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Abstract. The separate-universe approach provides an effective description of cosmologi-
cal perturbations at large scales, where the universe can be described by an ensemble of
independent, locally homogeneous and isotropic patches. By reducing the phase space to
homogeneous and isotropic degrees of freedom, it greatly simplifies the analysis of large-scale
fluctuations. It is also a prerequisite for the stochastic-inflation formalism. In this work, we
formulate the separate-universe approach in the Hamiltonian formalism, which allows us to
analyse the full phase-space structure of the perturbations. Such a phase-space description
is indeed required in dynamical regimes which do not benefit from a background attractor,
as well as to investigate quantum properties of cosmological perturbations. We find that the
separate-universe approach always succeeds in reproducing the same phase-space dynamics
for homogeneous and isotropic degrees of freedom as the full cosmological perturbation the-
ory, provided that the wavelength of the modes under consideration are larger than some
lower bound that we derive. We also compare the separate-universe approach and cosmolog-
ical perturbation theory at the level of the gauge-matching procedure, where the agreement
is not always guaranteed and requires specific matching prescriptions that we present.
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1 Introduction

Cosmological-perturbation theory (CPT) is a pillar of our modern understanding of cosmol-
ogy. It consists in describing small deviations from highly-symmetric background space-times
by means of perturbative techniques, while accounting for the fundamental invariance of gen-
eral relativity under changes of coordinates. When CPT is developed around a homogeneous
and isotropic background, an important simplification may occur at large scales (i.e. on dis-
tances larger than the length scale associated with the universe expansion – or contraction –
rate) if the universe can be described by an ensemble of independent, locally homogeneous
and isotropic patches. This picture is called the separate-universe approach [1–7] and is also
known as the quasi-isotropic picture [8–11]. When applicable, it implies that studying the
large-scale cosmological perturbations boils down to solving the homogeneous and isotropic
problem with different initial conditions, which allows one to track only a subset of the
relevant degrees of freedom. This represents a very substantial technical simplification.
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Another simplification that occurs on large scales is when the background evolution
features a dynamical phase-space attractor. This is for instance the case in inflating back-
grounds, if inflation proceeds in the so-called slow-roll regime. In that case, if the separate-
universe approach can be used, perturbations are subject to the same attractor, which makes
them collapse on a phase-space subset (the dimension of which equals the number of matter
fields), removing the dependence on initial field velocities. This further reduction of the
effective phase-space makes the use of the Lagrangian framework convenient, which explains
why most analyses of the separate-universe approach and of the conditions for its validity
have been carried out in the Lagrangian framework.

However, there are situations in which the background dynamics is not endowed with
such an attractor, hence the full phase-space structure must be considered. For instance, this
is the case if inflation proceeds in the so-called ultra-slow-roll regime (which may or may not
be stable, see Ref. [12], but which always retains dependence on the initial field velocities), or
for some contracting cosmologies (see e.g. Refs. [13, 14]). In particular, bouncing cosmologies,
where the classical expansion is preceded by a contracting phase and a regular bounce, are
typical examples of alternatives to inflation [15, 16] arising in various contexts such as string
theory or loop quantum gravity, see e.g. Refs. [17–20].

In such situations it is important to be able to describe and compare CPT and the
separate-universe approach in the phase space, i.e. using the Hamiltonian formalism. While
CPT has already been investigated in this framework, see e.g. Refs. [21, 22], the aim of the
present work is to discuss the Hamiltonian version of the separate-universe approach. Our
goal is both to construct the separate-universe formalism in the Hamiltonian picture, and to
establish the conditions under which it properly describes the full phase-space properties of
cosmological perturbations.

Note that a phase-space formulation of cosmological perturbations (either in CPT or
in the separate-universe approach) is also crucial when it comes to describing them at the
quantum-mechanical level. For instance, as shown in Ref. [23], the choice of an initial vac-
uum state is intimately related to the choice of a phase-space parametrisation. In slow-roll
inflation, a large class of parameterisations leads to the same vacuum state, namely the
Bunch-Davies vacuum, but the situation is less clear in general and makes a phase-space
formulation appropriate.

Let us mention that the present work lays the ground for upcoming articles in which we
will further investigate the gauge formalism (i.e. transformation under changes of coordinates,
the gauge-fixing procedure, and the construction of a gauge-invariant parametrisation of the
phase space) in the Hamiltonian framework, both in full CPT and in the separate-universe
approach. In this article, we will discuss the gauge-fixing procedure in most commonly-used
gauges, since it plays an important role in comparing the separate-universe formalism with
CPT, but one should bear in mind that this discussion will be complemented by a more
systematic analysis in follow-up publications.

Another motivation behind this analysis is the so-called stochastic-inflation formal-
ism [24, 25], which heavily relies on the separate-universe framework. In this approach,
quantum cosmological fluctuations act as a stochastic noise on the large-scale evolution as
they cross out the Hubble radius (either during inflation or during a slowly contracting
era). The stochastic formalism has been extensively used in the context of slow-roll inflation
where it has been shown to be in very good agreement with predictions from quantum-field-
theoretic calculations (see e.g. Refs. [26–32]) and to preserve the attractor nature of the
slow-roll regime [33]. Combined with the δN formalism, where curvature perturbations on
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large scales are related to the fluctuations in the local amount of expansion, it gives rise to
the stochastic-δN formalism [34, 35], which allows one to incorporate quantum backreaction
in the calculation of the density field of the universe. This plays an important role notably
in the analysis of primordial black hole production, which usually requires a phase of strong
stochastic effects [36–38].

Given that primordial black holes form in models where deviations from the slow-roll
attractor are also observed (in particular along the ultra-slow-roll regime), the stochastic-δN
formalism has been recently extended beyond the slow-roll setup [33, 39–47], where the full
phase-space structure of the fields needs to be resolved. The present analysis will therefore
confirm the validity of this approach by studying the separate-universe in the Hamiltonian
framework. In practice, Ref. [46] pointed out that the derivation of the Langevin equations of
stochastic inflation requires to perform a gauge transformation, from the spatially-flat gauge
where the free scalar-field correlators are computed, to the uniform-expansion gauge where
the stochastic noise needs to be expressed. Our goal is also to derive the tools required to
perform such a transformation on generic grounds, in the full phase space of the separate-
universe system. As mentioned above, another situation where a dynamical attractor is not
always available is the case of slowly contracting cosmologies, so the present work can be
seen as a prerequisite for the development of a “stochastic-contraction” formalism [13, 14],
which will be the topic of future works.

The paper is organised as follows. In Sec. 2, we briefly review the basics of the phase-
space (or Hamiltonian) formulation of general relativity, and apply it to the case of homo-
geneous and isotropic cosmologies. We then incorporate cosmological perturbations in the
formalism, using CPT in Sec. 3 and with the separate-universe setup in Sec. 4. We compare
the two approaches in Sec. 5, both at the level of the phase-space dynamics and of the gauge-
fixing procedure. Our results are summarised and further discussed in Sec. 6, and we end the
paper with four appendices to which various technical aspects of the calculations presented
in the main text are deferred.

2 Cosmology in the Hamiltonian formalism

2.1 Hamiltonian description of general relativity

Let us start by reviewing the basics of the Hamiltonian formulation of general relativity (see
e.g. Ref. [48] for a detailed mathematical introduction and Ref. [21] for an application to the
cosmological context). Since our work takes place in the context of primordial cosmology,
for explicitness, we consider the case where the matter content of the universe is given by a
single scalar field, φ, minimally coupled to gravity in a four-dimensional curved space-time
with metric gµν . The total action then reads

S =

∫
d4x
√
−g
[
M2

Pl

2
R− 1

2
gµν∂µφ∂νφ− V (φ)

]
, (2.1)

where g is the determinant of gµν , R is the four-dimensional Ricci scalar, V (φ) is the scalar
field potential, and MPl is the reduced Planck mass. The Hamiltonian formulation is ob-
tained by foliating the four-dimensional space-time into a set of three-dimensional space-like
hypersurfaces, Στ , where the foliation is defined by the lapse function, N(τ, ~x), and the shift
vector N i(τ, ~x). Here, τ stands for the time variable and ~x for the spatial coordinates on the
hypersurfaces. The line element is then expressed in the ADM form [49]

ds2 = −N2(t, ~x)dτ2 + γij(τ, ~x)
[
dxi +N i(τ, ~x)dτ

] [
dxj +N j(τ, ~x)dτ

]
. (2.2)
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In the above expression, γij is the induced metric on the spatial hypersurfaces Στ . Indices
are lowered by γij and raised by its inverse γij .

The canonical variables for the scalar field are φ and its conjugate momentum πφ :=
δS/δφ̇, where we have introduced the notation ḟ := df/dτ for the time derivative, and
δS/δφ̇ is the functional derivative. The associated Poisson bracket is {φ(τ, ~x), πφ(τ, ~y)} =
δ3(~x − ~y). Similarly for the gravitational sector, the canonical variables are the induced
metric, γij , and its associated momentum πij := δS/δγ̇ij , with the Poisson bracket reading

{γij(τ, ~x), πmn(τ, ~y)} = 1
2

(
δmi δ

n
j + δni δ

m
j

)
δ3(~x−~y). Here, δ3(~x) stands for the Dirac distribu-

tion while δij is the Kronecker symbol. Since the time derivatives of the lapse function and of
the shift vector do not appear in the action (2.1), they are Lagrange multipliers, correspond-
ing to the freedom in the choice of the coordinate system. The dynamics of the gravitational
and scalar-field degrees of freedom is then derived from the following total Hamiltonian

C
[
N,N i

]
=

∫
d3~x

[
N
(
S(G) + S(φ)

)
+N i

(
D(G)
i +D(φ)

i

)]
, (2.3)

which is obtained from Eq. (2.1) by performing a Legendre transform, and where S :=

S(G) + S(φ) is the scalar (or energy) constraint and Di := D(G)
i + D(φ)

i is the vector (or
momentum/diffeomorphism) constraint, which both receive contributions from the gravita-
tional sector and from the scalar-field sector.1 As functions of the canonical variables, these
constraints are given by

S(G) =
2

M2
Pl

√
γ

(
πijπij −

π2

2

)
−
M2

Pl

√
γ

2
R(γij), (2.4)

D(G)
i = −2∂m

(
γijπ

jm
)

+ πmn∂iγmn , (2.5)

where γ stands for the determinant of γij , π := γijπ
ij is the trace of the gravitational

momentum, and

S(φ) =
1

2
√
γ
π2φ +

√
γ

2
γij∂iφ∂jφ+

√
γV (φ), (2.6)

D(φ)
i = πφ∂iφ . (2.7)

The “gravitational potential term” is given by the three-dimensional Ricci scalar, R(γij),
associated to the induced metric on the spatial hypersurfaces Στ . The equation of motion for
any function F of the phase-space variables is thus obtained using the full Poisson bracket

{F,G} =

∫
d3x

[(
δF

δγij

δG

δπij
− δG

δγij

δF

δπij

)
+

(
δF

δφ

δG

δπφ
− δG

δφ

δF

δπφ

)]
(2.8)

and the above total Hamiltonian, i.e.

Ḟ (φ, πφ; γij , π
mn) =

{
F (φ, πφ; γij , π

mn), C
[
N,N i

]}
. (2.9)

In addition, the dynamics is constrained to lie on the phase-space surface where both the

scalar and the diffeomorphism constraints vanish, i.e. S(G) + S(φ) = 0 and D(G)
i +D(φ)

i = 0.

1The term “smeared constraint” often appears in the literature and refers to the spatial integral of the
corresponding constraint and its associated Lagrange multiplier (for instance,

∫
d3~xNS is the smeared scalar

constraint).

– 4 –



This is so because minimisation of the action has to hold for any arbitrary choice of the lapse
function and the shift vector, appearing as Lagrange multipliers in the Hamiltonian. Further-
more, one can show that the Poisson bracket between constraints yields only combinations
of the same constraints, i.e. these are “first-class” constraints in Dirac’s terminology. As a
consequence, the constrained surface in the phase space is preserved through the dynamical
evolution generated by the total Hamiltonian.2

The full dynamics in the Hamiltonian framework is thus given by four dynamical equa-
tions, obtained by applying Eq. (2.9) to the phase-space variables (φ, πφ; γij , π

mn), plus four
constraint equations (one from the scalar constraint and three from the diffeomorphism con-
straint). The dynamical equations for the gravitational sector are rather involved (in partic-
ular due to the complexity of R as a function of the induced metric components) and we will
not report them here, see Ref. [48] for explicit expressions [and Eq. (D.14) for γ̇ij ]. For the
scalar-field sector, they take the simple form

φ̇ =
N
√
γ
πφ +N i∂iφ, (2.12)

π̇φ = −N√γV,φ + ∂i
(
N
√
γγij∂jφ

)
+ ∂i

(
N iπφ

)
, (2.13)

where V,φ := ∂V/∂φ.

2.2 Homogeneous and isotropic cosmologies

We now apply the Hamiltonian formalism to homogeneous and isotropic cosmologies. More
precisely, we consider Friedmann-Lemâıtre-Robertson-Walker (FLRW) space-times, where
the metric reduces to

ds2 = −N2(τ)dτ2 + p(τ)γ̃ijdx
idxj . (2.14)

Here, the lapse function, N , and a2 := p, depend on time only, and we have introduced the
three-dimensional time-independent metric γ̃ij and its inverse γ̃ij , such that γ̃ij γ̃jm = δim.

In this setting, a given choice for the lapse function corresponds to a given choice for
the time coordinate. For instance, setting N = 1 is equivalent to working with the cosmic
time (denoted t hereafter), N = a corresponds to conformal time (denoted η hereafter),
and N = 1/H (where H = d ln(a)/dt is the Hubble parameter) means working with the
number of e-folds, ln(a) (denoted N in the following), as the time coordinate. When the
time coordinate is left unspecified (i.e. when the lapse function is left free), we will use the
generic notation τ . Note that homogeneity imposes that the shift vector N i depends on

2This holds by virtue of the contracted Bianchi identities. Indeed, one can rewrite the scalar and diffeo-
morphism constraints in terms of the Einstein-Hilbert tensor Gµν and the energy momentum tensor Tµν as
[49]:

S(G) + S(φ) = G0
0 −

T 0
0

M2
Pl

, (2.10)

D(G)
i +D(φ)

i = G0
i −

T 0
i

M2
Pl

. (2.11)

In terms of the covariant derivative∇, the contracted Bianchi identities read∇µ(Gµν−Tµν /M2
Pl) = 0. Under the

conditions that the spatial part of Einstein equations holds (Gij − Tij/M2
Pl = 0) and that the diffeomorphism

constraints are initially satisfied (G0
i − T 0

i /M
2
Pl = 0), the Bianchi identities reduce to ∇0(G0

ν − T 0
ν/M

2
Pl) = 0.

Thus they impose the time invariance of the constrained surface (see part 3.1 of Ref. [50] for further details).
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time only, and since a uniform vector field provides a preferred direction unless it vanishes,
isotropy further imposes that N i = 0.

For FLRW space-times, the canonical variables for the gravitational sector can be re-
duced to a single scalar, p(τ), and its conjugate momentum, πp(τ). Since γij(τ) = p(τ)γ̃ij ,
the link between πij and πp follows from noticing that the action S̃ for the homogeneous and
isotropic problem can be obtained by replacing

S̃[φ, φ̇, p, ṗ] = S
[
φ, φ̇, γij , γ̇ij

]∣∣∣
γij=p(τ)γ̃ij

. (2.15)

The momentum conjugate to p is thus given by

πp =
δS̃

δṗ
=
δγ̇ij
δṗ

δS

δγ̇ij

∣∣∣∣
γij=p(τ)γ̃ij

= γ̃ij π
ij
∣∣
γij=p(τ)γ̃ij

, (2.16)

which can be inverted as

πij
∣∣
γij=p(τ)γ̃ij

=
πp
3
γ̃ij , (2.17)

where we use that πij is proportional to γ̃ij because of isotropy. Since (p, πp) forms a set
of canonically conjugate variables, one can introduce a new Poisson bracket with respect to
these variables, which will be denoted with the same brackets for the sake of simplicity.3

For the matter sector, homogeneity imposes that φ and πφ depend on time only, so
phase space can be parametrised by the time-dependent variables (φ, πφ; p, πp), in terms of
which the scalar constraints reduce to

S(G) = −
π2p
√
p

3M2
Pl

, (2.18)

S(φ) =
π2φ

2p3/2
+ p3/2V (φ) . (2.19)

Let us note that thanks to homogeneity, the two diffeomorphism constraints D(G)
i and D(φ)

i

identically vanish on this reduced phase space.
An alternative description of the gravitational sector is through the set of canonical

variables

v := p3/2 , (2.20)

θ :=
2πp
3
√
p
, (2.21)

where v = a3 is the volume variable and θ is related to the expansion rate of the hypersurfaces
Στ (see Appendix D). It is straightforward to check that {v, θ} = 1, and the scalar constraints
are now given by

S(G) = − 3vθ2

4M2
Pl

, (2.22)

S(φ) =
π2φ
2v

+ vV (φ) . (2.23)

3The canonical nature of the couple (p, πp) can be further checked by noticing that γij = pγ̃ij can be
inverted as p = γij γ̃

ij/3, so together with Eq. (2.16), Eq. (2.8) gives rise to {p, πp} = γ̃ij γ̃ij/3 = 1.
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The main advantage of these variables is to remove all the
√
p dependence. In terms of v

and θ, the induced metric and its canonical momentum are γij(τ) = v2/3(τ)γ̃ij and πij(τ) =
1
2v

1/3(τ)θ(τ)γ̃ij .
Let us now derive the constraint and dynamical equations using the variables

(φ, πφ; v, θ). The scalar constraint equation S = 0, known as the Friedmann equation, reads

θ2 =
4M2

Pl

3

[
π2φ
2v2

+ V (φ)

]
. (2.24)

The equations of motion for the gravitational sector are then given by

v̇ = − 3N

2M2
Pl

vθ, (2.25)

θ̇ = N

[
3θ2

4M2
Pl

+
π2φ
2v2
− V (φ)

]
. (2.26)

The first of these dynamical equations exhibits the relation between θ and the expansion rate
given by v̇/v. The second equation, known as the Raychaudhuri equation, can be further
simplified using the constraint equation (2.24), and one obtains

θ̇ = N
(πφ
v

)2
. (2.27)

For the scalar-field sector, the dynamics reads

φ̇ = N
πφ
v
, (2.28)

π̇φ = −NvV,φ . (2.29)

Let us note that combining Eqs. (2.27) and (2.28) leads to (φ̇)2 = Nθ̇, which can be viewed
as the second of the Hamilton-Jacobi equations as introduced e.g. in Refs. [1, 51].

Finally, let us see how the usual form of the Friedmann and Raychaudhuri equations
can be recovered. Recalling that v = a3, the Hubble parameter is given by HN = v̇/(3v) =
−Nθ/(2M2

Pl), where we have generalised its definition to an arbitrary lapse function N , and
where the second expression comes from Eq. (2.25). Upon introducing ρ = φ̇2/(2N2) +V (φ)
and P = φ̇2/(2N2)− V (φ), the energy density and the pressure associated to the scalar field
respectively, the Friedmann equation (2.24) takes the usual form(

HN

N

)2

=
ρ

3M2
Pl

, (2.30)

where we have used Eq. (2.28) to relate φ̇ and πφ. For the Raychaudhuri equation, by com-
bining the second Hamilton-Jacobi equation (φ̇)2 = Nθ̇ and the relation HN = −Nθ/(2M2

Pl)
derived above, one obtains the usual form

ḢN

N2
= −ρ+ P

2M2
Pl

. (2.31)

The Klein-Gordon equation for the scalar field can also be obtained by differentiating
Eq. (2.28) with respect to time, and further using Eqs. (2.25), (2.29) and the relation
HN = −Nθ/(2M2

Pl), leading to

φ̈+

(
3HN −

Ṅ

N

)
φ̇+N2V,φ = 0 . (2.32)
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3 Cosmological perturbations

Let us now study cosmological perturbations evolving on the homogeneous and isotropic
background described in Sec. 2. This can be either done in the Lagrangian formalism,
as in Refs. [52, 53], or in the Hamiltonian formalism, as in Ref. [21]. In both approaches,
working in Fourier space is convenient since, owing to the background invariance under spatial
translations, different Fourier modes decouple at leading order in perturbation theory. In
practice, any tensor field Ti···j(τ, ~x) can be Fourier transformed on the spatial hypersurfaces
Στ according to

Ti···j(τ,~k) =

∫
d3~x

(2π)3/2
Ti···j(τ, ~x) e−i

~k·~x , (3.1)

where ~k · ~x is the scalar product kix
i, and the inverse transform is given by

Ti···j(τ, ~x) =

∫
d3~k

(2π)3/2
Ti···j(τ,~k) ei

~k·~x . (3.2)

Note that the wavevector ~k is defined with respect to the flat metric on spatial hypersurfaces
Στ , i.e. it is a comoving wavevector. As a consequence, its indices are raised and lowered
with the metric γ̃ij , so for instance k2 = kik

i = γ̃ijkikj = γ̃ijk
ikj . In practice, we will be

considering real-valued tensor fields, for which the Fourier coefficients must satisfy

T ?i···j(τ,
~k) = Ti···j(τ,−~k) , (3.3)

where a star denotes the complex conjugate. Hereafter this contraint will be referred to as
the reality condition.

3.1 Scalar degrees of freedom

In general, cosmological perturbations can be expanded into scalar, vector and tensor degrees
of freedom (this is the so-called SVT decomposition [54]). In the following we will focus on
scalar perturbations, since they are the main purpose of the separate-universe approach, and
given that vector and tensor perturbations can be dealt with in a similar way.

The lapse function N and the variables describing the scalar field sector, φ and πφ, are
scalar quantities, and so are their perturbations. They can be written as

δN(τ, ~x) := N(τ, ~x)−N(τ) , (3.4)

δφ(τ, ~x) := φ(τ, ~x)− φ(τ) , (3.5)

δπφ(τ, ~x) := πφ(τ, ~x)− πφ(τ) , (3.6)

where the functions N(τ), φ(τ) and πφ(τ) are solutions to the homogenous and isotropic prob-
lem studied in Sec. 2 [hereafter, quantities solving the homogeneous and isotropic problem
will always be denoted with the argument “(τ)”].

The perturbations of the shift vector can be written in a similar way,

δN i(τ, ~x) := N i(τ, ~x)−N i(τ) , (3.7)

where N i(τ) = 0 since the shift vector vanishes in the homogeneous and isotropic setup.
According to the SVT decomposition, δN i can be expanded into the gradient of a scalar and
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a divergence-free vector, namely δNi = ∂i(δN1) + (δN2)i, where δN1 is a scalar and δN2 is
a vector such that ∂i(δN2)

i = 0. As explained above, we focus on scalar perturbations and
thus set δN2 = 0. In Fourier space, one has

δN i(τ,~k) = i
ki

k
δN1(τ,~k) , (3.8)

where δN1(τ,~k) has been rescaled by an overall k factor for later convenience. Note that the
reality condition δN i?(τ,~k) = δN i(τ,−~k), see Eq. (3.3), translates into the same condition
for δN1, namely δN?

1 (τ,~k) = δN1(τ,−~k), since i~k is invariant under complex conjugation and
sign flipping of the wavevector.

The induced metric and its conjugate momentum are perturbed as

δγij(τ, ~x) := γij(τ, ~x)− γij(τ) , (3.9)

δπij(τ, ~x) := πij(τ, ~x)− πij(τ) . (3.10)

These are tensors on the spatial hypersurfaces Στ , and still according to the SVT decom-
position they can be expanded as hij = h1γij + ∂i∂jh2 + ∂i(h3)j + ∂j(h3)i + (h4)ij , where
hij denotes a generic tensor form, h1 and h2 are scalars, h3 is a divergence-free vector, and

h4 is a conserved tensor in the sense that ∂ih
ij
4 = 0 and (h4)

i
i = 0. Keeping only scalar

perturbations amounts to setting h3 = h4 = 0. In Fourier space, h1 is proportional to γij
while h2 is proportional to kikj . For this reason, we introduce the two basis matrices

M1
ij :=

1√
3
γ̃ij and M2

ij :=

√
3

2

(
kikj
k2
− γ̃ij

3

)
, (3.11)

which are indeed linear combinations of γij and kikj , and whose indices are raised and lowered

using the metric γ̃ij since ~k is a comoving wavevector. Note that M1 captures the purely
isotropic part of the perturbations. Our choice of normalisation (which slightly differs from
the one in [21]4) is such that these two matrices form an orthonormal basis, i.e. M ij

AM
A′
ij =

δA,A′ , where A and A′ run over 1 and 2. In Fourier space, the scalar perturbations in the
induced metric and its momentum can thus be expanded as

δγij(τ,~k) = δγ1(τ,~k)M1
ij + δγ2(τ,~k)M2

ij(
~k) , (3.13)

δπij(τ,~k) = δπ1(τ,~k)M ij
1 + δπ2(τ,~k)M ij

2 (~k) . (3.14)

The two scalar degrees of freedom for the gravitational sector are then described by (δγ1, δπ1)
and (δγ2, δπ2). They are related to the original induced metric and conjugate momentum
through

δγA = M ij
A δγij and δπA = MA

ij δπ
ij . (3.15)

4As a consequence, our gravitational variables slightly differ from the ones in Ref. [21]. Denoting (δγL
A, δπ

L
A)

the variables used in Ref. [21], the link between the two sets of variables is given by:

δγL
1 =

δγ1

v2/3
√

3
, δπL

1 =
√

3v2/3δπ1 , δγL
2 =

√
3

2

δγ2
v2/3

, δπL
2 =

√
2

3
v2/3δπ2. (3.12)

Both sets of variables are related by a diagonal canonical transformation, which thus corresponds to a pure
squeezing [55].
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Let us finally stress that, although the indices in M ij
A are lowered and raised with

γ̃ij , Eqs. (3.13) and (3.14) should not be interpreted as leading to similar rules for δγij
and δπij . Indeed, the indices of γij and πij are lowered and raised with the full induced
metric γij . For instance, at linear order in perturbation theory, this leads to δγij(τ, ~x) =
−γim(τ)γjn(τ)δγmn(τ, ~x), hence

δγij(τ,~k) = −δγ1(τ,
~k)

v4/3
M ij

1 −
δγ2(τ,~k)

v4/3
M ij

2 (~k) , (3.16)

where we have used that γij(τ) = v−2/3γ̃ij . For the conjugate momentum, one ob-
tains, still at leading order in perturbation theory, δπij(τ, ~x) = γim(τ)γjn(τ)δπmn(τ, ~x) +
δγim(τ, ~x)γjn(τ)πmn(τ) + δγjm(τ, ~x)γin(τ)πmn(τ). In Fourier space, this leads to

δπij(τ,~k) =
[
v4/3δπ1(τ,~k) + vθδγ1(τ,~k)

]
M1
ij +

[
v4/3δπ2(τ,~k) + vθδγ2(τ,~k)

]
M2
ij(
~k) ,(3.17)

where πmn(τ) has been related to θ by combining Eqs. (2.17) and (2.21). We note that the
configuration variables δγ1 and δγ2 also contribute to δπij . For expressions of δγij(τ,~k) and

δπij(τ,~k) valid at second order, see Eqs. (B.42) and (B.44).
We have thus identified the relevant scalar degrees of freedom at the perturbative level

(we note that the lapse function and the shift vector have no associated momenta, and so is
the case for their perturbations). For completeness, the relationship between the perturba-
tive degrees of freedom in the Hamiltonian framework and those defined in the Lagrangian
approach are given in Appendix A.

3.2 Dynamics of the perturbations

Let us now study the dynamics of the perturbation variables introduced in the previous
section. Our starting point is to view Eqs. (3.5), (3.6), (3.9) and (3.10) as defining a canonical
transformation, which simply consists in subtracting fixed, time-dependent functions from
the phase-space variables. Such a transformation, which is a mere translation in phase space,
obviously preserves the Poisson brackets, hence it is indeed canonical. Our first task is to
derive the Hamiltonian for this new set of canonical variables.

In practice, let us formally arrange the configuration variables into a vector ~q(τ, ~x), with
conjugated momentum ~p(τ, ~x). The perturbation variables are defined according to δ~q(τ, ~x) =
~q(τ, ~x)− ~q(τ) and δ~p(τ, ~x) = ~p(τ, ~x)− ~p(τ), where ~q(τ) and ~p(τ) solve the homogeneous and
isotropic problem described in Sec. 2.2. When evaluated on the fields ~q(τ, ~x) and ~p(τ, ~x), the
scalar constraint can be Taylor expanded in δ~q and δ~p (for the moment to infinite order, so
the analysis remains exact at this stage) according to

S [~q(τ, ~x), ~p(τ, ~x)] = S [~q(t), ~p(t)] + δqµ
∂S
∂qµ

[~q(t), ~p(t)] + δpµ
∂S
∂pµ

[~q(t), ~p(t)]︸ ︷︷ ︸
S(1)[δ~q,δ~p]

+
1

2

∑
{n,m;n+m=2}

(δqµ)n (δpν)m
∂2S

(∂qµ)i (∂pν)j
[~q(t), ~p(t)]

︸ ︷︷ ︸
S(2)[δ~q,δ~p]

+
∑
n≥3
S(n) [δ~q, δ~p] . (3.18)

In this expression, the first term vanishes, S[~q(τ), ~p(τ)] = 0, since, by definition, ~q(τ) and ~p(τ)
satisfy the homogeneous and isotropic scalar constraint. The other terms are organised in
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powers of the perturbation variables: S(1) contains linear combinations of the perturbation
variables, S(2) contains quadratic combinations, etc. A similar expression can be written
down for the diffeomorphism constraint Di.

The dynamics of ~q(τ, ~x) and ~p(τ, ~x) is given by the Hamitonian (2.3), whose Hamilton
equations read

q̇µ(τ, ~x) = N(τ, ~x)
∂S
∂pµ

[~q(τ, ~x), ~p(τ, ~x)] +N i(τ, ~x)
∂Di
∂pµ

[~q(τ, ~x), ~p(τ, ~x)] , (3.19)

ṗµ(τ, ~x) = −N(τ, ~x)
∂S
∂qµ

[~q(τ, ~x), ~p(τ, ~x)]−N i(τ, ~x)
∂Di
∂qµ

[~q(τ, ~x), ~p(τ, ~x)] . (3.20)

Upon plugging the Taylor series (3.18) (and the analogue formula for the diffeomorphism
constraint) into Eq. (3.19), where q̇µ(τ, ~x) = q̇µ(τ) + δq̇µ(τ, ~x), one obtains

δq̇µ = N(τ)
∂S
∂pµ

[~q(τ), ~p(τ)]− q̇µ(τ) + δN(τ, ~x)
∂

∂ (δpµ)
S(1) [δ~q, δ~p]

+N(τ, ~x)
∂

∂ (δpµ)

∑
n≥2
S(n) [δ~q, δ~p] +N i(τ, ~x)

∂

∂ (δpµ)

∑
n≥1
D(n)
i [δ~q, δ~p] . (3.21)

In this expression, the first two terms in the right-hand side cancel each other out since,
by definition, ~q(τ) obeys the first Hamilton equation of the homogeneous and isotropic
problem. Only remain the last three terms, which shows that the equation of motion
of δ~q has the form of a first Hamilton equation with a Hamiltonian density given by

δNS(1) [δ~q, δ~p] + N
∑

n≥2 S(n) [δ~q, δ~p] + N i
∑

n≥1D
(n)
i [δ~q, δ~p]. The same conclusion can be

drawn from plugging the Taylor series of the constraints into Eq. (3.20) and deriving the
equation of motion for δ~p, which can be cast into a second Hamilton equation with the same
Hamiltonian, namely

C [δ~q, δ~p] =

∫
d3~x

[
N(τ)S(2) + δNS(1) + δN iD(1)

i

+N(τ)

∞∑
n=3

S(n) + δN

∞∑
n=2

S(n) +

∞∑
n=2

δN iD(n)
i

]
. (3.22)

In this expression, the quadratic terms have been singled out for later convenience. Although
we have shown that this Hamiltonian gives the correct equations of motion, one must ensure
that the correct constraints are also recovered. This is the case since the perturbed lapse func-
tion multiplies

∑
n≥1 S(n) in Eq. (3.22), namely the full scalar constraint minus S[~q(t), ~p(t)],

which itself vanishes as already mentioned. One can also check that the perturbed shift

vector multiplies
∑

n≥1D
(n)
i , which is nothing but the full diffeomorphism constraint.

Even though the above Hamiltonian provides an exact description of the perturbation
variables, in practice, tractable calculations can only be performed by truncating the expan-
sion at a finite order. At leading order in perturbation theory, only the quadratic terms in
Eq. (3.22) remain (i.e. those in the first line). Variation with respect to the perturbed lapse
and the perturbed shift give the linear scalar constraint equation S(1) = 0 and the linear

diffeomorphism constraint equation D(1)
i = 0 respectively, while the dynamics of the other

phase-space coordinates is generated by S(2) [given that N(τ) is already determined by the
background solution].
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An important remark is that, although S(2) vanishes in the full theory (the full scalar
constraint vanishes so it must vanish order by order), this is not guaranteed at linear order
in perturbation theory (where only the linear constraints are satisfied). The reason is that,
at that order, linear relationships are imposed between the phase-space variables, where all
quadratic and higher-order contributions are neglected. Since S(2) is a quadratic constraint,
this explains why it is not satisfied. It may still be referred to as the quadratic “constraint”
in what follows, although one must recall that this constraint is not satisfied at linear order.
Finally, let us note that if one wanted to study higher orders, one could iterate the same
procedure, and perform the canonical transformation which consists in subtracting from the
perturbation variables the solutions to the linear problem that we will now derive. One
would then find that, at order n, the scalar and diffeomorphism constraints are given by

S(n) = 0 and D(n)
i = 0, while the dynamics is generated by Sn+1.

As mentioned at the beginning of this section, Eqs. (3.5), (3.6), (3.9) and (3.10)
can be seen as a canonical transformation, which preserves the Poisson brackets, hence
(δφ, δπφ, δγij , δπ

ij) share the same Poisson brackets as (φ, πφ, γij , π
ij) and given below

Eq. (2.2). In Sec. 3.1, the scalar degrees of freedom were identified, and for the grav-
itational sector they are given by δγ1, δγ2, δπ1 and δπ2. Their Poisson brackets can
be obtained from Eq. (3.15), which leads to {δγA(~x), δγA′(~y)} = {δπA(~x), δπA′(~y)} = 0
and {δγA(~x), δπA′(~y)} = M ij

AM
A′
`m{δγij(~x), δπ`m(~y)} = δ(~x − ~y)(M ij

AM
A′
ij + M ij

AM
A′
ji )/2 =

δ(~x − ~y)δA,A′ where we have used that the M matrices form an orthonormal basis. As a

consequence, arranging the scalar perturbations into a vector δ~φ := (δφ, δγ1, δγ2) for conve-
nience, the conjugate momentum to δ~φ is given by δ~πφ := (δπφ, δπ1, δπ2). In real space, the
Poisson brackets thus read {

δ~φ(τ, ~x), δ~πφ(τ, ~y)
}

= δ3(~x− ~y)I , (3.23)

where I is the identity matrix (here in 3 dimensions), while in Fourier space they are given
by {

δ~φ(τ,~k), δ~π?φ(τ,~k′)
}

= δ3(~k − ~k′)I . (3.24)

Note that since the two matrices MA
ij satisfy MA

ij (−~k) = MA
ij (
~k), the reality condition (3.3)

applies for δγA(t,~k) and δπA(t,~k) [in addition to holding for δN(t,~k), δφ(t,~k), and δπφ(t,~k)
as already mentioned].

The expansion of the constraints at first and second order in the perturbation variables
is performed in Appendix B in the case of a flat FLRW background, and below we only quote
the results. The linear diffeomorphism constraint is given in Eq. (B.39) and reads

D(1)
i (t,~k) = i kiD(1)(t,~k), (3.25)

where D(1) is a scalar given by

D(1) = πφ δφ+
1√
3
v1/3θ

(
1

2
δγ1 −

√
2δγ2

)
− 2√

3
v2/3

(
δπ1 +

√
2δπ2

)
. (3.26)

Note that Eq. (3.25) implies that the reality condition (3.3), D(1)
i

?
(t,~k) = D(1)

i (t,−~k), also

holds for D(1), namely D(1)?(t,~k) = D(1)(t,−~k). In general, the diffeomorphism constraint is
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a vector and leads to three constraint equations. In the present case, it reduces to a single
constraint equation, D(1)(t,~k) = 0, since only scalar perturbations are considered.

The linear scalar constraint is obtained by combining the contributions in Eqs. (B.27),
(B.32), (B.35), (B.36), and reads

S(1)(t,~k) = −
√

3

M2
Pl

v2/3θ δπ1 −
v1/3√

3

(
π2φ
v2
− V +M2

Pl

k2

v2/3

)
δγ1 +

M2
Pl√
6

k2

v1/3
δγ2

+
πφ
v
δπφ + vV,φδφ , (3.27)

where the background scalar constraint (2.24) has been used. This constraint also satisfies
the reality condition (3.3), S(1)?(t,~k) = S(1)(t,−~k), since it is a linear combination of the
perturbation variables (each satisfying the reality condition) with coefficients given by real-
valued functions of the background and of k2.

Let us note that, when expressing the smeared constraints (see footnote 1) in Fourier
space, one should make sure to avoid double counting of the degrees of freedom and take
into account the reality condition (3.3). In practice, the integration over Fourier modes can
be split into two parts, R3+ := R2 ×R+ and R3− := R2 ×R−. The integration over R3− can

then be written as an integral over R3+ using the fact that δN(t,~k), δN1(t,~k), D(1)
i (t,~k) and

S(1)(t,~k) all satisfy the reality condition. This gives for the smeared constraints

D(1)[δN i] =

∫
R3+

k d3k
[
δN1D(1)? + δN?

1D(1)
]
, (3.28)

S(1)[δN ] =

∫
R3+

d3k
[
δNS(1)? + δN?S(1)

]
, (3.29)

where the extra k in the smeared diffeomorphism constraint comes from Eq. (3.25).
As explained below Eq. (3.22), at quadratic order, only the perturbed scalar constraint,

S(2), is needed. Expressing the smeared constraint as an integral over R3+ in order to avoid
double counting again,

S(2) [N ] = 2

∫
R3+

d3kN(τ)S(2)(τ,~k), (3.30)

in Appendix B we show that [see Eqs. (B.57), (B.65), (B.68) and (B.69)]

S(2) =
v1/3

M2
Pl

(
2 |δπ2|2 − |δπ1|2

)
+

1

2v
|δπφ|2 +

v

2

(
k2

v2/3
+ V,φ,φ

)
|δφ|2

+
1

3v1/3

(
π2φ
v2

+
V

2
− M2

Plk
2

4v2/3

)
|δγ1|2 +

1

3v1/3

(
π2φ
v2

+
V

2
− M2

Plk
2

8v2/3

)
|δγ2|2

− θ

4M2
Pl

(δπ1δγ
?
1 + c.c.) +

θ

2M2
Pl

(δπ2δγ
?
2 + c.c.) +

√
2M2

Pl

24v
k2 (δγ1δγ

?
2 + c.c.)

−
√

3

4
v1/3

[(πφ
v2
δπφ − V,φδφ

)
δγ?1 + c.c.

]
, (3.31)

where “c.c.” means the complex conjugate of the previous term, and where the background
scalar constraint (2.24) has been used to further simplify the expression. The two first lines
correspond to diagonal terms, the third line features cross terms within the gravitational
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sector (we notice that there is no cross term in the scalar-field sector), while the fourth
line stands for coupling between the two sectors. In particular, one can see that the scalar
field perturbations couple only to the isotropic gravitational configuration. There is however
no coupling between the scalar field and the isotropic gravitational momentum δπ1. The
absence of coupling between δφ or δπφ and δγ2 or δπ2 is due to the fact a scalar field can
only generate isotropic perturbations. The two gravitational degrees of freedom are however
coupled to each other, through a term of the form k2(δγ1)(δγ2), that is to say via gradient
interactions.

We are now in a position where we can derive the equations of motion for the pertur-
bations,

˙δγ1 = − 2√
3
v2/3kδN1 −

√
3

M2
Pl

v2/3θ δN − N

M2
Pl

(
2v1/3 δπ1 +

θ

2
δγ1

)
,

˙δπ1 = −v
1/3θ

2
√

3
kδN1 +

v1/3√
3

(
π2φ
v2
− V +M2

Pl

k2

v2/3

)
δN

+N

[
− 2

3v1/3

(
π2φ
v2

+
V

2
− M2

Plk
2

4v2/3

)
δγ1 +

θ

2M2
Pl

δπ1

+

√
3

2
v1/3

(πφ
v2
δπφ − V,φ δφ

)
−
√

2

12v
M2

Plk
2δγ2

]
,

˙δγ2 = −2

√
2

3
v2/3kδN1 +N

(
4v1/3

M2
Pl

δπ2 +
θ

M2
Pl

δγ2

)
,

˙δπ2 =

√
2

3
v1/3θkδN1 −

M2
Plk

2

√
6v1/3

δN

+N

[
− θ

M2
Pl

δπ2 −
√

2M2
Pl

12v
k2δγ1 −

2

3v1/3

(
π2φ
v2

+
V

2
− M2

Plk
2

8v2/3

)
δγ2

]
,

(3.32)


˙δφ =

πφ
v
δN +N

(
1

v
δπφ −

√
3

2

πφ

v5/3
δγ1

)
,

˙δπφ = −πφkδN1 − vV,φ δN −N

[
v

(
k2

v2/3
+ V,φ,φ

)
δφ+

√
3

2
v1/3V,φ δγ1

]
.

3.3 Fixing the gauge

Since the theory is independent of a specific choice of space-time coordinates, some combina-
tions of the perturbation variables can be set to zero, which amounts to working in a specific
gauge. Changes of coordinates bear four degrees of freedom (one per coordinate), made of
two scalars and one vector.5 In practice, they correspond to the Lagrange multipliers of the
theory (one scalar in the lapse, one scalar and one vector in the shift). Since we are dealing
with scalar perturbations only, this implies that two combinations of scalar perturbations can
be set to zero. The vanishing of their respective equations of motion leads to two additional
vanishing combinations. Together with the two linear constraint equations, this allows one
to freeze six out of the eight variables (namely δN , δN1, δφ, δπφ, δγ1, δπ1, δγ2 and δπ2),
such that only two variables (hence a single physical degree of freedom) remain.

5In general, a change of coordinates can be written as xµ → xµ + ξµ, where ξi = ∂if + fi, with ∂if
i = 0.

The two scalar degrees of freedom correspond to ξ0 and f while f i contains the vector degrees of freedom.
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This single remaining physical degree of freedom can be parametrised in a gauge-
invariant way, e.g. using the so-called Mukhanov-Sasaki combination [56, 57]6

QMS :=

√
v

N
δφ+

M2
Plπφ√

6Nθv7/6

(√
2δγ1 − δγ2

)
. (3.33)

A detailed discussion of gauge transformations in the Hamiltonian formalism, and of the
systematic construction of gauge-invariant combination, will be presented separately in a
forthcoming article. The above constraint and dynamical equations allow one to derive an
autonomous equation of motion for the Mukhanov-Sasaki variable, namely

Q̈MS +

(
k2 − z̈

z

)
QMS = 0 , (3.34)

which is written in conformal time η, and where z ≡ v1/3
√

2ε1MPl with ε1 ≡ 2M2
Plθ̇/(Nθ

2)
the first Hubble-flow parameter.

An alternative approach is to fix the gauge in which the calculation is performed. Al-
though a gauge-invariant approach is more elegant in general, gauge fixing may be required in
some problems (for instance in numerical approaches, see e.g. Ref. [58], or in the stochastic-
δN formalism as explained below in Sec. 3.3.3). We thus end this section by considering a
few different gauge choices that are commonly used in the literature, namely the spatially-flat
gauge, the Newtonian gauge, the (generalised) synchronous gauges and the uniform-expansion
gauges. These gauges will also be of particular interest to discuss on how to properly match
the separate universe approach to CPT, which is why they are introduced before Sec. 4.
The connection with the (more often discussed) definition of these gauges in the Lagrangian
framework is given in Appendix A.

Spatially-flat gauge

Let us start with the spatially-flat gauge, in which one sets δγij = 0. This implies that
δγ1 = δγ2 = 0. In that gauge, phase-space reduction proceeds as follows. For δγ1 and δγ2
to remain zero, their equation of motion should vanish too (i.e. δγ̇1 = δγ̇2 = 0), which from
Eq. (3.32) gives two constraint equations, namely

2√
3
kv2/3 δN1 +

√
3

M2
Pl

v2/3θ δN +
2

M2
Pl

Nv1/3 δπ1 = 0 , (3.35)

2

√
2

3
kv2/3 δN1 −

4

M2
Pl

Nv1/3 δπ2 = 0 . (3.36)

Moreover, when δγA = 0, the linear constraints are given by

D(1) = πφ δφ−
2√
3
v2/3

(
δπ1 +

√
2δπ2

)
= 0, (3.37)

S(1) =
πφ
v
δπφ + vV,φ δφ−

√
3

M2
Pl

v2/3θ δπ1 = 0 . (3.38)

We thus have four constraint equations, which allow us to express δN , δN1, δπ1 and δπ2 in
terms of the other phase-space variables (namely δφ and δπφ), and one obtains

δN

N
= −

πφ
vθ

δφ , (3.39)

6Note that, to match conventions usually adopted in the literature, we use a different normalisation than
in previous versions of this article.
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k
δN1

N
=

(
3

2M2
Pl

πφ
v
−
V,φ
θ

)
δφ−

πφ
v2θ

δπφ , (3.40)

δπ1 =
M2

Pl√
3v2/3θ

(πφ
v
δπφ + vV,φ δφ

)
, (3.41)

δπ2 = −M
2
Pl√
6

πφ

v5/3θ
δπφ +

M2
Pl√
6

(
3

2M2
Pl

πφ

v2/3
−
v1/3V,φ
θ

)
δφ . (3.42)

One thus has a single physical scalar degree of freedom, described by δφ and δπφ, the dynamics
of which is given by the two last equations of Eq. (3.32) where the above replacements are
made. One can also check that, still with the above replacements, the equations of motion for
δπ1 and δπ2, i.e. the second and the fourth entries of Eq. (3.32), are automatically satisfied.

3.3.1 Newtonian gauge

Let us now consider the Newtonian gauge, which corresponds to setting δγ2 = δN1 = 0. For
δγ2 to remain zero, the third entry of Eq. (3.32) has to vanish, which leads to δπ2 = 0. The
gravitational anisotropic degree of freedom is therefore entirely frozen. Similarly, for δπ2 to
remain zero, the fourth entry of Eq. (3.32) has to vanish, which leads to

k2√
6v1/3

δN +
N

6
√

2v
k2δγ1 = 0 . (3.43)

Moreover, the two linear constraints read

D(1) = πφ δφ+
1

2
√

3
v1/3θ δγ1 −

2√
3
v2/3δπ1 = 0, (3.44)

S(1) = −
√

3

M2
Pl

v2/3θ δπ1 −
v1/3√

3

(
π2φ
v2
− V +M2

Pl

k2

v2/3

)
δγ1 +

πφ
v
δπφ + vV,φδφ = 0.

(3.45)

With the above three constraint equations, one can either fix δN , δγ1 and δπ1, and work with
(δφ, δπφ) as describing the remaining dynamical variable; or fix δN , δφ and δπφ, and work
with (δγ1, δπ1) as describing the remaining dynamical variable; or any other combination.

Let us mention that an alternative definition of the Newtonian gauge is to start from
the conditions δγ2 = δπ2 = 0, since the third entry of Eq. (3.32) then implies that δN1 = 0.

3.3.2 Generalised synchronous gauge

The generalised synchronous gauges are such that neither the lapse function nor the shift
vector are perturbed, δN = δN1 = 0. They can be viewed as gauges in which the global time
and space coordinate of the perturbed FLRW background exactly coincide with the time and
space coordinate of the (strictly homogeneous and isotropic) FLRW space-time, irrespectively
of the initial choice of the background lapse function. Choosing for instance the background
lapse function to be cosmic time [so N(τ) = 1], this boils down to the standard synchronous
gauge.

Let us note that the conditions δN = δN1 = 0 do not impose further constraints
from the equations of motion (3.32), contrary to what was obtained in the spatially-flat and
Newtonian gauges. As a consequence, the generalised synchronous gauges are not entirely
fixed and still contain two spurious gauge modes.
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3.3.3 Uniform-expansion gauge

As explained in Ref. [46], the stochastic-δN formalism [34, 35] is formulated in the uniform-
expansion gauge, in which the perturbation of the integrated expansion

Nint :=
1

3

∫
∇µnµ nνdxν (3.46)

is set to zero. In this expression, ∇ denotes the covariant derivative, and nµ is the unit
vector such that the form nµ is orthogonal to the spatial hypersurfaces Στ (see Appendix D
for an explicit calculation of the expansion rate ∇µnµ, in particular Eq. (D.18), and of the
integrated expansion Nint).

The reason for setting δNint = 0 is that, in order to relate the large-scale curvature
perturbation with the fluctuation in the number of e-foldsN , as implied by the δN formalism,
the Langevin equations of stochastic inflation have to be solved with the number of e-folds as
the time variable, and this amounts to fixing Nint across the different patches of the universe.

In Appendix D, it is shown that at the background level, Nint = ln(v)/3, see Eq. (D.20),
i.e. the integrated expansion is nothing but the number of e-folds N . At first order in the
perturbation variables, one obtains δNint = δγ1/(2

√
3v2/3) + k

∫
δN1dτ/3, see Eq. (D.25).

The uniform-expansion gauge thus corresponds to setting

δγ1 = δN1 = 0 . (3.47)

Note that the vanishing of δγ̇1 in Eq. (3.32) leads to an additional constraint equation, so
together with the two first-order constraint equations, one can thus set five out of the eight
variables. As a consequence, the uniform-expansion gauge is not entirely fixed and still
contains one spurious gauge mode. This may seem a priori problematic [59] but as we will
show below in Sec. 4.3.4, in the separate-universe framework (where stochastic inflation is
formulated), the gauge becomes unequivocally defined.

4 Separate universe

Let us now describe the separate-universe approach [1–3, 6, 60, 61] (also known as the quasi-
isotropic approach [8, 9, 62, 63]), which consists in introducing local perturbations to the
homogeneous and isotropic problem described in Sec. 2.2, as a proxy for the full perturbative
problem studied in Sec. 3. Our goal is to establish this formalism (and the corresponding
validity conditions) in the Hamiltonian framework, complementing analyses performed in the
Lagrangian approach such as Ref. [46].

4.1 Homogeneous and isotropic perturbations

The starting point of the separate-universe approach is to perturb the homogeneous and
isotropic background variables introduced in Sec. 2.2, namely N → N(τ) + δN , (v, θ) →
[v(τ) + δv, θ(τ) + δθ], and (φ, πφ) → [φ(τ) + δφ, πφ(τ) + δπφ]. Hereafter, an overall bar
denotes perturbations of the background variables, which a priori differ from the perturbation
variables used in the full treatment of Sec. 3. As we will show, they however succeed in
capturing their behaviour above the Hubble radius, i.e. when k � aH.

In order to make this statement explicit, one must first determine to which background
perturbations the variables introduced in Sec. 3 correspond, i.e. one must establish a “dictio-
nary” between CPT and the separate universe approach. For obvious reasons, δN , δφ and
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δπφ correspond to δN , δφ and δπφ respectively. Since the shift N i vanishes at the background
level, there is no perturbed shift in the separate-universe approach, i.e. δN1 = 0. For the grav-
itational sector, since γij(τ) = v2/3γ̃ij at the background level, one has γij → (v + δv)2/3γ̃ij
in the separate universe, which leads to δγij = [(v + δv)2/3 − v2/3]γ̃ij . Making use of
Eq. (3.15), this gives rise to δγ1 =

√
3[(v + δv)2/3 − v2/3] and δγ2 = 0. Similarly, com-

bining Eqs. (2.17) and (2.21), at the background level one has πij(τ) = v1/3θγ̃ij/2, which
leads to δπij = [(v + δv)1/3(θ + δθ) − v1/3θ]γ̃ij/2. Making use of Eq. (3.15) again, this
gives δπ1 =

√
3[(v + δv)1/3(θ + δθ) − v1/3θ]/2 and δπ2 = 0. These formula are summarised

in Table 1. One can see that the anisotropic degrees of freedom, δγ2 and δπ2, as well as

CPT separate-universe approach

δN δN

δN1 0

δγ1 δγ1 =
√

3[(v + δv)2/3 − v2/3]
δπ1 δπ1 =

√
3
2 [(v + δv)1/3(θ + δθ)− v1/3θ]

δγ2 0

δπ2 0

δφ δφ

δπφ δπφ

Table 1. Correspondence between variables in CPT and in the separate-universe approach.

the shift, are simply absent in the separate-universe approach. One can also check that the
transformation from (δγ1, δπ1) to (δv, δθ) is canonical, as it should.

4.2 Dynamics of the background perturbations

The dynamics of the perturbations in the separate-universe approach can be obtained by
plugging the replacement rules derived in Sec. 4.1 into the Hamiltonian (2.3), whose contri-
butions are given in Eqs. (2.4)-(2.7). This gives rise to

C =
−3

4M2
Pl

vθ2
(

1 +
δγ1√
3v2/3

)1/2(
1 +

2√
3

δπ1

v1/3θ

)2

+
π2φ
2v

(
1 +

δγ1√
3v2/3

)−3/2(
1 +

δπφ
πφ

)2

+ v

(
1 +

δγ1√
3v2/3

)3/2

V
(
φ+ δφ

)
, (4.1)

where the smeared constraint is C =
∫

d3~xNC, and where θ2 can be expressed using the
background constraint equation (2.24). Here we have parametrised the gravitational per-
turbations with δγ1 and δπ1 instead of δv and δθ, to allow for a more direct comparison
with CPT. The two sets of variables are however simply related with the formulas given in
Table 1, and below we will also provide the result in terms of δv and δθ, since they have
the advantage of providing a simple interpretation as perturbations of the volume and of the
expansion rate. Note that we have also dropped the term proportional to ∂iφ∂jφ since δφ̄
is a homogeneous degree of freedom. Similarly, since only homogeneous and isotropic per-
turbations are included in the induced metric, its Ricci scalar vanishes, i.e. R(τ) = δR = 0,
which explains why the term proportional to R in Eq. (2.4) is absent too.
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The next step is to expand Eq. (4.1) to the quadratic order in perturbations, see the
discussion above Eq. (3.22). It gives rise to the following Hamiltonian

C
[
N + δN

]
= N S(0) +

(
δN S(1) +N S(2)

)
, (4.2)

where S(0) is given by Eqs. (2.22) and (2.23), and the perturbed scalar constraint at linear
and quadratic order is

S(1) = −
√

3

M2
Pl

v2/3θ δπ1 −
v1/3√

3

(
π2φ
v2
− V

)
δγ1 +

πφ
v
δπφ + vV,φ δφ , (4.3)

S(2) = −v
1/3

M2
Pl

(
δπ1
)2

+
1

3v1/3

(
π2φ
v2

+
V

2

)(
δγ1
)2

+
1

2v

(
δπφ
)2

+
v

2
V,φ,φ

(
δφ
)2

− θ

2M2
Pl

(
δπ1
) (
δγ1
)
−
√

3

2
v1/3

(πφ
v2
δπφ − V,φ δφ

)
δγ1 . (4.4)

The separate-universe variables have to lie on the constraint S(1) = 0, while S(2) contributes
to their dynamics, which Hamilton equations are given by

˙δγ1 = −
√

3

M2
Pl

v2/3θ δN − N

M2
Pl

(
2v1/3 δπ1 +

θ

2
δγ1

)
,

˙δπ1 =
v1/3√

3

(
π2φ
v2
− V

)
δN +N

[
− 2

3v1/3

(
π2φ
v2

+
V

2

)
δγ1 +

θ

2M2
Pl

δπ1

]
+N

√
3

2
v1/3

(πφ
v2
δπφ − V,φ δφ

)
,

(4.5)
˙δφ =

πφ
v
δN +N

(
1

v
δπφ −

√
3

2

πφ

v5/3
δγ1

)
,

˙δπφ = −vV,φ δN −N

(
vV,φ,φ δφ+

√
3

2
v1/3V,φ δγ1

)
.

By comparing those equations of motion with their CPT counterpart, Eqs. (3.32), one
notices that the contribution involving the diffeomorphism constraint is absent in the SU.

This is because D(1)
i = i kiD(1) is proportional to k, see Eq. (3.25), so it indeed disappears

at large scales. However, the constraint equation itself leads to a relationship between the
perturbation variables that does not involve k, and which therefore contains non-trivial in-
formation even at large scales. The fact that it is lost in the separate-universe approach may
therefore seem problematic a priori, and the consequences of this loss will be further analysed
below. At this stage, let us simply notice that a SU version of the diffeomorphism constraint
can still be defined using the correspondence table 1:

D(1)
:= πφδφ+

1

2
√

3
v1/3θδγ1 −

2√
3
v2/3δπ1 . (4.6)

Using Eq. (4.5), one can readily show that Ḋ
(1)

= 0 as long as the linear scalar constraint is

satisfied S(1) = 0. This implies that D(1)
is a conserved quantity in SU.
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It is worth stressing that the initial value ofD(1)
is usually set by CPT, which is employed

to describe cosmological perturbations before they cross out the Hubble radius. In CPT,

D(1) = 0, but this does not guarantee that D(1)
vanishes initially (hence at later time) since

D(1) and D(1)
generically differ.7 By comparing Eqs. (3.26) and (4.6), one notices that they

coincide when 2v1/3δπ2 + θδγ2 = 0. Therefore, by working in gauges where the anisotropic
sector satisfies this constraint in CPT, one reinstates the diffeomorphism constraint in SU,

D(1)
= 0. As we will see below, this condition is however not required for the SU approach

to be reliable.
As mentioned above, it is also interesting to cast the result in terms of the variables δv

and δθ for the gravitational sector, and one finds that the scalar constraint is given by

S(1) = − 3vθ

2M2
Pl

δθ + vV,φδφ+
π2φ
v

(
δπφ
πφ
− δv

v

)
, (4.7)

that the diffeomorphism constraint reduces to

D(1)
= πφδφ− vδθ , (4.8)

and that the equations of motion read
δ̇v = − 3

2M2
Pl

vθ

(
δN +N

δv

v
+N

δθ

θ

)
,

δ̇θ =
π2φ
v2

(
δN − 2N

δv

v
+ 2N

δπφ
πφ

)
,

(4.9)


˙δφ =

πφ
v

(
δN −N δv

v
+N

δπφ
πφ

)
,

˙δπφ = −vV,φ
(
δN +N

δv

v

)
−NvV,φ,φ δφ .

(4.10)

Note that in order to simplify the equation of motion for the perturbed expansion rate, we
made use of the scalar constraint at the background level and at first order, S(0) = S(1) = 0.

An important remark is that, while the above formulas have been obtained by plugging
the correspondence relations given in Table 1 into the full Hamiltonian (2.3)-(2.7), an alter-
native derivation would be to start from the Hamiltonian of the homogeneous and isotropic
problem, Eqs. (2.22) and (2.23), or even from the equations of motion of the homogeneous
and isotropic problem, i.e. Eqs. (2.24)-(2.26) and (2.28)-(2.29), and plug in the correspon-
dence relations at these levels. In Appendix C, we show that these two alternative procedures
yield exactly the same equations. In other words, it is equivalent to (i) first perturb the sys-
tem and then restrict the analysis to homogeneous and isotropic perturbations, and (ii) first
impose homogeneity and isotropy and then perturb the reduced system.

Let us also note that, once the phase space has been reduced to the separate-universe
degrees of freedom, the Hamiltonian (4.1) is exact, i.e. it does not contain any perturbative
expansion. As a consequence, even though we have derived the relevant dynamical equations
at leading order, one could treat the separate-universe non perturbatively, by imposing the

7We thank Diego Cruces for interesting discussions leading to this remark.
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vanishing of Eq. (4.1) (this is the scalar constraint equation) and using Eq. (4.1) to derive
the (non-linear) equations of motion.8 Below we check the agreement between the separate-
universe approach and standard CPT at leading order, but one should bear in mind that the
separate-universe approach is non perturbative.

4.3 Fixing the gauge

We end this section by mentioning that gauge fixing can also be performed in the separate-
universe framework, which contains five variables, namely δN , δφ, δπφ, δγ1 and δπ1. Since the
theory has a single Lagrange multiplier, namely the lapse function, a single scalar combination
of the perturbation variables can be set to zero (compared to two in CPT, see footnote 5). The
vanishing of its equation of motion then leads to a constraint equation, which, added to the
scalar constraint equation, leaves two phase-space variables free, i.e. one scalar physical degree
of freedom (i.e. the same number of physical degrees of freedom as in CPT). As explained
around Eq. (3.33) in the context of the full CPT, this physical degree of freedom can be
parametrised by the Mukhanov-Sasaki variable, which in the separate-universe framework
reads

Q
MS

:=

√
v

N
δφ+

M2
Plπφ√

3Nθv7/6
δγ1 . (4.11)

Making use of the above constraint and dynamical equations, it obeys the second-order
equation of motion

Q̈
MS
− z̈

z
Q

MS
=
(

4
πφ
θv
V − 2V,φ

)
D(1)

=

√
ε1
2
ε2MPlH

2D(1)
, (4.12)

where the second expression casts the right-hand side in terms of the first and second Hubble-
flow parameters ε2 ≡ d ln ε1/d ln(v1/3). This needs to be compared to its CPT counterpart,
namely Eq. (3.34). Two differences can be noticed. First, the term proportional to k2QMS

is absent in the SU, since gradient terms are indeed negligible at large scales. Second, a
right-hand side involving the SU diffeomorphism constraint is present in Eq. (4.12). As
noted above, a specific constraint can be imposed in the anisotropic sector to make it vanish.

Otherwise, D(1)
is a constant, hence the right-hand side is either almost constant (as in slow-

roll inflation), or decays (as in ultra slow-roll inflation, where it decays as 1/v). In either
case, it is much smaller than the left-hand side, which necessarily grows (QMS ∝ v1/3 hence
Q̈MS ∝ v, both in slow roll and ultra slow roll). As a consequence, the term arising from
the diffeomorphism constraint can only affect sub-dominant modes on super-Hubble scales,
which must be discarded in a gradient expansion anyway. We conclude that it does not
jeopardise the SU approach.

Alternatively, let us see how the gauges introduced in Sec. 3.3 proceed in the separate-
universe picture.

4.3.1 Spatially-flat gauge

In the spatially-flat gauge introduced in Sec. 3.3, δγij = 0, which simply translates into

δγ1 = 0 in the separate-universe approach. Requiring that ˙δγ1 = 0 in Eq. (4.5), together

8We note that the equivalence with the alternative derivation consisting in including the separate-universe
deviations in the homogeneous and isotropic Hamiltonian, Eqs. (2.22) and (2.23), or even directly in the
homogeneous and isotropic equations of motion, Eqs. (2.24)-(2.26) and (2.28)-(2.29), also holds at the non-
linear level, hence at all orders in the separate-universe perturbations (see Appendix C).
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with the vanishing of the linear scalar constraint given in Eq. (4.3), then leads to

δN = −2M2
Pl

3

N

θ2

(
V,φ δφ+

πφ
v2
δπφ

)
, (4.13)

δπ1 =
M2

Pl√
3v2/3θ

(πφ
v
δπφ + vV ′δφ

)
. (4.14)

All variables can therefore be expressed in terms of δφ and δπφ only, whose dynamics is given
by Eqs. (4.10) where the above replacements are made.

4.3.2 Newtonian gauge

The Newtonian gauge was defined in Sec. 3.3.1 with the condition δγ2 = δπ2 = 0, or equiv-
alently δγ2 = δN1 = 0. Since the corresponding variables are already set to zero in the
separate-universe approach, see Table 1, these conditions yield no prescription in the sepa-
rate universe.

4.3.3 Generalised synchronous gauge

The generalised synchronous gauge was defined in Sec. 3.3.2 with the condition δN = 0,
which here translates into δN = 0. As already noticed in Sec. 3.3.2, no further constraint is
imposed from the equations of motion, so that gauge is not entirely fixed.

4.3.4 Uniform-expansion gauge

In the uniform-expansion gauge introduced in Sec. 3.3.3, δN1 = δγ1 = 0, which simply
translates into δγ1 = 0 in the separate-universe approach. One thus obtains Eqs. (4.13)
and (4.14) as in the separate-universe spatially-flat gauge, so the uniform-expansion gauge is
unequivocally defined in the separate-universe framework.

5 Separate universe versus cosmological-perturbation theory

Having studied scalar fluctuations in CPT, see Sec. 3, and in the separate-universe approach,
see Sec. 4, we are now in a position where we can compare the two and derive the conditions
under which the latter provides a reliable approximation of the former. This will be first
done by leaving the gauge unfixed, where we will recover the conditions obtained in Ref. [46]
from an analysis performed in the Lagrangian framework. We will then consider the gauges
introduced in Sec. 3.3, where we will show that the agreement between the gauge match-
ing procedures is not always guaranteed, and that it sometimes requires specific matching
prescriptions that we will establish.

5.1 Arbitrary gauge

For the linear scalar constraint, one has to compare Eq. (4.3) with Eq. (3.27) where the
replacements outlined in Table 1 are performed. One can see that the two constraints are
the same, provided that

k2

v2/3
� 1

M2
Pl

∣∣∣∣∣π2φv2 − V
∣∣∣∣∣ . (5.1)

The case of the diffeomorphism constraint was already discussed around Eq. (4.6).
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For the quadratic scalar constraint, one has to compare Eqs. (3.31) and (4.4). For the
terms proportional to |δφ|2 to match, one must impose

k2

v2/3
� |V,φ,φ| , (5.2)

which implies that the physical wavenumber is much smaller than the mass of the scalar
field. The terms involving gravitational perturbations require more attention. They can be
written in matricial form as (δγ1, δγ2)M(δγ?1 , δγ

?
2)T, where

M =


1

3v1/3

(
π2
φ

v2
+ V

2 −
M2

Plk
2

4v2/3

) √
2M2

Pl
24v k2

√
2M2

Pl
24v k2 1

3v1/3

(
π2
φ

v2
+ V

2 −
M2

Plk
2

8v2/3

)
 (5.3)

is a symmetric matrix that can be read off from Eq. (3.31), and which eigenvalues are given
by

λ1 =
2

3v1/3

(
π2φ
v2

+
V

2

)
and λ2 = λ1 −

1

4

M2
Plk

2

v
. (5.4)

For the term proportional to k to play a negligible role, one thus has to impose

k2

v2/3
� 1

M2
Pl

∣∣∣∣∣π2φv2 +
V

2

∣∣∣∣∣ . (5.5)

When the conditions (5.2) and (5.5) hold, Eqs. (3.31) reduces to

S(2)(k → 0) ' −v
1/3

M2
Pl

|δπ1|2 +
1

3v1/3

(
π2φ
v2

+
V

2

)
|δγ1|2 +

|δπφ|2

2v
+
v

2
V,φ,φ |δφ|2

− θ

2M2
Pl

Re [(δπ?1) (δγ1)]−
√

3

2
v1/3

{πφ
v2

Re
[(
δπ?φ
)

(δγ1)
]
− V,φRe [(δφ?) (δγ1)]

}
+

2v1/3

M2
Pl

|δπ2|2 +
1

3v1/3

(
π2φ
v2

+
V

2

)
|δγ2|2 +

θ

M2
Pl

Re [(δπ?2) (δγ2)] , (5.6)

which has to be compared to Eq. (4.4). The separate-universe quadratic constraint, S(2),
can be formally matched to the two first lines of the above limit (note that cosmological
perturbations are real-valued in real space). As expected, it is however unable to capture the
last line of the above expression, which contains the anisotropic gravitational perturbations.
Nonetheless, it is important to stress that in the above limit, these anisotropic degrees of
freedom decouple from the isotropic ones. This is why, at large scales, the dynamics of the
isotropic cosmological perturbations is independent of the anisotropic sector, and is thus
correctly described by the separate-universe approach. These considerations thus allow us
to establish the following statement:

On large scales, the separate-universe framework, in which the homogeneous and
isotropic problem is perturbed (either at the level of its Hamiltonian or at the level of its
dynamical equations), is equivalent to the full CPT where the anisotropic degrees of freedom
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are set to zero.

The next question is to determine whether or not it is legitimate to set the anisotropic
degrees of freedom to zero, i.e. under which condition the anisotropic degrees of freedom are
negligible compared with the isotropic degrees of freedom. The answer to that question is
necessarily gauge dependent, since the relative amplitude of both sets of degrees of freedom
depends on the gauge. This is why, in the remaining part of this section, we will further in-
vestigate the gauges introduced in Secs. 3.3 and 4.3. But before moving on to that discussion,
two remarks are in order.

First, at the gauge-invariant level, one can compare the separate-universe approach and
CPT by inspecting the equations of motion for the Mukhanov-Sasaki variable, i.e. Eqs. (??)
and (4.12). Under the condition (5.2), the latter reduces to the former, which confirms the
validity of the separate-universe approach.

Second, the three conditions obtained on the amplitude of the wavenumber,
i.e. Eqs. (5.1), (5.2) and (5.5), can be summarised as follows. Upon writing k = σaH,
and using the Friedmann and Raychaudhuri equations (2.30) and (2.31), they give rise to

σ �
√
|η|,
√
|1 + 3w|,

√
|1 +

3

5
w| . (5.7)

Here, η ≡ V ′′/H2 is the so-called “eta parameter”, which measures the squared mass of
the field in Hubble units. In the context of inflation, it is given by η ' 6ε1 − 3ε2/2, where
ε1 := −d(lnH)/(dN ) and ε2 := d(ln ε1)/(dN ) are the two first slow-roll parameters. It is
therefore a small parameter. The quantity w denotes the equation-of-state parameter, which
in inflation differs from −1 by slow-roll corrections. Hence the second and third constraints
are of order one. The most stringent constraint therefore comes from the eta parameter9 and
imposes to consider super-Hubble wavelengths. We finally stress that this set of conditions
is gauge-dependent in the sense that some of them may not be mandatory in some specific
gauges. For instance, the constraints (5.1) and (5.5) are not necessary when working in the
uniform-expansion gauge or in the spatially-flat gauge, in which δγ1 is imposed to be zero.

5.2 Fixing the gauge

Let us now compare the separate-universe approach and CPT in the few gauges discussed in
Secs. 3.3 and 4.3.

5.2.1 Spatially-flat gauge

The spatially-flat gauge is unequivocally defined both in CPT and in the separate-universe
approach. However, the gauge-fixing procedure proceeds differently in these two frameworks.
Indeed, even though the same expression is obtained for the perturbed momentum of the
induced metric, see Eqs. (3.41) and (4.14), it leads to different expressions for the perturbed
lapse and shift, see Eqs. (3.39) and (4.13). This clearly violates the correspondences of
Table 1. Another manifestation of this mismatch comes from noticing that applying the
correspondence of Table 1 to Eq. (3.40) leads to a relationship between δφ and δπφ that is

9It is worth noting that this might be different in a non-inflationary context, for instance when the universe
transits from an accelerated expansion to a decelerated one (or vice-versa) for which

√
|1 + 3w| vanishes. We

also note that the last constraint is always of order one or larger unless one is considering matter contents
violating the null energy condition, i.e. w < −1.
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clearly not satisfied in the separate-universe picture. The reason for these discrepancies can
be traced back to the fact that kδN1 is not k-suppressed [64], see Eq. (3.40) again. We thus
conclude that in the spatially-flat gauge, the separate universe approach does not lead to the
appropriate gauge fixing.

5.2.2 Newtonian gauge

As explained in Sec. 4.3, since the Newtonian gauge consists in freezing the anisotropic degrees
of freedom, it does not lead to any relevant constraint in the separate-universe framework.
This problem can be solved by considering an alternative definition of the Newtonian gauge
by means of Eqs. (3.43) and (3.44), i.e. by imposing

δN

N
= − δγ1

2
√

3v2/3
, (5.8)

δπ1 =

√
3πφ

2v2/3
δφ+

θ

4v1/3
δγ1 . (5.9)

The fact that these two conditions lead to the same definition of the Newtonian gauge as the
one introduced in Sec. 3.3.1 (namely δγ2 = δN1 = 0, or equivalently δγ2 = δπ2 = 0), can be
seen as follows. Combining Eq. (5.9) with the vanishing of Eq. (3.26) first leads to θδγ2 +
2v1/3δπ2 = 0. By differentiating this relationship with respect to time, using the equations of
motion (3.32), one obtains Nδγ2(2π

2
φ/v

2 + 4V +M2
Plk

2/v2/3)/6 +Nθv1/3δπ2/M
2
Pl = 0, where

we have used Eq. (5.8) to simplify the result, together with the Friedmann equation (2.24).
The above two formulas then lead to δγ2 = δπ2 = 0, which indeed corresponds to the
(original) definition of the Newtonian gauge.

The advantage of defining the Newtonian gauge with Eqs. (5.8) and (5.9) is that these
two relations (more precisely the barred version of them) give non-trivial constraints in the
separate-universe framework. One may be concerned that the vanishing of the time derivative
of Eq. (5.9) in the separate-universe leads to an additional constraint equation, that would
make the gauge over constrained. This is however not the case since Eq. (5.9) comes from
the vanishing of the diffeomorphism constraint, and as discussed in Sec. 4.2, in the separate

universe one always has
˙D(1) = 0. Furthermore, by construction, the gauge-fixing condi-

tions (3.43) and (3.44) are properly mapped through the correspondences of Table 1. This
makes the Newtonian gauge well behaved from the separate-universe perspective, provided
that the definition (5.8)-(5.9) is employed.

5.2.3 Generalised synchronous gauge

As explained in Secs. 3.3 and 4.3, the generalised synchronous gauges are under-constrained
both in CPT and in the separate-universe approach. Let us note that, in the latter case,
one can use the same trick as above in the Newtonian gauge, and add the barred version of
Eq. (5.9), i.e. D(1) = 0, in the definition of the generalised synchronous gauge. Together with
δN = 0, this fully specifies that gauge in the separate-universe framework and makes it well
behaved. This may also offer a way to cure the synchronous gauge in CPT. This is because,
as pointed out above, the condition D(1) = 0 is equivalent to imposing θδγ2 + 2v1/3δπ2 = 0
in the anisotropic sector of CPT, which may fix the remaining gauge degrees of freedom. We
plan to investigate this possibility in a future work.
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5.2.4 Uniform-expansion gauge

As explained in Secs. 3.3 and 4.3, the uniform-expansion gauge is not fully defined in CPT,
but it is unambiguous in the separate-universe approach. There are a priori several ways
to complement the definition of that gauge in CPT, for instance by further constraining
the anisotropic sector (such that it does not lead to additional conditions in the separate-
universe framework). However, the comparison with the separate-universe version of the
uniform-expansion gauge does not depend on that choice since, as pointed out above, δγ2
and δπ2 decouple from the isotropic degrees of freedom in the large-scale limit. This makes
the uniform-expansion gauge well behaved from the separate-universe perspective (whatever
its completion in CPT).

6 Conclusions

In this work, we have presented a Hamiltonian, phase-space description of Cosmological-
Perturbation Theory (CPT) and of the separate-universe approach, when the matter content
of the universe is made of a scalar field and gravity is described with general relativity. The
separate-universe approach consists in perturbing the reduced Hamiltonian of the homoge-
neous and isotropic problem, or equivalently, in perturbing the dynamical equations obtained
for that same problem.10

Our conclusion, stated at the end of Sec. 5.1, is that this matches CPT at leading order in
perturbations when restricted to isotropic degrees of freedom (i.e. when setting the anisotropic
perturbations to zero, δN1 = δγ2 = δπ2 = 0), provided that one considers sufficiently large
scales, i.e. scales satisfying Eq. (5.7). This result is non trivial since it implies that (i) phase-
space reduction to the isotropic sector and (ii) derivation of the dynamical equations, are
two commuting procedures on large scales. Since the dynamics of isotropic and anisotropic
degrees of freedom decouple at large scales, we have shown that the separate-universe for-
malism provides an accurate description of the large-scale gauge-invariant combinations such
as the Mukhanov-Sasaki variable.

Note that we have not made any specific assumption about the background solution,
hence the validity of the separate-universe approach has been established for all kind of cos-
mological evolution (slow-roll and non-slow-roll inflating — in agreement with the conclusion
of Ref. [46] but in contrast to what was found in Ref. [65], expanding, even contracting, etc.).

When calculations need to be performed in a given gauge, one should bear in mind
that not all gauges are well suited for the separate-universe approach. More precisely, we
have found that in the spatially-flat gauge, the gauge-fixing procedure fails in the separate-
universe approach because of the important role the perturbed shift plays in the CPT version
of that gauge. The Newtonian gauge is a priori ill-defined in the separate-universe approach,
but we have found an alternative (though perfectly equivalent at the level of CPT) defini-
tion of that gauge that makes it unambiguous in the separate-universe approach, where the
gauge-fixing procedure correctly reproduces CPT. The synchronous gauges are ambiguous in
both approaches, but they can be made well defined in the separate-universe approach by
using a similar trick (which consists in further imposing that the diffeomorphism constraint
vanishes as a gauge condition). Finally, the uniform-expansion gauge, which is employed in
the stochastic-δN formalism, is well defined in the separate-universe approach, where the
gauge-fixing procedure correctly reproduces CPT. We note that, among the different gauges

10This equivalence is valid even at the non-perturbative level, as proven in Appendix C.
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that we considered, the separate-universe healthy gauges have in common that they impose
the vanishing of the perturbed shift.

Let us now mention a few research directions this work opens up. First, although
we have shown that the separate universe matches CPT at leading order in perturbations
only, our formulation allowed us to derive fully non-perturbative equations of motion in the
separate universe, hence paving the way for investigating the matching with CPT at the next-
to-leading order. Second, our treatment of the gauge-invariant problem was restricted to de-
riving the equation of motion for the Mukhanov-Sasaki variable, but it remains to establish a
systematic procedure that would provide all gauge-invariant parameterisations of the Hamil-
tonian phase space, both in CPT and in the separate-universe framework. Similarly, while
we have exhibited examples of both problematic and healthy gauges in the separate-universe
approach, building a formalism to study gauge transformations in the Hamiltonian picture
should allow us to classify gauges in a more systematic way, and to derive generic criteria
for them to (i) be unambiguous and (ii) feature a gauge-fixing procedure in the separate-
universe approach that matches the one performed in CPT. We will further investigate these
aspects in forthcoming works. Third, as mentioned in Sec. 1, a Hamiltonian description of
the separate-universe dynamics is necessary for the stochastic-inflation formalism (at least
in the absence of a phase-space attractor). Let us stress that in this context, there is no
equivalent Lagrangian formulation, since the phase-space direction of the stochastic noise
plays a crucial role, and it cannot be encoded in the Lagrangian approach. For instance, it is
involved in determining whether stochastic effects break classical attractors [33], in solving
the vielbeins’ frame ambiguity [66], or in describing the backreaction of quantum fluctuations
in a phase of ultra-slow roll [47, 59, 67]. This is why the present Hamiltonian formulation is
a pre-requisite to using the stochastic formalism in the absence of a phase-space attractor,
such as when slow roll is violated during inflation or in slowly contracting cosmologies.
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A Connecting perturbations in the Lagrangian and Hamiltonian frame-
works

In this appendix, we derive the relations between cosmological perturbations defined in the
Hamiltonian framework and perturbations defined in the more usual Lagrangian approach. In
practice, this implies to relate perturbations of the configuration variables in the Hamiltonian
framework introduced in Sec. 3.1 to the perturbations of the scalar field and of the four-
dimensional metric in the Lagrangian approach. The case of the scalar field is straightforward
since the perturbed configuration variable is nothing but δφ in the Lagrangian framework.
For the gravitational sector, keeping only scalar degrees of freedom, the four-dimensional
metric can be expanded as follows (see e.g. Ref. [53])

ds2 = −N2(τ) (1 + 2A)︸ ︷︷ ︸
(N+δN)2

dτ2 + 2v2/3∂iB︸ ︷︷ ︸
2γijδNj

dxidτ + v2/3 [(1 + 2C) γ̃ij + 2∂i∂jE]︸ ︷︷ ︸
γij+δγij

dxidxj ,

(A.1)
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where A, B, C and E are four scalar functions, depending on both space and time, and upon
which the perturbative expansion is performed (note that we use p = v2/3 for the background
metric).

The first scalar function, A, is simply related to the lapse perturbation via A = δN/N ,
hence in Fourier space we have

δN(~k) = N(τ)A(~k) . (A.2)

The second scalar function, B, generates perturbations in the shift vector, i.e. δN i(τ, ~x) =
v2/3γim(τ)∂mB(τ, ~x) = γ̃im∂mB(τ, ~x). In Fourier space, using Eq. (3.8), this leads to

δN1(τ,~k) = kB(τ,~k) . (A.3)

Finally, the scalar functions C and E describe the isotropic and anisotropic perturbations of
the metric. In Fourier space, Eq. (A.1) implies that

δγij(τ,~k) = 2v2/3
[
C(τ,~k)γ̃ij − kikj E(τ,~k)

]
. (A.4)

The configuration variables δγ1 and δγ2 are related to the induced metric through Eq. (3.15),
which gives rise to

δγ1(τ,~k) =
2√
3
v2/3

[
3C(τ,~k)− k2E(τ,~k)

]
, (A.5)

δγ2(τ,~k) = −2

√
2

3
v2/3k2E(τ,~k). (A.6)

We note that δγ2 is a function of E only. Hence in the Newtonian gauge (see Sec. 3.3.1),
corresponding to the choice B = E = 0, δγ2 and δN1 are set to zero, and the condition (3.43)
leads to A = −C. In the spatially-flat gauge (see Sec. 3.3) where C = E = 0, both δγ1 and
δγ2 are set to zero. In the generalised synchronous gauge (see Sec. 3.3.2), A = B = 0, which
leads to δN = δN1 = 0. In the uniform-expansion gauge (see Sec. 3.3.3), δN1 = δγ1 = 0
implies that B = 3C − k2E = 0 in the Lagrangian framework, which is in agreement with
Eq. (3.15) of Ref. [46].

B Linear and quadratic constraints

In this appendix, we expand the constraints up to quadratic order in scalar perturbations.
At the background level (i.e. in the homogeneous and isotropic setup studied in Sec. 2.2), we
remind that the induced metric and its conjugated momentum are given by

γij(τ) = v2/3γ̃ij , (B.1)

πij(τ) =
1

2
v1/3θγ̃ij =

1

2
vθγij , (B.2)

where hereafter γ̃ij = diag[1, 1, 1] (i.e. we consider the case of a spatially flat FLRW metric).
Recalling that their indices are raised and lowered by the induced metric itself, one has

γij(τ) = v−2/3γ̃ij , (B.3)

πij(τ) =
1

2
v5/3θγ̃ij =

1

2
vθγij . (B.4)
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This also leads to π := γijπ
ij = 3vθ/2. We remind that gravitational perturbations can be

expanded according to

δγij(τ, ~x) =

∫
d3~k

(2π)3/2
ei
~k·~x

2∑
A=1

δγA(τ,~k)MA
ij (
~k) , (B.5)

δπij(τ, ~x) =

∫
d3~k

(2π)3/2
ei
~k·~x

2∑
A=1

δπA(τ,~k)M ij
A (~k) , (B.6)

where M1
ij and M2

ij are the two matrices introduced in Eq. (3.11). Indices for MA
ij and ki are

raised and lowered by the flat three-dimensional metric, γ̃ij . The MA’s form an orthonormal
basis, and they satisfy the following relations

MA
ijM

ij
A′ = δA,A′ , γ̃ijMA

ij =
√

3δA,1, and kiMA
ij =

√
A

3
kj , (B.7)

which will be useful in what follows.
From Eq. (2.4), let us split the gravitational part of the scalar constraint, S(G), into a

kinetic part and a potential part, respectively given by

T (γij , π
mn) :=

2

M2
Pl

√
γ

(
πijπij −

1

2
π2
)
, (B.8)

W(γij) := −
M2

Pl

√
γ

2
R(γij) , (B.9)

where we recall that γ = det(γij) = v2. We note that W depends on the induced metric
only, while the kinetic contribution T depends on both the momentum πij and the induced
metric γij (not only through

√
γ but also via πij = γimγjnπ

mn and π = γijπ
ij). A similar

decomposition can be done for the scalar field contribution to the scalar constraint, S(φ),
namely

T (πφ) =
π2φ

2
√
γ
, (B.10)

W (φ) =

√
γ

2
γij∂iφ∂jφ+

√
γV (φ) , (B.11)

see Eq. (2.6). From the considerations presented in Sec. 3.2, the scalar constraint needs to
be expanded up to quadratic order in perturbations, while the diffeomorphism constraint,

Di = πφ∂iφ− 2∂m
(
γijπ

jm
)

+ πmn∂iγmn , (B.12)

see Eqs. (2.5) and (2.7), only needs to be expanded up to linear order in perturbations.

B.1 Constraints at the background level

At the background level, the different constraints and their associated contributions for the
gravitational sector are

T (0) =
−3

4M2
Pl

vθ2, (B.13)
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W(0) = 0. (B.14)

For the scalar-field sector, they read

T (0) =
1

2v
π2φ, (B.15)

W (0) = vV (φ). (B.16)

The diffeomorphism constraint is identically vanishing, i.e. Di = 0.

B.2 Constraints at first order

At linear order in perturbation theory, one has

δγij = −v−4/3
∫

d3k

(2π)3/2
ei
~k·~x

2∑
A=1

δγAM
ij
A , (B.17)

δπij = v4/3
∫

d3k

(2π)3/2
ei
~k·~x

2∑
A=1

(
δπA + v−1/3θδγA

)
MA
ij , (B.18)

see Eqs. (3.16) and (3.17).

B.2.1 Scalar constraint

We start with the kinetic part of the scalar gravitational constraint. Linearising it at first
order gives

T (1) = −δγ
2γ
T (0) +

2

M2
Plv

[
δπij πij + πij δπij − π

(
δγij π

ij + γij δπ
ij
)]
. (B.19)

This requires to compute the following contractions for the induced metric,

γijδγij =

√
3

v2/3
δγ1, (B.20)

γijδγ
ij = −γijδγij = −

√
3

v2/3
δγ1, (B.21)

δγ = γ γij δγij =
√

3v4/3 δγ1, (B.22)

where the last equation requires to use the identity ln(det γij) = Tr(ln γij). The contractions
involving the conjugate momentum are given by

πijδπ
ij =

√
3

2
v5/3θ δπ1, (B.23)

πijδπij =

√
3

2
v1/3θ

(
v4/3δπ1 + vθδγ1

)
, (B.24)

and cross-contractions read

πijδγij =

√
3

2
v1/3θ δγ1, (B.25)

γijδπ
ij =

√
3v2/3 δπ1. (B.26)
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Plugging the above expressions into Eq. (B.19) leads to

T (1) =
−
√

3

M2
Pl

v1/3θ

(
θ

8
δγ1 + v1/3δπ1

)
. (B.27)

Note that only the isotropic part of the perturbations, i.e. δγ1 and δπ1, contributes to the
kinetic part, T (1).

The linearised potential term is W(1) ∝ (δγ/2γ)R+ δγij Rij +γijδRij , where the Ricci
tensor is defined in terms of Christoffel symbols γkij as:

Rij = ∂kγ
k
ij − ∂iγkkj + γkk`γ

`
ij − γki`γ`kj . (B.28)

In a spatially flat FLRW metric, the three-dimensional Ricci tensor and Ricci scalar are
zero, i.e. Rij = 0 = R. This is why the perturbed potential term at first order reduces to
W(1) = −(M2

Pl/2)
√
γγij δRij . Because the Christoffel symbols vanish on the background,

the variation of the Ricci tensor is related to the variation of the Christoffel symbols via
δRij = ∂`δγ

`
ij − ∂jδγ``i. Finally, using the full expression for the Christoffel symbol

γkij =
1

2
γk` (∂iγj` + ∂jγi` − ∂`γij) , (B.29)

one can compute its first order perturbation,

δγkij =
1

2v2/3
γ̃k` (∂iδγj` + ∂jδγi` − ∂`δγij) . (B.30)

Combining the above results, one obtains

W(1) = −M
2
Plv

2

(
γi`γjm − γijγ`m

)
∂`∂mδγij . (B.31)

In Fourier space, plugging Eqs. (B.3) and (B.5) into this formula leads to

W(1) = −M
2
Pl√
3

(
k2

v1/3

)(
δγ1 −

1√
2
δγ2

)
, (B.32)

where Eq. (B.7) has been used.

For the scalar-field contribution, the first-order linearised scalar constraint has contri-
butions

T (1) = −δγ
2γ
T (0) +

1

v
πφ δπφ, (B.33)

W (1) =
δγ

2γ
W (0) + vV,φ δφ, (B.34)

where δγ is given by Eq. (B.22), leading to

T (1) = −
√

3

4

π2φ

v5/3
δγ1 +

πφ
v
δπφ, (B.35)

W (1) =

√
3

2
v1/3V δγ1 + vV,φ δφ. (B.36)
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B.2.2 Diffeomorphism constraint

Perturbing Eq. (B.12) at first order gives

D(1)
i (τ, ~x) = πφ∂iδφ+ πmn∂iδγmn − 2πjm∂mδγij − 2γij∂mδπ

jm, (B.37)

which in Fourier space reads

D(1)
i (τ,~k) = iki (πφδφ+ πmnδγmn)− 2ikm

(
πjmδγij + γijδπ

jm
)
. (B.38)

The contraction πmnδγmn was computed in Eq. (B.25), while the second term in Eq. (B.38)
can be computed from Eqs. (B.1), (B.2), (B.5), (B.6) and (B.7), which leads to

D(1)
i (~k) = iki

[
πφδφ+

1√
3
v1/3θ

(
1

2
δγ1 −

√
2δγ2

)
− 2√

3
v2/3

(
δπ1 +

√
2δπ2

)]
. (B.39)

Note that it is independent of the perturbations of the scalar-field momentum, δπφ.

B.3 Constraints at quadratic order

Let us now derive the expression of the scalar constraint at second order. A first remark is
that the expressions (3.16) and (3.17) for δγij and δπij are valid only at linear order. In what
follows, we will not need their expressions at second order, since δγij and δπij always appear
multiplied by perturbative quantities. For the sake of completeness, however, let us mention
that those expressions can be derived by expanding γijγj` = δi` = [γij(τ) + δγij ][γj`(τ) +
δγj`(τ)], leading to

δγij = −γim(τ)γ`j(τ)δγm` − γ`j(τ)δγimδγm` . (B.40)

Note that this expression is exact (i.e. at all orders). At first order, it reduces to δ1γ
ij =

−γim(τ)γ`j(τ)δγm` and one recovers Eq. (3.16). At second order, one finds

δ1γ
ij + δ2γ

ij = −γim(τ)γ`j(τ)δγm` + γ`j(τ)γik(τ)γmn(τ)δγknδγm` , (B.41)

where the notations δ1 and δ2 refer to the first- and second-order perturbations respectively
(elsewhere in this article the notation δ1 is not used since there is no possible confusion about
the order at which a given expression is valid, but we employ it in the few following equations
since first- and second-order quantities are considered simultaneously). In Fourier space, this
leads to

δ1γ
ij + δ2γ

ij = − 1

v4/3

(
δγ1M

ij
1 + δγ2M

ij
2

)
+

1√
3v2

[
|δγ1|2M ij

1 + |δγ2|2
(
M ij

1 +
M ij

2√
2

)
+ (δγ1δγ

?
2 + δγ?1δγ2)M

ij
2

]
. (B.42)

For the conjugated momentum, similarly, one has to expand the relation πij =
γmiγnjπ

mn, leading to

δπij = γmi(τ)γnj(τ)δπmn + γmi(τ)πmn(τ)δγnj + γnj(τ)πmn(τ)δγmi

+γmi(τ)δγnjδπ
mn + γnj(τ)δγmiδπ

mn + πmn(τ)δγmiδγnj

+δγmiδγnjδπ
mn . (B.43)
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In this expression, which is again exact (hence valid at all orders), the first line corresponds to
first-order terms and leads to Eq. (3.17), the second line corresponds to second-order terms,
and the third line to the third-order term. Computing the second-order term in Fourier space
as before, one obtains, at second order

δ1πij + δ2πij =
(
v4/3δπ1 + vθδγ1

)
M1
ij +

(
v4/3δπ2 + vθδγ2

)
M2
ij

+
2√
3
v2/3

(
δγ1δπ

?
1 + δγ2δπ

?
2 +

θ

4v1/3
|δγ1|2 +

θ

4v1/3
|δγ2|2

)
M1
ij

+
2√
3
v2/3

[
δγ1δπ

?
2 + δγ2δπ

?
1 +

δγ2δπ
?
2√

2
+

θ

4v1/3

(
δγ1δγ

?
2 + δγ2δγ

?
1 +
|δγ2|2√

2

)]
M2
ij .

(B.44)

B.3.1 Gravitational contribution

Let us first consider the kinetic part of the gravitational sector. Expanding Eq. (B.8) to
quadratic order in perturbations gives

T (2) =
2

M2
Plv

{[
3

8

(
δγ

γ

)2

− 1

2

δ2γ

γ

]
K(0) − 1

2

δγ

γ
K(1) +K(2)

}
, (B.45)

where δ2γ stands for the quadratic-order perturbations of γ, and the K(i)’s are given by

K(0) =

(
γimγjn −

1

2
γijγmn

)
πij πmn, (B.46)

K(1) = 2

[(
γimγjn −

1

2
γijγmn

)
πij δπmn + πmnπij

(
γim δγjn −

1

2
γij δγmn

)]
, (B.47)

and

K(2) =

(
γimγjn −

1

2
γijγmn

)
δπij δπmn + 4γimπ

ij (δγjn δπ
mn)−

(
δγij π

ij
)

(γmn δπ
mn)

−γijπij (δγmn δπ
mn) +

(
δγim δγjn −

1

2
δγij δγmn

)
πijπmn. (B.48)

The above is obtained using a Taylor expansion of
√
γ. We remind that δγ/γ = γijδγij =√

3 δγ1/v
2/3. The quadratic perturbation of the determinant can be obtained using det(γij +

δγij) = exp{Tr[ln(γij + δγij)]}.11 It gives δ2γ = v2/3(|δγ1|2 − 1
2 |δγ2|

2). We then derive the
expression of each term appearing in Eq. (B.45) in Fourier space. After a lengthy though
straightforward calculation, we obtain(

δγ

γ

)2

K(0) = −9

8
v2/3θ2 |δγ1|2 , (B.53)

11This can be done as follows. We first write Eqs. (B.1) and (B.5) as

γ + δγ = v2/3
(
I +

δγ1
v2/3

M1 +
δγ2
v2/3

M2

)
, (B.49)

where the bold notation denotes (three-by-three) matrices with lowered indices, and I is the identity matrix.
The properties (B.7) lead to Tr(M1) =

√
3, Tr(M2) = 0, and Tr(MAMA′) = δA,A′ . We then conveniently

rewrite

det(γ + δγ) = v2 exp

{
Tr

[
ln

(
I +

δγ1
v2/3

M1 +
δγ2
v2/3

M2

)]}
. (B.50)
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δ2γ

γ
K(0) = −3

8
v2/3θ2

[
|δγ1|2 −

1

2
|δγ2|2

]
, (B.54)

δγ

γ
K(1) = −3

2
v2/3θ

[
v1/3 (δγ1) (δπ?1) +

1

2
θ |δγ1|2

]
, (B.55)

K(2) =
v4/3

2

(
− |δπ1|2 + 2 |δπ2|2

)
+ vθ

[
− (δγ1) (δπ?1) +

1

2
(δγ2) (δπ?2)

]
+
v2/3θ2

8

[
− |δγ1|2 + 2 |δγ2|2

]
. (B.56)

Combining the above results, one thus has

T (2) =
v1/3

M2
Pl

(
− |δπ1|2 + 2 |δπ2|2

)
+

θ

2M2
Pl

[− (δγ1) (δπ?1) + 2 (δγ2) (δπ?2)]

+
1

32M2
Pl

θ2

v1/3

(
|δγ1|2 + 10 |δγ2|2

)
, (B.57)

where θ2 in the second line can be replaced with the background scalar constraint equa-
tion (2.24). We stress that there is no coupling between the two gravitational degrees of
freedom in the kinetic term of the gravitational scalar constraint.

Then, for the potential part of the gravitational sector, expanding Eq. (B.9) at second
order leads to

W(2) =
−M2

Pl

√
γ

4

δγ

γ
γij δRij −

M2
Pl

√
γ

2

(
δγij δRij + γij δ2Rij

)
, (B.58)

where δ2Rij denotes the quadratic expansion of the Ricci tensor and where we have used
that the Ricci tensor vanishes at the background level. For the first term, δγ is given in
Eq. (B.22) and δRij was already computed below Eq. (B.28), leading to

−M2
Pl

√
γ

4

δγ

γ
γij δRij = −

M2
Pl

√
γ

4

(
γij δγij

) (
γimγjn − γijγmn

)
∂m∂nδγij . (B.59)

In Fourier space, using the decomposition (B.5), this reduces to

−M2
Pl

√
γ

4

δγ

γ
γij δRij = −M

2
Pl

2v
k2
[
|δγ1|2 −

1√
2

(δγ1) (δγ?2)

]
. (B.60)

We then consider each contribution involved in the second term of Eq. (B.58). The first one
is given by

δγij δRij = δγij
[
∂i∂n (γnm δγmj)−

1

2
γmn∂m∂n (δγij)−

1

2
∂i∂j (γmn δγmn)

]
, (B.61)

Since we are interested in the quadratic expansion of the determinant, it is sufficient to compute the logarithm
matrix at quadratic order using its expression as an expansion. It gives

ln

(
I +

δγ1
v2/3

M1 +
δγ2
v2/3

M2

)
=

1

v2/3

[
δγ1M1 + δγ2M2 −

1

2v2/3
(δγ1M1 + δγ2M2)2

]
. (B.51)

The rest is straightforward as it consists in tracing (which is a linear operation) and expanding the exponential.
We obtain

det(γ + δγ) = v2
(

1 +

√
3

v2/3
δγ1 +

1

v4/3
|δγ1|2 −

1

2v4/3
|δγ2|2

)
. (B.52)

Note that we also recover the expression of the first-order expansion of the determinant, Eq. (B.22).
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hence its contribution to W(2) in Fourier space is

−M2
Pl

√
γ

2
δγij δRij =

M2
Pl

3v
k2
[
|δγ1|2 −

1

4
|δγ2|2 −

1√
2

(δγ?1) (δγ2) +
1

2
√

2
(δγ1) (δγ?2)

]
.

(B.62)

From Eq. (B.28), the quadratic expansion of the Ricci tensor can be expressed in terms of
the linear and the quadratic expansions of the Christoffel symbols. This gives

δ2Rij = ∂`δ2γ
`
ij − ∂jδ2γ``i + δγ``m δγ

m
ij − δγ`mi δγm`j . (B.63)

The first two terms involving the quadratic expansion of the Christoffel symbols are total
derivatives and, as such, they do not contribute to the equations of motion (since δ2Rij
multiplies background functions in the action). The contribution from the last two terms is
rather cumbersome though it partially simplifies by computing γijδ2Rij directly, and using
that M2 is traceless and symmetric, and that M1 is a pure trace (hence symmetric). We
finally arrive at

−M2
Pl

√
γ

2
γijδ2Rij =

M2
Pl

12v
k2
[
|δγ1|2 +

1

2
|δγ2|2 +

√
2 (δγ1) (δγ?2)− 2

√
2 (δγ?1) (δγ2)

]
,

(B.64)

up to total-derivative terms. Combining the above results, one obtains the following expres-
sion for the potential part of the gravitational sector

W(2) =
M2

Pl

24v
k2
[
−2 |δγ1|2 − |δγ2|2 + 10

√
2 (δγ1) (δγ?2)− 8

√
2 (δγ?1) (δγ2)

]
. (B.65)

Let us note that unlike the kinetic term, the potential term couples the two types of gravi-
tational perturbations.

B.3.2 Scalar-field contribution

The contributions from the scalar field follow from expanding Eqs. (B.10) and (B.11) at
second order, leading to

T (2) =
1

2
√
γ

(δπφ)2 −
πφ

2
√
γ

δγ

γ
δπφ +

[
3

8

(
δγ

γ

)2

− 1

2

δ2γ

γ

]
π2φ

2
√
γ
, (B.66)

W (2) =

√
γ

2
γij (∂iδφ) (∂jδφ) +

√
γ

2
V,φ,φ (δφ)2 +

√
γV,φ
2

δγ

γ
δφ

+

[
1

2

δ2γ

γ
− 1

8

(
δγ

γ

)2
]
√
γV . (B.67)

We note that the perturbed scalar field is coupled to the perturbed induced metric only
through its determinant. In Fourier space, these two contributions read

T (2) =
1

2v
|δπφ|2 −

√
3

2

πφ

v5/3
(δπφ δγ

?
1) +

1

4v1/3

(πφ
v

)2(5

4
|δγ1|2 +

1

2
|δγ2|2

)
, (B.68)

W (2) =
v

2

(
k2

v2/3
+ V,φ,φ

)
|δφ|2 +

√
3

2
v1/3V,φ (δφ δγ?1) +

1

4

V

v1/3

(
1

2
|δγ1|2 − |δγ2|2

)
.
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(B.69)

One can see that the scalar-field perturbations are solely coupled to the isotropic component of
the metric perturbations, δγ1, as a result of being only coupled to the perturbed determinant
at linear order.

C Perturbed background equations

In this appendix, we derive the dynamical equations for the separate-universe approach by
directly perturbing the background equations of motion, i.e. by plugging the replacements
N → N(τ) + δN , v → v(τ) + δv, θ → θ(τ) + δθ, φ→ φ(τ) + δφ, and πφ → πφ(τ) + δπφ into
C(0)[N ] = NS(0), where S(0) is given by Eqs. (2.22) and (2.23). It gives rise to

C(0)[N ]→ C
[
N + δN

]
= N S(0) +

(
δN S(1)bckg +N S(2)bckg

)
, (C.1)

where the perturbed scalar constraint at linear and quadratic order is

S(1)bckg = − 3

4M2
Pl

(
θ2δv + 2vθδθ

)
−
π2φ
2v2

δv + V (φ)δv +
πφ
v
δπφ + vV,φδφ

= −
π2φ
v2
δv − 3

2M2
Pl

vθ δθ +
πφ
v
δπφ + vV,φδφ , (C.2)

S(2)bckg = − 3

4M2
Pl

[
2θδv δθ + v

(
δθ
)2]

+
π2φ
2v3

(
δv
)2 − πφ

v2
δv δπφ + V,φδv δφ

+
1

2v

(
δπφ
)2

+
1

2
v V,φ,φ

(
δφ
)2
. (C.3)

Note that the second line for S(1)bckg was obtained using the scalar constraint at the background

level, i.e. S(0) = 0. One can easily check that it matches Eq. (4.7), hence it gives the same
constraint equation. Moreover, the Hamilton equations derived from the above Hamiltonian

also match Eqs. (4.9) and (4.10), if the linear scalar constraint equation, S(1)bckg = 0, is used to

simplify the equation of motion for δθ. It is also straightforward to verify that these equations
of motion can be obtained by directly perturbing the constraint and dynamical equations of
the homogeneous and isotropic problem, namely Eqs. (2.24)-(2.29).

This argument can be generalized to the non-perturbative case. Let us consider the
non-perturbative-isotropic sector of the constraint, that is the SU constraint Eq. (4.1), that
we rewrite in terms of δv and δθ for simplicity:

C =

(
πφ + δπφ

)2
2
(
v + δv

) +
(
v + δv

)
V (φ+ δφ)− 3

4M2
Pl

(v + δv)
(
θ + δθ

)2
(C.4)

One can readily see that this expression can alternatively be obtained by including the
separate-universe deviations into the FLRW contraints (2.22) and (2.23). The equations of
motion are therefore the same:

˙(
v + δv

)
= −

(
N + δN

) 3

2M2
Pl

(v + δv)
(
θ + δθ

)
, (C.5)

˙(
θ + δθ

)
=
(
N + δN

) [(πφ + δπφ
)2

2
(
v + δv

)2 − V (φ+ δφ) +
3

4M2
Pl

(
θ + δθ

)2]
, (C.6)
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˙(
φ+ δφ

)
=
(
N + δN

) (πφ + δπφ
)(

v + δv
) , (C.7)

˙(
πφ + δπφ

)
= −

(
N + δN

) (
v + δv

)
V,φ(φ+ δφ) , (C.8)

which indeed coincide with the FLRW equations of motion (2.25), (2.26), (2.28) and (2.29)
once the deviations δv, δθ, δφ, δπφ are included. In other words, the reduction to the isotropic
sector can be equivalently performed at the level of the full Hamiltonian or in the FLRW
theory, and this equivalence holds at all orders.

D Expansion rate

D.1 Definition

The expansion rate of spatial hypersurfaces is defined as

Θ := ∇µnµ , (D.1)

where nµ := (−1/N,N i/N) is the unit vector orthogonal to the hypersurfaces Στ , and ∇µ
is the four-dimensional covariant derivative. Let us see how it is related to the phase-space
variables used in the Hamiltonian formalism.

We first recall that the ADM metric (2.2) is given by

g00 = −N2 +NiN
i , g0i = Ni , gij = γij , (D.2)

the inverse of which reads

g00 = − 1

N2
, g0i =

N i

N2
, gij = γij − N iN j

N2
, (D.3)

where the indices of the shift vector N i are raised and lowered by the induced metric γij .
This gives rise to nµ = (N,~0), so n is indeed orthogonal to Στ , and one can check that
nµn

µ = −1. This also allows one to introduce the integrated amount of expansion,

Nint =

∫
Θ

3
nµdxµ = −1

3

∫
ΘNdτ . (D.4)

Expanding the covariant derivative in terms of the Christoffel symbols, one has

Θ = ∂µn
µ + Γµµνn

ν , (D.5)

where Γρµν is given by a similar expression as in Eq. (B.29) but where the full metric is used
instead, namely

Γρµν =
1

2
gρσ (∂µgνσ + ∂νgµσ − ∂σgµν) . (D.6)

If all indices are chosen to be spatial, this implies that

Γkij =
1

2
gkσ (∂igjσ + ∂jgiσ − ∂σgij)

=
1

2
gk0 (∂igj0 + ∂jgi0 − ∂0gij) +

1

2
gk` (∂igj` + ∂jgi` − ∂`gij)
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=
Nk

2N2
(∂iNj + ∂jNi − γ̇ij)−

NkN `

2N2
(∂iγj` + ∂jγi` − ∂`γij) +

1

2
γk` (∂iγj` + ∂jγi` − ∂`γij)

(D.7)

where we have used Eqs. (D.2)-(D.3) in the last line. The last term matches Eq. (B.29),
hence

Γkij =
Nk

2N2
(∂iNj + ∂jNi − γ̇ij)−

NkN `

2N2
(∂iγj` + ∂jγi` − ∂`γij) + γkij . (D.8)

This formula can be used when expanding Eq. (D.5) along temporal and spatial indices, and
one obtains

Θ =
Ṅ

N2
− N i∂iN

N2
+
N iN j

N3
∂iNj −

˙γij
2N3

N iN j − Γ0
00 + Γii0
N

+
N i

N
Γ0
0i −

N iN jN `

2N3
∂jγi` +

1

N

(
∂iN

i + γiijN
j
)
. (D.9)

In the last term of this expression, one recognises the covariant derivative with respect to the
induced metric γij , which we denote D, i.e. the last term is given by (DiN

i)/N . The other
terms require to compute some of the Christoffel symbols. Plugging Eqs. (D.2) and (D.3)
into Eq. (D.6), one finds

Γ0
00 =

Ṅ

N
− N i

2N2
∂i
(
−N2 +NjN

j
)

+
γ̇ij

2N2
N iN j , (D.10)

Γi0i =
N i

2N2
∂i
(
−N2 +NjN

j
)

+
γ̇ij
2

(
γij − N iN j

N2

)
, (D.11)

N iΓ0
0i = − N i

2N2
∂i
(
−N2 +NjN

j
)

+
γ̇ij

2N2
N iN j . (D.12)

Combining the above results, one obtains12

Θ =
1

2N

(
2DiN

i − γ̇ijγij
)
. (D.13)

This formula can be further simplified as follows. The equation of motion for γij can be
obtained from the Hamiltonian (2.3)-(2.7), and one finds

γ̇ij =
∂C

∂πij
=

2N

M2
Pl

√
γ

(2πij − πγij) + 2γ`i∂jN
` +N `∂`γij , (D.14)

where we have first used integration by parts to deal with the term involving the gradient of
πij in C. When contracted with the induced metric, this gives rise to

γij γ̇ij = − 2N

M2
Pl

√
γ
γijπ

ij + 2∂iN
i +N iγ`m∂iγ`m . (D.15)

Moreover, the term DiN
i in Eq. (D.13) can be expanded along the Christoffel symbols (B.29),

which gives rise to

DiN
i = ∂iN

i + γiijN
j

12This expression matches the trace of the extrinsic curvature, see e.g. Refs. [48, 53].
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= ∂iN
i +

1

2
γi` (∂jγi` + ∂iγj` − ∂`γij)N j . (D.16)

The last two terms correspond to contracting an object that is symmetric in i and `, namely
γi`, with an antisymmetric combination, namely ∂iγj`−∂`γij . Therefore, they give a vanishing
contribution, so one has

DiN
i = ∂iN

i +
N j

2
γi`∂jγi` . (D.17)

Plugging Eqs. (D.15) and (D.17) into Eq. (D.13) finally leads to

Θ =
γijπ

ij

M2
Pl

√
γ
. (D.18)

D.2 Expansion rate at the background level

In homogeneous and isotropic cosmologies, using the formulas established in Sec. 2.2,
Eq. (D.18) reduces to

Θ = − v̇

Nv
=

3

2M2
Pl

θ , (D.19)

so it is directly proportional to the momentum θ. The integrated amount of expansion, see
Eq. (D.4), is given by

Nint =
1

3
ln(v) . (D.20)

Recalling that v = a3 where a is the FLRW scale factor, Ninf is nothing but the number of
e-folds (hence the notation).

D.3 Expansion rate at first order

D.3.1 Cosmological perturbation theory

By plugging Eqs. (B.22), (B.25) and (B.26) into the first-order perturbation of Eq. (D.18),
one obtains

δΘ =

√
3

v
2
3M2

Pl

(
v

1
3 δπ1 −

θ

4
δγ1

)
. (D.21)

For the integrated amount of expansion, upon perturbing Eq. (D.4), one has

δNinf = −1

3

∫
(δΘN + ΘδN) dτ

= −1

3

∫ [ √
3N

v2/3M2
Pl

(
v1/3δπ1 −

θ

4
δγ1

)
+

3θ

2M2
Pl

δN

]
dτ , (D.22)

where we have made use of Eqs. (D.19) and (D.21). This expression can be further simplified
as follows. First, let us make use of the equation of motion for δγ1, namely the first entry
of Eq. (3.32), to express δN in terms of δγ̇1 and the other phase-space variables. This gives
rise to

δNint =

∫ [
k

3
δN1 +

1

2
√

3v2/3

(
δγ̇1 +

Nθ

M2
Pl

δγ1

)]
dτ . (D.23)
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Second, making use of Eq. (2.25), one can show that

∂

∂τ

(
δγ1

v2/3

)
=

δγ̇1

v2/3
− 2

3
δγ1

v̇

v5/3
=

1

v2/3

(
δγ̇1 +

Nθ

M2
Pl

δγ1

)
. (D.24)

One readily recognises the last term in Eq. (D.23), which can therefore be integrated and
one obtains

δNint =
1

2
√

3v2/3
δγ1 +

k

3

∫
δN1dτ . (D.25)

D.3.2 Separate universe

The same considerations as those presented above can be applied to the separate-universe
framework, where one starts from the same ADM metric where the replacements outlined in
Table 1 are performed. At the background level, one recovers Eqs. (D.19) and (D.20). At
first order in perturbations, one obtains the barred version of Eq. (D.21) for the expansion
rate, namely

δΘ =

√
3

v
2
3M2

Pl

(
v

1
3 δπ1 −

θ

4
δγ1

)
. (D.26)

This is expected since Eq. (D.21) shows that the expansion rate only involves isotropic degrees
of freedom. For the integrated amount of expansion, one finds

δN int =
1

2
√

3v2/3
δγ1 , (D.27)

which indeed corresponds to the barred version of Eq. (D.25).

D.4 Expansion rate at quadratic order

D.4.1 Cosmological perturbation theory

From Eq. (D.18), one can also compute the second-order perturbation of the expansion rate:

δ2Θ =
π

M2
Pl

δ2

(
1
√
γ

)
− 1

2M2
Pl

δγ

γ3/2
δπ +

1

M2
Pl

√
γ
δγijδπ

ij (D.28)

=
π

M2
Pl

√
γ

[
3

8

(
δγ

γ

)2

− 1

2

δ2γ

γ

]
− 1

2M2
Pl

δγ

γ3/2
(
δγijπ

ij + γijδπ
ij
)

+
1

M2
Pl

√
γ
δγijδπ

ij . (D.29)

Plugging in the results of Eqs. (3.8), (B.5), (B.6), (B.25), (B.26) and (B.52), one gets:

δ2Θ =
1

M2
Plv

(
3θ

16v1/3
+ 1

)
|δγ1|2 +

1

M2
Plv

(
3θ

8v1/3
+ 1

)
|δγ2|2 −

3

2M2
Plv

δγ1δπ
?
1 , (D.30)

where we also used the expression for π = 3vθ/2 and the orthonormality of the basis(
M1
ij ,M

2
ij

)
.
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D.4.2 Separate universe

The calculation can be reproduced in the separate-universe approach, starting from the
replacements outlined in Table 1. One obtains

δ2Θ =
1

M2
Plv

(
3θ

16v1/3
+ 1

) ∣∣δγ1∣∣2 − 3

2M2
Plv

δγ1 δπ1
?
, (D.31)

which indeed reduces to Eq. (D.30) under those same replacements.
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