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Abstract In this work, we consider the problem of C-arm geometric
calibration with the bundle adjustment (BA) method. This method was
initially developed and used in computer vision. It’s based on markers,
but with unknown geometry. We don’t know the 3D positions of the
markers from which we have to estimate the calibration parameters.
Thus, the geometric calibration is only based on the positions of the
projected markers on 2D projection images. Pollefeys et al. [1] have
shown that such calibration from BA can be performed up to a simi-
larity transformation. In our work, we present a numerical solution to
the C-arm geometric calibration with the BA method. We show the
non-uniqueness of the geometric calibration with the BA method for
cone-beam tomography. Just like in computer vision, we can’t find the
solution better than up to a similarity transformation.

1 Introduction

A C-arm X-ray imaging system is designed as a C-shaped
arm which connects a X-ray source and a X-ray detector. We
consider isocentric C-arms rotating around their isocenter.
Usually projection images of a patient placed at the isocenter
are collected. In the figure 1, we present some geometric
parameters of a C-arm in a schematic view. This geometric
model is classical in the cone-beam (CB) geometry.

Figure 1: Some geometric parameters of a C-arm in a schematic
view.

In the section 2 we recall the geometric model of a C-arm
system. This projection geometric model maps 3D patient
points to 2D detector points. The model contains geometric
parameters. In general, these parameters need to be calibrated
for each projection. The identification of these parameters is
necessary for an accurate 3D reconstruction [2]. For most C-
arms, in order to take into account mechanical vibrations over
time, it is necessary to periodically perform the C-arm geo-
metric calibration. In this work, we want to discuss bundle

adjustment (BA) geometric calibration.
This C-arm geometric calibration process is similar to the
camera geometric calibration in computer vision [3]. By
analogy with computer vision, we can divide all image-based
calibration methods for C-arms into two groups: calibration
with markers and without markers as in [4]. For the first
group, the calibration problem is solved with specific scans
of a calibration object, usually based on few opaque markers.
Either the 3D coordinates of marker centers are known in
the world coordinate system or not. In the second case, both
these 3D coordinates of marker centers and the geometric
calibration parameters need to be identified. In this work, we
consider this bundle adjustment problem and the method to
solve this problem described in [5]. Just as for the calibration
without markers, BA only uses the projection data and thus
belongs to self-calibration methods.

2 Geometric calibration of a C-arm

As we know from computer vision [3], a camera can be mod-
elled by a projection matrix P mapping Q, a 3D point in the
world coordinate system, to q, its corresponding projection
onto the image plane. We usually have the decomposition of
the projection matrix P:

P∼
(
K 0

)( R −Rt
0T 1

)
= KR

(
I −t

)
. (1)

To be more precise, we can connect homogeneous coordi-
nates of q = (u,v,1)T in the pixel coordinate system and ho-
mogeneous coordinates of Q = (Xw,Y w,Zw,1)T in the world
coordinate system with special matrices K, R and t:

u
v
1

∼ KR
(
I −t

)
Xw

Y w

Zw

1

 , K =

 fx s u0
0 fy v0
0 0 1

 . (2)

The matrix K consists of intrinsic calibration parameters. For
the classical pinhole camera model the skew s = 0, fx =
fy = f is the focal length, u0 and v0 are the coordinates in
the camera image of the orthogonal projection of the optical
center. The rotation matrix R and the translation vector t are
extrinsic calibration parameters; they describe the orientation
and the position of the camera in the world coordinate system.
Let us use here a IEC 61217 standard in order to describe the
C-arm used in our simulation in the same way as cameras.
In order to do this, 9 parameters are used, see the table 1.
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Usually, we don’t know exactly these parameters, so we need
to calibrate them. We present some of these parameters in
the figure 1.

Parameter Value Noise
bounds

SDD (mm): source-detector distance 1000 ±3.5
SID (mm): source-isocenter distance 700 ±6.9
sposx (mm): x-coordinate of the posi-
tion of the source in the rotated frame

0 ±6.9

sposy (mm): y-coordinate of the posi-
tion of the source in the rotated frame

0 ±6.9

dx (mm): x-coordinate of the center of
the detector in the rotated frame

0 ±13.9

dy (mm): y-coordinate of the center of
the detector in the rotated frame

0 ±13.9

θx (degrees): orientation of the rotated
frame relative to the world frame along
the x axis

0 ±1.4

θz (degrees): orientation of the rotated
frame relative to the world frame along
the z axis

0 ±1.4

θy (degrees): angle of scan iδ ±0.7

Table 1: C-arm calibration parameters: initial values and noise
bounds used to simulate mechanical vibrations (we show in the
third column bounds for the uniform distribution, we added a
small uniform noise to initial values except the case of the SDD
parameter for which we have completely different initial value,
its realistic values for all projections are around 1300 mm). Here
i ∈ N is the projection index, δ is the angular step.

We can describe the C-arm with approximately the same pro-
jection matrix as the basic pinhole camera. As in computer
vision, we can build the intrinsic geometric calibration matrix
K with zero skew (s = K12 = 0). The rotation matrix R is
here the rotation around the isocenter defined by the position
of the rotated frame. The translation−t is the source position
in the rotated frame:

P = K
(
R t

)
, t =

−sposx

−sposy

−SID

 , K =

− f 0 u0
0 − f v0
0 0 1

 ,

(3)

f =
SDD

dimpixel
, u0 =

sposx−dx
dimpixel

, v0 =
sposy−dy

dimpixel
, (4)

R =

cz −sz 0
sz cz 0
0 0 1

1 0 0
0 cx −sx

0 sx cx

 cy 0 sy

0 1 0
−sy 0 cy

 , (5)

cα = cos(−θα), sα = sin(−θα), α ∈ {x,y,z}. (6)

So, during the calibration we want to identify the elements of
the projection matrix P or the calibration parameters which
define the projection matrix.

3 Bundle adjustment

In tomographic situations, we assume that we have collected
many X-ray projections. For each X-ray projection i, we want
to estimate both projection matrices P̂i, i = 1, . . . ,Nprojections
and unknown 3D marker points Q̂ j, j = 1, . . . ,Nmarkers from
known image points qi

j. We minimize the mean of Euclidean
distances between the projected points and the measured
image points for all X-ray images, i.e.

min
x

D(x) def
= min

Pi,Q j

1
NmarkersNprojections

∑
i, j

d(PiQ j,qi
j)

2, (7)

where d(q1,q2) is a geometric image distance between ho-
mogeneous points q1 and q2, D is the cost function, x is a
vector containing the parameters of Pi, i = 1, . . . ,Nprojections,
Q j, j = 1, . . . ,Nmarkers, so in our case x contains 9Nprojections+
3Nmarkers parameters to be identified. This is the general for-
mulation of the BA problem.
In [5] authors described basic local optimization methods
for differentiable functions to solve the BA problem. Let us
try to minimize the cost function D(x) over x with the initial
estimate x0. We want to find a displacement δx which locally
minimizes D(x). This cost function can be replaced by an
approximate local model. The quadratic local model is based
on the Taylor expansion:

D(x+δx)≈ D(x)+gT
δx+

1
2

δxT Hδx, (8)

where g is a gradient vector of D at x and H is a Hessian
matrix at x. In [5] authors proposed methods to optimize such
as the damped Newton methods which solve the following
regularized system:

(H +λW )δx =−g, (9)

where λ is a weighting factor and W is a positive definite
weight matrix. This is the basis for trust region methods, for
example, the popular Levenberg-Marquardt method. We use
this method in our numerical experiments.

4 Numerical experiments: calibration with BA

In order to solve numerically the optimization problem (7) we
used the C++ package Ceres [6]. We simulated data for our
numerical experiments. Firstly, we started with 20 markers,
see the 3D plot in the figure 2. We call these points true values
Q j,true. Then we fixed dimpixel = 0.5 mm, Nprojections = 181
with the angular step as 2 degrees. We computed from the
table 1 the initial values for the 9 calibration parameters f i,
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ui
0, vi

0, θ i
x, θ i

y, θ i
z , t i

x, t i
y, t i

z for each projection i. These values
were used as initial estimations for our optimization algo-
rithm. In order to simulate realistic values for calibration
parameters and Pi

real which correspond to clinical situations
with mechanical vibrations of the C-arm, we added a uni-
form noise to each calibration parameter (see the table 1 for
details).
We simulated qi

j by the multiplication of Pi
real by Q j,true. We

usually don’t know exactly qi
j, because we detect these points

on X-ray images using specific algorithms. In order to simu-
late this process, we also added a uniform noise with bounds
±0.3 pix to the image points Pi

realQ j,true. Thus, as inputs for
the optimization algorithm we had noisy image points qi

j.
In order to start the minimization algorithm, we also need
initial estimations for 3D points Q j (we described before just
the initial calibration parameters). We did our first guess with
the basic triangulation algorithm of Python’s OpenCV from
two known initial projection matrices and known projections
for 0 and 90 degrees. A full description of the basic triangu-
lation algorithm could be found in [3]. After this simulation
and initialisation, the optimization algorithm was launched.
We started from the initial cost 1337. With the Levenberg-
Marquardt method we achieved the final cost 0.003.
We show in the figure 2 estimated 3D points obtained by
this algorithm. We calculated the reprojection error as

1
NmarkersNprojections

∑i, j ||P̂iQ j,true−qi
j||2. It is equal to 34.41 pix.

The maximum errors for the estimated calibration parameters
through all projections are: 9.78 pix for f , 10.28 pix for u0,
9.65 pix for v0 (1 pix is 0.5 mm), 102.09 mm for t. In order
to compare rotation matrices, we calculated the error rotation
matrix for each projection i as Ri

err = (Ri
real)

−1R̂i. According
to the Euler rotation theorem, each rotation Ri

err in three di-
mensions is defined by its axis and its angle ψi. We found the
absolute value of ψi from the error rotation matrix Ri

err for
each projection i with |ψi|= arccos tr(Ri

err)−1
2 . The maximum

error for angles |ψi| through all projections was 0.79 degrees.
We observed the high reprojection error and high errors in
calibration parameters. The same for 3D points: true and
estimated 3D points are far to be exactly the same. Thus, we
found the solution of the calibration problem and it differs
from the true solution. But what is the reason?

5 Theoretical explanation of non-uniqueness

5.1 Computer vision BA limits

Let us start with different classes of transformations of 3D
space. Let us remind that in computer vision we usually use
homogeneous coordinates of the point, so for the point in 3D
we have four coordinates. We identify each transformation
by its matrix form. Moreover, these transformations form a
hierarchy. So, we start with the general one.

Definition 5.1. A projective transformation is a transforma-

Figure 2: True and estimated 3D points for Levenberg-Marquardt
method.

tion of the form
(

A t
hT v

)
, where A is an invertible 3× 3

matrix, h is a general 3-vector.

Definition 5.2. An affine transformation is a transformation

of the form
(

A t
0T 1

)
, where A is an invertible 3×3 matrix.

Definition 5.3. A similarity transformation is a transforma-

tion of the form
(

σR t
0T 1

)
, where R is a 3×3 rotation matrix

and σ 6= 0.

Definition 5.4. An Euclidean transformation is a transfor-

mation of the form
(

R t
0T 1

)
, where R is a 3× 3 rotation

matrix.

From the literature [3] we know that we have a solution of
the BA problem up to a projective transformation. We can
take an invertible matrix H and have as a solution also P̂iH−1,
HQ̂ j. Moreover, we found in [1] that for special calibration
matrices with zero skews (s = 0) the solution could be found
up to a similarity transformation. The following theorem
from [1] is true:

Theorem 5.1. The class of transformations which preserves
the absence of skew is the group of similarity transforma-
tions.

If we have projection matrices as solutions of our calibration
problem, they differ by some projective transformation. With
this theorem, if the sequence of views is general enough and
if in decompositions of the projection matrices we have zero
skews, this projective transformation should be a similarity
transformation. We build projection matrices for the C-arm
BA problem exactly such that in decompositions they have
zero skews. In essentially all digital X-ray CB systems the
skew is zero because the lines and columns of digital X-ray
detectors are perpendicular. Unfortunately, the sequence of
C-arm positions often couldn’t be general enough, which
complicates the application of the theorem.
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5.2 Cone-beam geometric self-calibration limits

Any CB system can be also described by an integral model.
We consider cone-beam data in the form

d(~sλ ,
~ζ ) = D f (~sλ ,

~ζ ) =
∫ +∞

0
f (~sλ + l~ζ )dl, (10)

where λ ∈ Λ⊂ R is a trajectory parameter of the source,~sλ

is the 3D position of the source at λ , ~ζ is a unit vector in R3,
the direction of the integration line.

Theorem 5.2. Let fR,~t(~x)
def
= f (R~x+~t) for any ~x ∈ R3, for

any rotation R and any translation vector~t ∈ R3, then

D fR,~t(~sλ ,
~ζ ) = D f (R~sλ +~t,R~ζ ). (11)

Proof. We have D fR,~t(~sλ ,
~ζ ) =

∫ +∞

0 fR,~t(~sλ + l~ζ )dl =∫ +∞

0 f (R~sλ + lR~ζ +~t)dl = D f (R~sλ +~t,R~ζ ).

Thus, the cone-beam data D fR,~t of fR,~t from the source ~sλ

in the direction ~ζ is nothing but the cone-beam data D f of
f from the source position R~sλ +~t toward the direction R~ζ .
Conversely, let~vλ = R~sλ +~t or~sλ = RT

(
~vλ −~t

)
, let~η = R~ζ ,

thus ~ζ = RT~η . Then for all ~vλ and all unit ~η Eq. (11) is
equivalent to

D fR,~t
(
RT (~vλ −~t

)
,RT~η

)
= D f (~vλ ,~η) . (12)

Thus, the projection data D f of f acquired from the source
position~vλ toward the direction ~η is equal to the projection
D fR,~t acquired from the source position RT

(
~vλ −~t

)
toward

the direction RT~η for any rotation R and translation vector~t.
This shows that for the cone-beam geometry the geometric
self-calibration problem can not be solved better than up to
an Euclidean transformation. Moreover, we have

Theorem 5.3. Let fσR,~t(~x)
def
= f (σR~x+~t) for any ~x ∈ R3,

rotation R, translation~t ∈ R3 and scaling σ > 0, then

D
(
σ fσR,~t

)(
~sλ ,

~ζ
)
= D f

(
σR~sλ +~t,R~ζ

)
. (13)

Proof. We have D fσR,~t(~sλ ,
~ζ ) =

∫ +∞

0 fσR,~t(~sλ + l~ζ )dl =∫ +∞

0 f (σR~sλ +σ lR~ζ +~t)dl =
∫ +∞

0 f (σR~sλ +nR~ζ +~t)d n
σ
=

1
σ

D f (σR~sλ +~t,R~ζ ).

Thus, the cone-beam data D(σ fσR,~t) of σ fσR,~t from the

source~sλ in the direction~ζ is nothing but the cone-beam data
D f of f from the source position σR~sλ +~t toward the direc-
tion R~ζ . Conversely, let~vλ = σR~sλ +~t or~sλ = 1

σ
RT
(
~vλ −~t

)
and let ~η = R~ζ , thus ~ζ = RT~η , then for all ~vλ and all unit
vector ~η Eq. (13) is equivalent to

D
(
σ fσR,~t

)( 1
σ

RT (~vλ −~t
)
,RT~η

)
= D f (~vλ ,~η). (14)

Thus, for the cone-beam geometry the geometric self-
calibration problem can not be solved better than up to a
similarity transformation.

6 Numerical experiments: similarity error identifica-
tion

Figure 3: Slices z = 6.5 mm of the initial 3D Shepp–Logan phan-
tom f (~x) (left), the reconstruction g(~x) from the estimated acquisi-
tion geometry (center) and | f (~x)−g(~x)| (right).

Figure 4: Slices z = 6.5 mm of the initial 3D Shepp–Logan phan-
tom f (~x) (left), the reconstruction from the estimated acquisition
geometry after the similarity correction 1

σ
g
( 1

σ
RT
(
~x−~t

))
(center)

and
∣∣ f (~x)− 1

σ
g
( 1

σ
RT
(
~x−~t

))∣∣ (right).

The numerical experiments from the section 4 provided a
scaling, a rotation and a translation, i.e. a similarity transfor-
mation, for computing the set of the true 3D marker coordi-
nates from the set of the estimated 3D marker coordinates.
Firstly, we computed the scaling factor. We computed the
barycenters btrue and best of the true and the estimated 3D
points. The mean of ||Q j,true−btrue||2

||Q̂ j−best||2
is a simple (and sufficient)

estimation of the scaling. It is equal to 0.88. Then, after the
scaling correction, we numerically found the rotation and
the translation with the algorithm described in [7]. We can
then apply to the set of scaled estimated points the rotation
approximately equal to the identity matrix and the transla-
tion (0.96,−3.14,5.18)T in mm. We show the result of such
transformation of the estimated 3D points to the true 3D
points in the figure 2.
The estimated calibration parameters from the section 4 can
be used to perform a reconstruction. We started with f (~x)
being the 3D Shepp–Logan phantom. We computed projec-
tions with the true acquisition geometry. From these data
we performed a FDK reconstruction denoted g(~x) with the
estimated acquisition geometry using the Python package
RTK [8]. According to Eq. (13), the reconstructed image
corresponds to the function σ fσR,~t(~x). In the figure 3, we
show the same slice of both f and g, and of | f −g|.
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We then computed the similarity correction applied to g. The
reconstruction g(~x) obtained from the estimated geometric
parameters should be equal to σ fσR,~t(~x) = σ f (σR~x +~t),
thus f (~x) should be equal to 1

σ
g
( 1

σ
RT
(
~x−~t

))
. We used

σ ,R,~t estimated at the beginning of this section from the
BA results obtained in the section 4 in order to compute
the similarity correction, thus an estimation of the original
image f . Note that an interpolation is needed for the
image grid computation: we used the linear interpolation
method interpolate.RegularGridInterpolator()
from SciPy. After such similarity correction applied to the
image g we obtained an estimation 1

σ
g
( 1

σ
RT
(
~x−~t

))
of the

initial image f (~x) (see the figure 4).
The widely used root-mean-square error (RMSE) between
the initial 3D image and the reconstructed 3D image after
the similarity correction was 0.08. For example, RMSE
between the initial 3D image and the reconstructed with
the true acquisition geometry 3D image was 0.09, which is
normal for the numerical reconstruction implemented in RTK.
Thus, we showed that the reconstruction with the estimated
acquisition geometry can be performed and we verified that
then the reconstructed image has the form σ fσR,~t(~x).

7 Conclusion

We have presented a numerical solution to the C-arm geomet-
ric calibration problem with the BA method. In simulations,
we have observed the following phenomena: there are high
errors in the estimated 3D marker positions and calibration
parameters, but true and estimated 3D marker points differ
almost by a similarity transformation. We analyzed the ex-
isting computer vision theory and translated it to the X-ray
cone-beam geometry. Cone-beam geometric self-calibration
problems can not be solved better than up to a similarity
transformation. In the previous section we also presented the
numerical verification of our theoretical result.
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