[x k ] ( 12 
)
holds for sufficiently large n c and n k . Importantly, it is sufficient for ergodic systems to characterize a time series x by one index. We come back to ergodic systems in Sec. 2.2.9.

Non-Ergodic systems

Let us focus now on strictly non-ergodic systems with infinite terminal relaxation times τ α for the transitions between the meta-basins. We characterize a time series x ck by the two discrete indices c and k with 1 ≤ c ≤ n c and 1 ≤ k ≤ n k . As shown in Fig. 1, the index c stands for the "configurations" (or set-ups) generated by completely independent preparation histories for the system probed, the index k for subsets of length n t of a much larger trajectory generated for a fixed configuration c. The central point is now that

O c (∆t, n k ) ≡ E k O[x ck ] and (13) 
δO 2 c (∆t, n k ) ≡ V k O[x ck ] (14) 
do depend in general not only on the sampling time ∆t = n t δt of the time series and the number n k of time series probed but crucially also on c -even for arbitrarily large n t and n k -since the "c-trajectory" of each configuration c is trapped (Fig. 1). For ∆t τ b much larger than the typical basin relaxation time τ b the ∆t-dependence of O c (∆t, n k ) drops out and δO c (∆t, n k ) ∝ 1/ ∆t/τ b since we average over ∆t/τ b independent subintervals. Moreover, the n k -dependence must disappear if n k 1 and the c-trajectory has completely explored the basin. Assuming that after each measurement interval of length ∆t a spacer (tempering) step of length ∆t spac follows, as marked by the open circles in Fig. 1, this happens for c-trajectories of total length ∆t max ≡ n k × (∆t + ∆t spac ) with

τ b ∆t ∆t max τ α . (15) 
The first inequality implies that the sampling is ergodic within the metabasin (that's why, the metabasin is sometimes said to be an "ergodic component"), while the last inequality states the ergodicity breaking of the system.

Commuting and non-commuting operators

Since [E c , E k ] = 0 we may write quite generally

E c E k O[x ck ] = E k E c O[x ck ] = E l O[x l ] = O, (16) 
i.e. the two indices c and k can be lumped together to one index l. Averages of this type are called "simple averages". For instance, the average variance

v = E c E k v[x ck ] = E l v[x l ] is a simple average. At variance to this in general [E c , V k ] = 0 or [V c , E k ] = 0 if n k > 1. ( 17 
)
Two operators of this type thus cannot be commuted and the indices c and k cannot be exchanged or lumped together.

Different variances

We define now in general terms the three variances mentioned in the Introduction:

δO 2 tot (∆t, n c , n k ) ≡ [E c E k , P 2 ]O[x ck ] (18) 
δO 2 int (∆t, n c , n k ) ≡ E c δO 2 c = E c V k O[x ck ] (19) 
δO 2 ext (∆t, n c , n k ) ≡ V c O c = V c E k O[x ck ]. (20) 
The indicated dependencies on ∆t, n c and n k will be discussed in detail below (Sec. 2.2.5-2.2.8). Let us stress first that the "total variance" δO 2 tot is a simple average, i.e. all time series x ck can be lumped together:

δO 2 tot = V l O[x l ] = [E l , P 2 ]O[x l ]. (21) 
Importantly, the expectation value of δO tot for n c → ∞ is strictly n k -independent and may be also computed by using only one time series for each configuration (n k = 1). δO 2 tot is thus the standard commonly computed variance [16-20, 14, 15]. The "internal variance" δO 2 int and the "external variance" δO 2 ext are different types of observables since Eq. ( 17) holds, i.e. c and k cannot be lumped together. Note also that δO int and δO ext do depend on n k even for n c → ∞ and that δO ext vanishes if all O c are identical. Using the identity

V l = [E l , P 2 ] = [E c E k , P 2 ] = E c E k P 2 -E c P 2 E k + E c P 2 E k -P 2 E c E k = E c V k + V c E k (22)
δO 2 tot can be exactly decomposed as the sum

δO 2 tot (∆t, n c , n k ) = δO 2 int (∆t, n c , n k ) + δO 2 ext (∆t, n c , n k ) ( 23 
)
of the two independent variances δO 2 int and δO 2 ext . Details of both contributions δO int and δO ext depend on the properties of the considered stochastic process x(t) and the functional O[x] considered. However, the following fairly general statements can be made.

n c -dependences

Let us define the large-n c limits

δO ext (∆t, n k ) ≡ lim nc→∞ δO ext (∆t, n k , n c ) ( 24 
)
δO tot (∆t) = δO tot (∆t, n k ) ≡ lim nc→∞ δO tot (∆t, n k , n c ) ( 25 
)
where the n k -dependence of δO tot does not emerge as already stated below Eq. (21). As all the configurations c are assumed to be strictly independent, δO int does not depend on n c , i.e.

δO int (∆t, n c , n k ) = δO int (∆t, n k ), and (26) 
δO 2 ext (∆t, n c , n k ) = 1 - 1 n c δO 2 ext (∆t, n k ) ( 27 
)
where we have used the general relation Eq. [START_REF] Tadmor | Modeling Materials[END_REF]. Using Eq. ( 23) this implies

δO 2 tot (∆t, n c , n k ) = δO 2 tot (∆t) - δO 2 ext (∆t, n k ) n c . (28) 
If not emphasized otherwise, we assume below that n c is large, say at least n c ≈ 100, and the stated n c -dependences thus become irrelevant.

n k -dependences

While δO int and δO ext depend in principle on n k , this dependence must drop out for large n k if ∆t max τ b as noted in Sec. 2.2.4. It is therefore useful to define:

δO int (∆t) ≡ lim n k →∞ δO int (∆t, n k ), ( 29 
)
δO ext (∆t) ≡ lim n k →∞ δO ext (∆t, n k ). ( 30 
)
Note also that δO int (∆t, n k ) = 0 and δO ext (∆t, n k ) = δO tot (∆t) in the opposite limit, n k = 1. In what follows we assume that the spacer time intervals ∆t spac between the measured time series k of a configuration c is large, i.e. either ∆t spac τ b or ∆t spac + ∆t τ b . In this case all n k time series for each configuration must be virtually independent (albeit constraint to be in the same basin). Therefore, Here and below we return to real non-ergodic systems with very large but finite terminal relaxation times τ α . Without additional assumptions it is also clear that

δO 2 int (∆t, n k ) 1 - 1 n k δO 2 int (
δO int ∝ 1/ ∆t/τ b , δO ext (∆t) ∆ ne = const, (35) 
for τ α ∆t τ b with the "non-ergodicity parameter" ∆ ne being defined by the finite limit of δO ext at large ∆t

∆ ne ≡ lim ∆t/τ b →∞ δO ext (∆t, n k ). ( 36 
)
This is equivalent to the large-∆t limit of δO tot (∆t) since the n k -dependence of δO ext drops out for large ∆t. (The last statement may be also seen from Eq. (32).) As already noted, the first asymptotic law in Eq. ( 35) is a consequence of the ∆t/τ b uncorrelated subintervals for each c-trajectory while the second limit is merely a consequence of the O c (∆t) becoming constant. Equation (35) implies that δO tot must become

δO tot → δO ext ≈ ∆ ne for ∆t τ ne τ b . (37) 
Note that the crossover to the ∆ ne -dominated regime occurs at an additional time scale τ ne . Operationally, this "non-ergodicity time" τ ne may be defined as

δO int (∆t ! = τ ne ) = ∆ ne . (38) 
∆ ne does not dependent on n k , being equivalently the large-∆t limit of either δO ext (∆t, n k ) or δO tot (∆t), the latter simple average being strictly n k -independent (n c → ∞). Coming back to Eq. (32) and using Eq. (36) one sees that

δO 2 ext (∆t, n k ) ∆ 2 ne + 1 n k δO 2 int (∆t) and (39) 
δO 2 tot (∆t) ∆ 2 ne + δO 2 int (∆t) (40) 
for τ α ∆t τ b and n c → ∞.

Back to ergodic systems

Let us finally assume that the terminal relaxation time τ α is shorter than the sampling time, ∆t τ α . In this ergodic limit all trajectories become statistically equivalent, i.e. δO ext (∆t) = 0 (cf. Eq. ( 30)). Following Eq. ( 27) and Eq. (32) we have

δO 2 ext (∆t, n c , n k ) = 1 - 1 n c 1 n k δO 2 int (∆t) (41) 
and using Eq. ( 26) and Eq. ( 31) we get

δO 2 int (∆t, n c , n k ) = 1 - 1 n k δO 2 int (∆t). ( 42 
)
This implies by means of Eq. ( 23) or, equivalently, using Eq. ( 33)

δO 2 tot (∆t, n c , n k ) = 1 - 1 n k n c δO 2 int (∆t). ( 43 
)
For either n c → ∞ or n k → ∞ the latter relation yields finally

δO tot (∆t, n c , n k ) → δO tot (∆t) = δO int (∆t) (44) 
which is similar to the second relation stated in Eq. ( 12).

Properties related to O[x] = v[x]

From now on we shall focus on O[x] = v[x], Eq. ( 3), for p = 2. Our key results Eq. ( 6) and Eq. ( 7) follow directly from the more general relations Eq. ( 23) and Eq. ( 35).

Assuming an ergodic Gaussian process we have expressed δv(∆t) by the functional δv G [h] in terms of the ACF h, Eq. ( 5). Numerically better behaved equivalent reformulations are discussed in Ref. [15]. We make now the additional physical assumption that after sufficient tempering the stochastic process of each configuration c in its meta-basin is both stationary and Gaussian.

This implies that for τ b ∆t max τ α Eq. ( 5) may hold for each basin separately. 6 i.e. δv c is given by δv G [h c ] expressed in terms of the corresponding ACF h c of the basin instead of its c-average h = E c h c . Unfortunately, h c is not known in general (at least not to sufficient accuracy), but rather h. Since Eq. ( 5) corresponds to products of h c , it is a "mean-field type" approximation to replace h c by its c-average h. This technical assumption becomes strictly valid for large systems, V → ∞, since fluctuations of the ACF vanish in this limit. Within the above physical assumption and the additional technical approximation one thus expects after a final c-averaging

δv int (∆t) ≈ δv G [h] with h = E c h c (45) 
to hold for all ∆t. Whether this approximation is good enough must be checked for each case. Note that neither δv G [h] nor δv int (∆t) do depend (explicitly) on n c or n k , i.e. Eq. ( 45) only holds for δv int (∆t, n k ) with sufficiently large n k . Fortunately, due to Eq. ( 31)

δv int (∆t) δv int (∆t, n k )/ 1 -1/n k , (46) 
i.e. by computing even a small number n k of time series the asymptotic limit δv int (∆t) may be obtained. The relations Eq. (34), Eq. ( 36) and Eq. ( 45) suggest the simple interpolation

δv tot (∆t) ≈ δv 2 G [h] + ∆ 2 ne ( 47 
)
stating that δv tot is essentially given by h(t) plus an additional constant ∆ ne .

General system-size effects

The stochastic processes of many systems are to a good approximation Gaussian since the data entries x i = E m x im are averages over n m 1 microscopic contributions x im and the central limit theorem applies [START_REF] Van Kampen | Stochastic processes in physics and chemistry[END_REF]. (These contributions are often unknown and experimentally inaccessible.) It is assumed here that the system is split in n m quasiindependent microcells, n m is proportional to the volume V , and x im comes from the m-th microcell. Albeit the x im may be correlated, i.e. they may not all fluctuate independently, the fluctuations of the x i commonly decrease with increasing n m . As a consequence, δv int and δv ext generally decrease with the system size. Assuming scale-free correlations one may write [15] δv int (∆t) ∝ 1/n γint m and δv ext (∆t

) ∝ 1/n γext m ( 48 
)
introducing the two phenomenological exponents γint and γext . If the stochastic processes of all basins are Gaussian the same exponent γint must hold for δv G [h] ≈ δv int (∆t), Eq. ( 45). In turn due to Eq. ( 5) this implies the same exponent for h(t) and then due to the stationarity relation Eq. ( 4) also for v(∆t). Due to the definition Eq. (36) the same exponent γext must hold for δv ext (∆t) and ∆ ne . As reminded in Appendix A it is readily seen that γint = 1 and γext = 3/2 for strictly uncorrelated variables x im . The uncorrelated reference with γint = 1 is often included into the definition of the data entries by rescaling

x i ⇒ √ n m x i . Hence, γint ⇒ γ int ≡ γint -1 and
γext ⇒ γ ext ≡ γext -1 in the above relations, i.e.

γ int = 0 and γ ext = 1/2 (49)
for rescaled uncorrelated variables x im . Using the definition of the non-ergodicity time τ ne , Eq. (38), and the asymptotic limit Eq. ( 35) it is seen that

τ ne ∝ n 2(γext-γint) m for τ ne τ b . (50) 
For uncorrelated microcells we have τ ne ∝ n m and, moreover, h(t) and thus τ b are n m -independent, i.e. the condition τ ne τ b becomes rapidly valid.

Fields of intensive thermodynamic variables

Up to now our description of ergodic and non-ergodic stochastic processes has remained deliberately general and we have specifically avoided the notions and assumptions of thermodynamics and statistical physics [START_REF] Chaikin | Principles of condensed matter physics[END_REF][START_REF] Tadmor | Continuum Mechanics and Thermodynamics[END_REF][START_REF] Tadmor | Modeling Materials[END_REF]. We shall now assume that each c-trajectory in its meta-basin is not only stationary and Gaussian but, moreover, at thermal equilibrium albeit under the (not necessarily known) constraints imposed to the basin. We focus below on (instantaneous) intensive thermodynamic variables σ (other than the temperature) which are d-dimensional volume averages with β = 1/k B T being the inverse temperature. For density fields σr characterized by a finite correlation length ξ this rescaling leads to the same exponents γ int = 0 and γ ext = 1/2 as for completely uncorrelated microscopic variables. This assumes that ξ d V and that ξ is Vindependent.

σ(t) = 1 V
Importantly, γ int = 0 must even hold for systems with some long-range correlations if standard thermostatistics can be used for each basin. To see this let us first note that the large-∆t limit v c of v c (∆t) is equivalent to the thermodynamically averaged variance of x(t) for the basin. 7Using the standard relation for the fluctuation of intensive thermodynamic variables [START_REF] Chaikin | Principles of condensed matter physics[END_REF]21] this implies that v c does not depend explicitly on V . 8 This suggests that γ int = 0 not only holds for v c but also for v c (∆t) and v(∆t) = E c v c (∆t) and in turn using Eq. ( 4) also for h c (t) and h(t) = E c h c (t), using Eq. ( 5) also for δv G [h c ] and δv G [h] and finally using Eq. (45) also for δv int (∆t). Interestingly, the same reasoning cannot be made for γ ext , i.e. it is possible that for quenched configurations with long-ranged correlations γ int = 0 holds but not γ ext = 1/2.

Models and technical details 3.1 Coarse-grained models

Various issues discussed theoretically in Sec. 2 will be tested in Sec. 4 for the fluctuating shear stresses σ(t) measured in computational amorphous solids. We present numerical results obtained by means of molecular dynamics (MD) and Monte Carlo (MC) simulations [START_REF] Allen | Computer Simulation of Liquids[END_REF][START_REF] Landau | A Guide to Monte Carlo Simulations in Statistical Physics[END_REF] of three coarse-grained model systems:

quenched elastic networks of repulsive spheres in d = 2 dimensions connected by harmonic springs. The networks are created by means of the "transient self-assembled network" (TSANET) model [17,15] where springs break and recombine locally with an MC hopping frequency ν changing the connectivity matrix of the network. The latter MC moves are switched off (ν = 0) for all configurations considered in the present work. Standard MD simulation with a strong Langevin thermostat [START_REF] Allen | Computer Simulation of Liquids[END_REF] moves the particles effectively by overdamped motion through the phase space. dense polydisperse Lennard-Jones (pLJ) particles in d = 2 dimensions [23,24,21,15]. The configurations are first equilibrated for different temperatures at an imposed average pressure P = 2 using in addition to standard local MC moves of the particles [START_REF] Landau | A Guide to Monte Carlo Simulations in Statistical Physics[END_REF]21] swap MC moves [25] exchanging pairs of particles. We then switch off the swap MC moves and the barostat. Note that each configuration has then a slightly different constant volume V . thin free-standing polmer films suspended parallel to the (x, y)-plane [20,15] computed by straight-forward MD simulation of a widely used bead-spring model [26]. The films contain M = 768 monodisperse chains of length N = 16, i.e. in total n = 12288 monomers, in a periodic box of lateral box size L = 23.5.

A brief presentation of the salient features of each model and the quench protocols used to create the configurations considered in the present work may be found in Ref. [15].

Parameters and some properties

Boltzmann's constant k B , the typical size of the particles (beads) and the particle mass of all models are set to unity and Lennard-Jones (LJ) units [START_REF] Allen | Computer Simulation of Liquids[END_REF] are used throughout this work. Time is measured for the pLJ particles in units of MC cycles of the local MC hopping moves of the beads. Periodic boundary conditions [START_REF] Allen | Computer Simulation of Liquids[END_REF][START_REF] Landau | A Guide to Monte Carlo Simulations in Statistical Physics[END_REF] are used for all systems. The temperature T and the particle number n are imposed. Some key properties such as the main simulation method, the spatial dimension d, the linear dimension of the simulation box L, the volume V , the standard particle number n, the working temperature T or the pressure P are summarized in Table 1. 9 The number density ρ = n/V is always close to unity. The working temperature T of the pLJ particles and the polymer films are both well below the indicated glass transition temperature T g . (There is no glass transition for the TSANET model.) The terminal (liquid) relaxation time τ α [START_REF] Hansen | Theory of simple liquids[END_REF][START_REF] Graessley | Polymeric Liquids & Networks: Dynamics and Rheology[END_REF] of all models is 9 The film volume is V = L 2 H with H being the film height determined from the density profile using a Gibbs dividing surface construction [20]. Since the stress tensor vanishes outside the films, the average vertical normal stress must also vanish for all z-planes within the films. The pressure P indicated for the films in 1. Parameters and properties of the models investigated: general simulation method, spatial dimension d, linear size (length) L of periodic simulation box, system volume V , imposed particle number n, number density ρ = n/V , average normal pressure P , imposed temperature T , glass transition temperature Tg for the pLJ particles and the freestanding polymer films, number of independent configurations nc, maximum sampling time ∆tmax for each trajectory, time increment δt between the measured observables, plateau value vp of variance v(∆t), relaxation time of basin τ b (Fig. 3), non-ergodicity time τne (Fig. 5), non-ergodicity parameter ∆ne (Fig. 3) and system-size exponents γint and γext (Fig. 9).

either (by construction) infinite for the quenched elastic networks of the TSANET model or many orders of magnitude larger than the maximum sampling time ∆t max used for the production runs of each of the n c independent configurations of the ensemble. The relaxation time τ b of the meta-basins may be obtained from the leveling-off of v(∆t) as shown in Sec. 4.2. The non-ergodicity parameter ∆ ne is determined equivalently from the large-∆t limit of δv tot or δv ext and τ ne by setting δv int (∆t = τ ne ) = ∆ ne , Eq. (38). Additional particle numbers n are considered for the pLJ particles (n = 100, 200, 500, 1000, 2000, 50000 and 10000) in Sec. 4.7 where we discuss system-size effects. We briefly report in Sec. 4.6 on preliminary work on temperature effects for the same model where data for T = 0.19, 0.2, 0.25, 0.3 and 0.4 are presented.

Observables and data handling

The only observable relevant for Sec. 4 is the excess contribution σ to the instantaneous shear stress in the xy-plane. See Ref. [15] for other related properties. Measurements are performed every δt as indicated in Table 1. 10 Assuming a pairwise central conservative potential l u(r l ) with r l being the distance between a pair of monomers l, the shear stress is given by the off-diagonal contribution to 10 The standard deviations may depend in addition on the time increment δt used to sample the stochastic process [START_REF] Klochko | [END_REF]. For each model system one unique constant δt is thus imposed (cf. Table 1).

the Kirkwood stress tensor [START_REF] Allen | Computer Simulation of Liquids[END_REF][START_REF] Tadmor | Modeling Materials[END_REF] 

σ(t) = 1 V l r l u (r l ) n l,x n l,y (53) 
with n l = r l /r l being the normalized distance vector. The stochastic process x(t) is obtained using Eq. ( 52). With this rescaling v[x], Eq. ( 3), characterizes the empirical shear-stress fluctuations of the time series and the expectation value v(∆t) is equivalent to the shear-stress fluctuation modulus µ F (∆t) considered in previous publications on the stress-fluctuation formalism for elastic moduli [21, 17-20, 14, 15]. The total standard deviation δv tot (∆t) was called δµ F in Ref. [START_REF] Klochko | [END_REF] and δv in Ref. [15]. For clarity we keep below the notations introduced in Sec. 1 and Sec. 2.

As indicated in Table 1 we prepare for each considered model n c = 100 independent configurations c. This allows to probe all properties accurately. For each configuration c we compute and store one long trajectory with ∆t max /δt ≈ 10 7 data entries. Since we want to investigate the dependence of various properties on the sampling time ∆t we probe for each ∆t max -trajectory n k equally spaced subintervals k of length ∆t ≤ ∆t max with n t = ∆t/δt entries. Most of the reported results have been obtained for discrete n k corresponding to ∆t = ∆t max /n k , i.e. n k and ∆t are coupled and all sampled data entries are used (∆t spac = 0). As a shorthand we mark these data sets by "n k ∝ 1/∆t". We remind that δv int → 0 and δv ext → δv tot for n k → 1 (Sec. 2.2). This limit becomes relevant for ∆t ≈ ∆t max . We have compared these results with averages taken at fixed constant n k . This is done to show that δv int and δv ext become rapidly n k -independent for n k 1. Due to the imposed ∆t max the latter method is limited to ∆t ≤ ∆t max /n k and the spacer time interval ∆t spac (marked by open circles in Fig. 1) between the sampling time interval ∆t (filled circles) is not constant but decreases with n k and ∆t and vanishes for ∆t = ∆t max /n k . Fortunately, the latter point is irrelevant for the non-ergodic systems with τ α ∆t max ∆t + ∆t spac τ b , i.e. subsequent time series are decorrelated and n k 1. It may matter, however, for the analysis of temperature effects as briefly discussed in Sec. 4.6.

Shear-stress fluctuations 4.1 Autocorrelation function h(t)

We turn now to the presentation of our numerical results on the shear-stress fluctuations of the three model systems. As shown in Fig. 2 we begin with the ACF h(t). We remind that within linear response h(t) is equivalent (apart an additive constant µ A and a minus sign) to the shear-stress relaxation function G(t) = µ A -h(t) [21,27,[START_REF] Klochko | [END_REF]15] commonly measured in experimental studies [START_REF] Ferry | Viscoelastic properties of polymers[END_REF][START_REF] Graessley | Polymeric Liquids & Networks: Dynamics and Rheology[END_REF]. Let us focus first on the data for pLJ particles (circles) obtained by means of local MC moves of the beads and presented in the main panel. (Time is given for this model in units of MC attempts for all n particles.) Trivially, h(0) = 0. h(t) first increases rapidly for t τ b , corresponding physically to the relaxation of an affine shear strain imposed at t = 0 [21,27], and becomes then essentially constant, h(t) → h p = 17.1, for more than three orders of magnitude as emphasized by the upper horizontal line. To estimate the basin relaxation time τ b ≈ 2000 quantitatively we have used the criterion h(t ≈ τ b ) = f h p setting (slightly arbitrarily) f = 0.99. Note that h(t) is strictly monotonically increasing (no oscillations) and that a zoom of the plateau regime reveals (not visible) an extremely weak logarithmic creep with h(t) ≈ 16.98 + 0.01 ln(t) for t τ b . The behavior observed for our models using MD simulations (TSANET, polymer films) is unfortunately more complex revealing both non-monotonic behavior (at short times) and much stronger logarithmic creep. As may be seen from the main panel, the overdamped TSANET model shows after a maximum at t ≈ 0.3 (being in fact two peaks superimposed and merged in this representation due to the logarithmic horizontal time scale) a minimum at t ≈ 1 followed by a weak logarithmic creep with h(t) ≈ 14.5 + 0.1 ln(t) up t ≈ 10 4 and then eventually a constant plateau with h p = 15.3 (middle horizontal line). (Using ∆t max = 10 7 and δt = 1 we have verified that this is indeed the terminal plateau value for these quenched elastic networks.) What is the relaxation time τ b for the metabasins of the quenched TSANET model? One reasonable value is τ b ≈ 10 4 characterizing the time where h(t) becomes rigorously constant, another τ b ≈ 10 3 if we insist on the above criterion with f = 0.99. These two values appear, however, far too conservative for many properties discussed below being integrals over h(t) for which τ b ≈ 10 (vertical arrow) is a more realistic estimate.

The inset presents h(t) for polymer films focusing on the data around h(t) ≈ 82. Strong oscillations are seen for short times t 10. The effect is much stronger than for the TSANET model due to the strong bonding potential [20] along the polymer chains and the Nosé-Hoover thermostat used for these MD simulations. (A strong Langevin thermostat was used for the TSANET model.) As already pointed out in Ref. [15], a logarithmic creep with h(t) ≈ 82.7 + 0.12 ln(t) is observed for t 10. The logarithmic creep coefficient is similar to the one observed at intermediate times for the TSANET model but no final plateau is observed. The thin polymer films are thus not rigorously non-ergodic, just as the pLJ model. 11 Fortunately, the logarithmic creep coefficients are rather small for all models. On the logarithmic scales (power-law behavior) we focus on below this effect will be seen to be less crucial merely causing higher order corrections with respect to the idealized behavior sketched in Sec. 2.

Also indicated in Fig. 2 are the rescaled standard deviations δh/ √ 2 (filled symbols). As explained in Sec. III.1 of Ref. [15], these were computed using gliding averages along the trajectories as the last step. We remind that if instantaneous shear stresses correspond to a stationary Gaussian process, this implies [15] 

δh(t) 2 = 2h(t) 2 . ( 54 
)
As can be seen, Eq. ( 54) holds nicely for all our models. A more precise characterization of the Gaussianity of the 11 Only the TSANET systems for ν = 0 are rigorously nonergodic for ∆tmax → ∞. The film system is in a transient regime with a wide spectrum of relaxation times both below and above ∆tmax. As a result Eq. ( 35) cannot hold exactly. As for the pLJ model, its relaxation time spectrum is apparently well below ∆tmax. stochastic process is obtained using the non-Gaussianity parameter α 2 = δh 2 /2h(t) 2 -1 [START_REF] Hansen | Theory of simple liquids[END_REF]. For our standard system sizes this yields very tiny values, e.g., α 2 ≈ 0.0002 for pLJ particles. 12

Variance v and standard deviation δv tot

Using a double-logarithmic representation we compare in Fig. 3 the shear-stress fluctuation v with the corresponding total standard deviation δv tot (filled symbols). We remind that v(∆t) is connected with h(t) via Eq. ( 4). Being a second integral over h(t), v(∆t) is a much smoother and numerically better behaved property [15]. Due to this v increases monotonically without oscillations and nonmonotonic behavior for all three models. Moreover, since the vertical axis is logarithmic the weak creep of the data mentioned in Sec. The total standard deviation δv tot , computed by averaging over all available time series x ck , Eq. ( 18), has a maximum about a decade below τ b . This is expected from the strong increase of h(t) and v(∆t) in this time window [15]. As emphasized by the bold solid lines, δv tot (∆t) decreases then following roughly the 1/ √ ∆t-decay expected for τ b ∆t τ ne . δv tot becomes constant, δv tot → ∆ ne , for large ∆t for all models (bold dashed horizontal lines). As explained in Sec. 2.2, this is a generic behavior expected for non-ergodic systems. We determine the values ∆ ne = 0.16 for TSANET, ∆ ne = 0.25 for the pLJ particles and ∆ ne = 1.13 for the freestanding polymer films. These values are used in the next subsection to rescale the standard deviations δv.

Comparison of δv G and δv int

We compare δv G and δv int in the main panel of Fig. 4. δv G [h] has been determined by means of a numerical more suitable reformulation of Eq. ( 5) described in Refs. [START_REF] Klochko | [END_REF]15] using the ACF h(t) shown in Fig. 2. δv int was obtained according to Eq. ( 19) using n k ∝ 1/∆t time series k as described in Sec. 3.3. Most importantly, δv G ≈ δv int appears to hold for all ∆t confirming thus Eq. ( 45) and the assumption that the trajectories within each meta-basin are stationary Gaussian processes. Moreover, plotting the reduced standard deviations y = δv/∆ ne of the three models as functions of the reduced sampling time u = ∆t/τ ne leads to a data collapse for all three models for u τ b /τ ne . Importantly, all data essentially decay as y ≈ 1/ √ u (bold solid line) in the scaling regime. Note that a free power-law fit would yield a slightly weaker exponent for all models. This small deviation may be attributed to the fact that the ACFs h(t) of none of the models is exactly constant, h(t) = h p , as shown in Sec. 4.1 at variance to Eq. ( 35). As already pointed out in Ref. [15], deviations are especially seen for polymer films for u 1. The inset of Fig. 4 presents in more detail y(u) = δv int /∆ ne for the TSANET model comparing data obtained for different numbers n k of time series k for each configuration c. The large triangles represent the same data shown in the main panel where n k ∝ 1/∆t, all other data have been obtained with a fixed number n k as indicated. We remind that δv int = 0 for n k = 1. A direct plot of y (not shown) reveals that all data but those for n k ≤ 10 collapse, i.e. the n k -dependence becomes rapidly irrelevant. An even better data collapse for all data with n k ≥ 2 is obtained as suggested by Eq. (46) using the rescaled standard deviation y/(1 -1/n k ) 1/2 . In other words it is sufficient to use n k = 2 time series for one configuration to obtain using the rescaling factor (1 -1/n k ) 1/2 the asymptotic limit. This finding should strongly simplify future numerical work.

Comparison of δv int and δv tot

We compare δv tot with δv int in Fig. 5 using reduced units with y = δv/∆ ne and u = ∆t/τ ne . We remind that τ ne (Tab. 1) has been determined as a crossover time by means of Eq. (38) using the measured ∆ ne and δv int (∆t). Apart very short (reduced) sampling times u, the rescaled data depend very little on the model on the logarithmic scales considered. As expected, δv tot ≈ δv int holds to high precision for all u 1. All data sets decrease essentially as y ≈ 1/ √ u for u u b over nearly three orders of magnitude as emphasized by the bold solid line. While the 1/ √ u-decay continues for δv int for large u 1, the rescaled δv tot -data levels off to the plateau indicated by the horizontal dashed line.

Focusing on the TSANET model we test the interpolation formula Eq. (47) in the inset of Fig. 5, i.e. we compare the directly measured δv tot (triangles) with (δv 2 int (∆t) + ∆ 2 ne ) 1/2 (solid line). 13 The same result is obtained by replacing δv int by δv G as expected from Fig. 4 (not shown). The interpolation formula is seen to give an excellent fit of δv tot . To leading order δv tot is thus given by δv int ≈ δv G and, hence, by h(t) plus an additional constant. As indicated by the arrow, Eq. (47) slightly overpredicts δv tot for u ≈ 1. Apparently, δv ext (u) approaches its asymptotic limit ∆ ne from below.

Characterization of δv

ext (∆t, n k )
This point is further investigated in Fig. 6 presenting the dimensionless standard deviation s = δv ext (∆t, n k )/v(∆t) for the TSANET model. (See Fig. 8 for the unscaled δv extdata for pLJ particles.) As emphasized in Sec. 2.2, δv ext depends in general on ∆t and may also depend on n k . The data indicated by the large open and the small filled circles have been both obtained for n k ∝ 1/∆t as described in Sec. 3.3. To demonstrate the numerical equivalence of both definitions the small filled circles are computed using δv 2 ext = δv 2 tot -δv 2 int , Eq. ( 6), and the large circles using directly Eq. (20).

It is also instructive to characterize s for different fixed numbers n k of equidistant and non-overlapping time series decoupling thus ∆t and n k . We remind that δv ext = δv tot for n k = 1 and the power-law slope indicated for the intermediate ∆t-regime of this data set corresponds to the 1/ √ ∆t-decay already shown in Fig. 5. Confirming Sec. 2.2, s becomes n k -independent for large n k approaching a lower envelope s ∞ (∆t) = lim n k →∞ s(∆t, n k ) from above. This lower envelope corresponds essentially to the circles. s ∞ (∆t) is seen to increase monotonically, albeit extremely weakly, approaching ∆ ne /v (dashed line) from below. This is consistent with the tiny deviations from δv tot observed for the shifted δv int -data in the inset of Fig. 5. Similar results have been obtained for the other models as seen in the inset of Fig. 7 showing δv ext (∆t, n k ) for the pLJ particles.

We note finally that Eq. ( 39) implies in principle that

n k δv 2 ext (∆t, n k ) -∆ 2 ne δv 2 int (∆t) ≥ 0 (56)
for ∆t τ b . This allows to express δv ext (∆t, n k ) in terms of δv int (∆t) ≈ δv G [h] for small ∆t and n k (not shown). Unfortunately, this is not possible in the opposite limit since δv 2 ext (∆t, n k ) -∆ 2 ne becomes negative as seen by the monotonic increase of s ∞ (∆t). It is better to go back to the more general Eq. (32) which can be rephrased as

δv ext (∆t) (δv 2 ext (∆t, n k ) -δv 2 G [h]/n k ) 1/2 . (57) 
As shown in the inset of Fig. 7 by the large crosses for n k = 10 this may be used to obtain the asymptotic δv ext (∆t) from δv ext (∆t, n k ) and δv G [h], at least if δv G [h] is available with sufficient precision.

Temperature dependence of δv ext

A different representation of δv ext is chosen in the main panel of Fig. 7 where data sets for fixed sampling times ∆t (increasing from bottom to top) are plotted as functions of n k . Extending beyond the main focus of this work on non-ergodic systems we compare here data sets for a broad range of temperatures T . The dimensionless vertical axis y = δv ext (n k )/δv ext (n k = 1) is used to normalize all data sets for different ∆t and T and to compare δv ext with δv tot = δv ext (n k = 1). y 1 implies that δv tot ≈ δv int , i.e. both averaging procedures become equivalent. The bold solid line indicates the power law 1/ √ n k expected for independent time series x ck being a lower envelope for all data sets. This envelope is the more relevant the smaller ∆t and the higher T . This is especially the case for all high temperatures where the systems are ergodic and according to Eq. (41) we have

δv ext (∆t, n k ) δv int (∆t) √ n k = δv G [h] √ n k (58) 
for n c → ∞. In agreement with Fig. 6 and the inset of Fig. 7, δv ext increases with ∆t and becomes n k -independent for large ∆t and low T . Note that the n k -dependence is weak for ∆t = 10 6 and T = 0.2 and T = 0.19.

A technical issue relevant for future work should be mentioned here. Closer inspection of the data for T = 0.3 for δvext(n k = 1) = δvtot, the solid dashed line the large-∆t limit ∆ne/v. With increasing n k all data sets approach a lower n k -independent envelope s∞(∆t). A good estimation of this limit is given by the data for n k ∝ 1/∆t (circles). The crosses represent the rescaled δvext(∆t, n k ) for n k = 10 using δvG[h] and the approximation Eq. (57). Main panel: y = δvext/δvtot vs. n k for ∆t = 10 3 , 10 4 , 10 5 and 10 6 (from bottom to top) for several temperatures. Open symbols are used for ∆t = 10 3 , filled symbols for ∆t = 10 5 . The data for T = 0.2 is connected by lines. The bold solid line indicates the power-law -1/2 expected for independent time series. and T = 0.4 shows in fact a small upbending for the largest n k which is not consistent with Eq. (58). We remind that we have stored for each configuration c only one trajectory of constant length ∆t max , i.e. the spacer interval ∆t spac between the used time series of length ∆t ≤ ∆t max /n k decreases strongly with ∆t and n k . Neighboring ∆t-intervals become thus correlated once ∆t spac gets smaller than the terminal relaxation time τ α (T ) [START_REF] Hansen | Theory of simple liquids[END_REF][START_REF] Graessley | Polymeric Liquids & Networks: Dynamics and Rheology[END_REF]. One simple means to test that the observed upbending at high temperatures is merely due to this technical effect would be to increase ∆t max and thus ∆t spac by, say, a factor 10 or 100. The upbending must then be shifted to correspondingly larger ∆t. Larger ∆t max are in any case warranted to better show for T T g that δv ext (∆t) → ∆ ne for large ∆t. However, for a physical meaningful characterization of δv ext for intermediate temperatures it would be even better to work with a constant spacer time ∆t spac for all temperatures and to sample thus n k sequences of fixed spacer and measurement time intervals decoupling thus n k from both ∆t and ∆t spac . y ≈ 1/ √ n k must then rigorously hold for ∆t spac τ α while y should reveal a (possibly temperature dependent) shoulder in the opposite limit. The next challenge to be addressed then is of whether a time-temperature superposition scaling using the directly measured terminal relaxation τ α (T ) is possible or not. 

System-size dependence

We investigate now the dependence of several properties on the system size focusing on data obtained for the pLJ particles. We have seen above that the total variance δv 2 tot of the shear-stress fluctuations v of quenched elastic bodies may be decomposed as the sum of two contributions due to independent physical causes: the internal and external variances δv 2 int and δv 2 ext . The main point made in this subsection is that δv int and δv ext are characterized by different n-dependences. Figure 8 compares the ∆t-dependences of δv int and δv ext for different particle numbers n. δv int and δv ext have been computed using n k ∝ 1/∆t time series for each configuration. The data are plotted as functions of the unscaled sampling time ∆t in units of MC steps. The bold solid line indicates the decay of δv int expected according to Eq. (35) for ∆t τ b . As can be seen, δv int is essentially n-independent, i.e. γ int = 0 as expected if standard statistical physics holds for each meta-basin. At striking variance to this δv ext strongly decreases with n, i.e. the v c become similar, and becomes constant, δv ext → ∆ ne , for large ∆t. Interestingly, δv int (∆t) is a monotonically decreasing function of ∆t while δv ext (∆t) is always monotonically increasing. Note that the increase of δv ext (∆t) for ∆t τ b is much stronger than the one seen for the reduced external standard deviation s ∞ (∆t) in Fig. 6 and the inset of Fig. 7. In other words, the ∆t-dependence of δv ext (∆t) stems mainly from the ∆t-dependence of v(∆t), Fig. 3.

The n-dependence of various properties is presented in Fig. 9. We compare in the main panel h, v, δv G , δv int , δv ext and δv tot measured at ∆t = 10 6 with the nonergodicity parameter ∆ ne (circles). As emphasized by the dashed horizontal lines, h, v and δv G ≈ δv int are all independent of the particle number n, i.e. γ int = 0 as expected from Sec. 2.5. Moreover, δv ext , δv tot and ∆ ne are within numerical accuracy identical. This is expected since ∆t = 10 6

τ ne for all n. ∆ ne was seen to decrease with a power-law exponent γ ext = 1/2 for the TSANET model [15]. According to Eq. ( 49) this suggests that independent localized shear-stress fluctuations are relevant for these elastic networks. Interestingly, a weaker exponent γ ext ≈ 1/3 (bold solid line) has been fitted in recent simulation studies of 2D binary LJ mixtures [16], dense 3D polymer glasses [START_REF] Klochko | [END_REF] and to the 2D pLJ particles [15] also investigated in the present study. A somewhat larger exponent γ ext ≈ 0.43 (dash-dotted line) appears to better fit all currently available pLJ data. Assuming that future simulations confirm that γ ext < 1/2 this could be explained by long-range spatial correlations with a diverging correlation length ξ [28,[START_REF] Klochko | [END_REF]30].

As can be seen from the inset, the basin relaxation time τ b , obtained using Eq. (55) from v(∆t), only depends weakly (logarithmically) on n. At variance to this τ ne (n), obtained using Eq. ( 38), strongly increases. The two indicated power-law slopes are attempts to characterize this dependence. According to Eq. (50) one expects τ ne ∝ n 2γext for γ int ≈ 0. Depending on whether γ ext = 1/2 or γ ext ≈ 1/3, this corresponds either to τ ne ∝ n (bold solid line) or τ ne ∝ n 2/3 (dashed line). The linear relation only fails for the two largest systems.

Conclusion

Extending our recent work focusing on ergodic stationary Gaussian stochastic processes [START_REF] Klochko | [END_REF]15] on to non-ergodic systems, we have described in general terms the standard deviation δv(∆t) of the empirical variance v[x], Eq. ( 3), of time series x measured over a finite sampling time ∆t. Since independent "configurations" c get trapped in meta-basins of the generalized phase space (Fig. 1) it becomes relevant in which order c-averages and c-variances over configurations c and k-averages and k-variances over time series k of a given configuration c (Sec. 2.1) are performed. Three types of variances of v[x ck ] must be distinguished: the total variance δv 2 tot , Eq. ( 18), the internal variance δv 2 int within each meta-basin, Eq. ( 19), and the external variance δv 2 ext between the different basins, Eq. ( 20). It was shown (Sec. 2.2) that δv 2 tot = δv 2 int + δv 2 ext , Eq. ( 6). Various general and more specific simplifications of our key relation Eq. ( 6) are given for physical systems where the stochastic process x(t) is due to a fluctuating density field averaged over the system volume V . Assuming the stochastic process within each basin to be thus (essentially) Gaussian, δv int is given by the functional δv G [h], Eq. ( 5), in terms of the c-averaged ACF h, Eq. ( 45). Both the ∆t-and the V -dependence of δv int is thus imposed by h(t). Specifically, this implies that δv int (∆t) ≈ δv G (∆t) ∝ 1/ √ ∆t for ∆t τ b . Moreover, δv ext converges for ∆t τ b to the constant "non-ergodicity parameter" ∆ ne . Since δv ext ≈ ∆ ne decreases more strongly with the system volume V than δv int (Sec. 2.5), the non-ergodicity time τ ne (V ), Eq. ( 38), must increase with V . Deviations of δv tot from δv int ≈ δv G are thus merely finite-size effects.

We have illustrated and essentially confirmed these relations in Sec. 4 for stochastic processes obtained from the (reduced) shear stresses x(t) = √ βV σ(t) computed in amorphous solids. Quenched elastic networks and two low-temperature glasses have been compared. The Gaussianity approximation δv int ≈ δv G [h], Eq. (45), is seen to hold for all ∆t (Fig. 4), i.e. δv int (∆t) is set by h(t). Interestingly, δv ext is seen to approach its asymptotic limit δv ext ≈ ∆ ne from below (Figs. 6, 7 and8). The discussion in Secs. 4.3-4.5 has focused on the comparison of δv int , δv G , δv tot and δv ext for one state point, i.e. one temperature and one system size. Effects of the volume V ∝ n have been considered in Sec. 4.7. While h, v, δv G ≈ δv int are essentially V -independent (γ int ≈ 0) as expected for stochastic processes of intensive thermodynamic fields (Sec. 2.5), δv ext ≈ ∆ ne ∝ 1/V γext strongly decreases (Fig. 9). That δv int and δv ext are independent contributions to δv tot characterized by different statistics is thus manifested by their different V -dependences. While an exponent γ ext = 1/2 has been fitted for the TSANET model [15], a weaker (apparent) exponent γ ext < 1/2 appears to fit ∆ ne for the pLJ particles. As already pointed out elsewhere [START_REF] Klochko | [END_REF] this suggests long-range spatial correlations.

Temperature effects have been mentioned briefly for pLJ particles and the external variance δv 2 ext (Sec. 4.6). As pointed out there, future studies should increase the total sampling times ∆t max for each configuration to better describe the scaling of δv int and δv ext with ∆t and n k for different temperatures. Especially, it should be useful to sample these properties using a fixed spacer time interval ∆t spac for all temperatures. While δv ext (n k ) ∝ 1/ √ n k for high temperatures (Fig. 7), δv ext (n k ) should reveal an intermediate plateau (shoulder), ∆ ne , before it decays for even larger n k . A central question is then whether this intermediate plateau ∆ ne (T ) depends continuously on T -as suggested by our data (Fig. 7) -or if a jumpsingularity appears [30].

We have considered in the present work the standard deviations δv associated with the empirical variance v[x], Eq. (3), with p = 2. It is straightforward to generalize our approach to other moments p. Especially, Eq. ( 6) still holds and the generalized internal variance δv 2 int must be given by a generalization of δv 2 G [h], i.e. one expects the same V -dependence for h and δv int ≈ δv G . Probing different moments p should make manifest the higherorder spatial correlations of the instantaneous stress field σr . Note that the expectation values v for p = 2, 3, . . . correspond to important contributions to the generalized stress-fluctuation formalism for the p-order elastic moduli B p (being the p-order strain derivative of the free energy) [15,16]. Surprisingly, the standard deviations δB p for p > 2 have been claimed to diverge with increasing V leading to a "breakdown of nonlinear elasticity in amorphous solids" [16]. Since the common every day experience is rather that sufficiently large amorphous (plastic) bodies are well behaved according to standard continuum mechanics [START_REF] Ferry | Viscoelastic properties of polymers[END_REF][START_REF] Graessley | Polymeric Liquids & Networks: Dynamics and Rheology[END_REF][START_REF] Tadmor | Continuum Mechanics and Thermodynamics[END_REF], the presented work suggests that the experimentally relevant standard deviations should be characterized by internal standard deviations δB p,int using Eq. ( 19) instead of the total standard deviations δB p,tot computed using Eq. ( 18) in Ref. [16]. We are currently working out the consequences of this idea. 14A System-size exponents γ int and γ ext

We focus here on properties obtained for ∆t τ b . The time dependence becomes thus irrelevant. Due to the nonergodicity the c-dependence remains relevant, however, 

V c v c = 1 n 3 m × 1 n m m V c v cm (61) 
where we have used that also the variances v cm are independent stochastic variables. Note that the m-averages (brackets) do not depend on n m for large n m . Hence,

v = E c v c ∝ 1/n m and ∆ ne ∝ 1/n 3/2 m . (62) 
We have thus confirmed the exponents γint ≡ γ int + 1 = 1 and γext ≡ γ ext + 1 = 3/2 stated in Sec. with s being the standard deviation of the normalized distribution p(δ c ). For a Gaussian distribution all moments are set by s. In general, however, p(δ c ) may be non-Gaussian and may depend on the preparation history. It may even happen in principle that some higher moments do not exist. We present in Fig. 10 the normalized distribution p(x) for the rescaled dispersion x = δ c /s. A broad range of cases is considered. The histograms are obtained using the n c = 100 independent configurations. A reasonable data collapse on the Gaussian distribution (bold solid line) is observed. This indicates that δv ext or s are sufficient for the characterization of the distribution of the dispersion δ c . The Gaussianity was also checked by means of the standard non-Gaussianity parameter [START_REF] Hansen | Theory of simple liquids[END_REF], comparing the forth and the second moment of the distribution.

Clearly, an even larger number n c is warranted in future work for a more critical test of the tails of the distribution using a half-logarithmic representation.

Fig. 1 .

 1 Fig. 1. Sketch of problem: Time series x with nt = 6 data entries xi are marked by filled circles. The first entry xi=1 is indicated by a dark filled circle.The open circles mark tempering steps between different time series k of each independently prepared "configuration" c. The solid lines mark barriers of different height in some phase space. We assume that the system is non-ergodic, i.e. the configurations c are permanently trapped in the meta-basins marked by the thickest lines.

Fig. 2 .

 2 Fig. 2. Shear-stress correlation function h (open symbols) and (rescaled) standard deviation δh/ √ 2 (filled symbols) as functions of time t. The vertical arrows mark the approximate position of τ b where h(t) becomes constant. δh(t)/ √ 2 ≈ h(t) holds to high accuracy confirming the Gaussianity of the stochastic process. Inset: Strong short-time oscillations followed by a weak logarithmic creep behavior for polymer films.

Fig. 3 .

 3 Fig. 3. Shear-stress fluctuation v and the corresponding total standard deviation δvtot (filled symbols) as functions of the sampling time ∆t. The thin horizontal solid lines mark the long-time plateau value vp, the vertical arrows the relaxation time τ b of the different models. While δvtot ∝ 1/ √ ∆t for intermediate times (bold solid lines), a leveling-off δvtot → ∆ne is observed for large times (bold dashed horizontal lines) with ∆ne = 0.16 for TSANET, ∆ne = 0.25 for the pLJ particles and ∆ne = 1.13 for the freestanding polymer films.

  4.1 becomes irrelevant, i.e. essentially v(∆t) → v p = const for ∆t τ b as emphasized for all models by the thin horizontal lines marking the plateau value v p and the vertical arrows for the basin relaxation time τ b . (As implied by Eq. (4) v p ≈ h p for all models.) This allows to definite τ b using the same criterion for all models by setting v(∆t ! = τ b ) = f v p with f = 0.95 (55) being chosen to obtain the same τ b ≈ 2000 for the pLJ particles as in Sec. 4.1. This gives the values stated in

Fig. 4 .

 4 Fig. 4. Main panel: Comparison of δvG and δvint using a double-logarithmic representation. The reduced standard deviations y = δv/∆ne are plotted as functions of the reduced sampling time u = ∆t/τne with τne = 4200 for the TSANET model, τne = 200000 for the pLJ particles and τne = 800 for the polymer films. The bold solid line marks the expected powerlaw decay y ≈ 1/ √ u. Inset: y = δvint(∆t, n k )/∆ne rescaled as y/(1 -1/n k ) 1/2 vs. u for the TSANET model and different n k . The perfect data collapse for n k ≥ 2 is expected from Eq. (46).

Table 1 .

 1 (See Fig.9below for the system-size dependence of τ b for pLJ particles.)

Fig. 5 .

 5 Fig. 5. Main panel: Comparison of δvint and δvtot using double-logarithmic coordinates with y = δv/∆ne and u = ∆t/τne. δvint ≈ δvtot holds for u 1 while δvtot → 1 for u 1 (bold dashed line). Inset: y = δvtot(∆t)/∆ne vs. u. As shown for the TSANET model, Eq. (47) gives a good approximation for δvtot. Tiny deviations are seen for u ≈ 1.

Fig. 6 .

 6 Fig. 6. s = δvext/v vs. u = ∆t/τne for quenched TSANET networks. The large open and small filled circles have been obtained using n k ∝ 1/∆t, all other symbols by imposing a constant n k . The thin solid line indicates the expected powerlaw behavior s ≈ 1/ √ u for small n k , the bold dashed horizontal line the asymptotic limit s → ∆ne/v for u 1.

Fig. 7 .

 7 Fig. 7. δvext(∆t, n k ) for pLJ particles. Inset: s = δvext/v vs. ∆t for T = 0.2 for different n k using the same symbols as in Fig 6. The thin solid line indicates the power-law slope -1/2for δvext(n k = 1) = δvtot, the solid dashed line the large-∆t limit ∆ne/v. With increasing n k all data sets approach a lower n k -independent envelope s∞(∆t). A good estimation of this limit is given by the data for n k ∝ 1/∆t (circles). The crosses represent the rescaled δvext(∆t, n k ) for n k = 10 using δvG[h] and the approximation Eq. (57). Main panel: y = δvext/δvtot vs. n k for ∆t = 10 3 , 10 4 , 10 5 and 10 6 (from bottom to top) for several temperatures. Open symbols are used for ∆t = 10 3 , filled symbols for ∆t = 10 5 . The data for T = 0.2 is connected by lines. The bold solid line indicates the power-law -1/2 expected for independent time series.

Fig. 8 .

 8 Fig.8. δvint (open symbols) and δvext for pLJ systems for a broad range of particle numbers n. δvint is essentially nindependent, i.e. γint = 0, while δvext decreases with n. The bold solid line indicates the decay of δvint expected according to Eq. (35), the dashed horizontal lines show the δvext-values given in Fig.9.

Fig. 9 .

 9 Fig. 9. Dependence on particle number n for various properties for pLJ particles. Main panel: h, v, δvG, δvint, δvtot for ∆t = 10 6 and ∆ne. The thin horizontal dashed lines indicate the exponent γint = 0, the bold solid line γext = 1/2, the dashdotted line γext ≈ 0.43 and the bold dashed line γext ≈ 0.33. Inset: n dependence of τ b and τne. While τ b saturates for large n, τne increases with n broadly in agreement with Eq. (50).

Fig. 10 .

 10 Fig. 10. Normalized histogram p(x) for different ∆t and n k as indicated. The histograms are well described by a Gaussian (bold solid line).

-x 2 c-x m 2 c

 22 and we compute k-averages E k . . . = . . . c over all stochastic variables x = E m x m being themselves averages over n m microscopic variables x m and compatible with the non-ergodicity constraint of the configuration c considered. Our task is to computev = E c v c and ∆ 2 ne = V c v c for v c ≡ x 2 c . (59)We assume that the microscopic variables x m are decorrelated as they come from uncorrelated microcells and set v cm ≡ x 2 m c for the variance of the microscopic variable x m . Using the independence of the microcells m yields

2 . 4

 24 for uncorrelated microscopic variables.B Distribution of vc Since δv 2 ext = V c v c is finite, the v c = E k v[x ck ] of different configurations c must differ. It is useful to rewrite Eq. (20) by setting v c = v(1 + δ c ) in terms of the "dimensionless dispersion" δ c . Using E c δ c = 0 we have(δv ext /v) 2 ≡ s 2 = E c δ 2 c = dδ c p(δ c ) δ 2 c (63)

  and n c → ∞. δO ext (∆t, n k ) thus depends on n k and δO ext (∆t) and, interestingly, also on δO int (∆t).

	∆t) providing the n k -dependence of δO int for sufficiently large (31) ∆t spac . Using Eq. (23) both for finite n k and for n k → ∞ and the fact that δO tot (∆t, n k ) = δO tot (∆t), i.e. δO tot does not depend on n k for large n c , we get δO 2 ext (∆t, n k ) δO 2 ext (∆t) + 1 n k δO 2 int (∆t) (32) for ∆t spac τ b 2.2.7 Total variance δv 2 tot (∆t, n c , n k ) Using Eqs. (28, 32) the total variance, Eq. (23), can be written for finite n c as δO 2 tot (∆t, n c , n k ) 1 -1 n k δO 2 int (∆t) + 1 -1 n c δO 2 ext (∆t) + 1 n k δO 2 int (∆t) . (33) The latter equation is valid for ∆t + ∆t spac τ b and ∆t max τ α . It shows explicitly how δO 2 tot depends on the number of configurations n c and the number of time series n k for each c. For n c → ∞ Eq. (33) simplifies to δO 2 tot (∆t, n c , n k ) → δO 2 tot (∆t) = δO 2 int (∆t) + δO 2 ext (∆t) (34) i.e. as expected from Sec. 2.2.4 not only the n c -dependence but also the n k -dependence drops out. 2.2.8 Large-∆t limit (∆t τ b )

Table 1

 1 refers to the normal tangential stresses.

	property	symbol	TSANET	pLJ	films
	main simulation method	-	MD	MC	MD
	spatial dimension	d	2	2	3
	linear simulation box size	L	100	≈ 103.3	23.5
	system volume	V	L 2	L 2	L 2 H
	particle number	n	10000	10000	12288
	number density	ρ	1	≈ 0.94	≈ 1.00
	pressure	P	1.7	2.0	-1.0
	temperature	T	1	0.2	0.05
	glass transition temperature	Tg	none	≈ 0.26	≈ 0.36
	number of configurations	nc	100	100	100
	maximum sampling time	∆tmax	10 5	10 7	10 5
	measurement time increment	δt	0.01	1	0.05
	plateau of v(∆t)	vp	15.3	17.1	≈ 83
	basin relaxation time	τ b	10	2000	1
	non-ergodicity time	τne	4200	200000	800
	non-ergodicity parameter	∆ne	0.16	0.25	1.13
	volume exponent for δvint	γint	≈ 0	≈ 0	-
	volume exponent for δvext	γext	≈ 0.5	≈ 0.44	-

Table

  

v[x] is defined without the usual "Bessel correction"[START_REF] Press | Numerical Recipes in FORTRAN: the art of scientific computing[END_REF]. See the discussion at the end of Sec. 2.1.

This assumption also holds for ∆t τα for a finite terminal relaxation time τα associated with the transitions between the meta-basins. Note that the systems is ergodic in the second regime.

The stochastic process is ergodic within the basin.

Albeit vc depends on whether the average intensive variable σ of the meta-basin is imposed or its conjugated extensive variable in both cases vc does not depend on V . See Ref.[22] or Sec. II.A of Ref.[21] for details.

The non-Gaussianity parameter α2 is seen to increase somewhat for smaller system sizes. The typical values are, however, always rather small, e.g., α2 0.04 for all times for pLJ particles with n = 100.

Eq. (47) is applicable for ∆t τ b . In terms of u this condition becomes u 1/400 for the TSANET model. This is roughly satisfied by the u-range presented in Fig.5.

The stress-fluctuation formalism for Bp uses the fluctuations of stationary stochastic processes, i.e. no external (linear) perturbation is applied to measure directly the moduli. It is unclear whether the out-of-equilibrium processes are described by the same fluctuations. It is an open theoretical question of how to generalize the fluctuation-dissipation relations, connecting the average linear out-of-equilibrium response to the average equilibrium relaxation[START_REF] Doi | The Theory of Polymer Dynamics[END_REF][START_REF] Hansen | Theory of simple liquids[END_REF]17], for their fluctuations.
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