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Impact of azimuthal forcing on the Brillouin limit in a collisional two-species

Ohkawa filter

T. Nicolas1, a)

CPHT, Ecole Polytechnique, CNRS, 91128 Palaiseau, France

(Dated: 29 September 2021)

This paper investigates the Brillouin limit in a two species rotating collisional plasma,

when the source of rotation is an orbital angular momentum carrying wave. The electric

field is treated self-consistently with ion and electron radial motion. The injection of angu-

lar momentum causes radial currents leading to charge penetration and electric field build

up. The electric field varies until an equilibrium with the friction forces is reached. Both

collisions with neutrals and Coulomb collisions are considered. In this context, there is

no collisional breakdown of the Brillouin limit, on the contrary the maximum achievable

electric field decreases when the collision frequency is increased. When two species are

present, one that undergoes the forcing while the second is passive, the first species is

confined, while the second species can be expelled or confined depending on the charge to

mass ratio and the collisionalities. Assuming equal charge numbers, if the second species is

the heavy one, it is always expelled, which is a standard result. When the second species is

the light one, it can also be expelled in the common case where neutral collisions dominate

over Coulomb collisions, which constitutes a new result.

a)Electronic mail: timothee.nicolas@polytechnique.edu.
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I. INTRODUCTION

Plasma separation, or plasma mass filtering, is the process by which two initially mixed species

are divided into two different streams within a plasma, thus separating them. The potential ap-

plications include recycling of alloys (e.g. rare earth metals) into pure elements1, or efficient

treatment of nuclear waste2–8. Regarding the latter, the promise of plasma separation is that of

efficiently isolating the small quantity of very dangerous actinide waste from the rest of the low

activity waste (structural waste as well as the other products of fission, e.g. lanthanides). The

advantage over currently used chemical techniques is that the separation is done in one single pass

in the plasma device, without further contamination of fluid effluents2. Another merit of plasma

separation is that it takes advantage of a significant difference in mass, where chemical separation

is made difficult by chemical similarities between actinides and lanthanides9.

Although no plasma separation process is routinely used as of today, it has long been known

that plasmas may be tailored for such a purpose10. The particles in the plasma are charged, so that

they may have different motion according to their mass over charge ratio in a given electromagnetic

configuration. The essential difference with a mere spectrometer, which makes plasmas interesting

for industrial, rather than diagnostic, uses, is that plasmas are usually close to quasineutrality. This

allows to circumvent the insurmountable energy cost that would otherwise be associated with the

charge separation, and in principle permits high flux operation at an economical cost, which is

required to make industrial applications viable.

Several different concepts exist for plasma separation (see Ref11 for a recent review), owing

to the diversity of imaginable electromagnetic configurations, only limited by Maxwell’s equa-

tions. In this paper, we shall discuss the Ohkawa filter configuration12,13, in which a radial electric

field within an axially magnetized plasma column can cause radial ejection of charged particles,

or not, depending on their mass/charge ratio. In fact, the original Ohkawa paper not only shows

the interesting effects provided by a radial DC electric field, but also investigates the effects of

AC radial electric field and of an azimuthal inductive electric field, and explores some possibil-

ities in the configuration space of electric and magnetic field. However, the configuration most

often studied is that of crossed static magnetic and electric fields. The central concept behind the

Ohkawa filter is the Brillouin limit (although the term is not present in the original Ohkawa pa-

per). It is easy to prove, as we shall review shortly, that a rotating magnetic plasma with charge and

mass (q,m) can be radially confined only if the electric field E does not exceed the Brillouin limit,
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|E/r|< qB2
0/(4m), where r is the radial coordinate of the plasma column and B0 the homogeneous

static magnetic field. Since the Brillouin limit depends on the mass to charge ratio, we can have in

principle one population confined while the other would be radially ejected.

Experimentally, it is possible to build up electric field in a cylindrical plasma column using sets

of differentially biased circular electrodes at the ends of the cylinder14. The advantage is that one

can have in principle a lot of flexibility for external control, by simply modifying the bias. The

problem is that there is no guarantee that the potential will propagate along the magnetic field lines

to the plasma15. Another important historical problem is that of the critical ionization velocity16.

There is, however, another way of generating the electric field. It is based on the injection of

angular momentum by a wave onto ions17,18. From a wave-particle interaction point of view, the

resonant hamiltonian interaction between the wave and the particle results in a radial displacement

of the ion, creating charge separation19. From a fluid point of view, the azimuthal momentum input

on the ions results in radial flows. The associated divergent currents are the source of the charge

separation, and an equilibrium establishes when the inertial, electric, Lorentz and friction forces

balance. An advantage of the wave method above the one using electrodes is that the interaction

between the walls and the outflow of separated material is reduced18. However, there are also

significant physical differences in the behaviour of the plasma with respect to the Brillouin limit.

The purpose of the present paper is to highlight these differences.

When the electric field is generated through electrodes, one can assume the electric field to be

an external control parameter. Of course, since the radial electric has a non-vanishing divergence,

a plasma is necessary in between the electrodes. But to a certain extent, one can consider to fix the

electric field arbitrarily by merely turning the knob of the potentiometer. In this context, it has been

shown that friction with the neutrals cause a breakdown of the Brillouin limit20. The transition

between the regime where the plasma is confined and that where it is expelled (the Brillouin limit)

becomes smooth. When the electric field instead results from the radial balance between inertial,

electric and Lorentz forces, under the azimuthal forcing introduced by the wave coupling to the

plasma, the results obtained in ref.20 no longer hold. On the contrary, we show that the maximum

achievable electric field decreases when the collision frequency is increased. Another important

difference is that the expelled species does not have to be the heavy one. Instead, depending on the

collisionality, it can be the light one. We show that basically, when friction with neutrals dominates

over Coulombian friction (a common situation15), the confined species is the one that undergoes

the forcing, while the other is expelled.
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The paper is organized as follows. The basic physics of the Brillouin limit and of particle ejec-

tion, both from the particle and fluid points of view, is detailed in section II. The reader familiar

with these notions can skip these paragraphs. Then the framework for the present theoretical study

is introduced in section III. The behaviour of the Brillouin limit in a collisional plasma forced

azimuthally is explained in section IV. In section V, we focus on the interpretation of the colli-

sional modification of the Brillouin limit in the present context, as compared to that of refs.20,21.

We consider the behaviour of a trace passive impurity in a plasma where the dominant species

is azimuthally forced in section VI, and then the behaviour of the plasma when the two species

have comparable abundance in section VII. We summarize and discuss the results respectively in

sections VIII and IX.

II. INTRODUCTION TO THE BRILLOUIN LIMIT

A. Normalization and notations

We use the usual cylindrical unit vector basis (r̂, θ̂, ẑ). The plasma is immersed in a static

homogeneous axial magnetic field B=B0ẑ. We do not consider its modifications, which is justified

if the ion skin depth is larger than the radius a of the plasma column22. The latter radius serves

to normalize the distances. The time and frequencies are normalized using the proton cyclotron

frequency ωcp ≡ eB0/mp. The velocities are naturally normalized to aωcp. We will assume for

the electric field a form E = rE0/ar̂, and we will describe it using the frequency ΩE = E0/(aB0).

ΩE can be positive (electric field directed outward) or negative (directed inward), but the sign

relevant to plasma separation is the positive one, as will soon be clear. Unless otherwise specified

or obvious from the context, all the following equations in this paper are implicitly normalized. A

term such as ΩE must, therefore, be understood as ΩE/ωcp. Finally, we introduce the notation

Ω
(i)
E,Bri = Zi/(4Ai), (1)

which is the Brillouin limit for a species with charge and mass numbers Zi and Ai.

B. Particle point of view

It is easy to see that when a particle with charge and mass numbers Z and A is immersed in

a magnetic field B = B0ẑ and an electric field E = rE0/ar̂, it has trajectories that are radially
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bounded, or not, depending on the value of the electric field. The ion momentum equation reads

dv
dt

=
Z
A
(rΩE r̂+v× ẑ) (2)

Projecting along x̂ and ŷ and using the complex auxiliary variable Z≡ x+ iy, we get

Z̈+ i
Z
A
Ż− Z

A
ΩE = 0 (3)

Using the ansatz Z ∝ eσt , the solution is given depending on the initial conditions by the roots of

the characteristic polynomial:

σ± =


−i

Z
2A

{
1∓
√

1−4A
Z ΩE

}
if ΩE <

1
4

Z
A

−i
Z

2A

{
1± i

√
−1+4A

Z ΩE

}
if ΩE >

1
4

Z
A

(4)

It appears clearly that the trajectories are bounded if ΩE < Z/(4A), and unbounded otherwise

(provided that the particle’s initial conditions pick up the exponentially growing solution).

For small ΩE , the taylor development of the radially bounded solutions gives

σ+ =−iΩE (5)

σ− = i
(
−Z

A
+ΩE

)
(6)

As we shall see in the fluid picture, the same frequencies show up, with σ+ corresponding to

the slow solution, in contrast to σ−, which is called the fast solution because it adopts rotation

frequencies of the order of the cyclotron frequency. Far from being unphysical, the fast solution

does show up in the fluid description and is attainable in the framework of the presently discussed

model, as we will see. However, the reader should always keep in mind that contrary to a plasma

centrifuge23, the objective in the Ohkawa filter is not to attain large rotation frequencies, but to

attain large values of the electric field. Although the representation in Cartesian coordinates is

sufficient to fully describe the particles trajectories, it is insightful to describe the particle motion

in polar coordinates. We get

r̈− rθ̇
2 =

Z
A

(
rΩE + rθ̇

)
(7)

rθ̈ +2ṙθ̇ =−Z
A

ṙ (8)
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FIG. 1. Difference between the trajectories of particles with (a) pθ > 0 and (b) pθ < 0, with same value of

|pθ |.

The second equation expresses conservation of the total angular momentum pθ = r2 (θ̇ +(Z/2A)
)
,

where the second term comes from the potential vector part of the canonical momentum p =

mv+qA. Replacing θ̇ by pθ/r2−Z/(2A) in the radial equation yields a radius evolution equation

r̈ =−dU
dr

(9)

with a potential U given by

U(r) =
p2

θ

2r2 +
r2

2
Z
A

(
Z

4A
−ΩE

)
(10)

The same necessary criterion ΩE < Z/(4A) appears for radially confined trajectories, but here we

draw the attention to pθ , which is involved as a square, so that both signs for pθ correspond to the

same radial trajectories. However, the full (r,θ) trajectories are radically different, as shown in

Fig. 1. The case pθ > 0 corresponds to particles with a Larmor radius drifting azimuthally at ΩE .

In contrast, particles having pθ < 0 have a large Larmor radius encircling the r = 0 axis, and circle

around it at high velocity, thus making roughly a turn in a time ω−1
c . This fast motion is corrected

by a slow precession of the orbits, at the frequency ΩE . This is reminiscent of the existence of

the fast and slow solutions (5)-(6). Since pθ = r
(
rθ̇ + rZ/(2A)

)
, for a Maxwellian with thermal
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velocity vth =
√

2T/(mpA)� aωcp, the second term is dominant, so that the distribution of pθ is

close to constant and positive in the velocity space, and the plasma indeed tends to be in the slow

mode unless it is forced in some way or other.

C. Fluid point of view

The Brillouin limit appears when one is interested in the rigid rotor solution of the ion momen-

tum balance equation in a collisionless plasma without pressure gradient:

vi ·∇vi =
q
m
(E+vi×B) (11)

If one assumes rigid rotor, then the velocity is written vi = υr(r)r̂+ rΩiθ̂, with Ωi independent

of r. Projecting along r̂ and θ̂ yields, using our normalization,

υrυ
′
r− rΩ

2
i = r

Z
A
(ΩE +Ωi) (12)(

2Ωi +
Z
A

)
υr = 0, (13)

where prime denotes radial derivation. Unless Ωi = −Z/(2A), the solution must have vanishing

radial flow, and equation (12) then gives the relation between ΩE and Ωi. It comes with no surprise

that the solutions for Ωi are the same as the particle frequency in eq. (4)

Ωi =−
Z

2A

(
1±
√

1−4
A
Z

ΩE

)
, (14)

which develops, for small ΩE , into the aforementioned slow mode at Ωi ∼ −ΩE , and fast mode,

at Ωi ∼ −Z/A+ΩE . If ΩE is larger than Z/(4A), formally, a solution to (12)-(13) still exists.

If we assume the radial velocity to also be of the form υr = rγi, and we will shortly see in what

conditions this asumption is justified, then the system (12)-(13) assumes the form

Ω
2
i − γ

2
i +

Z
A
(ΩE +Ωi) = 0 (15)(

2Ωi +
Z
A

)
γi = 0. (16)

The solution for ΩE > Z/(4A) is:

Ω =− Z
2A

(17)

γ =± Z
2A

√
−1+

4A
Z

ΩE . (18)
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Satisfyingly, this solution is, again, identical to (4) if we identify Ω and γ respectively to the real

and imaginary parts of σ . The reason for this identity is that (15)-(16) are respectively the real and

imaginary parts of the characteristic equation of (3). This is why it is so simple, in this problem,

to connect the particle point of view with the fluid point of view. In particular, note that a fluid

velocity of the form υr = dr/dt = rγi does correspond to an exponential motion of a fluid element

of the form r(t) ∝ eγit .

However, there is a problem with this solution. Since the radial velocity of the ions no longer

vanishes, there is an inflow or outflow of ions, which modifies the electric field. The case of the

plus sign (outflow) is even more pathological, because the ions are depleted, leaving place to only

electrons, and the sign of the electric field can not even remain positive (pointing outwards). The

Brillouin limit raises many questions in the context of the Ohkawa filter. If the principle is to

expel radially the heavy fraction of a two-species plasma by overcoming the Brillouin limit, but

the Brillouin limit cannot be overcome, what remains of the Ohkawa filter? Is there actually a

way to charge the plasma at ΩE > Z/(4A), and how does the plasma behave when there are two

species? Incidentally, how is the electric field generated in the first place? The purpose of the

following sections is to give clear answers to these interrogations, in the context where the source

of angular momentum is an orbital angular momentum carrying wave coupled to the plasma.

III. THEORETICAL FRAMEWORK

A. Wave forcing and ion momentum equation

The most important assumption of this paper is to never separate the electric field from the

source that causes it. Since we will consider collisional friction, there cannot be a solution with

finite rotation unless we explicitly take into account the external source of momentum and energy.

We will assume this source to be a wave resonant with an ion species, noted with index 1. We

will introduce another ion species, not affected by the wave, with index 2. We will also refer

to the former as the forced species, and to the latter as the passive species. Each quantum of a

wave with spatiotemporal dependance exp(i(kz+ lθ −ωt)) carries energy h̄ω , linear momentum

h̄kẑ and angular momentum h̄lẑ. If it can be coupled resonantly to the ions, then it is legitimate

to model the interaction in a fluid model with a force acting on the ions. The value of the force

density is F = kP/ω , where P is the power density absorbed, ω the wave frequency and k its
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wave vector. This approach is all the more legitimate because we are interested in the component

of the force that is in the perpendicular direction. In the parallel direction, there is also a net

transfer of momentum equal to h̄kz times the number of quanta absorbed per unit time (F‖ =

k‖P/ω), but this momentum is passed to the bulk ions on a collisional time scale only. In the

perpendicular direction, the momentum is passed to the bulk ions almost instantaneously, on the

cyclotron timescale 24,25 (see also appendix A). In this paper, we neglect the force in the parallel

direction anyway. The modeling of the plasma wave interaction in terms of a fluid force needs to

be thoroughly justified, in particular because it is different from what was done in previous works.

For instance, in ref.20, the effect of the wave is completely absent from the fluid equations. The

latter are used to derive the collisional fluxes, essentially the nonlinear current inducing the charge

relaxation, and then it is merely said that the quasilinear current induced by the wave compensates

for that charge depletion (or, in the case of electrode driving, the generator pulls electrons in the

right way to compensate). But these fluid equations, which do not explicitly include the effect

of the wave, cannot lead to a steady state. It is easy to understand why: there is a collisional

term of angular momentum loss (the neutrals at rest), but the equations don’t contain any term

to compensate for this loss. It is, indeed, the quasilinear current, but it does not appear in the

equations. As a result, the steady state that is obtained is inconsistent. Another way to put it

is that there is no evolution equation for the electric field. In contrast, our approach takes into

account explicitly not only the resonant current induced by the wave, but also the polarization

currents that are essential to set the bulk plasma into motion. However, the treatment of the wave

resonant interaction inducing a force density F = kP/ω , is not new. A similar line of thought

is adopted in refs.24,25, in the context of toroidal rotation in tokamaks as a side effect of current

drive with lower hybrid. Since the momentum of E×B motion is carried mainly by the ions,

while the resonant particles are electrons in this context, they don’t include the force in the ion

fluid equation, and rather interpret it as a force on the electric field. Nonetheless, our approach

is clearly inspired from these references. In appendix A, we give more technical justifications in

a slab configuration (which allows to neglect inertial effects) equivalent to a capacitor where the

dielectric is a magnetized plasma.

The question of the characterization of the wave, the conditions for its propagation and resonant

deposition on the ions, which pertain to quasilinear theory, are beyond the scope of this paper. See

refs19,26 for some insight in this important matter. We will simply assume that at t = 0 in a magne-

tized plasma column initially at rest, the ions are set into azimuthal motion by a force representing
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the action of this wave. We will assume that power deposition can be tailored so as to follow a

law P(r) ∼ r4, where P(r) represents the total power per unit axial length deposited within a

surface delimited by the radius r. Put differently, the local power per unit volume deposited by

the wave must be proportional to the square of the radius. Setting aside the potential practical

difficulty, this has the immense advantage that the complicated set of partial differential equations

can be reduced to ordinary differential equations (ODEs) in that case. To see why, consider a shell

of infinitesimal thickness dr, with mass per unit axial length dm = 2πρ1rdr, ρ1 being the mass

density of the plasma. In this shell, a number dṄ of wave quanta per unit time are absorbed by

the plasma, with h̄ω
∫ r

0 dṄ = P(r). Writing the angular velocity as rΩ1(r), where a priori Ω1

depends on r, the angular momentum theorem writes

2πr3
Ω̇1ρdr = h̄ldṄ. (19)

Therefore Ω̇1 is independent of r if dṄ ∼ r3dr. We neglect the transfer of linear momentum, as

well as the wave heating. We assume a homogeneous density for all species in the plasma column,

and take into account the friction between charged species, and with neutrals at rest having density

n0. The ion momentum equation is therefore modeled as

(∂tv1 +v1 ·∇v1) =
Z1e
m1

(E+v1×B)+
Fwave

m1n1

−∑
s 6=1

ν1s (v1−vs)−ν10v1, (20)

where νss′ ,s ≥ 1 is a Coulomb collision frequency, νs0,s ≥ 1 is a frictional collision frequency

with the neutrals and Fwave represents the wave-induced torque:

Fwave =
1

2πr2
dP

dr
l
ω
θ̂ ∝ rθ̂ (21)

Because of the radial variation of Fwave, we can assume the azimuthal velocities to be of the form

υθ = rΩ, where Ω does not depend on r. Because of the rigid body rotation allowed by the choice

of power deposition, the assumption that E = E0r/ar̂, corresponding to ΩE also independent of

r, is legitimate as well. Since such an electric field can only arise from the divergence of radial

currents, this means that the divergence of these currents also does not depend on r. Indeed

∇ ·E = 2E0/a. This means that the radial velocities can legitimately also be taken of the form

υr = rγ , where γ does not depend on r. The assumptions that Fwave ∼ rθ̂ and v = r(γ r̂+Ωθ̂) are

what allows to transform the PDEs into ODEs.
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In projection along r̂ and θ̂, equation (20) yields the normalized set of equations:

γ̇1 = Ω
2
1− γ

2
1 +

Z1

A1
(ΩE +Ω1)−∑

s 6=1
ν1s (γ1− γs)−νi0γ1 (22)

Ω̇1 =−
(

2Ω1 +
Z1

A1

)
γ1 +F−∑

s6=1
ν1s (Ω1−Ωs)−νi0Ω1, (23)

where

F =
1

2πρ1r3ω2
cp

dP

dr
l
ω

< 0 (24)

We choose the forcing to be negative because this is what is required to induce rotation in the

−θ̂ direction, which corresponds to a positive electric field (the Brillouin limit arises only with

outward electric field). The second species has the same evolution equation, with index 2 instead

of 1 and the forcing F removed.

B. Electron dynamics

Electrons have a similar evolution equation, except for the signs and the forcing term. Using

the notation Ae ≡ me/mp, the electron momentum equations are, with the same normalization:

γ̇e = Ω
2
e− γ

2
e −

1
Ae

(ΩE +Ωe)−∑
s 6=e

νes (γe− γs)−νe0γe (25)

Ω̇e =−
(

2Ωe−
1
Ae

)
γe−∑

s 6=e
νes (Ωe−Ωs)−νe0Ωe. (26)

At the lowest order in Ae, we find the electron velocity to be given by

Ωe =−ΩE (27)

γe = ∑
s 6=e

Aeνes (Ωe−Ωs)+Aeνe0Ωe. (28)

Recall that in general νei/νie ∼ mp/me, so that Aeνes can be considered of order 0 in the electron

to ion mass ratio. The first equation indicates that for electrons, the small inertia means the cen-

trifugal and Coriolis forces play a minor role, and the electrons simply rotate at the electric drift

frequency. The second equation expresses the fact that when the electron forces are balanced, the

azimuthal magnetic force associated with the radial electron flux is balanced by the friction with

the other species.
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C. Electric field and density dynamics

To close the system, we need the equation of evolution of the electric field, ε0∇ ·E = ρ , where

ρ = nee(n1Z1/ne + n2Z2/ne− 1). Note that on the left hand side, ε0 shows up, rather than ε0ε⊥.

Indeed, the currents associated with the radial velocities γ1, γ2, γe, are the total currents, tak-

ing into account the polarization currents. To see this, it is sufficient to take the cross product

of equation (20) with B. At lowest order (neglecting friction) the velocity is v1 = E×B/B2
0 +

Fwave×B/(Z1n1eB2
0), and at the next order, the polarization velocity A1mp/(Z1eB2

0)∂tE appears.

We define a dimensionless parameter akin to the electric susceptibility, χ⊥ ≡ nemp/(ε0B2
0), and

parameterize the ion densities with ζ ≡ n1Z1/ne and η ≡ n2Z2/ne. At t = 0, before the forc-

ing is switched on, we will assume the electric field vanishes, and hence, ζ +η − 1 = 0. The

dimensionless electric field drift frequency is, therefore, given by

ΩE =
χ⊥
2

(ζ +η−1) (29)

Numerically, χ⊥, given by

χ⊥ = 1.9×104 ne
[
1020 m−3]

B2
0 [1T2]

, (30)

is large in the plasmas we are considering. However, the following results are very insensitive

to its precise value, as long as it is large. When we simulate the dynamical system, the rate of

change of momenta is set by the values of F and the friction, but this dynamics is modulated

by oscillations at a frequency roughly proportional to χ
1/2
⊥ . Therefore, it can become expensive

numerically, even though we are dealing with ODEs. We will take χ⊥ = 100 in the following,

which ensures that most of the wave angular momentum is transferred to the plasma motion, with

only a small fraction absorbed by the DC field (see appendix A).

To understand the electric field dynamics, we only need to write the density dynamics. Since

we assume all the species to have homogeneous densities initially, the continuity equations for any

species is simply ∂tns =−ns∇ ·vs =−2nsγs. This yields the evolution equations of η and ζ :

ζ̇ =−2(γ1− γe)ζ (31)

η̇ =−2(γ2− γe)η (32)

It may be expedient to have an evolution equation of ΩE , so that one can easily identify the

conditions for stationary field. Obviously, the stationarity condition for E should be that the total
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radial current vanishes. Indeed, by taking the time derivative of equation (A4) and using equations

(31)-(32) (and taking into account the variation of χ⊥), one finds

Ω̇E =−χ⊥ (γ1ζ + γ2η− γe) , (33)

where the terms in brackets represents the current.

As a final remark regarding the density dynamics, our description hides the fact that an equi-

librium solution such that γe 6= 0 or γs 6= 0 necessarily has a varying density, and in that sense is

not an equilibrium. If for instance we have γ2 > 0, and the second species is the one we wish to

expel, there is no particular conceptual problem, unless that species is the dominant one. If the

equilibrium is such that for example, γe = γ1 < 0, a situation that will show up in section IV, this

means that there is an exponentially increasing (with rate 2|γe|) global plasma density. We can

still regard the solution as an equilibrium if the final radial velocities have γτeq� 1, where τeq is

the time scale of establishment of the equilibrium. In any case, this should not be a big source of

worry, as in practice there are sinks and sources of particles, which we have not explicitly taken

into account. We are completely neglecting the motion of the plasma in the ẑ direction, but in a

real situation where large flows of the order of Γ = 1 g.s−1 are expected, the plasma flows at high

velocity along the cylinder, with a plasma source at the entrance of the cylinder and a sink at the

exit, and if necessary to collect the unconfined species, on the walls of the cylinder. These ques-

tions are beyond the scope of the present paper, but we shall not ignore them completely, because

they restrict the validity of some of the conclusions of the present study.

D. Collision frequencies

To be complete, there remains only to describe our choices for the collision frequencies. It is

notorious that in a plasma the transport coefficients are particularly difficult to get right. Here we

only desire to get the correct scalings of mass and charge, without setting the highest importance

to the actual value of the friction. We neglect all other transport mechanisms. The easiest choice is

to use the friction frequencies for Maxwellians with velocity shifts small compared to the thermal

velocity. The friction force that a Maxwellian population of species 1 undergoes when streaming
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past a Maxwellian population 2 with velocity slip (v1−v2) is given by

R12 =−
n1n2Z2

1Z2
2e4Λ

3(2π)3/2
ε2

0 T 3/2

√
m1m2

m1 +m2
(v1−v2)

=−m1n1ν12 (v1−v2) , (34)

which defines the collision frequencies ν12 and ν21 for arbitrary mass ratio. Since this calculation

is not always detailed in textbooks in the general case of arbitrary mass ratio, we reproduce it in

appendix B.

For the collisions with neutrals, we use the frequency27 νs0 = n0σ0

√
2Ts
ms

, where n0 is the density

of neutrals, and σ0 is a cross section, taken to be σ0 = 5×10−19m2.

We assume the plasma to be isothermal at temperature T and define the basic frequencies

ν =
nee4Λ

3(2π)3/2ε2
0 m1/2

p T 3/2

√
me

mp
(35)

ν0 = n0σ0

√
2T
mp

(36)

In our numerical studies, ν and ν0 will be adjusted independently, which corresponds to adjusting

the temperature and the neutral density.

We can now define our friction frequencies for our normalized system:

ν12 = η
Z2

1Z2√
AeA1 (1+A1/A2)

ν (37)

ν21 = ζ
Z2

2Z1√
AeA2 (1+A2/A1)

ν (38)

Aeνe1 = ζ Z1ν , Aeνe2 = ηZ2ν (39)

νse =
Z2

s
As

ν (40)

νs0 =
1√
As

ν0, νe0 =
1√
Ae

ν0 (41)

where the s subscript designates any of the two ion species and the smallness of Ae was used. Note

that the electron ion friction is in accordance with kinetic theory in a magnetized plasma, which

finds exactly equation (39) in the perpendicular direction, contrary to the direction parallel to B,

where it is reduced by a factor 0.51.

The system of 7 equations, (22), (23) for both species (without the forcing F for the second

species), (A4), (31) and (32), with Ωe and γe given by equations (27) and (28) and the collision
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frequencies by (38)-(41), constitutes the closed system of nonlinear ODEs that we shall study in

the following sections.

Note that when there is, say, an outflux of electrons, γe > 0, the electron density decreases, so

that in principle, we should adjust the collision frequencies. This problem leads to a breakdown

of our model in the case where the friction between charged species, ν , becomes large (see sec-

tion IV B). We shall ignore this problem as this is beyond the scope of this paper and barely limits

the validity of our conclusions. Indeed, in most cases, the electron radial velocities will remain

small (but not negligible because they contribute to the establishment of the electric field).

IV. THE BRILLOUIN LIMIT IN A FORCED COLLISIONAL ONE-SPECIES PLASMA

In this section, we consider only one species (η = 0) with forcing F . We will study the equi-

librium of the dynamical system depending on the strength of the forcing.

A. Friction with neutrals only

First, we investigate the case where we retain only the friction with neutrals (ν = 0). The

dynamical system becomes

γ̇1 = Ω
2
1− γ

2
1 +

Z1

A1
(Ω1 +ΩE)−ν10γ1 (42)

Ω̇1 =−
(

2Ω1 +
Z1

A1

)
γ1 +F−ν10Ω1 (43)

ζ̇ =−2(γ1− γe)ζ , (44)

with, from equations (27), (28) and (A4):

ΩE =
χ⊥
2

(ζ −1) (45)

γe =−Aeνe0ΩE =−
√

Aeν0ΩE (46)

We assume the forcing to be of the order of ν10, which results in Ω1 being of order unity. With

ζ = O(1), the density equation shows that at equilibrium γ1 ∼ Aeνe0� ν10. So we can treat γ1 as

a small quantity, which means from equation (43) that at equilibrium

Ω1 '
F

ν10
. (47)
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FIG. 2. ΩE as a function of Ω1 in the case A1 = Z1 = 1, for ν0 = 10−2 (blue solid line), ν0 = 5 (blue dashed

line) and ν0 = 10 (blue dash-dotted line). The black thin horizontal dotted line represents the classical

Brillouin limit.

The meaning of this equation could not be more clear. Since there is injection of momentum at

a rate F , but also dissipation on neutrals at rest, the equilibrium is simply a balance between the

two. More momentum injection means proportionally more rotation. Importantly enough, this is

independent of the concept of Brillouin limit. It is important to recall that the Brillouin limit is not

a limit in rotation of the ions, but in the electric field that the plasma can sustain! Now the electric

field is given by equation (42), where we neglect γ1:

Ω
2
1 +

Z1

A1
(Ω1 +ΩE) = 0 (48)

This equation is no different than equation (12) with υr = 0, and the solution is the same. The

meaning of the Brillouin limit becomes perfectly clear. As said in the introduction, the electric

field establishes as a result of the radial flow caused by the Lorentz force associated with poloidal

rotation. The latter arises because of the poloidal forcing. When the forcing is increased, the

electric field also increases, until it reaches the Brillouin limit. Increasing the forcing further

raises the rotation velocity of the ions, which enter the fast mode regime. If the forcing increases

even more, the electric field vanishes and then changes sign, while the ion rotation exceeds the

cyclotron frequency. We have to warn, however, that several physical phenomena, e.g. possible

modification of the wave-plasma coupling, may prevent entering this fast rotation regime.

If we do not assume ν0� 1, we can use equations (42) and (44) to derive the relation between
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ΩE and Ω1:

Aeν
2
0 Ω

2
E −

(
Z1

A1
+

√
Ae

A1
ν

2
0

)
ΩE −

(
Ω

2
1 +

Z1

A1
Ω1

)
= 0. (49)

The physically relevant solution for ΩE has the minus sign in front of the square root (the other

solution has the unphysical property that limν0→0 ΩE = ∞):

ΩE =

Z1
A1

+
√

Ae
A1

ν2
0 −
√(

Z1
A1

+
√

Ae
A1

ν2
0

)2
+4Aeν2

0

(
Ω2

1 +
Z1
A1

Ω1

)
2Aeν2

0
, (50)

which reduces to (48) for ν0 � 1. The relation (50) is plotted in figure 2 for ν0 = 0.01, ν0 = 5

and ν0 = 10, with A1 = Z1 = 1. The position of the point along the curves of Fig. 2 is formally set

by the solution of equation (43). Independently of the value of ν0, the maximum of ΩE is reached

for Ω1 =−Z1/(2A1). The resulting dependence between the maximum of ΩE and ν0 is plotted in

Fig. 3.
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FIG. 3. Dependence of the Brillouin limit on the collision frequency with the neutrals ν0, for A1 = Z1 = 1

Not only do we not observe a breakdown of the Brillouin limit because of collisions, but in the

strongly collisional (or weakly magnetized) regime where ν0 becomes larger than the ion cyclotron

frequency, the maximum value of ΩE that can be reached by forcing the plasma rotation decreases

as ν
−2
0 .
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B. Coulomb collisions

Now let us consider the case where there are no neutrals, but we take into account the Coulomb

collisions between the charged species. With only one species, we only have the electron ion

collisions. Using Ωe = −ΩE and the expressions of the collision frequencies as a function of ν ,

the dynamical system becomes

γ̇1 = Ω
2
1− γ

2
1 +

Z1

A1
(Ω1 +ΩE)−

Z2
1

A1
ν (γ1− γe) (51)

Ω̇1 =−
(

2Ω1 +
Z1

A1

)
γ1 +F−

Z2
1

A1
ν (Ω1 +ΩE) (52)

ζ̇ =−2(γ1− γe)ζ , (53)

with, from equations (27), (28) and (A4):

ΩE =
χ⊥
2

(ζ −1) (54)

γe = Aeνe1 (Ωe−Ω1) =−ζ Z1ν (ΩE +Ω1) (55)

Some conclusions from the previous subsection still hold, but there are some differences, because

contrary to neutrals, electrons are also set into motion by the electric field, so that the slip between

the two frictional species is smaller. For small friction, the previous argument about the smallness

of γ1 remains valid, and we recover equation (48). The relation between Ω1 and F is, however,

strongly modified. Using the notation Ξ≡Ω1 +ΩE , equation (51) where we neglect γ2
1 reads

Ξ =−A1

Z1
Ω

2
1. (56)

Note that the radial friction term disappears because at equilibrium γ1 = γe according to equa-

tion (53). Also, by replacing γ1 with γe from equation (55) in equation (52), we find after dividing

by A1ν : [(
2Ω1 +

Z1

A1

)
ζ − Z1

A1

]
Z1

A1
Ξ =

∣∣∣∣ F
A1ν

∣∣∣∣ . (57)

Using that ζ −1 = 2Ω2/χ⊥� 1, we find that

Ω1 '−
∣∣∣∣ F
2A1ν

∣∣∣∣1/3

. (58)

Compared to the friction with neutrals, the scaling of Ω1 with F/ν is smaller, as expected. This

result holds only for ν � 1, because we have neglected the γ2
1 term from equation (51) . When
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ν � 1, the only relevant parameter is the ratio |F/ν |, so the only result of having larger friction is

that one has to proportionally increase the friction in order to reach the same level of rotation and

electric field.

We will only briefly consider the case ν > 1. It is not really relevant for the plasmas we are

interested in. Indeed

ν ' 1.8×10−3 ne
[
1019m−3]

B0 [1T]T 3/2 [1eV]
, (59)

where we have used the value Λ = 11, assumes rather small values in practice. Retaining γ1 = γe

in the radial equation gives Ω1 as a function of ΩE :

ΩE =
1−
√

1+4A2
1ν2Ω2

1

2Z1A1ν2 −Ω1, (60)

where the minus sign in front of the square root comes from the requirement that ΩE vanish when

Ω1 = 0. It can be easily seen that the case ν > 1 makes the whole device unusable. The radial

velocity can be obtained by plugging the solution (60) into (55), which results in

γ1 ' |Ω|, (61)

meaning the plasma is radially expelled in the time scale of one rotation. Therefore, it is required,

for the Ohkawa filter to work, to keep the Coulomb collision frequency smaller than the ion cy-

clotron time. There is no such requirement regarding the neutral collision frequency.

V. THE INTERPRETATION OF THE BRILLOUIN LIMIT WITH COLLISIONS

The two previous subsections have shown that the relation between ΩE and Ω1, equation (48),

leading to the Brillouin limit of ΩE = Z1/(4A1), remains valid when collisions are taken into

account. When it has to be corrected for, in the regime of large collisions with neutrals, it leads to a

strong decrease of the Brillouin limit, rather than a disappearance of that limit (recall Fig. 3). How

can we reconcile this with ref20, which proves the breakdown of the Brillouin limit in presence

of collisions with neutrals? In section II C, we first analyzed a collisionless plasma and found the

Brillouin limit. When we introduced the collisions, we insisted that it is necessary to explicitly take

into account the forcing term of the plasma, because the electric field is generated indirectly by

the radial motion induced by the inertial, Lorentz and friction forces in presence of the azimuthal

forcing. If we fail to do so, there is an inconsistency, because we assume there is an electric field at
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FIG. 4. Relation ΩE = f (Ω1) from equation (64) for Z1 = A1 = 1, with ν0 = 0 (black solid line), ν0 = 0.01

(dashed line), ν0 = 0.1 (dash-dotted line) and ν0 = 2 (solid line).

equilibrium, while it should naturally fade away under the action of dissipation. On the contrary,

in ref20, if one assumes the electric field is generated by biased electrodes, one can treat ΩE as

an external parameter (in fact, the electric field arises from the electron motion in the z direction,

toward or coming from the electrodes). Then, one can consider only equations (42)-(43) without

(44) (which gives the electric field dynamics in our case), and without the azimuthal forcing:

Ω
2
1− γ

2
1 +

Z1

A1
(Ω1 +ΩE)−ν10γ1 = 0 (62)

−
(

2Ω1 +
Z1

A1

)
γ1−ν10Ω1 = 0. (63)

Now one is merely interested whether there is a solution for Ω1 for any value of ΩE . Instead of

equating γ1 and γe, as required by the electric field equilibrium, one takes γ1 from equation (63) and

plugs it into equation (62). Reformulating the problem with the variable α =−(2Ω1+Z1/A1)/ν10

(incidentally, this variable has a physical meaning since 2Ω1 + Z1/A1 is the effective cyclotron

frequency in the rotating frame28), one obtains a second order equation for α2:

α
4 +α

2
[

1−
Z2

1
A2

1ν2
10

(
1−4

A1

Z1
ΩE

)]
−

Z2
1

A2
1ν2

10
= 0 (64)

This is precisely equation (12) from Ref.29, if Z1 = A1 = 1 and with the substitutions

ν10 −→
νi

Ωi
(65)

ΩE −→−
φ ′

rB0Ωi
. (66)
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FIG. 5. Radial velocity solution of equation (64) as a function of Ω1, for Z1 = A1 = 1, with ν0 = 0 (black

solid line), ν0 = 0.01 (dashed line), ν0 = 0.1 (dash-dotted line), ν0 = 2 (solid line). The highlighted zone is

where the electric field is below the Brillouin limit.

The relation (64) in the A1 = Z1 = 1 case is plotted in Fig 4 for ν0 = 0, ν0 = 0.01, ν0 = 0.1 and

ν0 = 2. It is this relation that is interpreted as a breakdown of the Brillouin limit (in the case

where the electric field is generated by biased electrodes), because it has a solution α2 > 0 for any

value of ΩE . In our case however, this would be inconsistent if there is only one species in the

plasma. In our case, figure 4 ought to be replaced with figure 2. We want to emphasize, however,

that the solutions of (64) are perfectly acceptable if the considered ion species plays no part in the

establishment of the electric field. In other words, if we consider a trace impurity.

There is, however, another important consequence of equation (64). Each solution for α , which

gives Ω1, also comes with a radial velocity γ1 = Ω1/α . The solutions are plotted in Fig. 5. We

have highlighted the zone where ΩE is less than the Brillouin limit. It is clearly seen that the sign

of the radial velocity depends on whether the solution is in the fast or the slow mode. The slow

mode is on the right of the figure, and the radial velocities are positive, even when ΩE < Ω
(1)
E,Bri.

This means that a trace species can be expelled radially even if the electric field is below that

species’ Brillouin limit.
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VI. DYNAMICS OF A TRACE IMPURITY WITH RESPECT TO THE BRILLOUIN

LIMIT

A. Collisions with neutrals

We have already argued in the previous section that if we are considering a trace impurity, the

equations (62) and (63), or (64), apply (with index 1 replaced by index 2). The electric field is

set by the dynamics of the first species, while it becomes sufficient to read on Figs. 4 and 5 the

values of Ω2 and γ2. An important comment is in order, though. In the absence of electric field, the

impurity naturally starts at rest with Ω2 = 0 on the right of the figures, and we see that when ΩE is

increased (let’s say, the forcing of the first species is increased), Ω2 increases but cannot cross the

line Ω2 = −Z2/(2A2). In other words, it can never reach the fast mode where Ω2 < −Z2/(2A2).

Hence, the left part of figures 4 and 5 is basically irrelevant. An important consequence is that

when we consider only the collisions with the neutrals, γ2 is always positive (ejection), whether it

is a heavy impurity or a light impurity. We will come back to this point.

B. Coulomb collisions

We will now study the dynamics of a trace impurity when Coulomb collisions are the only

source of friction. The results are different whether we consider an impurity that is heavier or

lighter than the first (forced) species.

1. Heavy impurity

The equations now involve a coupling between the two species through friction, other than

through the sole electric field as was the case for collisions with neutrals. We assume there is a

forced ion (numbered 1) with a trace impurity (numbered 2). We will produce figures equivalent

to 4 and 5 for the second species. We have already seen how to compute Ω1 and ΩE as a function

of F/ν for ν� 1. Then we can solve for Ω2 and γ2 numerically. Since the second trace species is

heavier than the first, it has Ω
(2)
E,Bri <Ω

(1)
E,Bri, and we will be able to force the system at ΩE >Ω

(2)
E,Bri.

We simply take A1 = Z1 = 1 and A2 = 2, Z2 = 1, Then Ω
(1)
E,Bri = 1/4, while Ω

(2)
E,Bri = 1/8.

The results can be seen in figures 6, 7 and 8. There are similarities as well as differences with the

case of neutral collisions, figures 4 and 5. Fig 6 shows that in the limit ν → 0 (but F/ν remaining
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FIG. 6. Relation between |F/ν | and Ω2 when A1 = Z1 = Z2 = 1 and A2 = 2, for ν = 10−5 (black solid line),

ν = 10−4 (solid blue line), ν = 10−3 (dashed blue line), and ν = 5× 10−3 (dash-dotted blue line). Recall

that F < 0.
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FIG. 7. Relation between Ω2 and ΩE when A1 = Z1 = Z2 = 1 and A2 = 2, for ν = 10−5 (black solid line),

ν = 10−4 (solid blue line), ν = 10−3 (dashed blue line), and ν = 5×10−3 (dash-dotted blue line).

finite), there is a wide range of values for the forcing where Ω2 is locked at Ω2 = −Z2/(2A2).

Recall that the forcing determines Ω1, and ΩE , through the balance between inertial, Lorentz

and electron-ion friction forces. Thus, the domain where Ω2 = −Z2/(2A2) is the domain where

the forcing is such that ΩE > Ω
(2)
E,Bri. For these values of the forcing, γ2 is positive, otherwise it

vanishes. When ν becomes finite, this sharp behaviour is smoothed, as we have seen in the case of

collisions with neutrals. But the difference with figures 4 and 5 is that the solutions are asymmetric
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FIG. 8. Relation between Ω2 and γ2 when A1 = Z1 = Z2 = 1 and A2 = 2, for ν = 10−5 (black solid line),

ν = 10−4 (solid blue line), ν = 10−3 (dashed blue line), and ν = 5×10−3 (dash-dotted blue line).

with respect to Ω2 = −Z2/(2A2), and that γ2 never becomes negative. Mathematically, there is

another solution to the nonlinear system, that is the exact symmetric of the physical one with

respect to the axis Ω =−Z2/(2A2). More precisely, it is symmetric for Ω2 and antisymmetric for

γ2, so that γ2 < 0 for that solution. It is unphysical because it has Ω2 decreasing when F increases,

with limF→0 Ω2 =−Z2/A2.

An important difference, also to be noted, is that now the fast mode of the second species, where

|Ω2|> Z2/(2A2), becomes accessible, contrary to the case of neutral collisions (see section VI A).

2. Light impurity

We can do the same exercise when the second species is lighter than the first. The results change

in significant ways, as can be seen in Figs. 9, 10 and 11, where A1 = 5, A2 = 4, and Z1 = Z2 = 1.

The electric field can only be forced up to ΩE = Ω
(1)
E,Bri < Ω

(2)
E,Bri. For small ν , as we increase the

forcing, there is a jump in the poloidal frequency Ω2. This is easily understood because the relation

Ω2
2 +Z2/A2(Ω2 +ΩE) ≈ 0 holds and friction with the first species drives Ω2 while at the same

time ΩE cannot surpass (or even reach) Ω
(2)
E,Bri. The usual relation between Ω2 and ΩE explains

the parabola branches in Fig. 9, and the existence of a jump for a certain value of the forcing is

readily understood. Another important difference is that now γ2 is always negative.

Note that the results we have just discussed apply strictly speaking only to the case of a trace
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FIG. 9. Relation between |F/ν | and Ω2 when Z1 = Z2 = 1, A1 = 5 and A2 = 4, for ν = 10−5 (black solid

line), ν = 10−4 (solid blue line), ν = 2×10−3 (dashed blue line), and ν = 5×10−3 (dash-dotted blue line).

Recall that F < 0.
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FIG. 10. Relation between Ω2 and ΩE when Z1 = Z2 = 1, A1 = 5 and A2 = 4, for ν = 10−5 (black solid

line), ν = 10−4 (solid blue line), ν = 2×10−3 (dashed blue line), and ν = 5×10−3 (dash-dotted blue line).

impurity. Here, the behaviour of the first species is determined by the forcing and the friction with

the electrons, while that of the second species is determined by the friction with electrons and with

the first ion species.
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FIG. 11. Relation between Ω2 and γ2 when Z1 = Z2 = 1, A1 = 5 and A2 = 4, for ν = 10−5 (black solid line),

ν = 10−4 (solid blue line), ν = 2×10−3 (dashed blue line), and ν = 5×10−3 (dash-dotted blue line).

C. Exploration of the (ν ,ν0) parameter space

So far, we have only considered the case of either only friction with neutrals, or only Coulomb

collisions. When both ν and ν0 are nonzero, it is all the more necessary to carry out numerical

parameter studies because of the intricacies of the nonlinear system. We can first sum up what we

have already seen so far. When the trace impurity is heavier than the dominant species, whether

due to neutral or Coulombian collisions, it has γ2 > 0. Therefore, we can assume it will always

have γ2 > 0 whatever the values of ν and ν0. When the trace impurity is lighter however, collisions

with the neutrals lead to γ2 > 0, while Coulombian collisions lead to γ2 < 0. Therefore, we expect

the presence of a boundary in the (ν ,ν0) space between a region dominated by neutral collisions

where γ2 > 0 and a region dominated by Coulombian collisions where γ2 < 0.

We draw the reader’s attention on another point. We have seen in section IV that for collisions

with neutrals, at equilibrium γ1 = γe ∝ −ΩE < 0 whereas in the case of Coulombian collisions,

γ1 = γe ∝ −(ΩE +Ω1) > 0. The question, then, is not only to know if γ2 is positive, but aso if

γ2 > γ1.

In both cases of heavy and light trace impurity, our algorithm is as follows. First we fix A1, Z1

and A2, Z2. Then, for each couple of values for (ν ,ν0), we vary the forcing F . For each value of

the forcing we find numerically the equilibrium solution of the system. Since the second species

is a trace, the problem is simplified. First we can find γ1, Ω1 and ΩE . Then, plugging these values
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FIG. 12. Dependence of γ1 (a) and γ2− γ1 (b) in the (ν ,ν0) parameter space with Z1 = Z2 = 1, A1 = 1,

A2 = 2, when the first species is forced so that ΩE = Ω
(1)
E,Bri.

in the equations for the second species, we find γ2 and Ω2. The only subtlety is that there are two

solutions for γ2, Ω2, and we have to make sure to obtain the physical one, such that dΩ2/dF > 0.

This allows to find the value of F so that the electric field is maximum. We can then plot the values

of γ1 and γ2 for this value of the forcing. Indeed we assume that the most favorable situation, the

one where the second species is most likely to have large radial velocities, is when the electric

field is maximum, in accordance with the basic physics of the Brillouin limit.
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FIG. 13. Dependence of γ1 (a) and γ2− γ1 (b) in the (ν ,ν0) parameter space with Z1 = Z2 = 1, A1 = 4,

A2 = 3, when the first species is forced so that ΩE = Ω
(1)
E,Bri.

1. Heavy impurity

The results for a simple case where the forced species is hydrogen and the second species is

deuterium is shown in Fig 12. It is seen that depending whether ν or ν0 dominates, γ1 is positive

or negative. However, γ2− γ1 is always positive (ejection), as anticipated, and its values are an

order of magnitude higher than γ1. This is a very favorable case for separation, it means the

heavy impurity will be easily ejected radially, compared to the first forced species, which is either

confined, or ejected along with the electrons on much slower time scales.
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2. Light impurity

The results of the case where the first species is 4He and the second is 3He, with Z1 = Z2 = 1,

is shown in Fig 13. Again, it confirms our physical intuition formulated at the beginning of this

section, namely, that γ2−γ1 is positive when the neutrals dominate the friction, and negative when

the Coulombian collisions dominate

3. Discussion

As far as we could tell from our numerical experiments, the qualitative patterns observed in

Figs. 12 and 13 is quite general. The parameter that matters is whether the second impurity, that

which does not undergo direct azimuthal forcing, is heavier (Fig. 12) or lighter (Fig. 13).

This is an important new result of this work. Indeed, conventional wisdom of the Ohkawa

filter suggests that the radially ejected species is always the heavy one. Our results challenge this

idea. When the friction with neutrals dominates over the Coulombian collisions, a situation that

is common for this type of plasma15, a light impurity can be expelled radially. This remains true

even if the two species have masses that are close to each other, e.g. isotopes of heavy elements.

Note that even when γ1 > 0, the latter remains an order of magnitude lower than γ2. This

confirms the poential for isotopic separation. This conclusion relies crucially on the hypothesis

that only one of the two species (the one that is supposed to be confined) undergoes the azimuthal

forcing which is the source of the electric field. Note that increasing ν0, the friction with neutrals,

while keeping ν low, tends to have a beneficial impact on the separation capability. However, one

should keep in mind that this leads to an increase of F , and therefore to an increase of the power

consumption of the device. At the same time, since the separation time scale becomes shorter,

higher fluxes might be achieved to compensate. It is not obvious that the favorable parameters for

extraction could be easily achieved. Increasing friction with the neutrals can be done by increasing

their density, while decreasing ν can be done by raising the temperature. However, the two are

contradictory, or at least, counter-intuitive, since increasing the temperature shifts the ionization

equilibrium of Saha law toward less neutrals. A more thorough investigation considering the

time scales of ionization, injection and particle residence time in the device would be needed to

conclude.
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VII. FINITE CONCENTRATION

There remains to examine the important case of finite concentration. In general, the interesting

samples to separate may have two species with comparable abundances, or even a large number of

species. We will consider only the two species case and examine a last mathematical possibility

offered by the model.

When the plasma consists of two species with comparable densities and different charge to

mass ratios, there are now two values for the Brillouin limit, Ω
(1)
E,Bri 6= Ω

(2)
E,Bri, and it is difficult to

have the correct intuition about how the plasma is going to react to the forcing. Once again, we

distinguish the cases of heavy and light impurity.

A. Heavy second species

We still assume that the first species is forced, while the second is not. Let us consider first the

case when the second species is heavy, with Ω
(1)
E,Bri > Ω

(2)
E,Bri. If the radial velocities start off as in

the case of a trace heavy impurity, that is with γ2 positive and |γ2|> |γ1|whatever the sign of γ1, the

outflow of the second species leads to a rapid decrease of its density, leaving place to only the first

ion species and the electrons. We are then back to the situation of a trace species. The situation,

then, is essentially non stationary, and it does not make sense to fix η and ζ (parameterizing the

initial respective abundances of the two species) and ask what are the stationary electric field and

frequencies for these values of η and ζ , given a forcing F as well as the friction frequencies

ν and ν0. Indeed, η and ζ will necessarily vary, and in fact η will go exponentially to zero.

Unfortunately, we have not come up with a better way than to actually simulate the evolution of

the system for a range of parameters and examine the final state. This is unfortunate because the

numerical time required to reach a steady state increases roughly inversely proportionally to the

collision frequency. We explore again the parameter space, with the following algorithm. For a

given choice of A1, A2, Z1 and Z2, we fix ν and ν0 and choose the forcing such that ΩE would

be equal to Ω
(1)
E,Bri if the second species was a trace impurity. Finally, we choose initial values for

η0≡η(t = 0) between 0 and 1 (and ζ0 = 1−η0) and we let the coupled system evolve according to

the full dynamical equations and wait until a stationary state is reached. When we do the exercise

for A1 = 1 and A2 = 2 (this is Fig. 12 for the case of trace impurity), testing the values η0=0, 0.2,

0.4, 0.6 and 0.8, we obtain that for all the possible initial values without exception, the final state
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FIG. 14. Dependence of ΩE with the forcing for A1 = 4, A2 = 3, Z1 = Z2 = 1, ν = 3× 10−3 and ν0 =

3× 10−2. The solid line represents the solution of (69)-(70). For |F | < 1.3× 10−3 (dash-dotted line), the

solution of the system yields negative values for η . The equilibrium solution then actually has η = 0 and

is numerically obtained by simulating the dynamical evolution until stationary state is reached. The case

η = 0 corresponds to the previously studied case of trace impurity, and the solution no longer respects the

constraint (67).

has η → 0.

The conclusion is that at least in the case of A1 = 1 and A2 = 2, there is no difference between

the finite concentration case and the trace impurity case. The result is that the second species

is radially ejected. Of course, we cannot prove that this holds for arbitrary masses such that

A2 > A1, but the model provides a way to check relatively rapidly whether this is true or not, for

any particular case one might be interested in.

B. Light second species

The case of the light species is, again, more interesting. We have seen in the trace impurity case

that although γ2 > 0 when neutral friction dominates, the opposite holds, γ2 < 0, when Coulombian

friction dominates. In the latter case, the negativity of γ2 means an exponential increase of the

density. If we are speaking of a trace impurity, this makes no sense: where would the required

matter come from? However, this hints at a last mathematical possibility, which we have not

explored yet. What if there was a stationary state with η and ζ both non zero?
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If we seek such a stationary state η 6= 0, then we are bound to have

γ1 = γ2 = γe (67)

with

γe =−
[
νζ Z1 (Ω1 +ΩE)+νηZ2 (Ω2 +ΩE)+ν0

√
AeΩE

]
, (68)

where ΩE is a function of ζ and η via (A4). We see that indeed Ω̇E from Equation (33) vanishes

when (67) holds. Equation (33) may have a different stationary equilibrium for some value of

ζ and η , but then equations (31)-(32) would lead to a change of densities, and the stationary

solution for ΩE would not be preserved. We then have, with equations (22)-(23) for the two

species (without the forcing for the second one), a system of four equations for the four remaining

unknowns Ω1, Ω2, η and ζ . In principle, we can look for a stationary point for these variables.

According to equation (67), all species are confined or expelled with the same radial velocities,

which is not good for separation. The question, then, is that of the existence and stability properties

of that fixed point, from a dynamical system point of view.

Let us examine the fixed point given by the condition (67). In the general case where ν and

ν0 are both nonzero, since at equilibrium the radial Coulombian friction terms vanish because of

(67), the system reads

Ω
2
1− γ

2
e +

Z1

A1
(Ω1 +ΩE)−

1√
A1

ν0γe = 0 (69)

−
(

2Ω1 +
Z1

A1

)
γe +F−ν12 (Ω1−Ω2)−

Z2
1

A1
ν (Ω1 +ΩE)−

1√
A1

ν0Ω1 = 0 (70)

Ω
2
2− γ

2
e +

Z2

A2
(Ω2 +ΩE)−

1√
A2

ν0γe = 0 (71)

−
(

2Ω2 +
Z2

A2

)
γe−ν21 (Ω2−Ω1)−

Z2
2

A2
ν (Ω2 +ΩE)−

1√
A2

ν0Ω2 = 0 (72)

with γe given by (68) and ΩE given by (A4). The solutions of (69)-(72) are not restricted, mathe-

matically, to ζ ,η > 0, although this is a physical requirement. Therefore, we consider there is no

physical solution satisfying (67) when the solution of (69)-(72) is such that η or ζ is negative. It

is difficult to prove the existence or non existence of relevant solutions in the general case. But we

can still say an important thing on the solutions. As we have repeatedly seen, the equilibrium in

the radial direction is dominated by the equilibrium between inertial, Lorentz and electric forces,
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Ω2
j +Z j/A j(Ω j +ΩE) = 0 for any ion species j, which allows to define the Brillouin limit. If ΩE

ever overcomes the Brillouin limit, the other component of the inertial forces, γ2
j , is bound to come

into play and assume a large value, corresponding to the radial ejection of the species. Therefore,

a stationary state such that Ω
(1)
E,Bri < ΩE < Ω

(2)
E,Bri would require γ1 large but γ2 small. Since the

equilibrium we are considering has γ j = γe∀ j, by reductio ad absurdum, we can conclude that ΩE

can approach Ω
(1)
E,Bri (which is the minimum of the two limits since we assume the second species

is lighter) but never exceed it. This is illustrated by Fig. 14. Therefore, the equilibria we are con-

sidering here never have large radial ejection velocities, although friction can lead to γe > 0 as we

have seen.

We can do an exercise similar to Fig. 13 where we look for a solution of the type (67) in the

(ν ,ν0) parameter space, assuming the same rule for F as before (we take for F the value that

would make ΩE maximum if the second species were a trace). For some values of (ν ,ν0) we

find physically acceptable solutions where both η and ζ are positive, but for others either ζ or

η is negative. The boundary between the two regions coincides precisely with the isocontour

γ2− γ1 = 0, visible in Fig. 13 (we do not show the result as the figure would not bring any new

information). This coincidence can be understood using the following argument. Let us fix ν , ν0

and F and examine the dynamical picture, starting from nonzero values for η and ζ and ΩE = 0 at

t = 0. We can easily prove (see appendix C) that for early times, we have γ2 > 0 and γ1 < 0, so the

first species is confined and the second is expelled. First, assume that ν and ν0 are such that in the

trace case γ2− γ1 < 0. As the second species is expelled, its density exponentially decreases until

it becomes a trace, but by assumption when it has become a trace, γ2− γ1 < 0 and we are now in

the opposite situation where the expelled species is the first one. This hints at the possibility of an

equilibrium point with η 6= 0. On the contrary, when in the trace case γ2− γ1 > 0, there is nothing

to stop the ejection process of the second species and its density can decrease exponentially until

it becomes zero.

Therefore, the solutions conforming to (67) can be found only in the zone where γ2− γ1 < 0 of

the trace case. Referring to Fig. 13, this is the bottom-right part of the γ2− γ1 figure, colored in

blue.

VIII. SUMMARY

We can now summarize the results of this paper.
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• The most important contribution of this paper is the realization that when the source of the

electric field is azimuthal forcing, the Brillouin limit with collisions cannot be understood

independently of the forcing. When this is accounted for, we find there is no breakdown of

the Brillouin limit due to collisions (section V), contrary to the case where the source of the

electric field is biased electrodes20.

• In the case of a one species plasma, the Brillouin limit decreases for large values of the fric-

tion with neutrals, and is not affected by Coulombian friction unless the collision frequency

reaches irrelevant values for the plasmas we consider (sections IV A and IV B).

• When we consider trace impurities, assuming the forcing to be such that ΩE = Ω
(1)
E,Bri, we

find that

(i) The trace impurity is always expelled when it is heavier (section VI C 1).

(ii) The trace impurity can be expelled when it is lighter if the friction is dominated by

neutrals, which, by the way, is likely (section VI C 2).

• When the plasma consists of two species with comparable abundances, with the same as-

sumption on the forcing, we again have two cases :

(i) If the passive species is the heavy one, it is always expelled (section VII A).

(ii) If the passive species is the light one, the dynamical system can exhibit a fixed point

with η and ζ both non-zero, and γ1 = γ2 = γe, if the friction is dominated by Coulomb

collisions. Otherwise, it is expelled (section VII B).

IX. DISCUSSION

Before closing this paper, we have to discuss the relevance of the present study. Our results

come with important caveats, that have been already mentioned or have transpired throughout the

exposition.

First of all, we never make explicit the coupling between the wave and the plasma. Actually,

before even considering the resonant wave-particle interaction, the wave propagation should be

considered, as several interesting effects due to both the rotation and the magnetic field occur.

In fact, it appears that the dispersion relation of an orbital angular momentum carrying wave in
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a rotating magnetized plasma is not known. It is known that in a rotating magnetized plasma,

there is, in addition to the Faraday birefringence that causes a rotation of the polarization plane, a

mechanical optical effect, where rotation also contributes to the rotation of the polarization plane30.

However, the dispersion relation is known formally only when the wave number k, Ω and B0

are aligned. For oblique propagation, including the case of wave angular momentum, there are

additional terms in the wave equation, that are not straightforward to treat analytically because of

the tensorial nature of the suceptibility in a magnetized plasma. Therefore, it is a relevant question

whether e.g. the conditions of resonance at Ω1 = 0 would be preserved when Ω1 takes on values

of the order of the ion cyclotron frequency. Translated in more practical terms, would F depend

on Ω1?

We regard the problem of the shaping of power deposition as less pressing. If power deposition

is very different from our assumption that P(r) ∝ r4, this may introduce shear and shaping of

the electric field, but not necessarily invalidate our results. More studies would be required to

conclude, but we would lose the immense advantage of dealing with ODEs.

As mentioned in section II A, we have not considered the influence of the potentially large

poloidal currents associated with the ion-electron slip. This slip is of order 1 in our normalization.

Using Ampère’s theorem on a section of cylinder of length L and using υθ ∝ r, integrating up to

the cylinder radius r, we find a δB perturbation of the order of

δB
B0

= µ0
a2

2
nee

ωcp

B0
(ζ Z1Ω1−Ωe) (73)

=
1
2

nee2

ε0mp

a2

c2 (ζ Z1Ω1−Ωe) (74)

(assuming a one species plasma to simplify). Obviously, this perturbation can become large unless

a is less than the skin depth c/ωpi. This is a quite severe restriction on the range of plasma

parameters than can be achieved. The question of how the dynamics would be affected if this

perturbation was taken into account is left for future work. Note that some insight to this issue is

provided by ref.22

Another limitation of this work, also pertaining to the 0-D nature of the model, has already been

discussed. We have completely neglected the boundary conditions, both in the z direction and at the

cylinder walls in r = a. The neglect of boundary conditions in the z direction is relatively natural

since it amounts to assume a long cylinder, but the issue of the radial boundary conditions is more

problematic. As a result of not considering these boundary conditions, there is no limitation on the

variations of density that can be achieved by the model. It is as if there were perfect reservoirs or
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sinks in r = a, or, alternatively, as if a were in effect infinite. We have been careful in this paper not

to get carried away when the model’s behaviour was clearly caused by taping in these reservoirs.

For instance, when a trace impurity is sucked until it constitutes the main plasma component,

while the initially dominant species is expelled, we consider this conclusion to be problematic. We

believe, however, that we have been careful enough with this problem that the main conclusions of

the paper, summarized in section VIII, still hold. More advanced models should take this problem

explicitly into account, by considering global conservation of the number of particles.

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author

upon reasonable request.

ACKNOWLEDGMENTS

The author would like to thank X. Garbet for insightful discussion and encouragements.

Appendix A: Justification for the force term

We will analyze the configuration represented in figure 15. The plasma is infinite in the x̂

direction (and possibly in the ignorable ẑ direction as well). The plasma is bounded in the ŷ

direction, in y = ±a. There is resonant interaction between a wave with wave vector k⊥ = k⊥x̂

and the plasma. We will adopt two different points of view on the effect of this wave on the

plasma. The two points of view reach the same conclusion: the momentum of the wave is entirely

converted to plasma and dc field momentum, with proportions respectively χ⊥/ε⊥ and 1/ε⊥.

In the following, momentum refers to the kinetic part only, p = mv, rather than to the canonical

momentum p = mv+qA.

1. Particle point of view

Let’s assume that during a time ∆t, each particle of a minority resonant population with density

nr absorbs momentum ∆p = ∆px̂, with ∆p ∝ h̄k⊥ > 0. The total momentum absorbed per unit
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FIG. 15. Configuration with wave induced electric field

time and unit volume, that is, the density of momentum transfer between the wave and the plasma,

is

F = nr
∆p
∆t

. (A1)

The gyrocenter of the resonant particles is displaced by a quantity

∆y =− ∆p
qB0

, (A2)

which derives simply from the expression of the Larmor radius. This corresponds to a current of

free charges jr = jrŷ, where

jr = nrq
∆y
∆t

=−nr
∆p

B0∆t
(A3)

This current of free charges accumulates positive charges on the right, y =−a, while depleting

charges in y = a. Surface charges appear at the left and right boundaries, given by ∆σ = jr∆t.

However, the plasma is a dielectric with susceptibility χ⊥ = mn/ε0B2, and dielectric constant
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ε⊥ = 1+ χ⊥. Although in the plasmas we’re interested in, χ⊥� 1, we will not use this assump-

tion and maintain the distinction between ε⊥ and χ⊥. Otherwise we might lose track of some

momentum. Since the plasma is a dielectric, the free charge current jr is largely compensated by

a bulk polarization current in the opposite direction. The electric field increase is therefore given

by

ε0ε⊥∆E =− jr∆tŷ

= nr
∆p
B0

ŷ (A4)

The associated cross-field motion is

∆vE =
∆E
B0

x̂. (A5)

The momentum density of the electromagnetic field is given by Pfield = ε0E×B. Here, we do

not bother with the Abraham-Minkowski controversy, which debates whether the relevant elec-

tromagnetic momentum in matter is D×B (Minkowski) or E×H/c2 (Abraham). After all, the

quantities D and H are but useful auxiliary quantities, which allow to hide the polarization charge

and magnetization currents. If we write all the currents explicitly, we are authorized to stick with

the usual expressions for field quantities. Therefore, in the final situation, the field momentum

increase per unit volume is

∆Pfield = ε0∆EB0x̂

=
nr∆p
ε⊥

x̂, (A6)

while the increase of mechanical momentum is

∆Pmech = mn∆vE

=
χ⊥
ε⊥

nr∆px̂ (A7)

And we find that

∆(Pfield +Pmech) = nr∆px̂ (A8)

The momentum transferred by the wave goes to the plasma and the dc field in proportions

respectively χ⊥/ε⊥ and 1/ε⊥. Incidentally, note that D×B gives the sum of the field and matter

contributions.
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2. Fluid point of view

Now let’s have a look at the fluid point of view. We only need two equations. The electron

dynamics is useless because of their small inertia. To study the ion motion under the influence of

the wave, let us start from the kinetic equation taking into account the quasilinear wave-induced

velocity diffusion, and neglecting collisions, as well as spatial gradients:

∂t f +
q
m
(E+v×B) ·∂v f = ∂v ·

{
¯̄D ·∂v f

}
(A9)

By integrating on velocity space after multiplying by mv, and using constant density, we find

the equation of motion of the ions:

∂tv =
q
m
(E+v×B)+

F
mn

, (A10)

where F is the wave-induced forcing, defined by

F = m
∫
v∂v ·

{
¯̄D ·∂v f

}
d3v =−m

∫
d3v ¯̄D ·∂v f (A11)

By conservation of momentum, we know that F should be equal to the momentum lost by the

wave, hence F is also given by equation (A1):

F = nr
∆p
∆t

x̂ (A12)

The dynamics of the electric field E = Eŷ is given by the same equation as in section A 1 with

the total current j = nqv:

ε0∂tE =−nqυy (A13)

Since there is no spatial dependence except for the charge accumulation at the y boundaries,

we can transform the system into a system of coupled ODEs, ignoring the z direction. Writing

υE = E/B0, the system reads

υ̇x = ωcυy +ωcF (A14)

υ̇y =−ωcυx +ωcυE (A15)

υ̇E =− nm
ε0B2

0
ωcυy =−χ⊥ωcυy. (A16)
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where F = |F|/(nqB0) represents the wave forcing. We could already stop here. Indeed, the total

momentum (neglecting the qA contribution) rate of change is

∂t {Pfield +Pmech}= mnυ̇x + ε0ĖB0

= mn(υ̇x + υ̇E/χ⊥)

= ωcF , (A17)

and we know the proportions (the same as in section A 1, respectively χ⊥/ε⊥ and 1/ε⊥), because

the υx motion is nothing but the E×B motion. But let’s compute the analytical solution to see in

details what happens. After normalizing time to ω−1
c , and defining X = (υx,υy,υE)

>, the system

reads

Ẋ = AX +B (A18)

with

A =


0 1 0

−1 0 1

0 −χ⊥ 0

 , B =


F

0

0

 (A19)

The solution satisfying X(t = 0) = 0 is given by

X(t) = M(t)B, M(t) =

(
∞

∑
n=1

An−1tn

n!

)
(A20)

We can easily find the analytical solution by noting the following property of the matrix A:

A2k = (−1)k−1
ε

k−1
⊥ A2 (A21)

A2k−1 = (−1)k−1
ε

k−1
⊥ A, (A22)

with

A2 =


−1 0 1

0 −ε⊥ 0

χ⊥ 0 −χ⊥

 (A23)

The matrix M(t) is then given by

M(t) = t1+
A

(i
√

ε⊥)2

∞

∑
k=1

(it
√

ε⊥)
2k

(2k)!
+

A2

(i
√

ε⊥)3

∞

∑
k=1

(it
√

ε⊥)
2k+1

(2k+1)!
(A24)
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We recognize in the two sums truncated developments of sine and cosine, which yields finally:

υx(t) = F

(
χ⊥
ε⊥

ωct +
1

ε
3/2
⊥

sin
(

ε
1/2
⊥ ωct

))
(A25)

υy(t) =
F

ε⊥

(
cos
(

ε
1/2
⊥ ωct

)
−1
)

(A26)

υE(t) = F

(
χ⊥
ε⊥

ωct−
χ⊥

ε
3/2
⊥

sin
(

ε
1/2
⊥ ωct

))
(A27)

In other words, up to the oscillating terms, that become small anyway when χ⊥→ ∞, we have

exactly the same dynamics as in section A 1, and the same conclusion. Indeed, in a time ∆t, the

combination plasma + dc field receives the momentum

mn(υx(∆t)+υE(∆t)/χ⊥) = mnFωc∆t = nr∆p (A28)

The momentum of the wave is transferred to the plasma and the dc field in proportions respec-

tively χ⊥/ε⊥ and 1/ε⊥.

3. Splitting between resonant and bulk

One might object that a fluid approach is bound to fail because the population that undergoes

wave forcing, the resonant particles, makes up such a small fraction of the plasma. In this section,

we split the ions between a resonant part, with density nr = αn, and a bulk part, with density

nb = (1−α)n. Only the resonant part sees the forcing F. Note that the distribution of the resonant

particles is anything but a Maxwellian in the z direction, but can be close to a Maxwellian (insofar

as the bulk also is) in the xOy plane, because there is no correlation between having a certain

velocity (close to the phase velocity of the wave in the z direction) and the velocity in the xOy

plane. Hence, we can make sense of treating the resonant part as a fluid in the xOy plane.

We show that the dynamics of the electric field (hence, of the bulk motion) is completely

independent of α . Therefore, there is no reason to split resonant ions and bulk ions, and the

approach where F = k⊥P/ω is seen as a fluid force is valid. This crucially relies on the fact we

are examining the perpendicular direction.

One would like to solve the following coupled equations (the convective term is still absent

because of the geometry of the slab system and the direction of the flows):
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nrm∂tvr = nrq(E+vr×B)+F (A29)

nbm∂tvb = nbq(E+vb×B) (A30)

ε0∂tE =−(nr +nb)q
(

nr

nr +nb
vr,y +

nb

nr +nb
vb,y

)
=−nq

(
αvr,y +(1−α)vb,y

)
, (A31)

where we have defined α ≡ nr/(nr +nb). As before, we normalize the system, in particular time

with ωci, defining χ⊥ = (nr + nb)m/(ε0B2), vE = E/B, and F = |F|/(nqB0). We obtain the 5th

order system

v̇x = vy +
F

α
(A32)

v̇y = vE − vx (A33)

ẇx = wy (A34)

ẇy = vE −wx (A35)

v̇E =−χ⊥ (αvy +(1−α)wy) , (A36)

where the v variables stand for the resonant part, and the w variables for the bulk.

The important result is that the dynamics of the electric field and of the transverse current (in

the y direction) do not depend on α: whatever the value of α > 0, we obtain the same electric field

evolution, and the same mean displacement of the ions in the y direction (representing the radial

direction of a cylindrical system). We can prove it as follows. By taking the time derivative of

(A36), one obtains

v̈E +χ⊥vE = χ⊥ (αvx +(1−α)wx) (A37)

By taking it one more time and using the notation Y ≡ v̇E , one obtains

Ÿ +χ⊥Y = χ⊥

(
α

[
vy +

F

α

]
+(1−α)wy

)
, (A38)

which, using ε⊥ = 1+χ⊥ and, one more time, equation (A36), simplifies into

Ÿ + ε⊥Y = χ⊥F . (A39)
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The parameter α has disappeared from the equation. The evolution of E, therefore, is independent

of α , with the condition that the 3 initial conditions of this third order system also be independent

of α . Rewriting the system Ẋ = AX +B, with X = (vx,vy,wx,wy,vE)
ᵀ, B = (F/α,0,0,0,0)ᵀ, and

A =



0 1 0 0 0

−1 0 0 0 1

0 0 0 1 0

0 0 −1 0 1

0 −αχ⊥ 0 −(1−α)χ⊥ 0


, (A40)

the solution is

X(t) =

[
∞

∑
n=1

An−1tn

n!

]
B

= Bt +AB
t2

2
+O(t3) (A41)

Therefore, the initial conditions for vE are vE(0) = 0, v̇E(0) = 0 and v̈E(0) = 0, also independent

of α . Since the total y-current of this species is simply given by the time derivative of vE , this

current also is independent of α . QED.

With these initial conditions, we can actually easily solve for vE . From equation (A39), we

have the solution

Y (t) =
χ⊥
ε⊥

F [1− cos(
√

ε⊥t)] , (A42)

which, naturally, gives for vE the very same solution as equation (A27).

The conclusion is that there is no point in splitting the fluid between resonant and non-resonant

part to treat the wave forcing, whether in terms of electric field dynamics or in terms of net dis-

placement in the y (“radial”) direction. Of course, vr and vb are different. In particular, when

the wave has momentum in the +x̂ direction, the resonant ions are displaced on average to the −ŷ

direction, while the bulk ions are displaced to the +ŷ direction. But when one is doing a separation

experiment, one is not interested to know whether the collected ions are the resonant ones or not.

One is only interested in the species of the ion.
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Appendix B: Friction force between two species with arbitrary mass ratio

Let us prove the following classical result. The friction force between two Maxwellian species

1 and 2 with arbitrary mass ratio, for small velocity shift, is given by

R12 =−
n1n2Z2

1Z2
2e4Λ

3(2π)3/2
ε2

0 T 3/2

√
m1m2

m1 +m2
(v1−v2)

=−m1n1ν12 (v1−v2) (B1)

The collision frequencies thus read

ν12 =
n2Z2

1Z2
2e4Λ

3(2π)3/2
ε2

0 m1/2
1 T 3/2

1√
1+ m1

m2

(B2)

ν21 =
n1Z2

1Z2
2e4Λ

3(2π)3/2
ε2

0 m1/2
2 T 3/2

1√
1+ m2

m1

(B3)

We start from the Landau-Fokker-Planck operator, which allows to write the friction force as

(see chapter 5 of ref.31)

R12 =−Γ12

(
1+

m1

m2

)∫
d3v1H2(v1)

∂ f1

∂v1
, (B4)

where Γ12 is a coefficient proportional to the Coulomb logarithm Λ, and H2 is the rosenbluth

potential for a Maxwellian at rest

Γ12 =
Z2

1Z2
2e4Λ

4πε2
0 m1

(B5)

H2(v1) =
∫

d3v2
f2(v2)

|v2−v1|

= n2
erf(υ1/υt2)

υ1
. (B6)

In the above expressions, υts ≡
√

2T/ms is the thermal velocity. We now introduce

b≡ υt2

υt1
=

√
m1

m2
. (B7)

The distribution of species 1 is assumed to be shifted with a velocity v0 = υt2uẑ, assumed to be

along ẑ without loss of generality (we do not consider the magnetic field). We assume u� 1,

u/b� 1. Thus, f1 is written

f1(v1) = n1

( m1

2πT

)3/2
e
− (v1−v0)

2

υ2
t1 (B8)

= n1

( m1

2πT

)3/2
e
− υ2

1
υ2

t1
(
1+2v1 ·v0/υ

2
t1 +O

(
u2)) (B9)
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Taking the derivative with respect to v1:

∂ f1

∂v1
= 2

n1

υ2
t1

( m1

2πT

)3/2
e
− υ2

1
υ2

t1
(
−v1 +v0−2v1

(
v1 ·v0/υ

2
t1
)
+O

(
u2)) (B10)

The first term in the bracket evidently does not contribute to the integral. Let us compute the two

other contributions.

R12 =−
n1n2Z2

1Z2
2e4Λ

2πε2
0 m1

(
1+b2)( m1

2πT

)3/2 1
υ2

t1

∫
d3v1

erf(υ1/υt2)

υ1

(
v0−2v1

(
v1 ·v0/υ

2
t1
))

e−υ2
1/υ2

t1

(B11)

We introduce the variablex=v1/υt2 with spherical coordinatesx= r(cosϕ sinθ ,sinϕ sinθ ,cosθ)>,

to write the integral as

R12 =−α12

∫
d3x

erf(r)
r

(
uẑ−2b2x(ur cosθ)

)
e−b2r2

(B12)

α12 =
n1n2Z2

1Z2
2e4Λ

2πε2
0 m1

(
1+b2)( m1

2πT

)3/2
b2

υt2 (B13)

The integration along ϕ is trivial, and the second term is also along ẑ, as expected. Thus, we

can write

− R12 · ẑ
4πuα12

=
∫

∞

0
dr e−b2r2

erf(r)r

−b2
∫

∞

0
dr e−b2r2

erf(r)r3
∫ 1

−1
y2dy (B14)

=
∫

∞

0
dr e−b2r2

erf(r)r− 2
3

b2
∫

∞

0
dr e−b2r2

erf(r)r3 (B15)

= I1−
2
3

b2I2 (B16)

where we have used the change of variable y = cosθ and the volume element −2πr2drd(cosθ).

We compute the integrals by successive integration by parts

I1 =
1

2b2
√

1+b2
(B17)

I2 =
1

2b2

[
1

2(1+b2)
3/2 +

1
b2
√

1+b2

]
(B18)

Plugging these expressions in equation (B16), we find equation (B1) and the collision frequencies

follow.
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Appendix C: Early time solution

Let us prove that for initial times, γ1 < 0 while γ2 > 0 if F < 0. At t = 0, γ1, γ2, Ω1, Ω2 and ΩE

are all vanishing, so we can linearize the system of equations, which becomes of the form

γ̇1 =
Z1

A1
(Ω1 +ΩE)−ν12 (γ1− γ2)−ν1e (γ1− γe)−ν10γ1 (C1)

Ω̇1 =−
Z1

A1
γ1 +F−ν12 (Ω1−Ω2)−ν1e (Ω1 +ΩE)−ν10Ω1 (C2)

γ̇2 =
Z2

A2
(Ω2 +ΩE)−ν21 (γ2− γ1)−ν2e (γ2− γe)−ν20γ2 (C3)

Ω̇2 =−
Z2

A2
γ2−ν21 (Ω2−Ω1)−ν2e (Ω2 +ΩE)−ν20Ω2 (C4)

Ω̇E = ηζ (γ1− γ2)

(
A1

Z1
− A2

Z2

)
− 1

ζ A1/Z1 +ηA2/Z2

(
ζ

A1
Z1

γ1 +η
A2
Z2

γ2

ζ A1/Z1 +ηA2/Z2
− γe

)
, (C5)

with γe given by (68), and η , ζ fixed to their initial values. Defining Y ≡ (γ1,Ω1,γ2,Ω2,ΩE)
ᵀ, and

B≡ (0,F,0,0,0)ᵀ this system is of the form

Ẏ = AY +B. (C6)

The solution vanishing at t = 0 is given by

Y (t) =

(
∞

∑
n=1

An−1

n!
tn

)
B. (C7)

For small times, this becomes

Y (t) = Bt +
1
2

ABt2 +O(t3) (C8)

Since B = (0,F,0,0,0)ᵀ, we only need the values of matrix elements A12 and A32 and we find

γ1 =
1
2

F
(

Z1

A1
−

Z3
1

A1
ζ ν

2
)

t2 +O(t3) (C9)

γ2 =−
1
2

F
Z3

2
A2

ζ ν
2t2 +O(t3) (C10)

Since F < 0 and ν is small (a fortiori ν2), we have γ1 < 0 and γ2 > 0. Incidentally, |γ2| is

initially smaller than |γ1|, that is, the first species is more confined than the second species is

expelled (at least initially).
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