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Abstract

This paper focuses on the Gaussian Process regression (GPR) of non-linear functions subject
to multiple linear constraints, such as boundedness, monotonicity or convexity. It presents an
algorithm allowing to optimize, in a concerted way, the statistical moments of the Gaussian
process used for the regression, and the position of a reduced number of points where the
constraints are required to hold, such that the constraints are verified in the whole input
space, with high probability, at a reasonable computational cost. After having presented the
theoretical bases and the numerical implementation of this algorithm, this paper illustrates
its efficiency though the analysis of several test functions of increasing dimensions.

Keywords: Gaussian process, machine learning, uncertainty quantification, linear
constraints, physics-constrained machine learning

1. Introduction

The conception and the certification of complex systems using simulation are generally based
on the evaluation of computer codes in a very high number of input points. In this work,
we focus on the analysis of one of these systems, whose properties can be characterized by
a vector of dx continuous parameters, x = (x1, . . . , xdx) ∈ X ⊂ R

dx , and we denote by y
the measurable function defined on X that is used to monitor the good functioning of this
system. Function y is considered as the output of a computationally expensive deterministic
"black box", in the sense that for every x in X, y(x) is unique and it can be calculated using
a time consuming computer code.
As each evaluation of y is time consuming, the fine exploration of input space X cannot be
done using y directly, but it is necessary to associate a surrogate model to it, as it is done in
[16]. Among these surrogate modeling techniques, the Gaussian process regression (GPR),
or kriging, plays a central role, which is due in particular to its capacity to associate in a very
natural way a confidence to the predictions it returns [19, 11, 20, 7]. In a classical way, the
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construction of a GPR model relies on the evaluation of y at a well-chosen set of points in X.
Nevertheless, it often happens that the modeler manipulating the code also wants to include
one or more a priori knowledge about the behavior of the system in the construction of the
GPR. For example, such constraints can be associated with underlying physical phenomena
when considering engineering applications.
The motivations for taking these constraints into account are numerous: improvement of
prediction capacities, reduction of uncertainties, better explainability of the results, and
so on. Although not suitable for taking into account all types of constraints, the GPR
formalism offers a very attractive framework for taking into account linear constraints on y,
i.e. constraints that can be written in the form a(x) ≤ Ly(x) ≤ b(x), with a, b two given
functions and L a linear operator. This includes boundedness, monotonicity or convexity
constraints, but also constraints based on integral operators and partial differential equations.
Indeed, if function y is modeled by a Gaussian process, Ly is also Gaussian, and its statistical
moments can be explicitly derived from the statistical moments of y.
Several methods for imposing linear constraints on GPs can therefore be found in the lit-
erature (see [21] for a survey). Among them, several works strive to ensure the respect of
constraints at all points of X [14, 13]. These approaches are based on a finite dimensional
Gaussian approximation associated with a structured discretisation of the input space. These
methods show interesting results for examples in 1D and 2D, while being too time consum-
ing for applications in higher dimensions. In order to tackle problems of larger dimensions
(dx > 2), it was proposed in [18, 22, 24, 1, 23] to restrict the verification of constraints to
a finite set of input points, often called virtual observations. In that case, the respect of
the constraints on X is strongly dependent on the position of these virtual observations and
their number. Criteria were therefore defined to optimize their positions and number and
make the constraints verified in X with high probability at a reasonable computational cost
(i.e. without having to densely fill X with virtual observations).
This paper is a continuation of these works, with two directions of improvement. First,
it proposes two new criteria for the positioning of virtual observations, for a more global
and faster respect of the constraints according to the number of observation points. It
then focuses on the consideration of the constraints for the identification of the statistical
properties of the Gaussian process used for the regression. Few works have actually addressed
this problem which still remains relatively open. Left as a working perspective for most of
the previously listed works, the choice of the mean function and especially of the covariance
function of this Gaussian process plays however a very important role for the respect of
the constraints. Indeed, as we will show in the application part of this paper, the choice
of too small correlation lengths may result in the need to introduce a very large number of
virtual observations for the respect of constraints with sufficient high probability. Conversely,
choosing correlation lengths that are too large may make it almost impossible (in probability)
to verify constraints on subsets of X. In other words, the choice of these statistical parameters
is intimately linked to the respect of the constraints, and thus strongly depends on the
positions of the virtual observations. As the choice of the positions of the virtual observations
is itself strongly dependent on the choice of these statistical parameters, it is then proposed
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in this paper to identify in a concerted way these statistical parameters and these virtual
observations.
The outline of this work is as follows. Section 2 introduces the general framework for carrying
out a Gaussian process regression in the presence of inequality constraints. The criteria
we propose for the selection of the virtual observations are then described in Section 3.
Section 4 deals with the identification of the statistical moments of the Gaussian process
used for the regression, and Section 5 describes the algorithm we propose for the verification
of constraints with high probability using only a reduced number of virtual observations.
Numerical applications are then presented in Section 6, while concluding remarks are given
in Section 7.

2. General framework

The formalism of the Gaussian process regression is considered: the quantity of interest y
is seen as a sample path of a stochastic process Y defined on a probability space (Ω,A,P),
which is assumed Gaussian for the sake of tractability: Y ∼ GP(µ, C), where µ is the mean
function and C is the covariance function of Y . Let X (N) :=

{
(x(n), y(x(n))), 1 ≤ n ≤ N

}

be a N -dimensional Design of Experiments (DoE). By conditioning Y by the responses of y
in X (N), we obtain another Gaussian process, which is noted YN := Y | Y (X) = y(X) ∼
GP(µN , CN), whose mean and covariance functions can be explicitly derived (see [19, 20] for
further details about the expressions):

µN(x) = µ(x) + C(x,X)C(X,X)−1(µ(X)− y(X)), x ∈ X, (1)

CN(x,x
′) = C(x,x′)− C(x,X)C(X,X)−1C(X,x′), x,x′ ∈ X. (2)

In the former expressions, X := [x(1) · · · x(N)]T is the (N × dx)-dimensional matrix that
gathers the inputs points of X (N), and for each function f and g defined on X and X × X

respectively, the following notation is adopted

(f(X))n = f(x(n)), (g(X,X))nm = g(xn,xm), 1 ≤ n,m ≤ N. (3)

As the time needed to evaluate y in each points of XN is supposed to be very high, the value
of N is assumed relatively small. Gaussian process YN can therefore be used to predict the
value of y in any non-observed point of X. In particular, µN(x) is the best linear unbiased
predictor (BLUP) of y(x), while CN(x,x) quantifies the uncertainty associated with this
prediction, in the sense that the smaller it is, the more chance there is for y(x) and µN(x)
to be close.
In addition to the observation points, we assume we have access to prior knowledge on some
properties of function y, which can be written under the form of a linear operator L (adopting
the same notations than in [1]). For example, the constraints 0 ≤ y, ℓ2 ≤ ∂y/∂xi ≤ u2,
∂2y/∂xi∂xj ≤ u3 can be written:

(0, ℓ2(x),−∞) ≤c Ly(x) ≤c (+∞, u2(x), u3(x)), x ∈ X, (4)
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where L : y 7→ Ly := (y, ∂y/∂xi, ∂
2y/∂xi∂xj), and ≤c stands for the component by com-

ponent inequality operator, such that for two d-dimensional vectors a and b, a ≤c b is
equivalent to a1 ≤ b1, . . . , ad ≤ bd. In particular, this includes boundedness, monotonicity or
convexity constraints on y.
In the following, we denote by dc the number of constraints, such that Ly is a function from
R

dx to R
dc , and by ℓ and u the vector-valued functions that characterize the lower and upper

bounds for Ly (possibly taking infinite values). The Gaussian distribution being stable by
linear operations, LY is still a Gaussian process, with:

E [LY (x)] = Lµ(x), Cov(LY (x),LY (x′)) = LC(x,x′)LT . (5)

Here, the notations LC(x,x′) and C(x,x′)LT indicate that operator L is applied as a
function of x and x′ respectively, so that Cov(LY (x),LY (x′)) is a (dc × dc)-dimensional
matrix.
Integrating these constraints on Y in the former GP formalism, the new process Y c

N :=
Y | Y (X) = y(X), ℓ ≤c LY ≤c u seems particularly attractive for the prediction of y.
Manipulating Y c

N is however difficult, if not impossible. Indeed, it is supposed to take into
account an infinite number of constraints, and even if Y , Y (X) and LY are Gaussian, there
is no reason for Y c

N to be still Gaussian once the inequality constraints are applied.
Different approaches were proposed to get back to a problem integrating a finite number of
constraints, and therefore circumvent the first difficulty. On the one hand, it was proposed
in [14, 13] to approximate Y by its finite-dimensional projection on a tensorized grid of X. In
that case, the projection functions are deterministic, the projection coefficients are modeled
by (potentially correlated) Gaussian random variables, and the constraints on the entire
domain are translated as constraints on the projection coefficients only. However, due to the
tensorized structure of the projection functions, the application of this approach is limited
to very small values of dx (generally less than 2).
On the other hand, it was proposed in [22] (and completed in [23]) to impose constraints
only at a finite set of virtual observations. In that case, the constraints are not fulfilled on
the entire domain, but only with a more or less high probability depending on the number
and positions of these virtual observations.
Let Z := [z(1); · · · ; z(M)] be the (M × dx)-dimensional matrix gathering the positions of M
virtual observations in X, and α ∈ {1, . . . , dc}M be the M-dimensional vector gathering the
indices of the constraints that we want to impose in each element of Z. For instance, for
1 ≤ m ≤ M and 1 ≤ j ≤ dc, choosing αm = j amounts at imposing

ℓj(z
(m)) ≤ (Ly(z(m)))j ≤ uj(z

(m)).

Under that formalism, we denote by

Y c
N,M := Y | Y (X) = y(X), ℓα(Z) ≤c LαY (Z) ≤c uα(Z), (6)

the process we would like to consider to predict the value of y in any non-observed point of
X, and by
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LY c
N,M := LY | Y (X) = y(X), ℓα(Z) ≤c LαY (Z) ≤c uα(Z), (7)

the process we need to manipulate to verify that the constraints have been correctly taken
into account not only at the points in Z, but at any point in X. Here, for all function f and g
defined on X and X×X, ℓα(Z), uα(Z), Lαf(Z) and Lαg(Z,Z)LT

α are three M-dimensional
vectors and a (M ×M)-dimensional matrix respectively such that for all 1 ≤ m,m′ ≤ M :

(Lαf(Z))m = (Lf)αm(z
(m)), (Lαg(Z,Z)LT

α)mm′ = (Lg(z(m), z(m
′))LT )αmαm′

, (8)

(ℓα(Z))m := ℓαm(z
(m)), (uα(Z))m := uαm(z

(m)). (9)

Given these notations, the constraints’ probability function pc is defined by:

pc(x) := P
(
ℓ(x) ≤c LY c

N,M(x) ≤c u(x)
)
, x ∈ X, (10)

and, for each 1 ≤ j ≤ dc, the probability pjc(x) for LY c
N,M(x) to satisfy the jth constraint is

given by:

pjc(x) := P
(
ℓj(x) ≤ (LY c

N,M(x))j ≤ uj(x)
)
. (11)

To analyze the statistical properties of Y c
N,M and LY c

N,M , let us first consider the following
random vector

L(Z) := LαY (Z) | Y (X) = y(X), ℓα(Z) ≤c LαY (Z) ≤c uα(Z). (12)

By construction, L(Z) follows the truncated normal distribution T N (µL,CL, ℓ(Z),u(Z)),
with:

µL := Lαµ(Z) + LαC(Z,X)C(X,X)−1(y(X)− µ(X)), (13)

CL := LαC(Z,Z)LT
α − LαC(Z,X)C(X,X)−1C(X,Z)LT

α, (14)

in the sense that its probability density function (PDF) fL verifies the following proportion-
ality relation:

fL(v) ∝ 1ℓ(Z)≤cv≤cu(Z) exp

(
−1

2
(v − µL)TC−1

L (v − µL)
)
, v ∈ R

M . (15)

Looking at Propositions 1 and 2 (see AppendixA and AppendixB for the proofs), we therefore
notice that this vector L(Z) plays a major role in the analysis of processes Y c

N,M and LY c
N,M ,

as there are affine transforms between the mean and the variance of Y c
N,M(x) and LY c

N,M(x)
and the mean vector and the covariance matrix of L(Z), but also between the realizations
of L(Z) and the realizations of Y c

N,M(x) and LY c
N,M(x). The fact that we can efficiently

generate independent realizations of non-Gaussian processes Y c
N,M and LY c

N,M plays indeed a
central role in the following developments. On the one hand, this will allow the construction
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of empirical prediction intervals for the value of y at any point of X. On the other hand,
it will allow to identify the sub-domains of X where the constraints are most likely to be
violated, but also to estimate average values over X of verifying the constraints.

Proposition 1. For all x,x′ ∈ X, if µα(Z) and Cα(Z) correspond to the mean vector and
the covariance matrix of L(Z), we obtain :

E
[
Y c
N,M(x)

]
= µ(x) + aT

1 (x)(y(X)− µ(X)) + aT
2 (x)(µα(Z)−Lαµ(Z)), (16)

Var
(
Y c
N,M(x)

)
=C(x,x)− aT

1 (x)C(X,x)

− aT
2 (x)LαC(Z,x) + aT

2 (x)Cα(Z)a2(x)
, (17)

E
[
LY c

N,M(x)
]
= Lµ(x) +AT

3 (x)(y(X)− µ(X)) +AT
4 (x)(µα(Z)− Lαµ(Z)), (18)

Cov
(
LY c

N,M(x),LY c
N,M(x′)

)
=LC(x,x′)LT −AT

3 (x)C(X,x′)LT

−AT
4 (x)LαC(Z,x′)LT +AT

4 (x)Cα(Z)A4(x
′)
, (19)

with a1(x) ∈ R
N , a2(x) ∈ R

M the two vectors and A3(x), A4(x) the two matrices that
verify:

(
a1(x)
a2(x)

)
=

[
C(X,X) C(X,Z)LT

α

LαC(Z,X) LαC(Z,Z)LT
α

]−1(
C(X,x)

LαC(Z,x)

)
, (20)

(
A3(x)
A4(x)

)
=

[
C(X,X) C(X,Z)LT

α

LαC(Z,X) LαC(Z,Z)LT
α

]−1(
C(X,x)L

LαC(Z,x)L

)
. (21)

Proposition 2. Let l(1), . . . , l(Q) be Q independent realizations of L(Z), ξ(1), . . . , ξ(Q) be Q
independent realizations of a centered Gaussian random value of variance equal to 1, and
ζ(1), . . . , ζ(Q) be Q independent realizations of a dc-dimensional centered Gaussian random
vector whose covariance matrix is the identity matrix. Then, for each x ∈ X and each
1 ≤ q ≤ Q,

µ(x) + aT
1 (x)(y(X)− µ(X)) + aT

2 (x)(l
(q) − Lαµ(Z))

+
√

C(x,x)− aT
1 (x)C(X,x)− aT

2 (x)LαC(Z,x) ξ(q),
(22)

is an independent realization of Y c
N,M(x), and

Lµ(x) +A3(x)
T (y(X)− µ(X)) +A4(x)

T (l(q) − Lαµ(Z))

+
(
LC(x,x)LT −A3(x)

TC(X,x)LT −AT
4LαC(Z,x)LT

)1/2
ζ(q),

(23)

is an independent realization of LY c
N,M(x), where for any symmetric square matrix R, R1/2

is a matrix such that R1/2(R1/2)T = R.

6



Generating realizations of L(Z) (and therefore of Y c
N,M(x) and LY c

N,M(x)) is however chal-
lenging. Of course, using rejection techniques, that is generating samples from the uncon-
strained normal distribution N (µL,CL) and keeping the ones that verify the constraints,
would be the most natural method to obtain such realizations. But the more constraint
points will be considered, and therefore the more M will increase, the lower the acceptance
rate is likely to be, and the more inefficient the method will be. In that case, alternative
methods have to be employed, such as the method based on the minimax tilting proposed
by [4], which proves to be particularly efficient for the generation of realizations of trun-
cated Gaussian vectors with dimensions smaller than 200, with acceptance probabilities up
to 10−100. For higher dimensions, methods based on Gibbs sampling [12] could also be used,
but the convergence of such methods is likely to require a very significant numerical cost.

Remarks.

• Looking at Proposition 2, it is important to notice that the same Q iid realizations of
L(Z) can be used to get Q iid realizations of Y c

N,M(x) and LY c
N,M(x) in any value of

x, and therefore to predict the value of y(x) and estimate pc(x) or pjc(x) in each x.

• If x(1), . . . ,x(P ) are P ≥ 1 elements of X, Proposition 2 is easily generalized to the
generation of realizations of the vector (Y c

N,M(x(1)), . . . , Y c
N,M(x(P ))).

3. Selection of the virtual observations

Predictor E
[
Y c
N,M(x)

]
of y(x) depends on two sets of points: the N observation points of y

gathered in X, and the M virtual observations associated with the constraints gathered in
Z. While the observation points are generally imposed, it is possible to choose the number
and the position of the virtual observations as they do not require any code evaluations.
Different strategies can be proposed to choose these points. Naively, in order to allow a
verification of the constraints over the whole input domain, these observation points can
be chosen as uniformly as possible in X. For this, one can then rely on several experiment
design works [6, 2, 5, 10, 17]. This approach, which will be refered as "space-filling" (SF)
approach in the following, is however clearly sub-optimal. Indeed, these points are supposed
to allow a maximisation of the constraints’ probability function pc defined by Eq. (10).
Thus, adding points where pc is large is of little interest. However, searching directly for
all of these points to maximise the minimal value of pc over X is generally far too difficult,
and greedy approaches are often preferred. For instance, following [1, 23], given a set of M
virtual observations already chosen, the M+1 virtual observation x⋆ associated with the jth

⋆

constraint can be chosen as the point with the best chance of not respecting the constraints,
that is the solution of the following optimization problem:

(x⋆, j⋆) ∈ arg max
x∈X, 1≤j≤dc

c1(x, j), c1(x, j) := 1− pjc(x). (24)

However, it can be noticed that such a pointwise strategy does not take into account in its
selection criteria the fact that the new evaluation point will bring additional information
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in its neighbourhood, nor integrate the fact that a constraint is strongly or slightly not
respected. This can result in an unintended accumulation of virtual points in the same area.
For example, if we are interested in a function that is increasing with respect to one of its
parameters, and that this function is almost constant over a certain interval, whatever the
number of virtual observations that we place in this zone, the probability of not respecting
the monotonicity constraint will always be close to 50% at any point in this zone. In order
to propose a better treatment of the constraints on the whole input domain, we can then
propose to focus on the following enrichment criterion :

(x⋆, j⋆) ∈ arg max
x∈X, 1≤j≤dc

c2(x, j), (25)

c2(x, j) := E

[(
ℓj(x)− (LY c

N,M(x))j
)+

+
(
(LY c

N,M(x))j − uj(x)
)+]

, (26)

which can be seen as an adaptation of the well-known expected improvement (EI) selection
criterion [25] for the selection of virtual observations. In Eq. (26), for each z in R, (z)+ :=
max(0, z), and we have used the convention −∞ × Φ(−∞) = −∞(1 − Φ(+∞)) = 0 to
simplify notations. Thus, for two points x and x′ such that pjc(x) and pjc(x

′) are close,
the criterion defined by Eq. (26) allows us to favor the point associated with the strongest
non-respect of the constraints. Of course, weights that depend on j could be added to the
expressions provided in Eqs. (24) and (26) in the event that one constraint is to be favoured
over another.
Finally, to better take into account the impact of the addition of a new virtual observation on
its neighborhood, the criteria c1 and c2 defined by Eqs. (24) and Eqs. (26) can be replaced
by the integrated criteria cint

1 and cint
2 as follows:

cint

1 (x, j) :=

dc∑

j′=1

∫

X

cx,j1 (x′, j′)dx′, cint

2 (x, j) :=

dc∑

j′=1

∫

X

cx,j2 (x′, j′)dx′,

where the criteria cx,j1 and cx,j2 respectively correspond to the criteria c1 and c2 assuming
that the jth constraint has been imposed at virtual observation x. Hence, criteria cint

1 or
cint
2 can be seen as average probabilities of non-respect of the constraints knowing that a

new observation has been added in x. This explains that these two criteria need now to be
minimized, while we wanted to maximise the criteria c1 and c2 proposed in Eqs. (24) and
(26).

Remarks on the practical solving of the optimization problems. The maximization
of criteria c1 and c2, and the minimization of criteria cint

1 and cint
2 have been introduced in

their continuous form. In the following, the solving of these problems will however be based
on discrete approximations of these optimization problems. Focusing first on criteria c1 or
c2, the new virtual observation x⋆ and the new constraint j⋆ will be searched as:

(x⋆, j⋆) ∈ arg max
x∈S(n), 1≤j≤dc

ck(x, j), (27)
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where k is equal to 1 or 2, S(n) gathers n ≫ 1 points chosen (randomly or not) in X, and
where we remind that the sampling procedure of [4] allows us to evaluate c1 or c2 in a very
high number of points of X at a reasonable computational cost. Indeed, if l(1), . . . , l(Q) denote
Q iid realizations of L(Z) such that:

(LY (x))j | L(Z) = l(q), Y (X) = y(X) ∼ N
(
m

(q)
j (x), (σ

(q)
j (x))2

)
, (28)

we deduce the following empirical estimations for c1(x, j) and c2(x, j):

1− c1(x, j) = P
(
ℓj(x) ≤c (LY c

N,M(x))j ≤c uj(x)
)

= E
[
P
(
ℓj(x) ≤c (LY c

N,M(x))j ≤c uj(x) | L(Z)
)]

≈ 1

Q

Q∑

q=1

P

(
ℓj(x) ≤c (LY (x))j ≤c uj(x)|L(Z) = l(q), Y (X) = y(X)

)

≈ 1

Q

Q∑

q=1

1− Φ

(
uj(x)−m

(q)
j (x)

σ
(q)
j (x)

)
+ Φ

(
ℓj(x)−m

(q)
j (x)

σ
(q)
j (x)

)
,

(29)

c2(x, j) = E

[(
ℓj(x)− (LY c

N,M(x))j
)+

+
(
(LY c

N,M(x))j − uj(x)
)+]

= E

[
E

[(
ℓj(x)− (LY c

N,M(x))j
)+

+
(
(LY c

N,M(x))j − uj(x)
)+ | L(Z)

]]

≈ 1

Q

Q∑

q=1

σ
(q)
j (x)

(
φ

(
ℓj(x)−m

(q)
j (x)

σ
(q)
j (x)

)
+ φ

(
uj(x)−m

(q)
j (x)

σ
(q)
j (x)

))

+ (ℓj(x)−m
(q)
j (x))Φ

(
ℓj(x)−m

(q)
j (x)

σ
(q)
j (x)

)
+ (m

(q)
j (x)− uj(x))

(
1− Φ

(
uj(x)−m

(q)
j (x)

σ
(q)
j (x)

))
,

(30)

where φ and Φ are respectively the probability density function (PDF) and the cumulative
density function (CDF) of a centered Gaussian random variable of variance 1.
As for the minimization of criteria cint

1 and cint
2 , the couple (x⋆, j⋆) will be chosen as the

solution of:

(x⋆, j⋆) ∈ arg min
x∈S(n),1≤j≤dc

∑

1≤j′≤dc,x′∈S(n), (x′,j′)6=(x,j)

cx,jk (x′, j′), k = 1 or 2. (31)

The evaluation of criterion cx,jk (x′, j′) requires a little more attention than that of criterion
ck(x, j), as it supposes that a (M + 1)th constraint is imposed in x. However, denoting by

x̃
(1), . . . , x̃(n) the elements of S(n), it is interesting to notice that, once again, the distribution

of the random vector (LY c
N,M(x̃(1)), . . . ,LY c

N,M(x̃(n))) | L(Z) is Gaussian, such that once Q

iid realizations of L(Z) have been generated, the evaluation of cx,jk (x′, j′) for each x 6= x′

will only be based on the generation of one realization of Q independent one-dimensional
truncated normal Gaussian random variables, which is relatively easy and quick to do.
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4. Estimation of hyperparameters

A key ingredient in the prediction of y in each non-observed value of x is the choice of
the mean function µ and probably even more importantly of the covariance function C of
Gaussian process Y . For the sake of tractability, parametric representations can be chosen
for these two functions. For instance, µ can be written as a weighted sum of chosen functions
of x,

µ(x) :=
K∑

k=1

βkhk(x) = β
Th(x), (32)

with β := (β1, . . . , βK) and h(x) := (h1(x), . . . , hK(x)) a vector of K functions such that
Lhk exists. In the same manner, C can be chosen among a standard parametric class of
covariance functions, such as the square exponential or the Matern families (see [20, 19] for
more details about these families). Let R be a correlation function defined on X × X such
that LR(x,x′)LT exists, σ and θ be associated hyperparameters such that for all x,x′:

C(x,x′) = σ2R(x,x′; θ). (33)

Under that formalism, the prediction of y requires a prior assessment of β, σ and θ. One
approach to determine ψ := (β, σ, θ) is to maximize the constrained log-likelihood function
LN,M [3],

ψMLEc := argmax
ψ

LN,M (ψ), (34)

where LN,M(ψ) corresponds to the evaluation in y(X) of the log value of the conditional
PDF of Y (X) given ℓα(Z) ≤c LαY (Z) ≤c uα(Z). Using the Bayes’ theorem, this function
can be written under the form:

LN,M(ψ) = LN (ψ)− log(P(ℓα(Z) ≤c LαY (Z) ≤c uα(Z))

+ log(P(ℓα(Z) ≤c LαY (Z) ≤c uα(Z) | Y (X) = y(X))),
(35)

where LN (ψ) is the unconstrained log-likelihood. Thus, in addition to the estimation of
LN (ψ), the computation of LN,M(ψ) for each value of ψ requires to calculate the differ-
ence between the prior and posterior, that is integrating the conditioning Y (X) = y(X),
probabilities of respecting the constraints. However, as it will be shown in the application
section, the gain brought by this hyperparameter identification procedure, both in terms of
constraints respect and prediction capacity, is often low compared to its numerical cost. This
explains that many papers (see for instance [1, 23]) propose to focus on the unconstrained
log-likelihood only. Let ψMLE be this value of ψ that maximises LN . In this case, the respect
of the constraints relies only on the choice of the M virtual observations.
Nevertheless, as we will also see in the application part, a very large number of virtual
observation points may be necessary to compensate for correlation lengths chosen too small.
And conversely, if the correlation lengths are too large, the probability of respecting the
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constraints can be extremely low, which is likely to make the draw of the realizations of
LαY (Z) very unstable numerically. To better integrate the constraints in the identification
of ψ, another approach inspired by the work achieved in [15] is now proposed. It consists
in rewriting the identification problem of ψ in the form of a maximization problem under
constraint:

max
ψ

LN (ψ)

s.t. P(ℓα(Z) ≤c LαY (Z) ≤c uα(Z) | Y (X) = y(X)) ≥ 1− γ,
(36)

with 0 ≤ γ ≤ 1 a chosen tolerance. This problem can then be approached by:

max
ψ

LN (ψ) s.t. for all 1 ≤ m ≤ M :

µLYα(Z)
m + q∗

√
(CLYα(Z))mm ≤ (uα(Z))m

µLYα(Z)
m − q∗

√
(CLYα(Z))mm ≥ (ℓα(Z))m

(37)

with q∗ a chosen constant, and µLYα(Z) and CLYα(Z) the mean vector and covariance matrix
of Gaussian random vector LYα(Z)|Y (X) = y(X). Contrary to the problem given by
Eq.(36), the problem introduced in Eq.(37) no longer requires the costly computation of
a probability associated with a truncated Gaussian distribution. Indeed, for a given value
of ψ, the expressions of LN(ψ), µ

LYα(Z) and CLYα(Z) can be explicitly derived, for a total
calculation cost close to the evaluation of LN (ψ) only.
In the following, the approximated solution of problem (37) using an Augmented Lagrangian
method is denoted by ψAL (see [9] for more details about the interest of this method for
solving constrained optimization problems).
In the problem (37), a particular attention has to be paid to the role of q∗. The greater
q∗ is, the greater the weight of the constraints will be in comparison to the likelihood.
Choosing a large value for q∗ (for instance, choosing q∗ = 2), and thus forcing a strict
respect of the constraints can indeed degrade the predictive capabilities of the model, by
strongly underestimating or overestimating the prediction uncertainties. In our opinion, it
is necessary to keep in mind that the respect of the constraints relies on two points: the
values of the hyperparameters, but also the virtual observations. Thus, it seems to us more
judicious to take a value of q∗ close to 0. This ensures a reasonable probability of respect
of the constraints before applying the constraints in the virtual points, and is likely to lead
to a high probability of respect of the constraints once the virtual observation points will be
added. In the following, q∗ will be chosen equal to 0.1.

5. Joint identification of the hyperparameters and of the virtual observations

Until now, the choice of the M virtual observations gathered in Z and the estimation of the
hyperparameters ψ characterizing the mean and covariance function of Y are carried out
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independently. In Section 3, we explained how we can choose Z for a fixed value of ψ to
impose constraints on Y . And in Section 4, we proposed several methods to choose the value
of ψ for a fixed set of virtual observations gathered in Z.
In order to maximize the predictive capabilities of the final predictor, and to maximize
the probability of respecting the constraints, we now propose to adopt a mixed approach
based on an alternation between enrichment of Z and hyperparameter re-estimation. This
approach is summarized in Algorithm 1.
Several advantages can be listed for such an approach. First, by progressively increasing
the number of constraints, the numerical cost of estimating the hyperparameters under
constraints is limited. Secondly, by continuously adapting the hyperparameters to the con-
straints at the virtual observations, we limit the risk of being confronted with a too low
probability of verifying the constraints at these points, which allows an accelerated execu-
tion of the generation procedures presented in [4].

1 Choose thresholds q∗ ∈ R and p⋆c ∈]0, 1[, numbers np, nLY and Mmax, and parametric
representations for the mean function µ and covariance function C ;

2 Gather N evaluations of y in y(X) ;
3 Compute the maximum likelihood estimate of the hyperparameters ψ ;
4 Let Y ∼ GP(µ(ψ), C(ψ)) be the GPR-based surrogate model associated with y based

on ψ and the N evaluations of y ;
5 Initialize Z = [ ], α, M = 0 ;
6 Compute p̂c as the average over np points of X of the empirical estimate of the

constraints’ probability function pc based on nLY iid realizations of LY c
N,M ;

7 while p̂c < p⋆c and M < Mmax do

8 Minimize criterion cint

k (for k = 1 or 2) ;
9 Set M = M + 1, add the optimal point to Z and save the associated constraint in

α ;
10 Update the value of ψ solving problem (37) ;
11 Update the value of p̂c ;

12 end

13 Return Y c
N,M .

Algorithm 1: Construction of the predictor Y c
N,M .

Remark. In Algorithm 1, the stopping criterion is a threshold on the average probability
of respecting all the constraints on the input domain. Nevertheless, for high dimensional
applications with several constraints, the number of constraint points required can be very
large, and the associated generation of realizations of truncated Gaussian vectors can be
numerically very or even too difficult, which explains the addition of the second stopping
criterion in number of maximum constraint points Mmax. Although it is reasonable to expect
that the number of constraint points needed to ensure p̂c < p⋆c grows with dx and dc, the
choice of Mmax is rather constrained by our ability to correctly estimate the probability of
verifying the constraints at the constraint points. Following the recommendations provided
in [4] on the stability of its algorithm, Mmax can thus be chosen a priori equal to 200,
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whatever the value of dx and dc.

6. Application

We list at least three objectives for the application section. First, we would like to show
the crucial role of hyperparameters on taking into account inequality constraints. It is thus
essential to try to integrate inequality constraints as early as the identification phase of the
hyperparameters.
In a second step, it seems interesting to insist on the fact that a better consideration of
the constraints does not necessarily result in a better prediction, on average, of the function
of interest. This is particularly true in areas where the function of interest approaches the
thresholds of the constraints. Nevertheless, considering an integrated adaptive approach,
where virtual observations and hyperparameters are chosen at the same time and in a se-
quential way, allows a very good compromise between predictive capabilities and respect of
constraints with high probability.
In this paper, we focus on cases where N is small compared to dx, as these are often con-
figurations where the consideration of potential constraints is particularly sought after to
compensate for this small data presence. These are also the configurations where the choice
of hyperparameters is the most important.

6.1. Presentation of the test cases

The interest of algorithm 1 for the construction of a Gaussian process predictor under in-
equality constraints is illustrated on five test cases, whose characteristics are listed in Table
1. None of the introduced examples will actually be costly to evaluate to make possible the
performance analysis of the proposed algorithms.
On purpose, one or more inequality constraints can be associated to each function, which are
also listed in Table 1. To get sound comparisons between the different ways of integrating
constraints, the results presented in the next sections are averaged over 10 repetitions of the
whole procedures.
Moreover, for each studied function, a simple linear trend and a tensorized stationary Matern-
5/2 kernel are chosen:

µ(x) = β0 +

dx∑

i=1

βixi, (38)

C(x,x′) = σ2
dx∏

i=1

(1 +
√
5∆xi +

5

3
∆x2

i ) exp
(
−
√
5∆xi

)
, ∆xi :=

|xi − x′
i|

θi
. (39)

As a consequence, the vector of hyperparameters ψ = (β, σ, θ) is constituted of 2(dx + 1)
constants to be identified, and the vector θ gathers the correlation lengths.
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Example Name dx N constraint operator Ly dc
1 y1D

1 1 4 dy/dx 1
2 y1D

2 1 10 dy/dx 1
3 y1D

3 1 7 (y, dy/dx) 2
4 y3D 3 12 (y, ∂y/∂x1, ∂

2y/∂x2
2, ∂

2y/∂x2
3) 4

5 y5D 5 35 (∂2y/∂x2
1, ∂

2y/∂x2
2, ∂

2y/∂x2
3, ∂y/∂x4, ∂y/∂x5) 5

Table 1: Characteristics of the five analyzed numerical functions (see AppendixC for the expressions of the
functions).

6.2. Analysis of the results

The comparison results for the one-dimensional functions are summarized in Figures 1, 2
and 3. Four configurations are compared in these three sets of figure. No constraint is
taken into account in the figures labelled (a), but constraints are imposed in M points in
the other figures. However, whereas the positions of these constraints are a priori chosen for
the figures labelled (b) and (c), the positions of the constraints in the figures labelled (d) are
automatically selected using Algorithm 1. Then, the MLE of ψ (i.e. without constraint) is
considered in the figures labelled (a) and (b), whereas in the figures labelled (c) and (d), ψ
corresponds to the approximated solution using an Augmented Lagragian method of problem
(37) associated with the M former points of constraint.
The objective of Figures 1 and 2 is to highlight two typical pathologies that can appear when
constraints are not integrated in the hyperparameter selection process. Focusing on Figure
1, we observe that not integrating the constraints can lead to a strong underestimation of
the correlation length. This has two direct consequences: a strong overestimation of the
confidence intervals, and an over-sensitivity of the prediction mean to the addition of the
constraint points. In this example, we also notice that adding the five monotony constraints
creates artificial oscillations for the prediction mean around x = 0.5, which results in a
reduction of the Q2 value, which is the classical metric of learning performance on test data
calculated as one minus the predictive residual error sum of squares (PRESS) divided by
the total sum of squares (TSS). As expected, a much longer correlation length is obtained
when integrating the constraints, which results in an increased Q2 value, but also a strong
reduction of the confidence intervals around the true function to be predicted. For this
example, we also see that the positions of the constraints found by Algorithm 1 allow an
interesting compromise between prediction capacity and respect of monotony.
If we now focus on Figure 2, we can see that integrating information on the sign of the
derivative can avoid considering too high correlation lengths this time. Imposing the sign
of the derivative at three a priori pathological points does not greatly improve the model if
we keep θMLE = 0.183. We can even say that it degrades it, since it reduces the size of the
confidence intervals when they already did not contain the true function. On the contrary,
by integrating this information on the first derivative in the choice of the correlation length,
we obtain a much more reasonable model, associated with a much lower correlation length.
For this model, we retrieve the capacity of Algorithm 1 to correctly position the constraint
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points in potentially pathological areas.
The third one-dimensional example deals with bounds and monotony constraints. This
example, inspired by the functions studied in [1], serves to illustrate the great interest that
there can be in taking into account several kinds of inequality constraints, when they exist,
in the construction of Gaussian process predictors. Looking at Figure 3, we note once
again that playing on both the location of the constraint points and the estimation of the
hyperaparameters allows to reduce the confidence intervals around the true function, and
thus to strongly improve the predictive character of the predictor. To go further, Table 2
quantifies the potential gains associated with the different approaches proposed. Seven cases
are compared, which are associated with different values of the hyperparameters (θ = θMLE

or θ = θAL) and different selection criteria for the constraint points (c1, c2 or cint
1 ). These

sequential selection criteria are also compared to a Space Filling (SF) choice of the constraint
points, i.e. the constraint points are distributed as uniformly as possible in the input area
(see [8, 5, 17] for further details about the construction of such space filling designs).
The main information to remember from this table is that for one-dimensional applications
(dx = 1), for which it is possible to position the constraint points relatively densely in the
input space, all the selection criteria have more or less similar performance, both in terms of
Q2 and the probability of respecting the constraints pc. Nevertheless, it should be noted that
for lower values of M , a better overall probability of respecting the constraints is achieved
for the approach associated with Algorithm 1, the results of which being placed in the last
column on the right.
Differences however appear when the dimension of the entry space increases, which can be
seen on Tables 3 and 4, respectively associated with dx = 3 and dx = 5. First, these tables
allow us to underline the importance of the choice of the hyperparameters for the good
respect of the constraints. For example, for the 3D example, choosing θ = θAL with only
M = 40 points uniformly chosen in X (fourth configuration, first line), leads to a pc value
greater than if we choose θ = θMLE with M = 120 constraint points (second configuration,
third line). The same observations can be made on the 5D example, where taking θ = θAL

with M = 35 leads to better results than taking θ = θMLE with M = 175. We then notice
that for identical hyperparameters, an adaptive selection of constraint points systematically
leads to a better respect of the constraints, whatever the chosen criterion. Finally, for these
examples, criterion c2 seems a little more interesting than criterion c1, but we especially
notice that again, the association cint

1 plus sequential estimation of θ, which is described in
Algorithm 1, allows the fastest convergence of pc to 1.

7. Conclusions

This paper focuses on the consideration of linear constraints in the Gaussian process re-
gression (GPR) formalism. In particular when few observation points are available, taking
into account a priori knowledge about the model in the form of linear constraints on the
output of the code can indeed strongly reduce the prediction uncertainties, while improving
its explainability.
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(a) No constraint, θMLE = 0.152
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(b) 5 imposed constraints, θMLE = 0.152
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(c) 5 imposed constraints, θAL = 1.98

0.0 0.2 0.4 0.6 0.8 1.0

−
3

−
2

−
1

0
1

2
3

x

y

Q2 = 0.993

(d) 5 constraints sequentially chosen, θAL = 1.99

Figure 1: Impact of taking constraints into account on the performance of the GPR surrogate model in
predicting y1D

1 function values. The black continuous lines correspond to the true value of y1D
1 , the red

dots are the observations points for the construction of the GPR, the thick dashed lines are the GPR mean
predictions, the thin dashed lines correspond to 95% prediction intervals provided by the GPR, and the
vertical dotted lines indicate the positions of the virtual observations where monotonicity constraints are
imposed.
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(a) No constraint, θMLE = 0.183
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(b) 3 imposed constraints, θMLE = 0.183
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(c) 3 imposed constraints, θAL = 0.035
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(d) 3 constraints sequentially chosen, θAL = 0.054

Figure 2: Impact of taking constraints into account on the performance of the GPR surrogate model in
predicting y1D

2 function values. The black continuous lines correspond to the true value of y1D
2 , the red

dots are the observations points for the construction of the GPR, the thick dashed lines are the GPR mean
predictions, the thin dashed lines correspond to 95% prediction intervals provided by the GPR, and the
vertical dotted lines indicate the positions of the virtual observations where monotonicity constraints are
imposed.
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(a) No constraint, θMLE = 0.227
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(b) 10 imposed constraints, θMLE = 0.227
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(c) 10 imposed constraints, θAL = 1.34
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(d) 10 constraints sequentially chosen, θAL =

0.380

Figure 3: Impact of taking constraints into account on the performance of the GPR surrogate model in
predicting y1D

3 function values. The black continuous lines correspond to the true value of y1D
3 , the red

dots are the observations points for the construction of the GPR, the thick dashed lines are the GPR mean
predictions and the thin dashed lines correspond to 95% prediction intervals provided by the GPR. The
vertical grey solid lines and vertical black dotted lines are the positions of the virtual observations where
boundedness and monotonicity constraints are imposed respectively, while the grey areas characterize the
admissible areas for the output values.
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M (1) (2) (3) (4) (5) (6) (7) (8)
10 0.609 0.666 0.666 0.683 0.883 0.881 0.868 0.903

20 0.609 0.747 0.742 0.745 0.956 0.947 0.942 0.960

30 0.609 0.799 0.795 0.803 0.973 0.976 0.970 0.977

40 0.609 0.820 0.817 0.835 0.982 0.985 0.982 0.985

50 0.609 0.926 0.934 0.945 0.989 0.990 0.988 0.990

Q2 0.971 0.982 0.981 0.982 0.982 0.982 0.982 0.982

Table 2: For different selection strategies and for the test function y
(1D)
3 , this table represents the values

of the Q2 criterion, and the evolution with respect to M of the average value over X of the probability
of verifying the constraints, pc. (1): no constraints applied, θ = θMLE. (2): Space Filling (SF) design,
θ = θMLE. (3): SF design, θ = θMLEc. (4): SF design, θ = θAL. (5): sequential design (Seq.D) with c1,
θ = θMLE. (6): Seq.D with c2, θ = θMLE. (7): Seq.D with cint

1 , θ = θMLE. (8): Seq.D with cint
1 , sequential

estimation of θ with the Augmented Lagrangian-based approach.

M (1) (2) (3) (4) (5) (6) (7)
40 0.389 0.395 0.463 0.650 0.700 0.747 0.959

80 0.389 0.413 0.487 0.665 0.790 0.827 0.976

120 0.389 0.574 0.671 0.787 0.842 0.869 0.986

160 0.389 0.760 0.846 0.931 0.874 0.896 0.992

Q2 0.930 0.947 0.959 0.975 0.947 0.943 0.968

Table 3: For different selection strategies and for the test function y(3D), this table represents the values
of the Q2 criterion, and the evolution with respect to M of the average value over X of the probability
of verifying the constraints, pc. (1): no constraints applied, θ = θMLE. (2): Space Filling (SF) design,
θ = θMLE. (3): SF design, θ = θMLEc. (4): SF design, θ = θAL. (5): sequential design (Seq.D) with
c1, θ = θMLE. (6): Seq.D with c2, θ = θMLE. (7): Seq.D with cint

1 , sequential estimation of θ with the
Augmented Lagrangian-based approach.

M (1) (2) (3) (4) (5) (6) (7)
35 0.190 0.448 0.520 0.727 0.505 0.570 0.820

70 0.190 0.583 0.670 0.820 0.561 0.649 0.887

105 0.190 0.581 0.670 0.822 0.586 0.700 0.920

140 0.190 0.603 0.695 0.860 0.620 0.734 0.945

175 0.190 0.603 0.697 0.860 0.636 0.752 0.957

Q2 0.961 0.961 0.974 0.990 0.969 0.962 0.987

Table 4: For different selection strategies and for the test function y(5D), this table represents the values
of the Q2 criterion, and the evolution with respect to M of the average value over X of the probability
of verifying the constraints, pc. (1): no constraints applied, θ = θMLE. (2): Space Filling (SF) design,
θ = θMLE. (3): SF design, θ = θMLEc. (4): SF design, θ = θAL. (5): sequential design (Seq.D) with
c1, θ = θMLE. (6): Seq.D with c2, θ = θMLE. (7): Seq.D with cint

1 , sequential estimation of θ with the
Augmented Lagrangian-based approach.
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However, for reasons of numerical stability and computational cost, it is often too difficult
to impose these constraints at any point of the domain, especially when we are interested in
the prediction of functions depending on several parameters.
In order to guarantee, in a reasonable computation time, the respect of these constraints with
the highest possible probability, this work has thus proposed two adaptations of previous
works: the first one concerning the selection of the reduced number of entry points at which
the constraints are imposed, the second one concerning the optimization of the statistical
moments of the Gaussian process on which the GPR model is based.
From a theoretical point of view, the proposed method can be applied to the prediction of
functions in any dimensions, incorporating any number of linear constraints. But from a
practical point of view, since the consideration of constraints is based on local additions of
constraint points, it is certain that the larger the dimension of the inputs will be, the more
constraint points will have to be added, and the more difficult it will be to obtain a high
probability of respecting the constraints. And to deal with higher dimensional problems
(dx > 10 for example), other directions will probably have to be explored, which could be
the subject of future work.

AppendixA. Proof of Proposition 1

By definition, for all x ∈ X, we have:




Y (x)
LY (x)
Y (X)

LαY (Z)


 ∼ N







µ(x)
Lµ(x)
µ(X)

Lαµ(Z)


 ,




C(x,x) C(x,x)LT C(x,X) C(x,Z)LT
α

LC(x,x) LC(x,x)LT LC(x,X) LC(x,Z)LT
α

C(X,x) C(X,x)LT C(X,X) C(X,Z)LT
α

LαC(Z,x) C(X,x)LT LαC(Z,X) LαC(Z,Z)LT
α





 .

(A.1)
For each z ∈ R

M , if we focus on vectors (Y (x), Y (X),LαY (Z)) and (LY (x), Y (X),LαY (Z)),
whose statistical properties can be deduced from Eq. (A.1) by removing the second and the

first row respectively, we notice by Gaussian conditioning that Ỹ (z) := Y (x) | Y (X) =

y(X),LαY (Z) = z and LỸ (z) := LY (x) | Y (X) = y(X),LαY (Z) = z are still Gaussian,
and we have:

E

[
Ỹ (z)

]
= µ(x) + [C(x,X) C(x,Z)LT

α]

[
C(X,X) C(X,Z)LT

α

LαC(Z,X) LαC(Z,Z)LT
α

]−1(
y(X)− µ(X)
z − Lαµ(Z)

)

= µ(x) + aT
1 (x)(y(X)− µ(X)) + aT

2 (x)(z −Lαµ(Z)),

(A.2)

Cov
(
Ỹ (z)

)
= C(x,x)− [C(x,X) C(x,Z)LT

α]

[
C(X,X) C(X,Z)LT

α

LαC(Z,X) LαC(Z,Z)LT
α

]−1(
C(X,x)

LαC(Z,x)

)

= C(x,x)− aT
1 (x)C(X,x)− aT

2 (x)LαC(Z,x),

(A.3)
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E

[
LỸ (z)

]
= Lµ(x) + [LC(x,X) LC(x,Z)LT

α]

[
C(X,X) C(X,Z)LT

α

LαC(Z,X) LαC(Z,Z)LT
α

]−1(
y(X)− µ(X)
z − Lαµ(Z)

)

= Lµ(x) +AT
3 (x)(y(X)− µ(X)) +AT

4 (x)(z − Lαµ(Z)),

(A.4)

Cov
(
LỸ (z)

)
= LC(x,x)LT − [LC(x,X) LC(x,Z)LT

α]

[
C(X,X) C(X,Z)LT

α

LαC(Z,X) LαC(Z,Z)LT
α

]−1(
C(X,x)LT

LαC(Z,x)LT

)

= LC(x,x)LT −AT
3 (x)C(X,x)LT −AT

4 (x)LαC(Z,x)LT .

(A.5)

We deduce the following :

E
[
Y c
N,M(x)

]
= E [Y (x) | Y (X) = y(X), ℓ(Z) ≤c LαY (Z) ≤c u(Z)]

= E [E [Y (x) | LαY (Z), Y (X) = y(X)] | ℓ(Z) ≤c LαY (Z) ≤c u(Z), Y (X) = y(X)]

= µ(x) + aT
1 (x)(y(X)− µ(X)) + aT

2 (x)(µα(Z)−Lαµ(Z)),

(A.6)

E
[
Y c
N,M(x)2

]
= E

[
Y (x)2 | Y (X) = y(X), ℓ(Z) ≤c LαY (Z) ≤c u(Z)

]

= E
[
E
[
Y (x)2 | LαY (Z), Y (X) = y(X)

]
| ℓ(Z) ≤c LαY (Z) ≤c u(Z), Y (X) = y(X)

]

= E

[
Cov

(
Ỹ (LαY (Z))|LαY (Z)

)
+ E

[
Ỹ (LαY (Z))|LαY (Z)

]2
| ℓ(Z) ≤c LαY (Z) ≤c u(Z), Y (X) = y(X)

]

= C(x,x)− aT
1 (x)C(X,x)− aT

2 (x)LαC(Z,x)

+ E

[
E

[
Ỹ (LαY (Z))|LαY (Z)

]2
| ℓ(Z) ≤c LαY (Z) ≤c u(Z), Y (X) = y(X)

]

= C(x,x)− aT
1 (x)C(X,x)− aT

2 (x)LαC(Z,x)

+ E
[
(E
[
Y c
N,M(x)

]
+ aT

2 (x)(LαY (Z)− µα(Z)))2 | ℓ(Z) ≤c LαY (Z) ≤c u(Z), Y (X) = y(X)
]

= C(x,x)− aT
1 (x)C(X,x)− aT

2 (x)LαC(Z,x)

+ E
[
Y c
N,M(x)2

]
+ aT

2 (x)E
[
(LαY (Z)− µα(Z))2 | ℓ(Z) ≤c LαY (Z) ≤c u(Z), Y (X) = y(X)

]
a2(x)

= C(x,x)− aT
1 (x)C(X,x)− aT

2 (x)LαC(Z,x) + aT
2 (x)Cα(Z)a2(x) + E

[
Y c
N,M(x)2

]
,

(A.7)

so that:

Cov(Y c
N,M(x)) = C(x,x)− aT

1 (x)C(X,x)− aT
2 (x)LαC(Z,x) + aT

2 (x)Cα(Z)a2(x). (A.8)

The two other expressions are obtained using the same decompositions of the expectation
function.
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AppendixB. Proof of Proposition 2

The result of Proposition 2 is a direct consequence of Eqs. (A.2) and (A.3), where we have
used the fact that in the normal distribution of Y (x) | Y (X) = y(X),LαY (Z), only the
mean depends on L(Z).

AppendixC. Expression of the analyzed numerical functions

The three 1D functions y1D
1 , y1D

2 , y1D
3 correspond to :

y1D

1 :

{
[0, 1] → R

x 7→ 10(x− 0.5)3,
(C.1)

y1D

2 :

{
[0, 1] → R

x 7→ sin(10πx5/2)
10πx

,
(C.2)

y1D

3 :

{
[0, 1] → R

x 7→ 1/3(atan(20x− 10)− atan(−10)),
(C.3)

The 3D function y3D corresponds to the function:

y3D :

{
[0, 1]3 → R

x 7→ (x3 − x2
2)

2 + (x2 − x2
1)

2 + (1− x2)
2 + (1− x1)

2 + 3x1.
(C.4)

The 5D function y5D corresponds to the function:

y5D :

{
[0, 1]5 → R

x 7→ 10 sin(πx1x2) + 40(x3 − 0.5)2(x4 + 0.25) + 5x5.
(C.5)
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