Vegetation shapes aboveground invertebrate communities more than soil properties and pollution: a preliminary investigation on a metal-contaminated site Shinji Ozaki, Clémentine C Fritsch, Frédéric Mora, Thierry Cornier, Renaud Scheifler, Francis Raoul #### ▶ To cite this version: Shinji Ozaki, Clémentine C Fritsch, Frédéric Mora, Thierry Cornier, Renaud Scheifler, et al.. Vegetation shapes above ground invertebrate communities more than soil properties and pollution: a preliminary investigation on a metal-contaminated site. Environmental Science and Pollution Research, In press, $10.1007/\mathrm{s}11356\text{-}021\text{-}15811\text{-}4$. hal-03419091 HAL Id: hal-03419091 https://hal.science/hal-03419091 Submitted on 8 Nov 2021 **HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. # Vegetation shapes aboveground invertebrates communities 1 2 3 # more than soil properties and pollution: a preliminary ## investigation on a metal contaminated site | 4 | Shinji Ozaki* ¹ , Clémentine Fritsch ¹ , Frédéric Mora ² , Thierry Cornier ³ , Renaud Scheifler ^{#1} , and Francis | |----|---| | 5 | $Raoul^{\# l}$ | | | | | 6 | ¹ Chrono-environnement, UMR 6249 CNRS / Université Bourgogne Franche-Comté UsC INRAe, 16 route | | 7 | de Gray, 25030 Besançon cedex, France | | 8 | ² Conservatoire Botanique National de Franche-Comté, Observatoire Régional des Invertébrés, 7 rue Voirin, | | 9 | 25000 Besançon, France | | 10 | ³ Centre régional de phytosociologie agréé Conservatoire Botanique National de Bailleul, Hameau de | | 11 | Haendries, F-59270 Bailleul, France | | 12 | | | 13 | * Corresponding author: Shinji Ozaki (ORCID: 0000-0002-4243-8479) | | 14 | E-mail address: shinji.ozaki@univ-fcomte.fr | | 15 | | | 16 | # Both authors contributed equally to supervision of this work | | 17 | | #### **Declarations** 18 24 27 #### 19 **Ethics approval and consent to participate** - This article does not describe any studies involving human participants performed by the authors. All - 21 applicable international, national and/or institutional guidelines for the care and use of animals were followed. #### 22 Consent for publication Not applicable. #### Availability of data and materials - 25 Lists of plant and invertebrate species are available on the repository dat@osu (https://dataosu.obs- - 26 <u>besancon.fr/</u>): <u>https://doi.org/10.25666/dataosu-2018-07-17</u>. #### **Competing interests** The authors declare that they have no conflict of interest. #### 29 **Funding** - The Agence De l'Environnement et de la Maîtrise de l'Energie (ADEME; contract No.1172C0030); the - 31 Conseil Régional du Nord-Pas de Calais (currently Conseil Régional Hauts-de-France, CRNPC; orders - 32 No.12000921 and 14001044; joint call with the Fondation pour la Recherche sur la Biodiversité); the Conseil - 33 Régional de Franche-Comté (currently Conseil Régional Bourgogne Franche-Comté, contract No. 2015C- - 34 06107). 35 40 #### **Authors' contributions** - 36 SO, major contributor in writing the original draft of the manuscript, analyzed and interpreted the data on - 37 plant and invertebrate inventory and their spatial distribution. FM performed the invertebrate inventory, - 38 whereas TC performed the plant inventory. RS and FR conceptualized this study and acquired the funding. CF, - 39 RS and FR supervised the study. All authors read and approved the final manuscript. #### Acknowledgements - This study was financially supported by the project BIOTROPH, co-funded by the Agence De - 42 l'Environnement et de la Maîtrise de l'Energie (ADEME; contract No.1172C0030) and the Conseil Régional - 43 du Nord-Pas de Calais (currently Conseil Régional Hauts-de-France, CRNPC; orders No.12000921 and 14001044; joint call with the Fondation pour la Recherche sur la Biodiversité). The first author was also financially supported by a grant from the Conseil Régional de Franche-Comté (currently Conseil Régional Bourgogne Franche-Comté, contract No. 2015C-06107). The authors warmly thank the PEA²t platform (Chrono-environment, University of Bourgogne Franche-Comté, UMR CNRS 6249, France), which manages and maintains the analytical equipment used in this study. The authors gratefully thank Dr. Cécile Grand from ADEME for fruitful scientific discussions. We also thank Pr. François Gillet for his help to statistical analysis and Guillaume Caël for his help for analysis on invertebrate data. We finally thank Dominique Rieffel for his precious assistance. #### **Abstract** 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 Pollution with trace metals (TM) has been shown to affect diversity and/or composition of plant and animal communities. While ecotoxicological studies have estimated the impact of TM contamination on plant and animal communities separately, ecological studies have widely demonstrated that vegetation is an important factor shaping invertebrate communities. It is supposed that changes in invertebrate communities under TM contamination would be explained by both direct impact of TM on invertebrate organisms and indirect effects due to changes in plant communities. However, no study has clearly investigated which would more importantly shape invertebrate communities under TM contamination. Here, we hypothesized that invertebrate communities under TM contamination would be affected more importantly by plant communities which constitute their habitat and/or food than by direct impact of TM. Our analysis showed that diversity and community identity of flying invertebrates were explained only by plant diversity which was not affected by TM contamination. Diversity of ground-dwelling (GD) invertebrates in spring was explained more importantly by plant diversity (27% of variation) than by soil characteristics including TM concentrations (8%), whereas their community identity was evenly explained by plant diversity and soil characteristics (2-7%). In autumn, diversity of GD invertebrates was only explained by plant diversity (12%), and their identity was only explained by soil characteristics (8%). We conclude that vegetation shapes invertebrate communities more importantly than direct effects of TM on invertebrates. Vegetation should be taken into account when addressing the impacts of environmental contamination on animal communities. 6970 71 73 #### **Keywords** 72 Alpha diversity; beta diversity; plant-invertebrate interaction; community composition; trace metals. #### 1 Introduction 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 Trace metals (TM) are naturally occurring elements, whose concentrations in the environment can be dramatically increased by various anthropogenic activities, which can deeply impact wildlife (Eisler, 2000; Nordberg et al., 2014). Although technical and regulatory improvements have considerably reduced the emission of some TM, legacy TM contamination persists in nature because TM are non-degradable chemicals. The emission of other elements such as antimony failed to be drastically reduced (He et al., 2019) and emerging elements (e.g. rare earth elements) are increasingly emitted into the environment in relation to their use in new technologies (Gwenzi et al., 2018). Altogether, TM persist in nature and continue to affect ecosystems (EMEP, 2013). Harmful effects of TM contaminations are observed at several biological levels (Walker et al., 2012). At community level, diversity indices have commonly been used as indicators for estimating pollutants' effects on plants and invertebrates (Zvereva et al., 2008; Zvereva and Kozlov, 2012, 2010). Ecosystems undergoing strong disturbances display many negative responses, one of which being the decrease of biodiversity (Odum, 1985). In terrestrial ecosystems, it has been frequently reported that diversity of plants was negatively affected by soil TM contamination (Bes et al., 2010; Dazy et al., 2009; Ginocchio, 2000; Vidic et al., 2006). Change in the composition of plant community (i.e. change in identities and/or abundances of plant species in a community) along a gradient of TM soil contamination has also been reported (Strandberg et al., 2006). However, responses of the diversity and composition of plant community to soil TM contamination vary according to TM and vegetation types (Zvereva et al., 2008). A similar framework has been highlighted in biodiversity and composition of terrestrial invertebrate communities under TM contamination. Some studies have stressed negative correlations between diversity of invertebrates and soil TM contamination (Paoletti et al., 1988; Read et al., 1987; Spurgeon and Hopkin, 1996), whereas others have focused on changes in invertebrate community structure and composition rather than in diversity indices (Babin-Fenske and Anand, 2011; Migliorini et al., 2004; Nahmani and Lavelle, 2002). Both ground-dwelling and flying invertebrates might be impacted by metal environmental contamination because either or both larval and adult stages can be exposed through direct cutaneous contact with contaminated substrates and/or through contaminated food consumption (Hopkin, 1989). While impacts of metal contamination on biodiversity have widely been studied separately in both plants and invertebrates, interactions between plants and animals are suggested as one of key factors in
influencing the responses of communities to environmental TM contamination (Bol'shakov et al., 2001; Eeva et al., 2012; Storm et al., 1993). In fact, some results have nuanced the potential relationships between plant and invertebrates diversity in sites contaminated by TM suggesting a critical role of direct effects of environmental contamination (Brändle et al., 2001; Read et al., 1998), while other works have suggested possible effects of vegetation on composition of invertebrate communities under TM contamination (Grelle et al., 2000; Nahmani and Rossi, 2003). However, no study, to our knowledge, has specifically attempted to disentangle the relative importance of plant community versus soil TM contamination in shaping invertebrate communities. In contrast, ecological studies have clearly shown that vegetation is an important factor shaping above- and below-ground invertebrate composition and structure of assemblages in grassland (Brose, 2003; Haddad et al., 2001; Knops et al., 1999; Scherber et al., 2010; Siemann, 1998) and woodland (Fraser et al., 2007; Humphrey et al., 1999; Scherber et al., 2014; Sobek et al., 2009) ecosystems. Although potential underlying mechanisms are still debated (Borer et al., 2012; Haddad et al., 2009), diversified plant communities could provide a variety of resources for a greater number of herbivore species (Hutchinson, 1959), shelters from predators and/or more stable prey availability for predators, supporting their higher diversity and abundance (Root, 1973). Given the determinant influence of vegetation on invertebrate communities, we hypothesized that diversity and composition of invertebrate community under soil TM contamination would be more importantly explained by changes in vegetation as indirect effects of soil TM contamination than by direct effects of TM on invertebrate organisms. In the present study, the potential effects of TM soil contamination and diversity of plants on diversity and composition of invertebrate communities were assessed in a smelter-impacted area in northern France, using diversity of taxa (i.e. alpha diversity) and its variation (i.e. beta diversity) at local level. We specifically aimed at disentangling and quantifying the relative importance of soil contamination and of plant community features on invertebrate community characteristics. We first explored (i) the relationship between plant diversity, soil TM concentration and some soil properties known to influence TM bioavailability and toxicity in order to identify potential changes in vegetation determined by soil TM contamination. We then analyzed (ii) the effects of plant diversity on diversity and identity of invertebrates in communities independently from TM contamination and soil properties and (iii) the effects of TM contamination and soil properties on invertebrate communities independently from plant diversity in order to quantitatively compare their respective effects. #### 2 Materials and methods: #### 2.1 Study sites 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 This study was carried out in the surroundings of the former lead (Pb) and zinc (Zn) smelter named "Metaleurop Nord" located in Northern France (Noyelles Godault, Hauts-de-France, France). The smelter was in activity from 1894 to 2003 and was the only producer of primary Pb in France. Its pyro-metallurgic process had generated large quantities of dust containing many metals. For instance, about 1.0 ton of cadmium (Cd), 16.9 tons of Pb and 31.6 tons of Zn were released in 2002, despite the implementation of technical improvements during the 1970s (DRIRE, 2003). An area of approximately 120 km² around the smelter is still affected by dust emission released from Metaleurop Nord and from another large Zn smelter named "Umicore" close to Metaleurop Nord (Douay et al., 2008). Several studies have revealed high soil TM contamination in the surrounding soils. For instance, concentrations in agricultural top soils are as high as 21 mg kg⁻¹ of dry soil for Cd, 1132 mg kg⁻¹ for Pb, and 2167 mg kg⁻¹ for Zn (Sterckeman et al., 2002), whereas concentrations of these metals reached up to 67, 4890 and 2685 mg kg⁻¹, respectively, in the upper organic layers of grasslands around the smelter (Sterckeman et al., 2000). In the study of Fritsch et al. (2010), total concentrations of the three metals in soils sampled from wooded patches reached up to 236, 7331 and 7264 mg kg⁻¹ of dry soil, respectively. The present study was undertaken on six sites of 25 ha (500m x 500m) in the surroundings of Metaleurop Nord. The area is a densely urbanized zone mixed with arable lands (ploughed fields mostly, grassland), forest and planted woods, and shrublands in derelict lands. Five sites among the six ones were located within an area of 40 km² (5 x 8 km) including the smelter in its center (50°25'42 N and 3°00'55 E). The other site was located about 10 km northeast of the former smelter and is considered as a control site due to its relatively low soil TM contamination: 0.9 - 2.4, 43 - 200, 89-278 mg kg⁻¹ of dry soil for Cd, Pb, and Zn, respectively (Fritsch et al., 2010), which are similar to the regional reference values (Sterckeman et al., 2007). Field inventory of plants and invertebrates was built some points within six sites chosen along a gradient of TM soil concentrations (Table 1). #### 2.2 Field inventory of plants and invertebrates Our sampling method for plants, flying and ground-dwelling invertebrates are summarized in Figure 1 and described below. Vegetation survey was realized from 4th June to 5th September 2012 on many woody habitats (natural forests, tree plantations such as poplar groves, or copses and hedgerows in natural or cultivated lands and urban parks) of each site. Vascular plant taxa were identified separately in three different strata: tree stratum (woody species > 8 m high), shrub stratum (woody species < 8 m high), and herbaceous stratum. Plants were identified in the field at species level following Dudman and Richards (1997) and Lambinon et al. (2004). Cover-abundance was visually estimated as vertically projected area for each species following Braun-Blanquet et al. (1952). In total, 236 plant taxa were listed in the three strata: 25 species in tree stratum; 42 species in shrub stratum and 193 species in herbaceous stratum (N.B. some plant taxa were observed in several strata). Inventory of invertebrates was carried in spring (April) and in autumn (September and October) 2012 on some of woody patches where soils had been sampled and analyzed in previous studies (Fritsch et al., 2010) by using two types of trapping: pitfall traps and yellow pan traps. It is important to note that this sampling aimed at providing a snapshot of invertebrate communities rather than a full description of invertebrate communities, which would have required a longer sampling period. The pitfall trap is one of the most frequently used methods for sampling epigeic invertebrates such as ground beetles, rove beetles, wandering spiders, and ants (Leather, 2005). Three 800ml polypropylene beakers with neither roof nor preservative fluid were set at 15m intervals between each of them in woody patches where plants were present in all the three strata, constituting and hereinafter referred to as a "trap line". From two to eight trap lines were set per season (i.e. spring and autumn) on each of the six study sites (i.e. 36 trap lines were used in spring and 32 in autumn, Table 1). The yellow pan trap is frequently used for sampling flying insects. Trapping color plays a determinant role in the effectiveness with which different insect groups are caught, but yellow color is most efficient for catching a wide range of phytophagous insects and their predators or parasitoids (Kirk, 1984). One to three yellow pan traps with soap mixed water were set on the ground on each of the six study sites and for each season in woody patches where plants were present in all the three strata (i.e. 12 yellow pan traps were used in spring and 12 in autumn, Table 1). Locations of the two types of traps were geo-referenced. Both pitfall and yellow pan traps were checked every morning for three consecutive days, and then removed from the field. Captured invertebrates were stored in ethanol or in freezer at -20°C and then identified in laboratory at the finest possible taxonomic level by morphological characteristics. The main references used for invertebrate determination were Coulon (2003), Forel and Leplat (2001), Jeannel, (1941) and Trautner and Geigenmueller (1987). Fauna captured by pitfall and yellow pan traps were considered as "ground-dwelling (GD)" and "flying" invertebrates, respectively. Collembolans were removed from our inventory. Most of the individuals were identified at family level (GD 74% and flying 78%), but other were identified at order (GD 24% and flying 21%) or class levels (GD 2% and flying 1%) (cf. Supporting Information SI Spreadsheet file). Twenty-four taxa at different taxonomic levels (three classes, three orders and 18 families) were listed in the GD invertebrates, while 78 taxa (one class, four order and 73 families) were listed in flying invertebrates. All invertebrates were captured as adult stage. It is worth to note that larva of some families occur in aquatic habitats: five families of Diptera larvae (Chironomidae, Limoniidae, Psychodidae, Simuliidae, and Sciomyzidae) which mainly occur in aquatic habitats, and seven families of Diptera larvae (Ceratopogonidae, Tipulidae, Dolichopodidae, Empididae, Phoridae, Syrphidae, and Scathophagidae) which could occur in aquatic/semi-aquatic habitats. #### 2.3 Data preparation #### 2.3.1 *Diversity index choice* In this study, richness, Simpson's diversity index, Simpson's evenness and abundance were used to estimate alpha diversity. Richness (S: number of different taxa) and Simpson's diversity index (D: $1/\sum P_i^2$, where P_i
is the proportional abundance of taxa i) were used to contrasting total number of taxa (richness) to number of abundant taxa at habitat patch level (Jost, 2006). Simpson's evenness (E: D/S) was calculated and used as another variable with reference to the proportion of dominant taxa among all taxa. Abundance of all taxa (N) was also added as another information about the community. The four indices are hereinafter referred to as "alpha diversity". Spatial variation in composition among communities (i.e. beta diversity) was estimated by using the total variance of the site-by-taxa community data (Legendre et al., 2005; Legendre and De Cáceres, 2013). The beta diversity can be partitioned into two matrices representing "replacement" and "richness difference" (Borcard et al., 2018), and each matrix can be analyzed in relation to explanatory environmental variables (Legendre and De Cáceres, 2013). For all types of plant strata and of invertebrates, dissimilarity matrices for beta diversity were built from presence-absence of each taxon in communities because binary dissimilarity coefficients produce more relevant results than quantitative indices when taxa are largely different among communities (Legendre, 2014). The two matrices for replacement and richness difference were hereinafter referred to as "beta diversity". #### 2.3.2 *Calculation of diversity indices and matrices.* Alpha and beta diversity of invertebrates were based upon individuals captured by 68 trap lines for GD invertebrates and 24 yellow pan traps for flying invertebrates. Diversity of plants were measured for each stratum (tree, shrub and herb) based on cover-abundance (m²) of each species present in an area of 1000 m² around trap lines or yellow pan traps. As pitfalls and yellow pan traps were not precisely set at the same locations, alpha and beta diversity of plants were measured for each type of invertebrate traps. These areas are hereinafter referred to as "buffers". The observations for invertebrates were carried out by "buffer". Each buffer shows inventory for three strata of plants and an inventory for invertebrates, as well as parameters of soil properties and soil metal concentrations in soils (cf. below). The number of buffers in each season and site is indicated in Table 1. As the plant inventory was done once between June and September, their presence and relative cover-abundance were considered to be similar at the two seasons for further statistical analysis. Both alpha diversity and beta diversity were calculated at species level for plants. Calculation of diversity for invertebrates was carried out at family level. Invertebrates which could not be identified at family level were also integrated into this calculation of diversity indices using their abundance at a taxonomic level as fine as possible (i.e. order or class) (cf. SI Spreadsheet file). Dissimilarity matrix for beta diversity was built using the Jaccard dissimilarity coefficient and partitioned into matrices for replacement and richness difference, hereinafter referred to as "replacement" and "richness difference", respectively. #### 2.3.3 Soil data Soil properties and soil TM concentrations were referred to Fritsch et al. (2010). As concentrations of Cd, Pb and Zn in soils were highly correlated (Pearson's r > 0.9, p-value of correlation test < 0.001), it is not possible to disentangle their individual effects. Only Pb concentration in soil was used as a proxy of soil TM contamination in our statistical analyses. Soil pH and organic carbon content (g kg⁻¹) in soil, considered as a proxy of the organic matter (OM) content in soils, were used as soil properties importantly related to metal bioavailability (Bradham et al., 2006; Giller et al., 1998; Visioli et al., 2013). Soil pH was also positively correlated with soil TM concentrations (Spearman's rho > 0.6, p-value of correlation test < 0.001 for the three TM). For each buffer, we used soil TM contamination and soil properties of the nearest soil sampling point from the given buffer (i.e. no more than 50 m). Trace metal soil contamination (as represented by Pb soil concentrations), OM content and pH were hereinafter referred to as "Pb", "pH", and "OM", respectively, and linked to each buffer. #### 2.4 Statistical Analysis #### 2.4.1 Data transformation - Lead concentrations and OM, as well as abundance (i.e. total cover-abundance of plants or total number of individual invertebrates), were logarithmically transformed because of their skewed distributions. Alpha diversity and the soil variables were then scaled to zero mean and to unit variance for each variable because of their different unit. - 2.4.2 Relationships between plant diversity and soil properties - Before assessing the effects of plant diversity on invertebrate communities, the relationship between plant diversity, soil TM contamination and soil properties was explored. Both alpha diversity indices and beta diversity matrices for plants were calculated in vegetation patches near soil sampling points of Fritsch et al. (2010). The analysis used vegetation around 17 soil sampling points, where plants were available for all three strata. A redundancy analysis (RDA) was executed for the alpha diversity in relation to soil TM contamination and soil properties. A forward selection of significant explanatory variables was carried out (Borcard et al., 2018). Proportion of variance explained by the selected explanatory variables was indicated by an adjusted R^2 (R^2_{adj}) (Peres-Neto et al., 2006). Relationships between plant beta diversity, soil TM contamination and soil properties were assessed by using the distance-based RDA (dbRDA) (Legendre, 2014). Briefly, a principal coordinate analysis (PCoA) was carried out for each dissimilarity matrix after square-rooted transformation. Their principal coordinates were used as response variables and a forward selection of significant explanatory variables was carried out, and R^2_{adj} was measured. Furthermore, species presence-absence data were *a posteriori* projected on the ordination plot using weighted averages (Borcard et al., 2018), which shows how occurrence of species in communities is affected by the environmental factors analyzed. #### 2.4.3 Relationships between diversity of invertebrates, diversity of plants and soil properties The partial RDA (pRDA) and the variation partitioning was applied for invertebrate alpha diversity, using soil TM contamination, soil properties and plant alpha diversity as explanatory variables (Borcard et al., 2018). The pRDA for plant diversity was executed as follows: after RDA for invertebrate alpha diversity data in relation to soil TM contamination and soil properties, the residual variation of this RDA (i.e. variation of invertebrate diversity data non-explained by soil properties) was handled by another RDA in relation with plant alpha diversity. This was *vice versa* for the pRDA in relation to soil properties. Variation explained by selected variables of each explanatory matrix, as well as variation explained jointly by them, were shown using Venn diagram. If one of the two explanatory matrices was not significantly related to the response matrix, ordinal RDA was carried out. The partial dbRDA was applied for invertebrate beta diversity, using soil TM contamination and soil properties and plant alpha diversity as explanatory variables. Invertebrate presence-absence data were then *a posteriori* projected on the ordination obtained. All statistical analyses and graphics were performed by the statistical software R (ver. 3.6.1; R Development Core Team). PCA, PCoA and RDA were handled with the "vegan" package. The function "forward.sel" of the package "adespatial" was used for forward selection. The functions "beta.div.comp" and "dbRDA.D" from Legendre (2014) were used for building replacement and richness difference dissimilarity matrices and for carrying out accurate significance test for dbRDA, respectively. #### 3 Results and Discussion #### 3.1 Plant alpha and beta diversity in relation with soil TM contamination and soil properties Alpha diversity of plants was not significantly explained by soil TM contamination or soil properties, whatever the plant stratum was. Beta diversity was significantly but weakly explained by soil properties: replacement of tree and herbaceous strata was explained by pH ($R^2_{adj} = 0.052$ and 0.030, respectively), whereas replacement of shrub stratum was explained by Pb ($R^2_{adj} = 0.055$, for detail see Supporting Information SI Figure 1). Richness difference was not significantly explained by soil TM contamination or soil properties in all plant strata. According to the ecological indicator value of Landolt et al. (2010) mainly based on plants of the Alpine region, almost all plant species present in low and high metal contaminated buffers show tolerance to soil metal content, referring predominantly to serpentine tolerance (i.e. the tolerance to nickel and chromium), and preference for neutral acidity of soil (Supporting Information SI Figure 1 and SI Table 1). However, most woody patches in our study area showed a high degree of soil anthropization (human density is more than 1000 people per km², Douay et al., 2009). Indeed, some *Salix* sp. and *Populus* sp. specimens, considered as plants for phytoremediation of heavy metal-contaminated soils (Pulford and Watson, 2003), were observed in vegetation patches with both high and low pH, as well as in patches with high or low soil contamination levels (SI Table 1) (N.B. Concentrations of Pb in soil were used as a proxy of soil TM contamination and does not means influence of Pb.) This could means that a large proportion of vegetation cover in our study area has been maintained and/or modified by human management. Thus, effects of soil properties on diversity of vegetation could be biased by anthropogenic factors in our study area. Nonetheless, our results suggest that
diversity indices of vegetation can be considered to be virtually independent of soil properties. # 3.2 Alpha and beta diversity for ground-dwelling (GD) invertebrates in relation with vegetation and with soil TM contamination and soil properties. GD invertebrate diversity was more influenced by plant diversity than by soil TM contamination and/or soil properties, but significant relationships varied between season, beta and alpha diversity of invertebrates, and plant strata (Table 2). In spring, alpha diversity was significantly explained by Simpson's index and abundance of herbs, Pb and OM ($R^2_{adj} = 0.423$). Among the 42.3% of variance, 26.7% was explained only by Simpson's index and abundance of herbs, 8.0% of variance was explained by Pb and OM, and 7.7% were shared by both plant diversity and soil variables (Figure 2a). Controlling for soil variables, richness and abundance of GD invertebrates were negatively correlated with abundance of herbs, whereas evenness was positively correlated with abundance of herbs (Figure 2b). Moreover, Simpson's index of GD invertebrates was negatively correlated with Simpson's index of herbs (Figure 2b). On the other hand, controlling for alpha diversity of plants, Simpson's index and, to a lesser extent, richness of GD invertebrates were positively correlated with Pb (Figure 2c). Evenness was positively correlated with OM, whereas abundance was negatively correlated with OM (Figure 2c). Replacement was significantly but weakly explained by both pH and Simpson's index of shrubs ($R^2_{adj} = 0.068$). Among the 6.8% of variance, 2.6% were explained by pH, 2.3% by Simpson's index of shrubs, and 1.9% were shared by them (Figure 3a). Coleoptera were observed in buffers of both high and low pH or Simpson's index of shrubs. Chilopoda, Opiliones and Glomeridae were present mostly in buffers with low pH, whereas Araneae and Opiliones were observed in buffers with high Simpson's index of shrubs (Supporting Information SI Figure 2 and SI Table 2). Richness difference was significantly explained by the abundance of herbs as well as by Pb and OM ($R^2_{adj} = 0.198$). Among the 19.8% of variance, 7.2% were explained by herb N, 4.0 % were explained by Pb and OM, and 8.7% were shared by them (Figure 3b). Apart from Coleoptera, Arachnida and Glomeridae were present mostly in buffers with high Pb, whereas numerous taxa such as Chilopoda, Arachnida, Glomeridae, and Polydesmidae were observed in low abundance of herbs (SI Figure 1 and SI Table 2). In autumn, alpha diversity for GD invertebrates was significantly explained by richness of trees (R²_{adj} = 0.125) but not by soil properties. Evenness was positively correlated with richness of trees, whereas richness, Simpson's index, and abundance of GD invertebrates were negatively correlated with richness of trees (Figure 4). Replacement was significantly explained by OM and pH, and abundance of shrubs ($R^2_{adj} = 0.151$). The two soil properties explained themselves 8.3% of variance, and the rest of the variance (7.3%) was shared with abundance of shrubs (Figure 5). Opiliones, Polydesmidae, Julidae, Isopoda and Formicidae were observed in buffers with high OM and/or high pH (Supporting Information SI Figure 3 and SI Table 3). On the other hand, richness difference was significantly explained by plant diversity richness of trees ($R^2_{adj} = 0.112$), but not by soil properties. Many GD taxa were observed in low richness of trees, such as Araneae, Opiliones, Glomeridae, Polydesmidae, Julidae, Chilopoda, Formicidae, and Coleoptera (SI Figure 3 and SI Table 3). Our results demonstrate that both alpha and beta diversity of GD invertebrate communities are more explained by plant diversity than by soil TM contamination or some soil properties. The influence of plant diversity, however, largely varied according to plant strata, diversity indices, and seasons. It has been widely reported in both grassland and woodlands that richness and abundance of aboveground invertebrates are positively correlated with richness and abundance of herb layer plants (e.g. Borer et al., 2012; Haddad et al., 2009). Rzanny et al. (2013) and Hertzog et al. (2016) showed more important and direct effects of plant biomass than plant richness on predator arthropods like Carabidae, Staphylinidae or Araneae. Negative correlations we observed between diversity of herbs and GD invertebrates in spring are not in agreement with these studies, Koricheva et al., (2000) observed negative correlation between plant diversity and density of carabid beetles and spiders in an experimental grassland study, though. Moreover, negative effects by grass richness on diversity of predator arthropods was observed in the study of Hertzog et al. (2016), which could be due to low nutritious values of grasses than other plants cascading to communities of herbivores and carnivore (Denno 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 and Fagan, 2003). Communities of arthropod predators strongly depend on plant functional groups and such functional groups were not integrated in our study. Another possible reason is trappability bias due to herb cover. Pitfall traps are effective for capturing highly mobile invertebrates (Uetz and Unzicker, 1976), but their trappability depends on the soil surface, more or less suitable for their movement, and on invertebrates' movement behavior. Complex structure of layer vegetation around pitfall traps could have affected trappability of pitfall traps (Greenslade, 1964; Melbourne, 1999). In autumn, alpha diversity of GD invertebrates was influenced by tree. In the literature, Schuldt et al. (2011) demonstrated that spider richness and abundance was negatively correlated with tree species richness in forests, which concurs with our result. Meanwhile, influence by herb was not observed in autumn. We suppose that effects of herbs could not be statistically deduced due to low abundance of GD invertebrates in autumn (SI Spreadsheet file). Low abundance of GD invertebrates in autumn could be due to their lower activity in this season. In fact, Grelle et al. (2000) observed higher density of myriapods and isopods in spring than in autumn in metal contaminated sites and speculated seasonal change in activity of these invertebrates. Niemelä et al. (1992) also reported higher abundance of carabid beetles in spring than in autumn in woody sites, due to seasonal change of temperature. Moreover, seasonal variation in activity of GD invertebrates could also be attributed to change in height of vegetation, as demonstrated in the study of Hertzog et al. (2017) in an experimental grassland. Prather and Kaspari (2019) also showed that activity of GD invertebrates increased in sites with vegetation clipping. In our study, cover-abundance was used as a proxy to the abundance of plants but height of herbs was not considered. However, herbs had grown from spring and became higher in autumn, which could reduce activity of GD invertebrates. Change in species composition due to different sensitivity to metal contamination among taxa could be one explanation for the relationship between diversity of plants and invertebrate communities. For example, Glomeridae and Polydesmidae are considered to be tolerant to metal pollution due to their high abundance in polluted sites (Read et al., 1998). Abundance of staphylinid beetle was positively correlated with soil Zn content in northern France (Nahmani and Lavelle, 2002). Ants are also considered to be relatively tolerant to metal pollution (Eeva et al., 2004). Isopods have been well documented in the literature as suitable indicators for metals pollution due to their capacity to accumulate and immobilize metals at high levels in their body (e.g. Blanuša et al., 2002; Hopkin, 1990; Hopkin et al., 1993; Hopkin and Martin, 1982; Hussein et al., 2006). Isopods also have several mechanisms for adaptation to metal contaminated habitats, such as avoidance for metal contaminated food and excretion of inner metals (Donker et al., 1996; Drobne, 1997; Odendaal and Reinecke, 1999; Zidar et al., 2004). These taxa mentioned above were observed in buffers with high soil TM contamination and/or low pH in our study (SI Spreadsheet; SI Table 2; SI Table 3). Likewise, change in composition of GD invertebrates along the gradients of vegetation could explain our results. Our results actually showed that shrub diversity explained replacement in GD invertebrate communities. A diversified plant community can provide a variety of resources for herbivore species, which then support prey availability for predators (Hutchinson, 1959; Root, 1973). Schuldt et al. (2008) and Vehviläinen et al. (2008) also argued that the abundance of predatory arthropods like spiders, ants or carabids strongly depends on the presence of specific trees due to several factors such as favorable microclimates, prey abundance or foraging efficiency enhanced by those trees. In our study, phytophagous Curculionidae, saprophagous Aphodiidae, and zoophagous Silphidae, Lampyridae, Staphylinidae, as well as Araneae and Opiliones, were observed in buffers with high Simpson's index of shrubs, whereas saprophagous Forficulidae and polyphagous Elateridae were observed with low Simpson's index of shrubs (diet category on the basis of Jeannel (1941) and Mora (2002); SI Table 2). Furthermore, other abiotic factors also can determine the composition of GD invertebrates, such as temperature, soil moisture, and quality of humus (Koivula et al., 1999; Niemelä et al., 1992; Perner and Malt, 2003; Zimmer et al., 2000; Zimmer and Topp, 2000). Soil pH is also one of the factors determining the composition of GD invertebrates even in unpolluted sites (Schuldt et al., 2011). Communities of GD invertebrates could be indirectly shaped by vegetation that controls these parameters, rather than directly by soil TM contamination and/or soil
properties. 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 #### 3.3 Alpha and beta diversity of flying invertebrates in relation to soil properties and vegetation Flying invertebrate diversity was influenced by plants but not by soil properties. Only beta diversity, but not alpha diversity, was significantly explained by plant diversity of different strata (Table 2). In spring, replacement was significantly but weakly explained by richness of shrubs ($R^2_{adj} = 0.062$). Many taxa were observed in buffers with either high or low richness of shrubs. Moreover, considering the diet of flying invertebrates taxonomic groups according to Jeannel, (1941) and Mora (2002), predator or parasitoid flying invertebrates were more observed in buffers with low richness of shrubs than in buffers with high richness of shrubs (Supporting Information SI Figure 4 and SI Table 4). In autumn, Richness difference was significantly explained by Simpson's index of trees, evenness of shrubs, and abundance of herbs ($R^2_{adj} = 0.523$). Many types of diet categories (e.g. zoophagous, saprophagous, phytophagous, opophagous) were observed in buffers where plant diversity indices were high (SI Figure 4 and SI Table 4). In a recent meta-analysis (Zvereva and Kozlov, 2010), a decrease in population density of epigeic arthropods (e.g. Aranea, Formicidae, Carabidae and Staphylinidae) with increased air pollution (thus not only by TM) was observed, while the density of other arthropod groups, including flying invertebrates, increased. The same meta-analysis also demonstrated that responses of population density to pollution were negative for Arachnida and Coleoptera but positive for Lepidoptera and Hemiptera. Responses to pollutions are likely to differ between ground-dwelling and flying invertebrates. On the contrary, plant diversity only influenced the composition of flying invertebrates. Based on data about flowering period of woody plants by Landolt et al. (2010), spring was the main flowering period of many trees and shrubs in our study area. Availability of young leaves and flowers of shrubs might mostly draw attention of phytophagous and/or nectarivorous invertebrates. In autumn, diversity indices of many strata were related to beta diversity. Tree species richness in woodland system positively affects richness, diversity and/or abundance of flying invertebrate families like Hymenoptera (Fraser et al., 2007; Sperber et al., 2004) or Diptera (Scherber et al., 2014) due to an increased heterogeneity of structures and availability of resources. Hirao et al. (2009) also showed that lepidopteran community was vertically stratified, which suggests that more vertically diversified habitats might support a more diversified flying invertebrate community. Seasonal difference of diversity of flying invertebrates could be explained, at least partly, by flowering seasons of plants. Furthermore, trapping efficiency by pan traps could also vary among seasons. Rodriguez-Saona et al. (2012) actually demonstrated seasonal change in color preference coinciding with blooming season in blunt-nosed and sharpnosed leafhoppers (Hemiptera: Cicadellidae). Our results strongly suggest that vegetation shapes the composition of flying invertebrates while environmental metal pollution of soils did not significantly act as a filter. #### 3.4. Limitations of the study With limited duration of invertebrate field investigation, invertebrate community data in this study cannot be considered as a reliable estimation of true diversity and composition of invertebrate communities. Thus our study should be considered as a snapshot evaluation of the separate and combined influences of vegetation, soil characteristics and TM contaminants on invertebrate communities. Another drawback in our results is the variable degree of taxonomic resolution (cf. SI Spreadsheet file), which might have prevented us to find further relationships between invertebrate communities and plant communities or soil contamination or properties. #### 4 Conclusion This study sheds light on the effects of plant diversity on diversity and composition of aboveground invertebrate community in a site contaminated by TM. Our results overall indicated that plant diversity shapes community of flying invertebrates and is also a factor controlling both diversity and composition of ground-dwelling invertebrates more importantly than TM contamination and other soil properties do. Although underlying mechanisms about complex correlations between diversity of invertebrates and both diversity of plants and soil properties remain an issue for further studies, our results suggest that soil TM contamination and soil properties did not independently and substantially impact invertebrate communities. This study is, to our knowledge, the first one on a metal polluted ecosystem to actually disentangle the relative importance of two major parameters likely to shape invertebrate communities, plant communities and soil contamination and properties. This will pave the road to the evaluation of contaminant impacts on terrestrial invertebrate community dynamics, and to further insights into pollutant induced community tolerance. #### **Acknowledgements** This study was financially supported by the project BIOTROPH, co-funded by the *Agence De l'Environnement et de la Maîtrise de l'Energie* (ADEME; contract No.1172C0030) and the *Conseil Régional du Nord-Pas de Calais* (currently *Conseil Régional Hauts-de-France*, CRNPC; orders No.12000921 and 14001044; joint call with the *Fondation pour la Recherche sur la Biodiversité*). The first author was also financially supported by a grant from the *Conseil Régional de Franche-Comté* (currently *Conseil Régional Bourgogne Franche-Comté*, contract No. 2015C-06107). The authors warmly thank the PEA²t platform (Chrono-environment, University of Bourgogne Franche-Comté, UMR CNRS 6249, France), which manages and maintains the analytical equipment used in this study. The authors gratefully thank Dr. Cécile Grand from ADEME for fruitful scientific discussions. We also thank Pr. François Gillet for his help to statistical analysis and Guillaume Caël for his help for analysis on invertebrate data. We finally thank Dominique Rieffel for his precious assistance. #### **Supporting information** - SI Figure 1: Biplots of distance-based redundancy analysis on replacement of plants of tree, shrub, and - 466 herbaceous strata. - 467 SI Figure 2: Biplots of partial distance-based redundancy analysis on beta diversity matrices of ground- - 468 dwelling invertebrates in spring. - 469 SI Figure 3: Biplots of partial distance-based redundancy analysis on beta diversity matrices of ground- - 470 dwelling invertebrates in autumn. - SI Figure 4: Biplots of distance-based redundancy analysis on beta diversity matrices of flying invertebrates in - spring and autumn. 473 464 - SI Table 1: Plant species observed in buffer with high and low values of soil properties and some of their life - 475 history traits. - SI Table 2: Ground-dwelling invertebrates observed in buffers with high and low selected soil properties or - 477 plant diversity indices in spring. - 478 SI Table 3: Ground-dwelling invertebrates observed in buffers with high and low selected soil properties or - plant diversity indices in autumn. - SI Table 4: Flying invertebrates observed in buffers with high and low plant diversity indices in the two seasons. 481 482 SI Spreadsheet file: Taxonomic resolution of invertebrates. 483 484 #### References - Babin-Fenske, J., Anand, M., 2011. Patterns of insect communities along a stress gradient following decommissioning of a Cu–Ni smelter. Environ. Pollut. 159, 3036–3043. https://doi.org/10.1016/j.envpol.2011.04.011 - Bes, C.M., Mench, M., Aulen, M., Gaste, H., Taberly, J., 2010. Spatial variation of plant communities and shoot Cu concentrations of plant species at a timber treatment site. Plant Soil 330, 267–280. https://doi.org/10.1007/s11104-009-0198-4 - Blanuša, M., Mrković-Milić, R., Durbešić, P., 2002. Lead and Cadmium in Soil and Isopoda Woodlice in Croatia. Ecotoxicol. Environ. Saf. 52, 198–202. https://doi.org/10.1006/eesa.2002.2173 - Bol'shakov, V.N., Pyastolova, O.A., Vershinin, V.L., 2001. Specific features of the formation of animal species communities in technogenic and urbanized landscapes. Russ. J. Ecol. 32, 315–325. - 495 Borcard, D., Gillet, F., Legendre, P., 2018. Numerical Ecology with R, 2nd ed. Springer, New York, NY. - Borer, E.T., Seabloom, E.W., Tilman, D., 2012. Plant diversity controls arthropod biomass and temporal stability. Ecol. Lett. 15, 1457–1464. https://doi.org/10.1111/ele.12006 - Bradham, K.D., Dayton, E.A., Basta, N.T., Schroder, J., Payton, M., Lanno, R.P., 2006. Effect of soil properties on lead bioavailability and toxicity to earthworms. Environ. Toxicol. Chem. 25, 769–775. - Brändle, M., Amarell, U., Auge, H., Klotz, S., Brandl, R., 2001. Plant and insect diversity along a pollution gradient: understanding species richness across trophic levels. Biodivers. Conserv. 10, 1497–1511. https://doi.org/10.1023/A:1011815325503 - Braun-Blanquet, J., Roussine, N., Nègre, R., 1952. Les groupements végétaux de la France méditerranéenne. CNRS, Direction de la Carte des Groupements Végétaux de l'Afrique du Nord, Paris. 506 507 508 518519 520 521 522 523 524 525 526 532 533 534 535 536537 538 542 543544 545 546 - Brose, U., 2003. Bottom-up control of carabid beetle communities in early successional wetlands: mediated by vegetation structure or plant diversity? Oecologia 135, 407–413. - Coulon, J., 2003. Les Bembidina de la faune de France. Clés d'identification commentées (Coleoptera Carabidae Trechinae) (Première partie). Bull. Mens. Société Linn. Lyon 72, 256–272. - Dazy, M., Béraud, E., Cotelle, S., Grévilliot, F., Férard, J.-F., Masfaraud, J.-F., 2009. Changes in plant communities along soil pollution gradients:
Responses of leaf antioxidant enzyme activities and phytochelatin contents. Chemosphere 77, 376–383. https://doi.org/10.1016/j.chemosphere.2009.07.021 - Denno, R.F., Fagan, W.F., 2003. Might Nitrogen Limitation Promote Omnivory Among Carnivorous Arthropods? Ecology 84, 2522–2531. https://doi.org/https://doi.org/10.1890/02-0370 - Donker, M.H., Raedecker, M.H., Van Straalen, N.M., 1996. The Role of Zinc Regulation in the Zinc Tolerance Mechanism of the Terrestrial Isopod *Porcellio scaber*. J. Appl. Ecol. 33, 955–964. https://doi.org/10.2307/2404677 - Douay, F., Pruvot, C., Roussel, H., Ciesielski, H., Fourrier, H., Proix, N., Waterlot, C., 2008. Contamination of Urban Soils in an Area of Northern France Polluted by Dust Emissions of Two Smelters. Water. Air. Soil Pollut. 188, 247–260. https://doi.org/10.1007/s11270-007-9541-7 - Douay, F., Pruvot, C., Waterlot, C., Fritsch, C., Fourrier, H., Loriette, A., Bidar, G., Grand, C., de Vaufleury, A., Scheifler, R., 2009. Contamination of woody habitat soils around a former lead smelter in the North of France. Sci. Total Environ. 407, 5564–5577. https://doi.org/10.1016/j.scitotenv.2009.06.015 - DRIRE, 2003. L'Industrie au Regard de l'Environnement en 2002. Direction Régionale de l'Industrie, de la Recherche et de l'Environnement Nord-Pas de Calais, Douai, France. Ministère de l'Economie, des Finances et de l'Industrie. - Drobne, D., 1997. Terrestrial isopods—a good choice for toxicity testing of pollutants in the terrestrial environment. Environ. Toxicol. Chem. 16, 1159–1164. https://doi.org/https://doi.org/10.1002/etc.5620160610 - Dudman, A.A., Richards, A.J., 1997. Dandelions of Great Britain and Ireland, Handbook 9. Botanical Society of the British Isles, London. - Eeva, T., Belskii, E., Gilyazov, A.S., Kozlov, M.V., 2012. Pollution impacts on bird population density and species diversity at four non-ferrous smelter sites. Biol. Conserv. 150, 33–41. https://doi.org/10.1016/j.biocon.2012.03.004 - Eeva, T., Sorvari, J., Koivunen, V., 2004. Effects of heavy metal pollution on red wood ant (Formica s. str.) populations. Environ. Pollut. 132, 533–539. https://doi.org/10.1016/j.envpol.2004.05.004 - Eisler, R., 2000. Handbook of chemical risk assessment: health hazards to humans, plants, and animals. Volume 1, metals. Lewis, Boca Raton, Florida. - EMEP, 2013. Long term Changes of Heavy Metal Transboundary Pollution of the Environment (1990-2010) (No. 2/2013). - Forel, J., Leplat, J., 2001. Faune des carabiques de France. Magellanes, Andrésy. - Fraser, S.E., Dytham, C., Mayhew, P.J., 2007. Determinants of parasitoid abundance and diversity in woodland habitats. J. Appl. Ecol. 44, 352–361. - Fritsch, C., Giraudoux, P., Cœurdassier, M., Douay, F., Raoul, F., Pruvot, C., Waterlot, C., Vaufleury, A. de, Scheifler, R., 2010. Spatial distribution of metals in smelter-impacted soils of woody habitats: Influence of landscape and soil properties, and risk for wildlife. Chemosphere 81, 141–155. https://doi.org/10.1016/j.chemosphere.2010.06.075 - Giller, K.E., Witter, E., McGrath, S.P., 1998. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol. Biochem. 30, 1389–1414. - Ginocchio, R., 2000. Effects of a copper smelter on a grassland community in the Puchuncaví Valley, Chile. Chemosphere 41, 15–23. - Greenslade, P.J.M., 1964. Pitfall Trapping as a Method for Studying Populations of Carabidae (Coleoptera). J. Anim. Ecol. 33, 301. https://doi.org/10.2307/2632 - Grelle, C., Fabre, M.-C., Leprêtre, A., Descamps, M., 2000. Myriapod and isopod communities in soils contaminated by heavy metals in northern France. Eur. J. Soil Sci. 51, 425–433. - Gwenzi, W., Mangori, L., Danha, C., Chaukura, N., Dunjana, N., Sanganyado, E., 2018. Sources, behaviour, and environmental and human health risks of high-technology rare earth elements as emerging - 558 contaminants. Sci. Total Environ. 636, 299–313. https://doi.org/10.1016/j.scitotenv.2018.04.235 - Haddad, N.M., Crutsinger, G.M., Gross, K., Haarstad, J., Knops, J.M.H., Tilman, D., 2009. Plant species loss decreases arthropod diversity and shifts trophic structure. Ecol. Lett. 12, 1029–1039. https://doi.org/10.1111/j.1461-0248.2009.01356.x - Haddad, N.M., Tilman, D., Haarstad, J., Ritchie, M., Knops, J.M., 2001. Contrasting effects of plant richness and composition on insect communities: a field experiment. Am. Nat. 158, 17–35. - He, M., Wang, N., Long, X., Zhang, C., Ma, C., Zhong, Q., Wang, A., Wang, Y., Pervaiz, A., Shan, J., 2019. Antimony speciation in the environment: Recent advances in understanding the biogeochemical processes and ecological effects. J. Environ. Sci. 75, 14–39. https://doi.org/10.1016/j.jes.2018.05.023 - Hertzog, L.R., Ebeling, A., Weisser, W.W., Meyer, S.T., 2017. Plant diversity increases predation by ground-dwelling invertebrate predators. Ecosphere 8, e01990. https://doi.org/https://doi.org/10.1002/ecs2.1990 - Hertzog, L.R., Meyer, S.T., Weisser, W.W., Ebeling, A., 2016. Experimental Manipulation of Grassland Plant Diversity Induces Complex Shifts in Aboveground Arthropod Diversity. PLOS ONE 11, e0148768. https://doi.org/10.1371/journal.pone.0148768 - Hirao, T., Murakami, M., Kashizaki, A., 2009. Importance of the understory stratum to entomofaunal diversity in a temperate deciduous forest. Ecol. Res. 24, 263–272. https://doi.org/10.1007/s11284-008-0502-4 - Hopkin, S.P., 1990. Species-Specific Differences in the Net Assimilation of Zinc, Cadmium, Lead, Copper and Iron by the Terrestrial Isopods *Oniscus asellus* and *Porcellio scaber*. J. Appl. Ecol. 27, 460–474. https://doi.org/10.2307/2404294 - Hopkin, S.P., 1989. Ecophysiology of Metals in Terrestrial Invertebrates. Elsevier Applied Science, London. - Hopkin, S.P., Jones, D.T., Dietrich, D., 1993. The isopod *Porcellio scaber* as a monitor of the bioavailability of metals in terrestrial ecosystems: towards a global "woodlouse watch" scheme. Sci. Total Environ., Proceedings of the 2nd European Conference on Ecotoxicology 134, 357–365. https://doi.org/10.1016/S0048-9697(05)80036-1 - Hopkin, S.P., Martin, M.H., 1982. The distribution of zinc, cadmium, lead and copper within the woodlouse *Oniscus asellus* (Crustacea, Isopoda). Oecologia 54, 227–232. - Humphrey, J.W., Hawes, C., Peace, A.J., Ferris-Kaan, R., Jukes, M.R., 1999. Relationships between insect diversity and habitat characteristics in plantation forests. For. Ecol. Manag. 113, 11–21. - Hussein, M.A., Obuid-Allah, A.H., Mohammad, A.H., Scott-Fordsmand, J.J., Abd El-Wakeil, K.F., 2006. Seasonal variation in heavy metal accumulation in subtropical population of the terrestrial isopod, *Porcellio laevis*. Ecotoxicol. Environ. Saf. 63, 168–174. https://doi.org/10.1016/j.ecoenv.2005.01.005 - Hutchinson, G.E., 1959. Homage to Santa Rosalia or why are there so many kinds of animals? Am. Nat. 93, 145–159. - Jeannel, R., 1941. Coléoptères carabiques, Faune de France. Librairie de la faculté des sciences, Paris. - 593 Jost, L., 2006. Entropy and diversity. Oikos 113, 363–375. 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 600 601 - Kirk, W.D.J., 1984. Ecologically selective coloured traps. Ecol. Entomol. 9, 35–41. - Knops, J.M., Tilman, D., Haddad, N.M., Naeem, S., Mitchell, C.E., Haarstad, J., Ritchie, M.E., Howe, K.M., Reich, P.B., Siemann, E., 1999. Effects of plant species richness on invasion dynamics, disease outbreaks, insect abundances and diversity. Ecol. Lett. 2, 286–293. - Koivula, M., Punttila, P., Haila, Y., Niemelä, J., 1999. Leaf litter and the small-scale distribution of carabid beetles (Coleoptera, Carabidae) in the boreal forest. Ecography 22, 424–435. - Koricheva, J., Mulder, C.P.H., Schmid, B., Joshi, J., Huss-Danell, K., 2000. Numerical responses of different trophic groups of invertebrates to manipulations of plant diversity in grasslands. Oecologia 125, 271–282. https://doi.org/10.1007/s004420000450 - Lambinon, J., Delvosalle, L., Duvigneaud, J., 2004. Nouvelle flore de la Belgique, du Grand-Duché de Luxembourg, du Nord de la France et des Régions voisines, 5th ed. Jardin botanique national de Belgique, Meise. - Landolt, E., Bäumler, B., Erhardt, A., Hegg, O., Klötzli, F., Lämmler, W., Nobis, M., Rudmann-Maurer, K., Schweingruber, F.H., Theurillat, J.P., Urmi, E., Vust, M., Wohlgemuth, T., 2010. Floria Indicativa: Ecological Indicator Values and Biological Attributes of the Flora of Switzerland and the Alps. Haupt Verlag, Bern. - Leather, S.R., 2005. Insect sampling in forest ecosystems, Methods in ecology. Blackwell Pub, Malden, MA. - Legendre, P., 2014. Interpreting the replacement and richness difference components of beta diversity: Replacement and richness difference components. Glob. Ecol. Biogeogr. 23, 1324–1334. https://doi.org/10.1111/geb.12207 - 614 Legendre, P., Borcard, D., Peres-Neto, P.R., 2005. Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecol. Monogr. 75, 435–450. - Legendre, P., De Cáceres, M., 2013. Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecol. Lett. 16, 951–963. https://doi.org/10.1111/ele.12141 - Melbourne, B.A., 1999. Bias in the effect of habitat structure on pitfall traps: an experimental evaluation. Austral Ecol. 24, 228–239. - Migliorini, M., Pigino, G., Bianchi, N., Bernini, F., Leonzio, C., 2004. The effects of heavy metal contamination on the soil arthropod community of a shooting range. Environ. Pollut. 129, 331–340. https://doi.org/10.1016/j.envpol.2003.09.025 - Mora, F., 2002. Contribution au suivi des variations spatio-temporelles de la fraction circulante des peuplements d'invertébrés épigés en système forestier caducifolié européen (massif de Chaux, France, Doubs et Jura). Besançon. - Nahmani, J., Lavelle, P., 2002. Effects of heavy metal pollution on soil macrofauna in a grassland of Northern France. Eur. J. Soil Biol. 38, 297–300. - Nahmani, J.,
Rossi, J.-P., 2003. Soil macroinvertebrates as indicators of pollution by heavy metals. C. R. Biol. 326, 295–303. https://doi.org/10.1016/S1631-0691(03)00070-2 - Niemelä, J., Spence, J.R., Spence, D.H., 1992. Habitat associations and seasonal activity of ground-beetles (Coleoptera, Carabidae) in Central Alberta. Can. Entomol. 124, 521–540. https://doi.org/10.4039/Ent124521-3 - Nordberg, G.F., Fowler, B.A., Nordberg, M., Friberg, L.T., 2014. Handbook on the Toxicology of Metals, 4th ed. Academic Press, London. - Odendaal, J.P., Reinecke, A.J., 1999. Short-Term Toxicological Effects of Cadmium on the Woodlouse, Porcellio laevis (Crustacea, Isopoda). Ecotoxicol. Environ. Saf. 43, 30–34. - Odum, E.P., 1985. Trends expected in stressed ecosystems. Bioscience 35, 419–422. 624 625 630 631 632 637 638 639 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 - Paoletti, M.G., Iovane, E., Cortese, M., 1988. Pedofauna bioindicators and heavy metals in five agroecosystems in north-east Italy. Rev Ecol Biol Sol 25, 33–58. - Peres-Neto, P.R., Legendre, P., Dray, S., Borcard, D., 2006. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87, 2614–2625. - Perner, J., Malt, S., 2003. Assessment of changing agricultural land use: response of vegetation, ground-dwelling spiders and beetles to the conversion of arable land into grassland. Agric. Ecosyst. Environ. 98, 169–181. https://doi.org/10.1016/S0167-8809(03)00079-3 - Prather, R.M., Kaspari, M., 2019. Plants regulate grassland arthropod communities through biomass, quality, and habitat heterogeneity. Ecosphere 10, e02909. https://doi.org/https://doi.org/10.1002/ecs2.2909 - Pulford, I.D., Watson, C., 2003. Phytoremediation of heavy metal-contaminated land by trees—a review. Environ. Int. 29, 529–540. https://doi.org/10.1016/S0160-4120(02)00152-6 - Read, H.J., Martin, M.H., Rayner, J.M.V., 1998. Invertebrates in Woodlands Polluted by Heavy Metals—an Evaluation Using Canonical Correspondence Analysis. Water. Air. Soil Pollut. 106, 17–42. https://doi.org/10.1023/A:1004917829355 - Read, H.J., Wheater, C.P., Martin, M.H., 1987. Aspects of the ecology of Carabidae (Coleoptera) from woodlands polluted by heavy metals. Environ. Pollut. 48, 61–76. - Rodriguez-Saona, C.R., Byers, J.A., Schiffhauer, D., 2012. Effect of trap color and height on captures of blunt-nosed and sharp-nosed leafhoppers (Hemiptera: Cicadellidae) and non-target arthropods in cranberry bogs. Crop Prot. 40, 132–144. https://doi.org/10.1016/j.cropro.2012.05.005 - Root, R.B., 1973. Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleraceae). Ecol. Monogr. 43, 95–124. - Rzanny, M., Kuu, A., Voigt, W., 2013. Bottom–up and top–down forces structuring consumer communities in an experimental grassland. Oikos 122, 967–976. https://doi.org/https://doi.org/10.1111/j.1600-0706.2012.00114.x - Scherber, C., Eisenhauer, N., Weisser, W.W., Schmid, B., Voigt, W., Fischer, M., Schulze, E.-D., Roscher, C., Weigelt, A., Allan, E., Beßler, H., Bonkowski, M., Buchmann, N., Buscot, F., Clement, L.W., Ebeling, A., Engels, C., Halle, S., Kertscher, I., Klein, A.-M., Koller, R., König, S., Kowalski, E., Kummer, V., Kuu, A., Lange, M., Lauterbach, D., Middelhoff, C., Migunova, V.D., Milcu, A., Müller, R., Partsch, S., Petermann, J.S., Renker, C., Rottstock, T., Sabais, A., Scheu, S., Schumacher, J., Temperton, V.M., Tscharntke, T., 2010. Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468, 553–556. https://doi.org/10.1038/nature09492 - Scherber, C., Vockenhuber, E.A., Stark, A., Meyer, H., Tscharntke, T., 2014. Effects of tree and herb biodiversity on Diptera, a hyperdiverse insect order. Oecologia 174, 1387–1400. https://doi.org/10.1007/s00442-013-2865-7 - Schuldt, A., Both, S., Bruelheide, H., Härdtle, W., Schmid, B., Zhou, H., Assmann, T., 2011. Predator Diversity and Abundance Provide Little Support for the Enemies Hypothesis in Forests of High Tree Diversity. - 674 PLoS ONE 6, e22905. https://doi.org/10.1371/journal.pone.0022905 - Schuldt, A., Fahrenholz, N., Brauns, M., Migge-Kleian, S., Platner, C., Schaefer, M., 2008. Communities of ground-living spiders in deciduous forests: Does tree species diversity matter? Biodivers. Conserv. 17, 1267–1284. https://doi.org/10.1007/s10531-008-9330-7 - Siemann, E., 1998. Experimental tests of effects of plant productivity and diversity on grassland arthropod diversity. Ecology 79, 2057–2070. - Sobek, S., Tscharntke, T., Scherber, C., Schiele, S., Steffan-Dewenter, I., 2009. Canopy vs. understory: Does tree diversity affect bee and wasp communities and their natural enemies across forest strata? For. Ecol. Manag. 258, 609–615. - Sperber, C.F., Nakayama, K., Valverde, M.J., Neves, F. de S., 2004. Tree species richness and density affect parasitoid diversity in cacao agroforestry. Basic Appl. Ecol. 5, 241–251. https://doi.org/10.1016/j.baae.2004.04.001 - Spurgeon, D.J., Hopkin, S.P., 1996. The effects of metal contamination on earthworm populations. Appl. Soil Ecol. 4, 147–160. - Sterckeman, T., Douay, F., Baize, D., Fourrier, H., Proix, N., Schvartz, C., 2007. Référentiel pédo-géochimique du Nord-Pas de Calais Méthode et principaux résultats. Etude Gest. Sols 14, 153–168. - Sterckeman, T., Douay, F., Proix, N., Fourrier, H., 2000. Vertical distribution of Cd, Pb and Zn in soils near smelters in the North of France. Environ. Pollut. 107, 377–389. - Sterckeman, T., Douay, F., Proix, N., Fourrier, H., Perdrix, E., 2002. Assessment of the contamination of cultivated soils by eighteen trace elements around smelters in the North of France. Water. Air. Soil Pollut. 135, 173–194. - Storm, G.L., Yahner, R.H., Bellis, E.D., 1993. Vertebrate abundance and wildlife habitat suitability near the Palmerton zinc smelters, Pennsylvania. Arch. Environ. Contam. Toxicol. 25, 428–437. https://doi.org/10.1007/BF00214331 - Strandberg, B., Axelsen, J.A., Pedersen, M.B., Jensen, J., Attrill, M.J., 2006. Effect of a copper gradient on plant community structure. Environ. Toxicol. Chem. 25, 743–753. - Trautner, J., Geigenmueller, K., 1987. Tiger Beetles, Ground Beetles (Illustrated Key to the Cicindelidae and Carabidae of Europe). Joseph Margraf, Aichtal. - Uetz, G.W., Unzicker, J.D., 1976. Pitfall trapping in ecological studies of wandering spiders. J. Arachnol. 3, 101–111. - Vehviläinen, H., Koricheva, J., Ruohomäki, K., 2008. Effects of stand tree species composition and diversity on abundance of predatory arthropods. Oikos 117, 935–943. - Vidic, T., Jogan, N., Drobne, D., Vilhar, B., 2006. Natural revegetation in the vicinity of the former lead smelter in Zerjav, Slovenia. Environ. Sci. Technol. 40, 4119–4125. - Visioli, G., Menta, C., Gardi, C., Conti, F.D., 2013. Metal toxicity and biodiversity in serpentine soils: Application of bioassay tests and microarthropod index. Chemosphere 90, 1267–1273. https://doi.org/10.1016/j.chemosphere.2012.09.081 - Walker, C.H., Hopkin, S.P., Sibly, R.M., Peakall, D.B., 2012. Principles of Ecotoxicology, 4th ed. ed. CRC Press, Boca Raton. - Zidar, P., Drobne, D., Štrus, J., Van Gestel, C.A.M., Donker, M., 2004. Food selection as a means of Cu intake reduction in the terrestrial isopod *Porcellio scaber* (Crustacea, Isopoda). Appl. Soil Ecol. 25, 257– 265. https://doi.org/10.1016/j.apsoil.2003.09.005 - Zimmer, M., Brauckmann, H.-J., Broll, G., Topp, W., 2000. Correspondence analytical evaluation of factors that influence soil macro-arthropod distribution in abandoned grassland. Pedobiologia 44, 695–704. - Zimmer, M., Topp, W., 2000. Species-specific utilization of food sources by sympatric woodlice (Isopoda: Oniscidea). J. Anim. Ecol. 1071–1082. - Zvereva, E.L., Kozlov, M.V., 2012. Changes in the Abundance of Vascular Plants under the Impact of Industrial Air Pollution: A Meta-analysis. Water. Air. Soil Pollut. 223, 2589–2599. https://doi.org/10.1007/s11270-011-1050-z - Zvereva, E.L., Kozlov, M.V., 2010. Responses of terrestrial arthropods to air pollution: a meta-analysis. Environ. Sci. Pollut. Res. 17, 297–311. https://doi.org/10.1007/s11356-009-0138-0 - Zvereva, E.L., Toivonen, E., Kozlov, M.V., 2008. Changes in species richness of vascular plants under the impact of air pollution: a global perspective. Glob. Ecol. Biogeogr. 17, 305–319. https://doi.org/10.1111/j.1466-8238.2007.00366.x 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 700 701 702 703 704 705 706 707 708 709 Figure 1: Maps of the study area. Three upper maps show the position of the former smelter Metaleurop nord (red circle) and of the six study sites (green border boxes with their contamination level in red letters). Lower right map shows sampling strategy for plants and invertebrates. Three pitfall traps were set in line (black line with three blue points) in woody patches and each trap line was considered as one sampling point for ground-dwelling invertebrates. Vegetation in a buffer of 1000m2 around a trap line (green oval) was linked to the given trap line. Similarly, yellow pan traps (yellow points) were set in woody patches and vegetation in a buffer of 1000m2 around a trap (yellow circles) was linked to the given pan trap. Soil properties of given woody patches (red polygons with brown point indicating soil sample, from Fritsch et al. 2010) were attributed to each trap line and pan trap. Figure 2: Results of partial redundancy analysis (pRDA) on alpha diversity indices for gound-dwelling (GD) invertebrates in spring. (a) Venn diagram represents variance explained by diversity of plants and soil properties. (b) Biplot of pRDA on invertebrate diversity explained only by plant diversity indices. (c) Biplot of pRDA on invertebrate diversity explained only by soils properties. GD.D, GD.E, GD.N, GD.S: Simpson's diversity index, Simpson's evenness, abundance and richness of GD invertebrates, respectively. H.D, H.N: Simpson's diversity
index and abundance of herbaceous stratum, respectively. Figure 5: Results of partial distance-based redundancy analysis on replacement of GD invertebrates in autumn. Venn diagram represents variance explained by diversity for plants and soil properties. (N.B. There is no value in the cercle for plant diversity because all variance explained by plant diversity was shared with variance explained by soil pamateters.) 760 Values <0 not shown 762 <u>sites.</u> 763 | | TE2 | 103 | 117 | 097 | 171 | 043 | |--|--------------|---------------|---------------|-----------------|----------------|----------------| | Soil contamination level | Controla | Low | Moderate | High | Moderate | Moderate | | [Cd] _{soil} (mg kg ⁻¹) ^b | 0.9 - 2.4 | 1.5 - 6.0 | 3.6 - 17.8 | 15.3 - 236.5 | 4.9 - 14.5 | 1.3 - 42.7 | | Min - Max (Median) | (1.4) | (4.3) | (9.1) | (48.3) | (7.5) | (15.2) | | $[Pb]_{soil} (mg kg^{-1})^b$ | 43.3 - 199.8 | 237.5 - 333.0 | 244.7 - 859.8 | 658.5 - 6809.4 | 287.6 - 2063.3 | 105.0 - 1028.9 | | Min - Max (Median) | (107.4) | (267.2) | (512.0) | (1295.3) | (584.0) | (323.1) | | $[Zn]_{soil} (mg kg^{-1})^b$ | 89.3 - 277.7 | 114.4 - 407.5 | 302.8 - 958.5 | 1069.3 - 7263.5 | 487.2 - 2451.5 | 153.9 - 1549.6 | | Min - Max (Median) | (168.8) | (352.7) | (555.8) | (1874.7) | (1362.7) | (512.8) | | pH^b | 4.5 - 7.2 | 4.6 - 6.9 | 7.3 - 8.1 | 7.9- 8.2 | 7.7 - 8.3 | 6.2 - 8.3 | | Min - Max (Median) | (5.9) | (5.6) | (7.9) | (8.0) | (8.0) | (7.0) | | $OM (g kg-1)^b$ | 26.1 - 186.0 | 47.7 - 96.3 | 34.3 - 77.3 | 31.5 - 110.9 | 35.0 - 223.0 | 28.5 - 125.4 | | Min - Max (Median) | (52.6) | (54.8) | (60.5) | (50.5) | (95.8) | (57.9) | | Number of buffers ^c | 14 (7 / 7) | 15 (8 / 7) | 6 (2 / 4) | 9 (7 / 2) | 14 (7 / 7) | 10 (5 / 5) | | for GD invertebrates (spring / autumn) | 14 (777) | 13 (07 7) | 0 (27 4) |) (1/2) | 14 (7 / 7) | 10 (3 / 3) | | Number of enraptured GD invertebrates | 1 - 19 | 8 - 199 | 6 - 25 | 1 - 106 | 1 - 15 | 3 - 77 | | by buffer (Min - Max) | 1 1) | 0 177 | 0 23 | 1 100 | 1 10 | 3 , , | | Number of determined taxa of GD | 1 - 5 | 2 - 10 | 2 - 5 | 1 - 10 | 1 - 7 | 2 - 9 | | invertebrates by buffer (Min - Max) | | | | | | | | Number of buffers ^c | 4 (1 / 3) | 5 (3 / 2) | 3 (1 / 2) | 4 (2 / 2) | 4 (3 / 1) | 4 (2 / 2) | | for flying invertebrates (spring / autumn) | (-,-) | - (-, -) | - (-, -) | - (= / =/ | . (= / =/ | . (= / =) | | Number of enraptured flying invertebrates
by buffer (Min - Max) | 11 - 179 | 31 - 220 | 34 - 311 | 82 - 313 | 39 - 168 | 108 - 325 | | Number of determined taxa of flying | 10 - 38 | 10 - 31 | 13 - 29 | 18 - 23 | 16 - 27 | 22 - 31 | | invertebrates by buffer (Min - Max) | 10 - 30 | 10 - 31 | 13 - 29 | 10 - 23 | 10 - 27 | 22 - J1 | a: TM concentrations as close as possible to background concentrations. b: Values from Fritsch et al. (2010) c: Buffers where plants of all strata were present. Table 2. Plant diversity and soil properties significantly influencing alpha and beta diversity of ground-dwelling (GD) and flying invertebrates. | Type of | Season | Type of | Significant influence | | | |----------------------|-----------|---------|-----------------------|-----------------|--| | invertebrates | diversity | | Plant stratum | Soil properties | | | GD invertebrates | Spring | Alpha | Herb | Pb, OM | | | | | Beta | Shrub & herb | pН | | | | Autumn | Alpha | Tree | - | | | | | Beta | Tree & shrub | Pb | | | Flying invertebrates | Spring | Alpha | - | - | | | | | Beta | Shrub | - | | | | Autumn | Alpha | - | - | | | | | Beta | Tree, shrub & herb | - | | #### **Supporting Information for:** # Vegetation shapes diversity and composition of aboveground invertebrates more than soil properties and pollution: a preliminary investigation on a metal contaminated site Shinji Ozaki*¹, Clémentine Fritsch¹, Frédéric Mora², Thierry Cornier³, Renaud Scheifler#¹, and Francis Raoul#¹ E-mail address: shinji.ozaki@univ-fcomte.fr # Both authors contributed equally to supervising this work #### **Table of Contents:** | Supporting Information SI Figure 1 | Page S1 | |--|-------------------| | Supporting Information SI Figure 2 | Page S2 | | Supporting Information SI Figure 3 | Page S3 | | Supporting Information SI Figure 4 | Page S4 | | Supporting Information SI Table 1 | Page S5 | | Supporting Information SI Table 2 | Page S7 | | Supporting Information SI Table 3 | Page S8 | | Supporting Information SI Table 4 | Page S9 | | References | Page S10 | | Supporting Information SI Spreadsheet | (In another file) | ¹ Laboratoire Chrono-environnement, UMR 6249 CNRS/Université Bourgogne Franche-Comté UsC INRA, 16 route de Gray, 25030 Besançon Cedex, France ² Conservatoire Botanique National de Franche-Comté, Observatoire Régional des Invertébrés, 7 rue Voirin, 25000 Besançon, France ³ Centre régional de phytosociologie agréé Conservatoire Botanique National de Bailleul, Hameau de Haendries, F-59270 Bailleul, France. ^{*} Corresponding author Supporting Information SI Figure 1: Biplots of distance-based redundancy analysis on replacement of plants of tree (a), shrub (b), and herbaceous (c) strata. The x axis represents the first (and the only) canonical axis and the y axis represent the first unconstrained axis. Vegetation is represented by points and selected soil property variables are represented by arrows (pH: soil pH; Pb: soil Pb concentrations). Species whose occurrence in buffers was related to selected soil properties or TM concentrations were a posteriori projected as weighted averages (in red). Adjusted R^2 (R^2 _{adj}) is mentioned in each plot. Supporting Information SI Figure 2: Biplots of partial distance-based redundancy analysis on beta diversity matrices of ground-dwelling invertebrates in spring. Replacement explained by only soils properties (a) and explained by only plant diversity indices (b). Richness difference in spring explained by only soils properties (c), and by only plant diversity indices (d). The x axis represents the first canonical axis, and the y axis represents the second canonical axis (c) or the first unconstrained axis (a, b and d). Buffers are represented by points and the selected variables are represented by arrows (pH: soil pH; Pb: soil Pb concentrations; OM, soil organic matter content; SD: Simpson diversity for shrubs; HN: abundance of herbs). Species whose occurrence in buffers was related to selected soil properties or TM concentrations were a posteriori projected as weighted averages (in red). Adjusted R^2 (R^2 adj) is mentioned in each plot. Supporting Information SI Figure 3: Biplots of partial distance-based redundancy analysis on beta diversity matrices of ground-dwelling invertebrates in autumn. Replacement explained by only soils properties (a), and richness difference explained by plant diversity indices (b). The x axis represents the first canonical axis, and the y axis represents the second canonical axis (a) or the first unconstrained axis (b). Buffers are represented by points and the selected variables are represented by arrows (pH: soil pH; OM, soil organic matter content; TS: richness of trees). Species whose occurrence in buffers was related to selected soil properties or TM concentrations were a posteriori projected as weighted averages (in red). Adjusted R^2 (R^2 adj) is mentioned in each plot. Supporting Information SI Figure 4: Biplots of distance-based redundancy analysis on replacement of flying invertebrates in spring (a) and on richness difference in autumn (b) explained by plant diversity indices. The x axis represents the first canonical axis, and the y axis represents the second canonical axis (b) or the first unconstrained axis (a). Buffers are represented by points and the selected variables are represented by arrows (SS: richness of shrubs; TD: Simpson diversity for trees; SE: Simpson's evenness for shrubs; HN: abundance of herbs). Species whose occurrence in buffers was related to selected soil properties or TM concentrations were a posteriori projected as weighted averages (in red). Adjusted R^2 (R^2 adj) is mentioned in each plot. Supporting Information SI Table 1: Plant species observed in buffer with high and low values of soil properties and some of their life history traits (metal tolerance, pH tolerance and flowering months) from Landolt et al. (2010). Reaction characterizes the content of free H-ions in the soils, from 1 (extremely acid) to 5 (alkaline, high pH), and x signifies a very large range of variation. Certain tolerance to metals in the soil, referring predominantly to serpentine tolerance, i.e. the tolerance to nickel and chromium, is represented by 'X' and empty cells signifies no particular studies for a given species. | | Taxa | | So | | Soil inc | licators | |---------|-----------------------------|------------------|----------------------|----------------------|----------|-----------| | | T | | properties | | | T | | Stratum | Species | Family | pH _[soil] | Pb _[soil] | Reaction | Heavy | | | | | | | | metal | | | | | | | | tolerance | | Tree | Hedera helix | Araliaceae | Low | | 3 | X | | | Tilia platyphyllos | Tiliaceae | Low | | 4 | X | | | Aesculus | Hippocastanaceae | Low | | 4 | X | | | hippocastanum | | | | | | | | Salix caprea | Salicaceae | High | | 3 | X | | | Betula pendula | Betulaceae | High | | X | X | | | Salix alba | Salicaceae | High | | 4 | | | | Populus x | Salicaceae | High | | 4 | | | | canescens | | | | | | | | Ulmus minor | Ulmaceae | High | | 4 | | | Shrub | Tilia platyphyllos | Tiliaceae | | Low | 4 | X | | | Fraxinus excelsior Oleaceae | | | Low | 4 | X | | | Salix caprea | Salicaceae | | Low | 3 | X | | | Populus x | Salicaceae | | Low | 4 | | | | canescens | | | | | | | | Cornus sanguinea | Cornaceae | | High | 4 | X | | | Frangula alnus | Rhamnaceae | | High | 3 | X | | | Ligustrum
vulgare | Oleaceae | | High | 4 | X | | | Rubus caesius | Rosaceae | | High | 4 | X | | | Viburnum opulus | Caprifoliaceae | | High | 3 | X | | | Corylus avellana | Betulaceae | | High | 3 | X | | Herb | Cirsium palustre | Asteraceae | Low | | 3 | X | | | Holcus lanatus | Poaceae | Low | | 3 | X | | | Juncus effusus | Juncaceae | Low | | 2 | X | | | Carex riparia | Cyperaceae | Low | | 4 | | | | Convolvulus | Convolvulaceae | Low | | 4 | X | | | arvensis | | | | | | | | Dactylis glomerata | Poaceae | Low | | 3 | X | | | Heracleum | Apiaceae | Low | | 3 | | | | sphondylium | | | | | | | | Pastinaca sativa | Apiaceae | High | | 4 | X | | | Silene vulgaris | Caryophyllaceae | High | | 3 | X | | | Veronica persica | Scrophulariaceae | High | | 4 | X | Supporting Information SI Table 2: Ground-dwelling invertebrate families observed in buffers with high and low selected soil properties or plant diversity indices in spring and their diet from Jeannel (1941) and Mora (2002). | Beta | Variables influencing | | Taxa | Diet | |-----------|-----------------------|------------|-------------------------|-----------------| | diversity | | diversity | | | | Replace- | Soil High pH | | Chrysomelidae | phytophagous | | ment | properties | | (Coleoptera) | | | | | | Forficulidae | saprophagous | | | | | (Dermaptera) | | | | | Low pH | Curculionidae | phytophagous | | | | | (Coleoptera) | | | | | | Chilopoda (Myriapoda) | zoophagous | | | | | Lampyridae | zoophagous | | | | | (Coleoptera) | | | | | | Silphidae (Coleoptera) | zoophagous | | | | | Opiliones (Spider) | zoosaprophage | | | | | Aphodiinae | saprophagous | | | | | (Coleoptera) | | | | | | Julidae (Diplopoda) | saprophagous | | | | | Glomeridae | saprophagous | | | | | (Diplopoda) | | | | Plant | High shrub | Curculionidae | phytophagous | | | diversity | Simpson's | (Coleoptera) | | | | | diversiy | Gastropoda | phytophagous | | | | | Silphidae (Coleoptera) | zoophagous | | | | | Lampyridae | zoophagous | | | | | (Coleoptera) | | | | | | Staphylinidae | zoophagous | | | | | (Coleoptera) | | | | | | Araneae (Spider) | zoophagous | | | | | Opiliones (Spider) | zoosaprophagous | | | | | Aphodiidae | saprophagous | | | | | (Coleoptera) | | | | Low shrub | | Forficulidae | saprophagous | | | | Simpson's | (Dermaptera) | | | | | diversiy | Elateridae (Coleoptera) | mixed | ### (Continuous) | Beta | Variables influencing | | Taxa | Diet | |------------|-----------------------|-----------|------------------------|--------------| | diversity | | diversity | | | | Richness | Soil High Pb | | Chrysomelidae | phytophagous | | Difference | properties | | (Coleoptera) | | | | | | Gastropoda | phytophagous | | | | | Lampyridae | zoophagous | | | | | (Coleoptera) | | | | | | Arachnida (Spider) | zoophagous | | | | | Forficulidae | saprophagous | | | | | (Dermaptera) | | | | | | Glomeridae | saprophagous | | | | | (Diplopoda) | | | | | High Pb & | Curculionidae | phytophagous | | | | low OM | (Coleoptera) | | | | | | Lampyridae | zoophagous | | | | | (Coleoptera) | | | | | Low OM | Silphidae (Coleoptera) | zoophagous | | | | | Leiodidae (Coleoptera) | saprophagous | | | | | Aphodiidae | saprophagous | | | | | (Coleoptera) | | | | Plant | Low herb | Curculionidae | phytophagous | | | diversity | abundance | (Coleoptera) | | | | | | Gastropoda | phytophagous | | | | | Lampyridae | zoophagous | | | | | (Coleoptera) | | | | | | Silphidae (Coleoptera) | zoophagous | | | | | Staphylinidae | zoophagous | | | | | (Coleoptera) | | | | | | Chilopoda (Myriapoda) | zoophagous | | | | | Arachnida (Spider) | zoophagous | | | | | Glomeridae | saprophagous | | | | | (Diplopoda) | | | | | | Aphodiidae | saprophagous | | | | | (Coleoptera) | | | | | | Polydesmidae | saprophagous | | | | | (Diplopoda) | | Supporting Information SI Table 3: Ground-dwelling invertebrates observed in buffers with high and low selected soil properties or plant diversity indices in autumn and their diet from Jeannel (1941) and Mora (2002). | Beta | | s influencing | Taxa | Diet | |------------|------------|-----------------|---------------------|---------------| | diversity | | diversity | | | | Replace- | Soil | High pH & | Gastropoda | phytophagous | | ment | properties | High OM | Coccinellidae | zoophagous | | | | | (Coleoptera) | | | | | | Opiliones (Spider) | zoosaprophage | | | | | Polydesmidae | saprophagous | | | | | (Diplopoda) | 1 1 0 | | | | | Julidae (Diplopoda) | saprophagous | | | | Low pH & low OM | Arachnida (Spider) | mixed | | | | High pH | Formicidae | omnivorous | | | | & I | (Hymenoptera) | | | | | | Forficulidae | saprophagous | | | | | (Dermaptera) | | | | | | Isopoda | saprophagous | | | Plant | (No variable) | - | | | | diversity | , | | | | Richness | Soil | (No variable) | | | | Difference | properties | | | | | | Plant | Low tree | Gastropoda | phytophagous | | | diversity | richness | Formicidae | omnivorous | | | | | (Hymenoptera) | | | | | | Chilopoda | zoophagous | | | | | (Myriapoda) | | | | | | Araneae (Spider) | zoophagous | | | | | Opiliones (Spider) | Z00- | | | | | | saprophagous | | | | | Geotrupidae | saprophagous | | | | | (Coleoptera) | | | | | | Forficulidae | saprophagous | | | | | (Dermaptera) | | | | | | Glomeridae | saprophagous | | | | | (Diplopoda) | | | | | | Polydesmidae | saprophagous | | | | | (Diplopoda) | | | | | | Julidae (Diplopoda) | saprophagous | Supporting Information SI Table 4: Flying invertebrates observed in buffers with high and low selected soil properties or plant diversity indices and their diet in larvae and in adult from Jeannel (1941) and Mora (2002). | Beta
diversity | | es influencing
a diversity | Taxa | Diet (larvae) | Diet (adult) | |------------------------|--------------------|--|---|--|--| | Replacement in spring | Soil
properties | No variable | | | | | | Plant
diversity | High shrub
richness | Apionidae (Coleoptera)
Cynipidae (Hymenoptera)
Sepsidae (Diptera) | phytophagous
endophytophagous
saprophagous | phytophagous
?
saprophagous | | | | Low shrub richness | Torymidae (Hymenoptera)
Tineidae (Lepidoptera)
Bibionidae (Diptera)
Formicidae
(Hymenoptera) | phytophagous
saprophagous
saprophagous
omnivorous | mixed
nectarivorous
none
omnivorous | | | | | Dolichopodidae (Diptera) Pompilidae(Hymenoptera) Eucoilidae (Hymenoptera) | zoophagous
zoophagous
parasitoid | zoophagous
zoophagous
? | | Richness
Difference | Soil
properties | No variable | | | | | in autumn | Plant
diversity | High tree Simpson's diversity, shrub evenness & herb abundance | Noctuidae (Lepidoptera) Delphacidae (Hemiptera) Chloropidae (Diptera) Agromyzidae (Diptera) Apionidae (Coleoptera) Mycetophilidae (Diptera) Milichiidae (Diptera) Psychodidae (Diptera) Nitidulidae (Coleoptera) Sepsidae (Diptera) Forficulidae (Dermaptera) Pompilidae (Hymenoptera) Carabidae (Coleoptera) | phyllophagous opophagous endophytophagous endophytophagous phytophagous mycetophagous zoosaprophagous saprophagous saprophagous saprophagous saprophagous saprophagous zoophagous zoophagous | nectarivorous opophagous nectarivorous phytophagous phytophagous ? zoosaprophagous none saprophagous saprophagous saprophagous zoophagous zoophagous | | | | Low shrub evenness | Limoniidae (Diptera) | mixed | none | #### **References:** - Jeannel, R., 1941. Coléoptères carabiques, Faune de France. Librairie de la faculté des sciences, Paris. - Landolt, E., Bäumler, B., Erhardt, A., Hegg, O., Klötzli, F., Lämmler, W., Nobis, M., Rudmann-Maurer, K., Schweingruber, F.H., Theurillat, J.P., Urmi, E., Vust, M., Wohlgemuth, T., 2010. Floria Indicativa: Ecological Indicator Values and Biological Attributes of the Flora of Switzerland and the Alps. Haupt Verlag, Bern. - Mora, F., 2002. Contribution au suivi des variations spatio-temporelles de la fraction circulante des peuplements d'invertébrés épigés en système forestier caducifolié européen (massif de Chaux, France, Doubs et Jura). Besançon.