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ABSTRACT: The transfer of mid-infrared spectral histopathology to the clinic will be possible conditionally upon easily applicable 

in clinical practice. The rapid analysis of formalin-fixed paraffin-embedded (FFPE) tissue section is thus a prerequisite. The chemical 

dewaxing of these samples before image acquisition used by the majority of studies is in contradiction with this principle. Fortunately, 

the in silico analysis of the images acquired on FFPE samples is possible by using extended multiplicative signal correction (EMSC). 

However, the removal of pure paraffin pixels is essential to perform a relevant classification of tissue spectra. So far, this task was 

possible only if using manual and subjective histogram analysis. In this article, we thus propose a new automatic and multivariate 

methodology based on the analysis of optimized combinations of EMSC regression coefficients by validity indices and KMeans 

clustering in order to separate paraffin and tissue pixels. The validation of our method is performed using simulated infrared spectral 

images by measuring the Jaccard index between our partitions and the image model, with values always over 0.90 for diverse baseline 

complexity and signal to noise ratio. These encouraging results were also validated on real images by comparing our method with 

classical ones and by computing the Jaccard index between our partitions and the KMeans partitions obtained on the infrared image 

acquired on the same samples but after chemical dewaxing, with values always over 0.84. 

Tissue microscopic imaging by mid-infrared (IR) absorption 

spectroscopy appears as an emerging technique to help the 

pathologists in the molecular characterization of tissues. Com-

bined with statistical data processing, the approach revealed ef-

ficient to evidence various histological structures and to differ-

entiate between physiological or pathological states, without 

any labelling or staining agent1. The analytical capability of the 

technique relies on the multivariate nature of the recorded spec-

tra, reflecting the overall biochemical composition of the sam-

ple and the molecular alterations associated with physiological 

changes or malignancy. Among the scientific literature, this ap-

proach, named spectral histopathology (SHP) has proven to be 

effective in the identification of cancerous tissues in compari-

son with their non-tumoral counterpart. Several types of lesions 

were studied, e.g. skin2, melanomas3, prostate4, lung5, cervical6, 

brain7, breast8,9 or colon10-13 cancers. Besides the analysis of 

cancerous tissues, SHP was applied in other biomedical issues 

such as the characterization of inflammation14 or age-related al-

terations in tissue such as skin15. These examples were proof-

of-concept studies but several assets of mid-IR imaging make it 

possible to consider the deployment of the technique for clinical 

diagnostic applications. For a routine use, this technique has a 

low cost once the equipment is acquired, and allows to map the 

tissue at a microscopic scale and in a short time1. Importantly, 

data processing can be automated so as to be totally independent 

of the operator contrary to conventional histopathological ex-

amination. In ambiguous issues, the interpretation of histology 

or immunostaining can be subject to a lack of consensus be-

tween several pathologists, each interpreting with his/her own 

expertise and subjectivity.  

The clinical transfer of this biophotonic technology requires 

the confirmation of the proof-of-concept studies on large-scaled 

retrospective cohorts coming from tumor biobanks. However, 

the majority of these biopsies are formalin-fixed paraffin-em-

bedded (FFPE) for preservation, preparation and long-term 

storage purposes and paraffin has a significant infrared response 

disrupting the infrared image analysis. In previous studies2,12,16–

21, we have demonstrated the possibility to analyze FFPE tissues 

without chemical dewaxing, which facilitates retrospective 

studies on reference tissues in tumor banks. Indeed, spectral in-

terferences of paraffin can be modelled and neutralized in order 

to keep only the spectral diversity associated with the molecular 
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composition of the tissue structures. In addition, pixels corre-

sponding to noisy spectra or pixels with a strong contribution of 

paraffin are considered as outliers and can be removed from the 

dataset. The identification of outliers’ pixels is an important 

step for the construction of an efficient classification model. 

The procedure to remove outliers was originally developed 

from the extended multiplicative signal correction (EMSC) pre-

processing of the data22. In the current version of the algo-

rithm16,20, the outlier’s elimination proceeds by selecting manu-

ally thresholds on values of two coefficients, precisely of the 

reference spectrum fit and modeling error respectively. How-

ever, this operator-dependent selection is a break on the auto-

mation of the SHP. 

Therefore, in this study, we describe a novel methodology 

which automatically removes the outlier’s spectra of mid-infra-

red spectral images collected from FFPE colon tissues. Original 

tools of data partitioning and simulated data were also used to 

demonstrate the performance of the separation between spectra 

informative of tissue composition and outliers’ spectra. The 

performance of our automatic approach has been evaluated on 

simulated and real infrared images and compared with other ex-

isting semi-automatic methods for detection of paraffin and out-

liers’ spectra.  

EXPERIMENTAL SECTION 

Samples 

Formalin-fixed paraffin-embedded tissue sections. FFPE 

blocks of metastatic colon carcinoma were obtained from the 

colon cancer surgery of 3 patients with T4N1M1 staging, at the 

pathology department of the Reims university hospital. The 

written informed patient consent was obtained according to the 

approved local ethics committees (n° AC-2019-3408). 

Two FFPE blocks of xenografted human colon carcinoma 

were obtained from the INSERM U113 research group. This 

animal experiment was conducted in accordance with the 

French Ethical Approval Apafis#16125-2018030716202418 v2 

according to the European guidelines.  

For each block, two consecutive 6 μm thick sections were cut 

using a Microm HM 335 E microtome (Microm Microtech, 

Brignais, France). The first section was deposited on a calcium 

fluoride (CaF2) window (Crystran, Dorset, UK) for mid-infra-

red spectral analysis. The adjacent section was mounted on a 

glass window and stained with hematoxylin and eosin (HE) for 

conventional histology, in order to serve as a reference for the 

spectral histopathology analysis. 

Chemically dewaxed FFPE tissue sections. In the majority 

of published studies, FFPE tissue sections are chemically 

dewaxed before mid-infrared spectral analysis in order to re-

move the paraffin5,6,8–10,13,23–26 which presents a parasitic signal 

superimposed to the tissue infrared signal16,20,27.  

In this work, 5 FFPE tissue sections (2 for mice and 3 for 

human patients) that were previously analyzed by mid-infrared 

spectral imaging were chemically dewaxed by immersion in 

several xylene baths. Then, mid-infrared spectral imaging was 

performed once again on these chemically dewaxed tissue sec-

tions which will be thus considered as gold standard in this 

study.  

Thus, in order to objectively evaluate the performances of the 

different investigated approaches, the distinction between tissue 

and non-tissue spectra on the FFPE sections (presented below 

in section entitled “Identification methods of pure paraffin spec-

tra”) will be compared with the clustering outcomes obtained 

from the corresponding dewaxed sections. 

Frozen tissue section. In order to generate simulated FFPE 

IR spectral images, a xenografted human colon carcinoma sam-

ple has been embedded in the Tissue-Tek optimum cutting tem-

perature (O.C.T.) formulation to slice 6 µm-thin cryo-cross-sec-

tions using a LEICA (CM 3050 S) at −20°C. From this sample, 

a tissue area has been selected for FTIR spectral imaging using 

the same procedure as for FFPE tissue sections. 

Data collection 

Fourier Transform Infrared (FTIR) images were collected in 

transmission mode using a Spectrum Spotlight 300 FTIR imag-

ing system coupled to a Spectrum One FTIR spectrometer (Per-

kin Elmer, Courtaboeuf, France), equipped with a liquid nitro-

gen-cooled mercury–cadmium–telluride (MCT) detector. Prior 

to spectral image acquisition, a visible image of the sample was 

collected in order to select up to 4 different tissue zones and one 

pure paraffin zone to be analyzed. For each pixel of these se-

lected areas, 16 scans were averaged on the spectral range 750-

4000 cm−1, using a spectral resolution of 4 cm−1 and a pixel size 

of 6.25x6.25 μm². A background spectrum from the CaF2 win-

dow was recorded using 240 accumulations and subtracted au-

tomatically from each collected image by the Spectrum Image 

software (Perkin Elmer).  

In total, 12 FTIR spectral images were collected on the FFPE 

tissue sections (3 for mice and 9 for human patients), and 12 on 

the chemically dewaxed tissue sections (3 for mice and 9 for 

human patients), with 15000 pixels per image in average. In ad-

dition, 5 spectral images of paraffin composed approximately 

of 12000 pixels were recorded to model the spectral interference 

signal in the Extended Multiplicative Signal Correction 

(EMSC) model defined below in section entitled “Data pre-pro-

cessing”. 

Simulated spectral images 

The validation of a method on real-world datasets is the final 

and most valuable step. However, simulated datasets are usually 

constructed for the following reasons28. First, the ground truth 

is perfectly known. Second, the main variability sources that 

can be observed in the real datasets are completely under con-

trol. The influence of these variability sources on the results can 

thus be easily studied. Third, a new method is often dependent 

of internal parameters (such as the number of latent variables 

for partial least squares) that can be easily tuned on a simulated 

dataset. The behavior of a new proposed method can thus be 

fully understood using a simulated dataset. 

In this sense, we constructed simulated FTIR spectral images 

of FFPE tissue sections using the model described in the Sup-

porting Information. This model permits to modulate the simu-

lated spectral images according to the following parameters. 

First, the ratio between the tissue and pure paraffin areas can be 

adjusted by specifying their respective number of pixels. Sec-

ond, the baseline complexity can be modulated by specifying 

the order of the polynomial function used to model the baseline. 

Third, the signal to noise ratio (SNR) can be controlled by the 

standard deviation σ of the Gaussian noise added to the model. 

Data pre-processing 

First, the real FTIR images were corrected from the water va-

por and carbon dioxyde atmospheric absorptions by the Spec-

trum IMAGE software (Perkin-Elmer).  



 

Second, these spectra were cut in the 900-1800 cm-1 finger-

print region since it is known to be the most informative spectral 

range for this type of samples17.  

Third, Extended Multiplicative Signal Correction (EMSC)22 

was applied to the real and simulated IR images using the fol-

lowing linear model for each spectrum 𝒔𝒊: 

𝒔𝒊 = 𝒂𝒊�̂� + 𝒃𝒊𝑰 + 𝒄𝒊𝑷 + 𝒆𝒊. (1) 

In this work, �̂� is a reference spectrum chosen as the average 

spectrum of the dataset. On a FTIR image acquired on a pure 

paraffin area, the mean spectrum was computed and a principal 

component analysis was performed in order to find the main 

sources of spectral variability due to paraffin. The mean spec-

trum and the 𝑁𝐼 = 9 first principal components (expressing 

98% of variance) were pooled in a matrix 𝑰, named interference 

matrix, in order to model the paraffin variability into the EMSC 

model. 𝑷 is a 4th order Vandermonde matrix of wavenumbers 

used to model the baseline and light scattering effect. 𝒆𝒊 is the 

modeling error vector. 𝒂𝑖, 𝒃𝒊 = [𝑏𝑖0, 𝑏𝑖1, . . . , 𝑏𝑖𝑁𝐼
]  and 𝒄𝒊 =

[𝑐𝑖0, 𝑐𝑖1, . . . , 𝑐𝑖4] are the regression coefficients of �̂�, 𝑰 and 𝑷 re-

spectively and are estimated by ordinary least squares. Then, 

each spectrum is corrected using the following equation: 

𝒔𝒊
𝒄 = �̂�+𝒆𝒊/𝒂𝒊. (2) 

Thus, the EMSC preprocessing permits to perform simulta-

neously i) the neutralization of the variabilities of the baseline 

and of infrared contribution of the paraffin embedding medium, 

and ii) the normalization of the data spectra around the mean 

dataset spectrum. The reader can refer to 20,22,27 for more details 

about the EMSC model and its application to spectral FTIR im-

ages acquired on FFPE tissue sections.  

To assess the model performance, the modeling residue 

∑ 𝑒𝑖𝑘
2𝑁𝜆

𝑘=1  is usually computed, where 𝑁𝜆 is the number of wave-

numbers composing each spectrum16,17. However, this expres-

sion being quadratic, its visualization using histogram or esti-

mated density function is difficult. To avoid this problem, we 

will consider the natural logarithm of the modeling residue 𝑟𝑖 =

𝑙𝑛(∑ 𝑒𝑖𝑘
2𝑁𝜆

𝑘=1 ). 

Identification methods of pure paraffin spectra 

Spectral band ratio (BR). Spectral band ratio is a routinely 

used method to detect spectra contaminated with an unwanted 

compound contribution, such as water vapor, substrate, noise or 

preservation medium30. This method is based on the computa-

tion of the ratio between the integrated intensities of two bands 

and on the definition of a decision threshold.  

In our study, this method has been applied to detect the pure 

paraffin pixels on the recorded FTIR tissue images by compu-

ting the ratio between the 1600–1700 cm-1 Amide I band asso-

ciated with the tissue and the 1430–1490 cm-1 paraffin band. 

Previously to the ratio computation, each spectral band was cor-

rected from its baseline computed as the straight line passing 

through the two band extreme wavenumbers, i.e. 1600 and 1700 

cm-1 for the Amid I band, and 1430 and 1490 cm-1 for the par-

affin band. An example of estimated baselines is shown on Fig-

ure S-1(a). 

Spectra were considered as pure paraffin pixels if their band 

ratio was less than a threshold that was manually and differently 

chosen for each FTIR image. 

Univariate analysis of EMSC 𝒂 regression coefficient and 

𝒓 modeling residue (UA). Univariate analysis of EMSC regres-

sion coefficient 𝑎 and modeling residue 𝑟 has been developed 

specifically to detect pure paraffin spectra16 and applied in the 

majority of studies2,17,20,27,31 on FTIR images acquired on FFPE 

tissue sections. This method is based on the manual selection 

by the operator of two different thresholds, one for the 𝑎 fitting 

coefficient and one for the natural logarithm of the modeling 

residue 𝑟 estimated by EMSC. These two thresholds, named 𝜏𝑎 

and 𝜏𝑟 in the following, are selected independently of each 

other. Spectra for which 𝑎𝑖 > 𝜏𝑎 and 𝑟𝑖 < 𝜏𝑟 are considered as 

good quality tissue spectra. 

This method has also been adapted to analyze sample in tis-

sue microarray12,19. 

Multivariate analysis of EMSC fitting coefficients (MA). 

In this paper, we propose a new method to identify the non-tis-

sue spectra. After EMSC, a set of the fitting coefficients belong-

ing to {𝑎, 𝑏0, 𝑏1, . . . , 𝑏𝑁𝐼
, 𝑐0, 𝑐1, . . . , 𝑐4, 𝑟} is selected and pro-

cessed by KMeans clustering32 in order to decompose the da-

taset into two groups, i.e. one group for the non-tissue spectra 

and one for the tissue spectra. Contrary to the two previously 

presented methods, the proposed approach is multivariate by 

nature since the fitting coefficients are simultaneously ex-

ploited. Furthermore, this method is automatic since based on a 

clustering algorithm and objective since not based on a manual 

threshold selection. 

In order to automatize the selection of the set of fitting coef-

ficients, validity indices were applied. A validity index objec-

tively measures the quality of a partition, usually based on 

within-cluster compactness and between-cluster separation 

measures18,33. When several partitions are estimated for differ-

ent values of the parameters of a clustering algorithm, e.g. the 

number of clusters, a validity index is useful to determine the 

best partition, by optimizing the values of the parameters. 

In our study, the validity indices were applied on two-cluster 

KMeans partitions estimated on each possible combination of 

EMSC coefficients. The best set of fitting coefficients is thus 

the one resulting to the optimal validity index value, leading to 

the most distinct clusters of tissue and preservation medium. 

Numerous validity indices have been developed in litera-

ture18,33. In order to have robust results, we decided to apply four 

different validity indices, i.e. Xie-Beni (XB), Davies-Bouldin 

(DB), Pakhira–Bandyopadhyay–Maulik (PBM) and Silhouette-

Width-Criterion (SWC)18,33. For XB and DB, the optimal value 

is the smallest, and the highest for PBM and SWC. 

Representation of pixel memberships 

At the end of each above presented procedure, the pixel mem-

berships can be represented by a binary image where 0 and 1 

are affected to pixels identified as pure paraffin and tissue, re-

spectively. 

Image registration 

For a given tissue section, the FTIR spectral images on the 

chemically dewaxed tissue section were not acquired exactly at 

the same orientation and position as that on the FFPE tissue sec-

tion, due to slight morphological changes during the dewaxing 

procedure. Furthermore, the size of the spectral image acquired 

on the chemically dewaxed sample was chosen higher in order 

to include the area scanned on the FFPE tissue section. 

In order to precisely compare these acquired areas, intensity-

based image registration was applied between a moving image 

and a fixed image using a rigid transformation consisting of 

translation and rotation34. In our case, the moving image is the 

binary image resulting from one of the previously presented 



 

identification methods of pure paraffin spectra, while the fixed 

image is the partition obtained by applying a two-cluster 

KMeans on the FTIR image acquired on the chemically 

dewaxed sample. 

t-distributed stochastic neighbor embedding (t-SNE) 

In this study, t-SNE was used as a tool facilitating the visual-

ization of multivariate datasets35. From a high dimensional 

space, this nonlinear dimensionality reduction technique aims 

to find the best low-dimensional (usually two-dimensional) 

mapping preserving the local neighborhood structure of data36. 

With t-SNE, very similar data points close to each other in the 

original high dimensional space are kept close in the new low-

dimensional space. 

Gold standard and Jaccard index 

In order to evaluate their performance, the identification 

methods of pure paraffin spectra presented above were com-

pared to a gold standard using the Jaccard index37. For simu-

lated data, the gold standard was directly accessible from the 

model since paraffin and tissue pixels are known. For the real 

data, it was defined by applying a two-cluster KMeans on the 

FTIR image acquired on the same tissue section after chemical 

dewaxing. 

The Jaccard index measures the similarity between two sam-

ple sets A and B, and is defined as the ratio between the inter-

section of A and B and the union of A and B: 

 𝐽(𝐴, 𝐵) =
|𝐴∩𝐵|

|𝐴∪𝐵|
 (3) 

The Jaccard index is between 0 for disjoint sets and 1 for 

identical sets. 

In this work, the set A is defined as the pixels identified as 

pure paraffin on a simulated FTIR image or on a real FTIR im-

age before chemical dewaxing by one of the pure paraffin iden-

tification methods presented above. The set B corresponds to 

the pixels identified as paraffin on the simulated image, or as 

CaF2 by a two-cluster KMeans applied on the real FTIR image 

acquired on the same tissue section after chemical dewaxing. 

Programming environment 

All the data processing presented in this study was carried out 

using in-house scripts written in Matlab (The Mathworks, Na-

tick, MA). 

RESULTS AND DISCUSSION 

In order to compare their performance, the identification 

methods of pure paraffin spectra were applied on the FTIR im-

ages acquired on the FFPE tissue sections. However, to ease the 

reading, the results will be illustrated using a representative 

FTIR spectral image acquired on a human colon carcinoma 

FFPE sample which HE stained section is presented in Figure 

1(a). 

Furthermore, the classical UA and the proposed MA identifi-

cation methods of pure paraffin spectra being based on pre-pro-

cessing by EMSC, the model components and examples of ap-

plication on this spectral image are presented in Figures S-2 and 

S-3. The reference spectrum  �̂�, the components of the interfer-

ence matrix 𝑰 and the polynomial functions composing the Van-

dermonde matrix 𝑷 are shown on Figure S-2. Examples of raw 

spectra acquired on this image on paraffin and tissue pixels, and 

their EMSC pre-processed versions are shown on Figure S-3. 

The efficiency of EMSC is visible since the pre-processed par-

affin spectra are mainly composed of noise, on the contrary of 

the pre-processed tissue spectra on which the neutralization of 

the paraffin signature is evident while preserving a tissue signa-

ture variability revealing the subtle biomolecular differences 

between tissue pixels. 

Limitations of conventional identification methods of 

pure paraffin spectra. First, the spectral band ratio method 

was applied on the spectral images acquired on the FFPE tissue 

sections. The ratio was computed between the paraffin and Am-

ide I bands corrected from their baseline (Figure S-1(a)) and can 

be represented as a ratio intensity image (Figure S-1(b)). Then, 

these computed ratio values were summarized by their 

smoothed probability density function estimated by a normal 

kernel function38 (Figure S-1(c)). By visual inspection of this 

distribution and in function of its shape, the threshold value is 

selected by the operator. This density has the shape specific of 

a bimodal probability density function. The threshold value 

must thus be determined between these two modes by a visual 

analysis. 

As an illustrative example, three different operators analyzed 

independently this ratio distribution. The first one selected a 

threshold equal to 0.3 in order to be tissue-conservative, while 

the second chose an intermediate threshold equal to 1.6, and the 

third fixed the threshold to 2.3 in order to remove all the paraffin 

pixels. Figures 1(b-d) correspond to the binary images obtained 

after thresholding by these three operators. An underspecified 

threshold erroneously identifies non-tissue parts of the sample 

as tissue (Figure 1(b)). On the contrary, an overspecified thresh-

old confuses tissue parts with paraffin (Figure 1(d)). 

 

FIGURE 1: Identification of paraffin and tissue pixels by the 

spectral band ratio approach. (a) Human colon cancer FFPE 

tissue section stained with HE. The scale bar indicates 200 μm. 

(b-d) Binary images resulting from the thresholding of the esti-

mated probability density using a threshold equal to 0.3, 1.6 

and 2.3, respectively. Black and gray pixels correspond to esti-

mated paraffin and tissue pixels respectively. 

Second, the univariate analysis of EMSC regression coeffi-

cient 𝑎 and natural logarithm of modeling residue 𝑟 was tested 

on the same spectral image in order to detect the pure paraffin 

pixels. After EMSC pre-processing, the distributions of 𝑎 and 𝑟 



 

are estimated by a normal kernel function38 (Figure S-4). The 𝑎 

and 𝑟 distributions usually have shapes specific of bimodal 

probability density functions in the context of spectral image 

acquired on FFPE tissue sections16. For each distribution, a 

threshold value is thus determined between the two modes by a 

visual analysis. Pure paraffin spectra are characterized by low 

regression coefficient 𝑎, while tissue spectra have a high regres-

sion coefficient 𝑎. A low natural logarithm of modeling residue 

𝑟 is typical of paraffin or tissue spectra well fitted by the EMSC 

model, whereas a high value is characteristic of noisy or outlier 

spectra. 

In order to illustrate the sensitivity of this method to threshold 

selection, the threshold values were selected by two different 

operators. The first one selected 𝜏𝑎 = 2 and 𝜏𝑟 = 0 in order to 

surely conserve all the tissue pixels. The second one chose 𝜏𝑎 =
9 and 𝜏𝑟 = −3 in order to completely remove the paraffin pix-

els. The binary images resulting from these two thresholdings 

are visible on Figures 2(a-b). The comparison of these figures 

with the image of unstained and adjacent HE tissue section (Fig-

ure 1(a)) reveals a small correlation indicating that the paraffin 

and tissue pixels are badly identified. Indeed, on the first hand, 

a significant portion of paraffin pixels are misidentified (Figure 

2(a)). On the other hand, a modification of these thresholds re-

sulted in the inverse behavior, i.e. an over identification of par-

affin pixels (Figure 2(b)). The difference image (Figure 2(c)) 

represents the pixels that are differently identified between 

these two binary images. The threshold is a very sensitive pa-

rameter since for this example 6% of pixels are changing of 

identification. Taken together, all these results prove that the 

performance of this type of pure paraffin pixel identification 

methods based on thresholding is very sensitive to the chosen 

threshold values. Furthermore, identifying the optimal thresh-

olds to completely remove the paraffin pixels is impractical in 

real situations because sample-, image- and user-dependent. 

Towards a multivariate and automatic approach. The two 

previously presented thresholding methods are based on the 

analysis of one or two parameters. However, the EMSC model 

provides many supplementary information about the physical 

and chemical composition of the sample at each studied pixel, 

which can be helpful for the discrimination between paraffin 

and tissue pixels. 

A two-dimensional t-SNE applied on the EMSC regression 

coefficients of data acquired on a human colon carcinoma FFPE 

section reveals two clearly visible data groups, suggesting the 

presence of two different spectral patterns which can be identi-

fied as paraffin and tissue areas respectively (Figure S-5). Par-

affin and tissue areas can thus be separated from the analysis of 

the EMSC regression coefficients. 

To confirm this intuition, images reconstructed from some 

EMSC regression coefficients are illustrated on Figure 3. A 

clear contrast between paraffin and tissue areas can be observed 

using 𝑎, 𝑟, 𝑏0 and 𝑐0 (Figures 3(a-d)). This observation is con-

firmed by the two-cluster KMeans partition estimated on the 

{ 𝑎, 𝑟, 𝑏0, 𝑐0} EMSC regression coefficients (Figure 4(a)). The 

use of 𝑎 and 𝑟 in the classical univariate analysis method16 is 

thus justified, but this method does not exploit all the available 

information such as 𝑏0 and 𝑐0 which provide complementary 

information about paraffin-tissue edges.  

Altogether, these results justify the multivariate exploitation 

of the EMSC regression coefficients which is the core of our 

proposed approach. 

 

FIGURE 2: Identification of paraffin and tissue pixels by the 

univariate analysis of EMSC 𝒂 regression coefficient and 𝒓 nat-

ural logarithm of modeling residue. Binary images resulting 

from the thresholding of the estimated probability densities us-

ing 𝝉𝒂 = 𝟐 and 𝝉𝒓 = 𝟎 (a), and 𝝉𝒂 = 𝟗 and 𝝉𝒓 = −𝟑 (b), respec-

tively. Black and gray pixels correspond to estimated paraffin 

and tissue pixels respectively. (c) Image presenting in black the 

pixels differently identified between (a) and (b). 

Furthermore, being based on a simple application of a two-

cluster KMeans in order to separate the pixels into two clusters, 

one for paraffin and one for tissue, our proposed method is au-

tomatic since it does not require the setting of parameters by the 

operator, contrary to the previously presented thresholding 

methods. 

However, all the EMSC regression coefficients are not use-

ful. Distinguishing between paraffin and tissue pixels is diffi-

cult, if not impossible on the images reconstructed using 𝑏5 and 

𝑐2 (Figures 3(e-f)). This result is confirmed by the two-cluster 

KMeans partition estimated using the EMSC regression coeffi-

cient combination {𝑏5,𝑐2} (Figure 4(b)) which is clearly not 

correlated to the sample structure (Figure 1(a)). 

The relevant question is thus which combination of EMSC 

fitting coefficients is optimal for the distinction between tissue 

and paraffin spectra. In this work, validity indices were used as 

an objective and quantitative measure to answer this question 

and propose a fully automatic method. 

The development of our proposed method based on the mul-

tivariate analysis of the best estimated combination of EMSC 

regression coefficients determined by validity indices is thus 

completely justified by these previous results. In order to objec-

tively study its efficiency, we tested our method on simulated 

spectral images. 

Evaluation of the multivariate analysis of EMSC fitting 

coefficients on simulated spectral images. In order to evaluate 

the performance of our proposed method, a total of 30 simulated 

spectral images were generated according to the procedure de-



 

scribed and the parameter setting detailed in the Supporting In-

formation. An example of a simulated spectral image is given 

on Figure S-6. 

 

FIGURE 3: Grayscale images reconstructed from: (a) the re-

gression coefficient 𝒂 of the reference spectrum, (b) the natural 

logarithm of the modeling residue 𝒓, (c) the regression coeffi-

cient 𝒃𝟎 of the mean pure paraffin spectrum, (d) the regression 

coefficient 𝒄𝟎 corresponding the zero-order polynomial coeffi-

cient, (e) the regression coefficient 𝒃𝟓 of the 5th paraffin princi-

pal component, (f) the regression coefficient 𝒄𝟐 corresponding 

to the second-order polynomial coefficient, estimated by the 

EMSC model.  

 

FIGURE 4: Partitions obtained by applying a two-cluster 

KMeans on the (a) {𝒂, 𝒓, 𝒃𝟎, 𝒄𝟎} and (b) {𝒃𝟓, 𝒄𝟐} combinations 

of EMSC regression coefficients. Black and gray pixels corre-

spond to paraffin and tissue pixels on (a) respectively, and to 

unidentified clusters on (b). 

The first part of this evaluation consisted in testing the ability 

of our multivariate approach coupled to validity indices to au-

tomatically estimate the optimal EMSC regression coefficient 

combination leading to the most compact and separated paraffin 

and tissue clusters. For this purpose, a noise-free (SNR = 32 dB) 

spectral image simulated with a first-order polynomial function 

was used. In order to give the same weight to all the EMSC 

regression coefficients, each one was normalized using the 

Standard Normal Variate (SNV) method before the application 

of our procedure. Then, each validity index was applied on the 

two-cluster partition estimated by the KMeans algorithm ap-

plied on each possible combination of EMSC coefficients. For 

a given validity index, the EMSC coefficient combinations 

were then ranked according to their computed validity index 

values (in ascending order for XB and DB, and in descending 

order for PBM and SWC). For each validity index, the top 5 

ranked combinations of EMSC regression coefficients, i.e. giv-

ing the best compact and separated clusters, were retained and 

are given in Table S-1. The four used validity indices give very 

similar results. However, this information was summarized by 

considering only the EMSC coefficient combinations identified 

as belonging to these top 5 ranked combinations by the four va-

lidity indices simultaneously. These combinations are named 

consensual combinations in the remaining of the manuscript. 

From Table S-1, three consensual combinations are identified, 

namely {𝑎, 𝑏0}, {𝑏0, 𝑐0}, {𝑎, 𝑏0, 𝑐0}. The complete workflow of 

the proposed method is provided on Figure S-7. 

These results are confirmed by the application of t-SNE to 

the regression coefficients {𝑎, 𝑏0, 𝑐0}. Indeed, this combination 

is efficient to distinguish between paraffin and tissue spectra 

(Figure S-8 (a)). In addition, the correlation of each of these 

three coefficients to the ground truth classes can also be sepa-

rately visualized (Figures S-8 (b-d)). Indeed, paraffin spectra 

are characterized by insignificant contribution of the reference 

spectrum (𝑎), and by high contribution of paraffin (𝑏0) and 

baseline (𝑐0), while the opposite is observed for the tissue spec-

tra. 

These results are in accordance with the way that the model 

has been generated since the data are composed of three main 

sources of variability, i.e. the tissue, the paraffin and the base-

line, whose contributions are mainly estimated in the EMSC 

model by the 𝑎, 𝑏0 and 𝑐0 coefficients, respectively. It has to be 

noticed that the identification of the paraffin and tissue pixels 

by our unsupervised methodology using the {𝑎, 𝑏0}, {𝑏0, 𝑐0}, 
{𝑎, 𝑏0, 𝑐0} combinations is almost perfect since resulting in a 

Jaccard index around 0.9925. The misidentified pixels are the 

three with an almost zero contribution of tissue as explained in 

the Supporting Information and visible on Figure S-6 (b, e). On 

the contrary, the worst combinations identified by the validity 

indices, namely {𝑐1}, {𝑏1}, {𝑏3}, also give the worst supervised 

Jaccard index of 0.3166, 0.3082 and 0.3098, respectively. 

However, it has to be noticed that the modeling error residue 

has not been identified by the validity indices as a parameter 

relevant for the separation of data into two distinct clusters, 

which can be justified by the use of a noise-free simulated spec-

tral image, as explained above.  Furthermore, a simple first or-

der polynomial function has been used to model the baseline, 

while usually a higher-order polynomial function is necessary 

to estimate the baseline effect on FTIR images acquired on 

FFPE tissue sections12,16–19,21,31,39. 

To complete the characterization of our proposed method, the 

evaluation of its robustness to perturbations is important. It is 

thus interesting to study the impact of the SNR and baseline 

complexity on our complete methodology including the estima-

tion of the optimal EMSC regression coefficient combination 

by validity indices and Jaccard index. To achieve this goal, dif-



 

ferent simulated FTIR spectral images were thus generated us-

ing a baseline polynomial order varying from 0 to 4, and a SNR 

varying from 20 to 25 (see the Supporting Information for more 

information). For each simulated image and for each validity 

index, the top 5 combinations of EMSC regression coefficients 

leading to the best validity index values were determined (data 

not shown). To summarize these results, Table 1 presents the 

consensual EMSC regression coefficient combinations esti-

mated by the four validity indices for each polynomial order and 

SNR couple. To confront these results with the gold-standard 

for each polynomial order and SNR couple, the Jaccard index 

was computed for each of these consensual combinations. To 

summarize this information for each polynomial order and SNR 

couple without overestimating the results of our approach, only 

the worst consensual coefficient combination, i.e. the one giv-

ing the smallest Jaccard index value, was considered. Figure 

5(a) presents these results for all the studied polynomial order 

and SNR couples as a map. 

Globally, the Jaccard index is decreasing in function of the 

baseline polynomial order and of the inverse of the SNR. This 

result was expected since the identification of paraffin from tis-

sue pixels becomes more difficult when the perturbation 

sources increase, especially noise. However, whatever the cou-

ples of SNR and baseline polynomial order, the Jaccard index 

remains very high (over 0.9). Our unsupervised method based 

on validity indices is thus objectively estimating efficient com-

binations of EMSC regression coefficients for the separation of 

tissue and paraffin pixels. 

TABLE 1: Consensual EMSC regression coefficient combi-

nations estimated by the four validity indices on the simu-

lated spectral images in function of the baseline polynomial 

order and the signal to noise ratio (SNR) expressed in deci-

bels (dB). 

 

From Table 1, for high SNR (16 or 32 dB) and whatever the 

baseline complexity, the best combinations remain {𝑎, 𝑏0, 𝑐0} 

and {𝑎, 𝑏0} as for the previous results obtained for a noise-free 

model with a first-order polynomial baseline. For increasing 

noise level (evaluated precisely on unshown results to SNR < 

12 dB on the simulated images), the natural logarithm of mod-

eling residue 𝑟 becomes a relevant parameter, to separate paraf-

fin from tissue pixels, in place of 𝑐0 for low baseline polynomial 

order (0 or 1), and 𝑏0 for higher baseline polynomial order. 

These results thus show that the set of EMSC regression coeffi-

cients must be adapted in function of the dataset characteristics. 

To confirm this result, the Jaccard index was computed for each 

couple of SNR and baseline polynomial order using only the 
{𝑎, 𝑏0, 𝑐0} combination (Figure 5(b)). As explained above, the 
{𝑎, 𝑏0, 𝑐0} combination was previously identified as optimal for 

noise-free spectral image. 

By comparison of Figures 5(a) and 5(b), optimization of the 

combination of EMSC regression coefficients is thus recom-

mended since it gives better results (Jaccard index over 0.9) 

than the {𝑎, 𝑏0, 𝑐0} combination (Jaccard index over 0.8) what-

ever SNR and baseline complexity. 

These results are thus in contradiction with the classical 

method which is based on the immutable exploitation of the 𝑎 

and 𝑟 coefficients. The classical method could thus be optimal 

only for highly noisy datasets. Furthermore, whatever the base-

line complexity and noise level, the EMSC regression coeffi-

cient 𝑎 of the reference spectrum is a necessary parameter to 

distinguish efficiently the paraffin from tissue pixels. The use 

of this parameter by the classical method is thus justified. Fur-

thermore, this result showing the importance of this EMSC re-

gression coefficient is in accordance with other studies40 where 

it has been exploited for FTIR image registration. 

 

FIGURE 5: Minimum Jaccard index estimated on simulated 

spectral images in function of the baseline polynomial order 

and the signal to noise ratio (SNR) expressed in decibels (dB) 

for (a) the best combinations of EMSC regression coefficients 

estimated by validity indices, and (b) for the {𝒂, 𝒃𝟎, 𝒄𝟎} combi-

nation. 

Altogether, these results prove that our methodology is flex-

ible and adaptive to the main sources of distinction between par-

affin and tissue spectra. 
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Validation of the multivariate analysis of EMSC fitting 

coefficients on real FTIR spectral images. The performances 

of our multivariate approach for identification of paraffin and 

tissue pixels have been successfully evaluated on simulated im-

ages. The last step consists in the validation of our methodology 

on real FTIR images acquired on two samples, i.e. human and 

xenografted FFPE colon carcinoma sections. 

Such as for the simulated data, the first objective of this real 

data analysis was to determine the best combination of EMSC 

regression coefficients for the separation of paraffin and tissue 

pixels. For each image and for each possible combination of co-

efficients, a two-cluster KMeans partition was estimated and 

fed the four validity indices presented above. For each validity 

index, the top 5 combinations of EMSC regression coefficients 

leading to the best validity index values were determined. The 

obtained results are consistent with those obtained on the simu-

lated images since the consensual combinations are {𝑎, 𝑏0}, 
{𝑎, 𝑐0} and {𝑎, 𝑏0, 𝑐0}. As an example, the complete results esti-

mated on one FTIR image acquired on a FFPE human colon 

carcinoma sample are given in Table S-2. Extrapolating the in-

terpretation of results obtained on simulated datasets, the obten-

tion of these combinations necessary induces a high SNR of 

these real data, which is true considering the acquisition setting 

and the nature of the analyzed samples, and which was con-

firmed by the SNR of 40 dB measured on this spectral image. 

The same results have been obtained independently on the other 

acquired FTIR images (data not shown). 

Such as for the simulated data, these results were confirmed 

by the application of t-SNE to the regression coefficients 
{𝑎, 𝑏0, 𝑐0}. Indeed, the efficiency of our methodology to distin-

guish between paraffin and tissue pixels is demonstrated using 

a two-dimensional t-SNE by the estimation of two distinct com-

pact and separated clusters which are completely correlated 

with the pixel labels estimated by our method (Figure S-9 (a)). 

Furthermore, the influence of each of these three coefficients on 

the paraffin and tissue clusters can also be separately visualized 

(Figures S-9 (b-d)). Such as for the simulated images, paraffin 

spectra are characterized by high contributions of paraffin (𝑏0) 

and baseline (𝑐0), while tissue spectra have a high contribution 

of the reference spectrum (𝑎). Taken together, these results 

demonstrate the efficiency of our method on real datasets but 

also the realism of our simulated data generative model, where 

the main sources of variability of real FTIR spectral images 

have been efficiently incorporated. 

To properly validate our methodology on real spectral da-

tasets, it is necessary to compare our results with ground-truth 

defined by the chemically dewaxed FFPE tissue sections. The 

FTIR spectral images were acquired on chemically dewaxed 

samples and analyzed by a two-cluster KMeans clustering to 

separate substrate from tissue spectra. An example of such a 

gold-standard clustering image is provided on Figure 6(a). 

The application of our methodology on the same section be-

fore chemical dewaxing determined {𝑎, 𝑏0, 𝑐0} as the best 

EMSC coefficient combination for the separation of paraffin 

and tissue pixels (Figure 6(b)). To compensate orientation and 

position differences between Figures 6(a-b), the registered ver-

sion of Figure 6(b) was computed as stated above. The resulting 

image (Figure 6(c)) illustrates the efficiency of the used rigid 

registration algorithm since this image perfectly matches Figure 

6(a). The paraffin and tissue areas of the studied FFPE tissue 

section thus visually seem to have been perfectly recognized by 

our proposed multivariate approach. 

To objectively quantity the matching between the gold-stand-

ard and estimated registered results, the Jaccard index was com-

puted for 3 patients (representing 9 different FTIR images) and 

2 different mice (representing 3 different FTIR images). As 

shown in Table 2, the majority of samples have a high Jaccard 

index (over 0.84) with values slightly inferior to those obtained 

on the simulated images (around 0.99). This decrease of Jaccard 

index on the real data can be explained by: i) the imperfect 

chemical dewaxing process which is known to be incomplete, 

aggressive with possible sample deterioration, sensitive to 

chemical reagents, bath time, and histology of the analyzed tis-

sue region31, ii) the imperfect image registration due to the use 

of a simple rigid model while chemical dewaxing is well known 

to induce non-rigid alterations of the tissue topology. The same 

process, i.e. image registration and Jaccard index computation, 

has been applied on the same FTIR images using the BR and 

UA methods. For the vast majority of the considered samples, 

our proposed method is better than the two classical methods 

(third and fourth columns of Table 2). Even if the Jaccard index 

difference between the three methods is small, our method is 

automatic, contrary to the two classical ones which require 

time-consuming manual optimization and experienced user. 

Taken together, these results demonstrate the efficiency of our 

method, its simplicity, flexibility, automation and potential im-

plementation in clinical routine compared to chemical dewax-

ing and the classical approaches. 

 

FIGURE 6: (a) Two-cluster KMeans partition estimated on the 

raw FTIR image acquired on a chemically dewaxed FFPE hu-

man colon carcinoma section. Black and gray pixels correspond 

to substrate and tissue pixels, respectively. (b) Partition ob-

tained by our methodology on the same FFPE sample, before 

chemical dewaxing. Black and gray pixels correspond to paraf-

fin and tissue pixels, respectively. (c) Image (b) after registra-

tion using image (a) as the fixed image.  

Methodological discussion. Our methodology could also be 

applied in order to construct a specific database dedicated to the 

training of a supervised classification model for distinguishing 

paraffin and tissue pixels. The EMSC regression coefficients 



 

combination estimated as the best by our method to identify tis-

sue from non-tissue pixels could permit a robust calibration of 

the classification model. 

It has to be noticed that the registration algorithm has been 

applied on binary images because this algorithm requires gray-

scale images in inputs and these binary images are directly the 

results of the investigated pure paraffin pixel identification 

methods. However, using this strategy, the pixel identification 

errors may influence the registration results. In our case, this 

property could be in fact an advantage since the errors made by 

the different pure pixel identification methods will be ampli-

fied. Thus, a method making more identification errors than an-

other will give a worse registered binary image and thus a worse 

Jaccard index. However, the high Jaccard indices presented in 

Table 2 and their small differences between methods prove that 

these errors little influence the registration results. However, it 

should be interesting to deeply study the impact of the data rep-

resentation (other than binary images), of propagation of iden-

tification errors and of model complexity on the registration of 

FTIR images acquired on FFPE tissues sections, what is out of 

the scope of this article. 

TABLE 2: Jaccard index computed between the paraffin 

pixels identified by a 2-cluster KMeans partition obtained 

from a FTIR image acquired on a chemically dewaxed sec-

tion and by one of the following identification method of 

pure paraffin spectra applied on a FTIR image acquired on 

a FFPE section: MA, UA, and BR. Several regions of inter-

est (ROI) were studied for 3 patients and 2 mice. For each 

line, the bold value indicates the best result, thus the best 

method. 

Method 

Patient and ROI 

MA UA BR 

Patient #1, ROI #1 0.9855 0.9796 0.9651 

Patient #1, ROI #2 0.9598 0.9492 0.9533 

Patient #1, ROI #3 0.9797 0.9775 0.9706 

Patient #1, ROI #4 0.9564 0.8268 0.9011 

Patient #2, ROI #1 0.8804 0.8668 0.8988 

Patient #2, ROI #2 0.9192 0.9183 0.9160 

Patient #3, ROI #1 0.8462 0.8466 0.8349 

Patient #3, ROI #2 0.9618 0.9295 0.9038 

Patient #3, ROI #3 0.9635 0.8518 0.8566 

Mouse #1, ROI #1 0.8454 0.7944 0.7760 

Mouse #1, ROI #2 0.8733 0.8613 0.7281 

Mouse #2, ROI #1 0.9417 0.9323 0.9389 

 

It must be noticed that optimization of the combination of 

EMSC regression coefficients can be time-consuming for nu-

merous and high-dimensional FTIR spectral images. For exam-

ple, for a real FTIR spectral image composed of 46656 spectra 

with 451 wavenumbers per spectrum, the exhaustive optimiza-

tion over all EMSC coefficient combinations and using four va-

lidity indices has taken 76 hours using a computer equipped 

with a 3.4 GHz Intel® Core™ i7-4770 CPU, 16 Go RAM and 

4 cores. However, 87% of this computational time is due to DB 

and PBM. Considering only XB and SWC or using other fast to 

compute validity indices results in a drastic reduction of this 

computational time. 

Furthermore, the performance of our unsupervised method-

ology remains relatively stable in function of the SNR and base-

line polynomial order on the simulated images for a fixed com-

bination of EMSC regression coefficients since the Jaccard in-

dex is over 0.8 (Figure 5(b)). Consequently, for the processing 

of FTIR spectral images acquired almost in the same conditions, 

i.e. on tissue sections prepared according to the same standard-

ized protocol of paraffin embedding using the same instrument 

with the same acquisition parameters, a good practice should 

thus be to optimize the combination on a unique image or on 

simulated data mimicking real data, and then to use the same 

combination on all the other images. 

Furthermore, our results on real and simulated FTIR images 

show that the optimized EMSC coefficient combinations are al-

ways a subset of {𝑎, 𝑏0, 𝑐0, 𝑟}. In real applications, another good 

practice should be to perform the optimization considering only 

the 15 possible subsets of {𝑎, 𝑏0, 𝑐0, 𝑟}, i.e. {𝑎}, {𝑏0}, {𝑐0}, {𝑟}, 
{𝑎, 𝑏0}, {𝑎, 𝑐0}, {𝑎, 𝑟}, {𝑏0, 𝑐0}, {𝑏0, 𝑟}, {𝑐0, 𝑟}, {𝑎, 𝑏0, 𝑐0}, 
{𝑎, 𝑏0, 𝑟}, {𝑎, 𝑐0, 𝑟}, {𝑏0, 𝑐0, 𝑟}, {𝑎, 𝑏0, 𝑐0, 𝑟}. For example, for 

the same real FTIR image (46656 spectra), using the 4 validity 

indices, this optimization has drastically reduced the computa-

tional time to 45 seconds. 

The performance of KMeans algorithm is well-known to be 

initialization-dependent. A common practice is thus to apply 

KMeans several times on the same dataset in order to maximize 

the chances to converge to the global minimum of the KMeans 

objective function. The more the number of searched clusters 

and the complexity of the dataset (i.e. the number of dimensions 

and cluster overlapping), the more the necessity to repeat 

KMeans clustering. However, in our proposed methodology, 

the number of clusters is the smallest as possible, i.e. two with 

one for paraffin pixels and one for the tissue pixels. Further-

more, the use of only few EMSC coefficients drastically re-

duces the complexity of data processed by KMeans as revealed 

by the scatter plots of two-dimensional t-SNE applied on EMSC 

coefficients estimated from simulated and real datasets (Figures 

S-5(a), S-8(a) and S-9(a)). In the proposed methodology, repe-

tition of KMeans algorithm was thus not considered as neces-

sary and was thus avoided in order to reduce the computational 

time as much as possible. This choice was validated by the sim-

ilarity of the results obtained on the simulated data and on the 

12 different real images. 

CONCLUSION  

For complete histopathological characterization of tissue 

samples by FTIR imaging, the tissue area must be identified as 

precisely as possible. However, on FFPE tissue sections, the 

strong infrared signature of paraffin complicates this task by 

blurring the frontier between tissue and paraffin. So far, the so-

lutions proposed in literature were based on the subjective and 

manual choice of thresholds from univariate histogram analysis 

of various quantities measured from the recorded spectra, lead-

ing to highly variable results between different operators. In this 

article, we proposed a new simple, objective and automatic 

methodology based on the multivariate exploitation of EMSC 

fitting coefficients. Using t-SNE, validity indices and Jaccard 

index on simulated and real datasets, we demonstrated the effi-

ciency of our methodology to automatically determine the best 

EMSC fitting coefficients for the separation of paraffin and tis-

sue pixels on infrared images simulated or acquired on meta-

static and xenografted human colon cancer FFPE tissues. 

Mainly, the high similarity between FFPE tissue sections and 

their chemically dewaxed versions validates and confirms the 



 

efficiency of our approach. Thus, this work confirms the effi-

ciency and versatility of EMSC for infrared images acquired on 

FFPE samples since it can neutralize and normalize paraffin and 

baseline on tissue spectra, and combinations of its estimated re-

gression coefficients enhance information necessary to easily 

distinguish paraffin from tissue pixels. 
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