
HAL Id: hal-03419040
https://hal.science/hal-03419040

Submitted on 24 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integrated Design Methodology of Automated Guided
Vehicles Based on Swarm Robotics

Khalil Aloui, Amir Guizani, Moncef Hammadi, Thierry Soriano, Mohamed
Haddar

To cite this version:
Khalil Aloui, Amir Guizani, Moncef Hammadi, Thierry Soriano, Mohamed Haddar. Integrated Design
Methodology of Automated Guided Vehicles Based on Swarm Robotics. Applied Sciences, 2021, 11
(13), pp.6187. �10.3390/app11136187�. �hal-03419040�

https://hal.science/hal-03419040
https://hal.archives-ouvertes.fr

applied
sciences

Article

Integrated Design Methodology of Automated Guided Vehicles
Based on Swarm Robotics

Khalil Aloui 1, Amir Guizani 2, Moncef Hammadi 1,* , Thierry Soriano 1 and Mohamed Haddar 2

����������
�������

Citation: Aloui, K.; Guizani, A.;

Hammadi, M.; Soriano, T.; Haddar, M.

Integrated Design Methodology of

Automated Guided Vehicles Based on

Swarm Robotics. Appl. Sci. 2021, 11,

6187. https://doi.org/10.3390/

app11136187

Academic Editor: Anton Civit

Received: 8 June 2021

Accepted: 30 June 2021

Published: 3 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 QUARTZ Lab. EA7393, ISAE-SUPMECA, 3 rue Fernand Hainaut, 93400 Saint-Ouen, France;
alouika95@gmail.com (K.A.); thierry.soriano@univ-tln.fr (T.S.)

2 LA2MP, Ecole Nationale d’Ingénieurs de Sfax, University of Sfax, Sfax 3038, Tunisia;
amir.guizani@live.fr (A.G.); mohamed.haddar@enis.rnu.tn (M.H.)

* Correspondence: moncef.hammadi@isae-supmeca.fr

Abstract: In recent years, collaborative robots have become one of the main drivers of Industry 4.0.
Compared to industrial robots, automated guided vehicles (AGVs) are more productive, flexible,
versatile, and safer. They are used in the smart factory to transport goods. Today, many producers and
developers of industrial robots have entered the AGV sector. However, they face several challenges
in designing AGV systems, such as the complexity and discontinuity of the design process, as well as
the difficulty of defining a decentralized system decision. In this paper, we propose a new integrated
design methodology based on swarm robotics to address the challenges of functional, physical, and
software integration. This methodology includes two phases: a top-down phase from requirements
specification to functional and structural modeling using the systems modeling language (SysML);
with a bottom-up phase for model integration and implementation in the robot operating system
(ROS). A case study of an automated guided vehicle (AGV) system was chosen to validate our design
methodology and illustrate its contributions to the efficient design of AGVs. The novelty of this
proposed methodology is the combination of SysML and ROS to address traceability management
between the different design levels of AGV systems, in order to achieve functional, physical and
software integration.

Keywords: automated guided vehicles (AGV); swarm robotics; smart factory; systems modeling
language (SysML); robot operating system (ROS)

1. Introduction

Rapid advancements in manufacturing technologies and applications in industries
increase productivity. Today’s industry needs the digitization and intelligence of man-
ufacturing processes [1]. Industry 4.0 represents the fourth industrial revolution which
is defined as a new level of organization and control over the entire value chain of the
product life cycle; it is oriented towards customer requirements. Industry 4.0 is a realistic
concept that includes the industrial internet, the internet of things, smart manufacturing,
and cloud-based manufacturing [2].

The six main principles of Industry 4.0 are: interconnection and interoperability,
information transparency (e.g., virtualization), decentralization and autonomous decisions,
real-time capability, technical support and service orientation, and finally modularity [3].
In fact, the IoT provides system connectivity. Thus, it is essential to establish horizontal
and vertical integration. Additionally, information transparency means that all objects,
processes, and systems are transformed into virtual objects that enable simulation and
optimization of all processes. In addition, decentralization and autonomy mean placing AI
in each tool and allowing independence in decision-making based on information available
in the cloud. Real-time operation implies the ability to make changes to production at any
time. By connecting systems and giving them autonomy to make decisions, they become
capable of reacting instantly when a problem arises. Similarly, technical support represents

Appl. Sci. 2021, 11, 6187. https://doi.org/10.3390/app11136187 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-5050-7315
https://doi.org/10.3390/app11136187
https://doi.org/10.3390/app11136187
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11136187
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11136187?type=check_update&version=2

Appl. Sci. 2021, 11, 6187 2 of 21

the connection between the product and the production system after the product is in
operation. Finally, modularity offers the possibility to change parts of a product during
production according to the customer’s wishes [4].

Collaborative robotics has been considered as one of the enabling technologies of the
fourth industrial revolution, within the framework of the Industry 4.0 program [5]. The
introduction of such robotic systems in industrial applications poses several problems
which cannot be ignored. Nowadays, the use of AGVs in factory logistics is not yet
widespread in manufacturing plants. The transport of raw materials and final products
is still done by manual forklifts [6]. For this reason, many manufacturers and developers
of industrial robots have entered the AGV industry to reduce these problems. However,
it is necessary to point out the main obstacles that discourage the industrial sector from
integrating AGV systems into their production lines today.

The first obstacle is related to communication. In general, AGV systems use wireless
communication technology to exchange information between mobile robots, the AGV man-
agement system, the fleet management system, and other external elements. This means
that everything depends on the quality and robustness of the WiFi connection. However,
with the advent of 5G technology, connectivity will theoretically be 10 times higher, and
thus 5G will promote the interconnection of all existing networks and technologies, and
allow them to communicate with each other more effectively. The second barrier to AGV
integration in the industry and particularly smart factories is the problem of making AGVs
built by different manufacturers work together. Indeed, different AGV systems do not
really speak the same language. We will see later in this paper that the right choice of AGV
development methodology and tools could facilitate the collaboration of AGV systems
from different manufacturers.

The third barrier to AGV integration is related to the limited flexibility of AGVs
compared to driver-controlled vehicles. A human operator can react and change his task
rapidly. Thus, AGVs are less suitable for non-repetitive tasks. However, if the tasks
are repetitive, the choice of the AGV solution could be justified, and this can improve
workplace safety. The fourth barrier to integrating AGVs into the production industry is
related to the restrictions of the operating environment. The floors, for example, must not
be too uneven, and every transition from one surface, height, etc. to another must be taken
into account. Additionally, complete flatness and horizontality are imperative for the safe
and efficient operation of AGVs. The last but not least barrier to integrating AGVs in the
production industry is the high initial capital cost of the AGV system. However, AGVs
become more and more feasible while increasing the number of working hours. In that case,
they increase the overall efficiency and productivity which drives economic advantages [7].

The above barriers to integrating AGVs in smart factories can be limited by adopting
the right methodology and development tools. However, there are many challenges to
overcome to ensure the effective development of AGVs. For example, the complexity and
the discontinuity of the design process are major problems encountered by designers that
slow down the integration of AGVs into smart factories. In other words, there must be
continuity between the data and models used throughout the design process to avoid the
risk of errors and rework. In addition, the designer should verify all necessary integrations
(functional, physical, and software integrations) to ensure design consistency. The design
methodologies of AGVs must also offer the possibility of automating the process of ver-
ifying design requirements, in particular the requirements related to the possibilities of
decentralized control allowing to predict the collaborative decision of the system of AGVs.

To contribute to the development of AGVs and to deal with the problems mentioned
above, we present in this article a design approach making it possible to reduce the gap
between the different design phases of an AGV system. In particular, our approach aims
to reduce digital discontinuity and improve traceability between the phases of design
specification, architectural design, code integration, design verification, and validation
with simulation. To achieve this, our paper will be organized as follows: in the next section
we present the different methods proposed in the literature for the design of AGV systems

Appl. Sci. 2021, 11, 6187 3 of 21

and we will detail the different design problems encountered throughout the design cycle.
In the third section, we will detail our methodology for designing AGV systems based on
swarm robotic concepts. We will also detail in the third section the implementation of the
proposed design method using the systems modeling language SysML and the simulation
environment ROS/Gazebo. In the fourth section, a case study of an AGV system design
is considered in order to validate our method. In section five, a discussion is conducted
to illustrate the effectiveness of our approach and the advantages that the method can
bring to AGVs’ manufacturers during the design phase. Finally, we end the paper with a
conclusion and some perspectives on the next steps of our developments.

2. Related Works

Today, collaborative robots have become a key component of Industry 4.0. In industrial
applications, AGVs have been shown to be a very attractive technology for transporting
goods. In the field of AGV development, researchers are faced with several challenges to
developing AGVs that meet more specific and personalized needs in terms of the load to
be moved for handling applications, locating the vehicle in its environment, planning the
multi-robot path, collision avoidance, etc. For instance, Stouten et al. [8] have described
the use of AGV systems for the cooperative transport of heavy loads. The study in [9]
focused on the design of an automated guided vehicle-based material handling system for
a flexible manufacturing system. Ronzoni et al. [10] addressed the issue of locating the
vehicle without any prior information about its location. They presented a new method for
localizing an AGV endowed with a laser scanner and located in an environment populated
with anonymous landmarks. They proposed also a landmark matching method that takes
into account measurement errors and false detection, due to reflecting surfaces present
in the environment. Their strategy has been validated by experiments in real industrial
environments and by simulation on real plant maps. Luna et al. [11] dealt with the problem
of multi-robot path planning through a set of network nodes that guide agents moving
on a graph. They proposed partially decentralized solutions to reduce the complexity
of the optimization process. In fact, AGVs are generally required to move in congested
environments, so they must be equipped with an appropriate detection system, to allow
them to identify obstacles. In another research work, Rodríguez-Seda et al. [12] proposed
a decentralized, cooperative collision avoidance strategy for a pair of agents considering
bounded sensing uncertainties and acceleration constraints. The avoidance control is active
only when the vehicle is close to another agent.

System modeling represents another big challenge related to the design of AGV
systems. Indeed, AGV modeling includes several aspects such as nonlinear kinematics,
dynamic movement behavior, system control, and coordination to evaluate the positions
and the orientations of AGVs. For instance, Sharma et al. [13] proposed to model AGVs
with a nonlinear kinematic model which describes the position and speed of the robot, the
orientation, and the angular speed of its links. Rajamani [14] uses the bicycle model to
model the lateral dynamics of AGVs. While Caruntu et al. [15] show that the longitudinal
dynamics can be modeled by a second-order model. These models describe the position
and orientation of the vehicle relative to a coordinate system. In addition, Oyelere [16]
chooses non-linear models of the car and bicycle type to describe the dynamic movement of
AGVs. Caruntu et al. [17] illustrate the concept of applying bio-inspired coordination and
control techniques to the development of future manufacturing and freight transportation.
They also provide a discussion of the advantages and disadvantages of several techniques
for their use in specific applications.

The optimization and scheduling of tasks for AGVs is another issue to be taken into
consideration from the preliminary design phases as they could impact some design vari-
ables and constraints such as the lifespan and the number of AGVs. For this reason, several
researchers are working on swarm approaches to develop AGV systems. For instance,
Mousavi et al. [18] have developed a mathematical model integrated with evolutionary
algorithms (genetic algorithm (GA), particle swarm optimization (PSO), and GA-PSO hy-

Appl. Sci. 2021, 11, 6187 4 of 21

brid) to optimize the scheduling of tasks of AGVs to minimize the lifespan and the number
of AGVs. Jerald et al. [19] solved the flexible manufacturing system (FMS) scheduling
problem and the control problem during the operation of automatically guided vehicles
(AGVs) using the particle swarm algorithm (PSA). The implementation of nature-inspired
algorithms for the control and coordination of robots is part of a robot design approach
called swarm robotics. Swarm robotics is therefore a relatively new approach to the coor-
dination of a large number of simple autonomous robots [20]. This approach is inspired
by the system of social insects which demonstrate three characteristics: robustness, scal-
ability, and flexibility [21]. Analyzing and designing self-organizing systems like swarm
robotics is a challenging task even though we have complete knowledge about the robot’s
interior [22]. In addition, Lategahn et al. [23] proposed an integrated methodology based
on swarm robotics principles to designing a swarm of small automated guided vehicles
(AGVs). This swarm of robots was used to collect items from store shelves and take them
to a picking station. A challenge with this approach is to provide effective tracking and
tracking techniques to get the AGV’s position at all times.

It is necessary to specify the design requirements of a swarm robotic system, determine
the behavior of each robot based on the behavior of the swarm, and program that behavior
on a software platform [24]. Appropriate software tools are needed to master the complexity
of modeling swarm systems [20]. For example, model-based systems engineering (MBSE) is
the formalized application of modeling to support various stages of system evolution, from
the conceptual design phase to all phases of the lifecycle that follow [25]. Ferreira et al. [26]
develop an intelligent AGV-based material handling system using an MBSE approach. They
design the AGV core and controller in the system’s modeling language environment using
Visual Paradigm software, and then implement the model in hardware. As a result, the
AGV’s complex tasks of handling, navigation, and communication have been accomplished
and successfully tested in the real industrial environment. They also considered the
ergonomic and safety aspects in the design of the AGV by using a complete safety system
that complied with industry standards. A number of system modeling languages are
applied in the industry such as unified modeling language (UML) and system modeling
language (SysML). SysML is an extension of UML that can be used to model complete
systems, including hardware. There are several examples of SysML applications for
modeling control systems [27,28]. For example, Barth et al. [27] used SysML to model
and develop a new thermal spray controller from concept to fully functional industrial
system. The major advantage of using SysML according to Brecher [28] is the ability to
easily model complex systems, as has been demonstrated in the development of control
logic for a robotic handling system. SysML is a visual modeling language that can be used
to describe the structure and behavior of a swarm system [29]. Modeling tools can be used
to capture the variety of diagrams and maintain the consistency of elements across the
different structural and behavioral representations of the system [30].

Despite the specification capabilities offered by SysML and the means to create trace-
ability relationships between the different levels of modeling abstractions, the major dis-
advantage of SysML-based tools is the limited simulation capabilities to verify the de-
velopment. This necessitates combining SysML modeling tools with other integration,
verification, and validation tools.

Integration, verification, and validation (IVV) are decisive steps for the development
of complex systems. When it comes to AGVs, it is necessary to have a software platform
capable of integrating all software codes related to hardware components and verify the
coordination of all members of the swarm system. Such software platform should be
able to verify with simulation the management actions ensuring conflict-free movement
to implement a navigation system that meets the requirements of a swarm system [31].
To do this, the simulation environment should be able to locate the swarm members,
define the environment, and plan optimal paths through the environment. Additionally, to
enable communication with sensors and actuators, a hardware abstraction layer is required.
Since 2014, the Robot Operating System (ROS) has offered a software package dealing

Appl. Sci. 2021, 11, 6187 5 of 21

with AGVs [32]. ROS is an open-source middleware for robotic platforms. It provides all
necessary features of an operating system and enables the development of applications in
C++ and Python [33]. This platform uses several concepts during its operation. A node is
an example of an executable. It can correspond to a sensor, a motor, a processing algorithm,
a monitoring algorithm, etc. Each node that is launched declares itself to the master. The
master is a node declaration and registration service that allows nodes to get to know
each other and exchange information. Indeed, the exchange of information takes place
either asynchronously via a topic or synchronously via a service. A topic is an information
transport system based on the subscribe/publish system. One or more nodes will be able
to post information on a topic and one or more nodes will be able to read the information
on that topic. The sequence diagram shown in Figure 1 summarizes the concepts used by
ROS for information exchange during operation [34].

Appl. Sci. 2021, 11, x FOR PEER REVIEW 5 of 21

environment, and plan optimal paths through the environment. Additionally, to enable
communication with sensors and actuators, a hardware abstraction layer is required.
Since 2014, the Robot Operating System (ROS) has offered a software package dealing
with AGVs [32]. ROS is an open-source middleware for robotic platforms. It provides all
necessary features of an operating system and enables the development of applications in
C++ and Python [33]. This platform uses several concepts during its operation. A node is
an example of an executable. It can correspond to a sensor, a motor, a processing algo-
rithm, a monitoring algorithm, etc. Each node that is launched declares itself to the master.
The master is a node declaration and registration service that allows nodes to get to know
each other and exchange information. Indeed, the exchange of information takes place
either asynchronously via a topic or synchronously via a service. A topic is an information
transport system based on the subscribe/publish system. One or more nodes will be able
to post information on a topic and one or more nodes will be able to read the information
on that topic. The sequence diagram shown in Figure 1 summarizes the concepts used by
ROS for information exchange during operation [34].

Figure 1. Robot Operating System (ROS) system process.

Despite the IVV capabilities offered by ROS, the greatest challenge is balancing the
needs and diverse priorities of stakeholders involved in the development of a robotic sys-
tem. ROS enables code reuse from seasoned hobbyists, students, researchers, entrepre-
neurs, and developers, who write code for cars, boats, airplanes, humanoids, and toys,
among a myriad of other applications. But there is a need to constantly work to balance
and prioritize the use cases that developers want to implement. On the other hand, the
absence of a development methodology makes the integration task complex, which often
means that a lot of time is spent adapting the different codes developed elsewhere.

To overcome the challenges described above, we propose in this paper a new ap-
proach based on swarm robotics combing SysML and ROS possibilities. SysML will be
used to specify system requirements, identify the collective AGV system behaviors re-
quired, describe the different AGV use-cases, and model the AGV architecture according
to different viewpoints (behavioral, functional, and structural). ROS, on the other hand,
will be used to adapt existing baseline robots with the SysML information model to im-
plement the robot components and validate the design with simulation in the ROS envi-
ronment. In the next section, we detail how the schematic information captured in SysML
is converted into a format that can be used to produce or integrate software code that can
then be simulated in ROS to ensure compliance with system requirements.

3. Integrated Methodology for Designing AGVs

Figure 1. Robot Operating System (ROS) system process.

Despite the IVV capabilities offered by ROS, the greatest challenge is balancing the
needs and diverse priorities of stakeholders involved in the development of a robotic sys-
tem. ROS enables code reuse from seasoned hobbyists, students, researchers, entrepreneurs,
and developers, who write code for cars, boats, airplanes, humanoids, and toys, among
a myriad of other applications. But there is a need to constantly work to balance and
prioritize the use cases that developers want to implement. On the other hand, the absence
of a development methodology makes the integration task complex, which often means
that a lot of time is spent adapting the different codes developed elsewhere.

To overcome the challenges described above, we propose in this paper a new approach
based on swarm robotics combing SysML and ROS possibilities. SysML will be used to
specify system requirements, identify the collective AGV system behaviors required, de-
scribe the different AGV use-cases, and model the AGV architecture according to different
viewpoints (behavioral, functional, and structural). ROS, on the other hand, will be used to
adapt existing baseline robots with the SysML information model to implement the robot
components and validate the design with simulation in the ROS environment. In the next
section, we detail how the schematic information captured in SysML is converted into a
format that can be used to produce or integrate software code that can then be simulated
in ROS to ensure compliance with system requirements.

Appl. Sci. 2021, 11, 6187 6 of 21

3. Integrated Methodology for Designing AGVs

AGVs can be considered modern mechatronic systems providing an increasing num-
ber of functionalities [35]. Our objective is to develop a design method allowing specialists
from different engineering fields to combine their expertise to ensure functional, physical,
and software integration using SysML and ROS. Indeed, today’s need for AGVs develop-
ment is a closer integration which encompasses various factors related to design practices
and tools, design methods, and design team members and their interactions.

The AGV design approach proposed in this article is based on swarm robotic concepts
and it consists of two phases: a top-down phase from the requirements specification to func-
tional and structural modeling using SysML; with a bottom-up phase for the integration of
models and their implementation in ROS. The swarm designer begins by specifying the
design requirements using SysML diagrams to describe the various swarm system needs.
From these requirements, the designer identifies the different functions that build the collec-
tive swarm behaviors. SysML state-machine diagrams and activity diagrams are therefore
used to model swarm behaviors. To ensure high-level traceability between requirements,
behaviors, and functions, the designer uses the allocation matrices (Requirement-Behavior,
Behavior-Function). These matrices trace the specified requirements with the functions
that the AGV system must perform while respecting swarm behavior. Once the collective
behaviors are modeled, the designer is interested in structural modeling. Using the SysML
block definition diagram (BDD) and internal block diagram (IBD), the designer details
the AGV structure by specifying the components that are able to ensure the previously
modeled functions that the AGV must perform [36].

To ensure code integration, the designer follows a bottom-up approach guided by the
SysML model developed in the previous steps to implement the swarm behavior with ROS.
At this level of design, the structure of the AGV system is modeled with a Unified Robot
Description Format (URDF) file based on BDD and IBD SysML diagrams. In addition,
the system environment is described in ROS by creating a world file based on a context
BDD-SysML diagram. The final simulation of the swarm behavior of AGVs is performed
with ROS/Gazebo to meet the requirements described with SysML requirement diagrams.
Figure 2 represents the steps of the proposed integrated design methodology. These steps
are detailed in the following sections.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 21

AGVs can be considered modern mechatronic systems providing an increasing num-
ber of functionalities [35]. Our objective is to develop a design method allowing specialists
from different engineering fields to combine their expertise to ensure functional, physical,
and software integration using SysML and ROS. Indeed, today’s need for AGVs develop-
ment is a closer integration which encompasses various factors related to design practices
and tools, design methods, and design team members and their interactions.

The AGV design approach proposed in this article is based on swarm robotic con-
cepts and it consists of two phases: a top-down phase from the requirements specification
to functional and structural modeling using SysML; with a bottom-up phase for the inte-
gration of models and their implementation in ROS. The swarm designer begins by spec-
ifying the design requirements using SysML diagrams to describe the various swarm sys-
tem needs. From these requirements, the designer identifies the different functions that
build the collective swarm behaviors. SysML state-machine diagrams and activity dia-
grams are therefore used to model swarm behaviors. To ensure high-level traceability be-
tween requirements, behaviors, and functions, the designer uses the allocation matrices
(Requirement-Behavior, Behavior-Function). These matrices trace the specified require-
ments with the functions that the AGV system must perform while respecting swarm be-
havior. Once the collective behaviors are modeled, the designer is interested in structural
modeling. Using the SysML block definition diagram (BDD) and internal block diagram
(IBD), the designer details the AGV structure by specifying the components that are able
to ensure the previously modeled functions that the AGV must perform [36].

To ensure code integration, the designer follows a bottom-up approach guided by
the SysML model developed in the previous steps to implement the swarm behavior with
ROS. At this level of design, the structure of the AGV system is modeled with a Unified
Robot Description Format (URDF) file based on BDD and IBD SysML diagrams. In addi-
tion, the system environment is described in ROS by creating a world file based on a con-
text BDD-SysML diagram. The final simulation of the swarm behavior of AGVs is per-
formed with ROS/Gazebo to meet the requirements described with SysML requirement
diagrams. Figure 2 represents the steps of the proposed integrated design methodology.
These steps are detailed in the following sections.

Figure 2. Integrated methodology for designing a swarm system.

Figure 2. Integrated methodology for designing a swarm system.

3.1. PHASE 1: SysML Modeling
3.1.1. Design Requirements

The design requirements are the needs, necessities, and expectations that the devel-
oped swarm robotic system must meet, or the constraints that it must satisfy [37]. The

Appl. Sci. 2021, 11, 6187 7 of 21

requirements diagram that is shown in Figure 3 models the general swarm robotic re-
quirements to be verified. This model facilitates the designer to relate the solutions to be
implemented with the needs defined in the specifications. Design requirements translate,
through functionalities or constraints (performance, reliability, safety conditions, etc.), what
must be satisfied by the system [36].

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 21

3.1. PHASE 1: SysML Modeling
3.1.1. Design Requirements

The design requirements are the needs, necessities, and expectations that the devel-
oped swarm robotic system must meet, or the constraints that it must satisfy [37]. The
requirements diagram that is shown in Figure 3 models the general swarm robotic re-
quirements to be verified. This model facilitates the designer to relate the solutions to be
implemented with the needs defined in the specifications. Design requirements translate,
through functionalities or constraints (performance, reliability, safety conditions, etc.),
what must be satisfied by the system [36].

Figure 3. Design requirements of a swarm robotic system in SysML.

These requirements are divided into main sub-requirements. To design a swarm ro-
botic system, the designer must identify the necessary hardware and software specifica-
tions. To cite some examples of requirements, the robots need to be autonomous, located
in their environment, can act to modify it, and can detect each other. Additionally, the
detection and communication capacities of the robots must be local. These robots should
also not have access to centralized control and/or global knowledge [38].

3.1.2. Behavioral Modeling
After specifying the hardware and software requirements, the designer is interested

in the behavioral modeling of the swarm robotic system. Indeed, Brambilla et al. [38] have
classified the behaviors of swarm robots into four classes: spatial organization behaviors,
navigation behaviors, collective decision making, and other collective behaviors. In pre-
vious work, ALOUI et al. [36] proposed an approach for the modeling of the collective
behaviors of swarm robots using SysML state machine diagrams.

The collective behavior of a swarm generally consists of a set of functions performed
by each robot in the swarm. The interaction between the robots synthesizes the collective
behavior of a swarm of robots. Figure 4 describes the behavior of each robot in the swarm.
Therefore, the use of SysML state machine diagrams ensures the modeling continuity be-
tween the swarm behavior description, the robot behavior, and the functional behavior of
a robot.

Figure 3. Design requirements of a swarm robotic system in SysML.

These requirements are divided into main sub-requirements. To design a swarm
robotic system, the designer must identify the necessary hardware and software specifica-
tions. To cite some examples of requirements, the robots need to be autonomous, located
in their environment, can act to modify it, and can detect each other. Additionally, the
detection and communication capacities of the robots must be local. These robots should
also not have access to centralized control and/or global knowledge [38].

3.1.2. Behavioral Modeling

After specifying the hardware and software requirements, the designer is interested
in the behavioral modeling of the swarm robotic system. Indeed, Brambilla et al. [38] have
classified the behaviors of swarm robots into four classes: spatial organization behaviors,
navigation behaviors, collective decision making, and other collective behaviors. In pre-
vious work, ALOUI et al. [36] proposed an approach for the modeling of the collective
behaviors of swarm robots using SysML state machine diagrams.

The collective behavior of a swarm generally consists of a set of functions performed
by each robot in the swarm. The interaction between the robots synthesizes the collective
behavior of a swarm of robots. Figure 4 describes the behavior of each robot in the swarm.
Therefore, the use of SysML state machine diagrams ensures the modeling continuity
between the swarm behavior description, the robot behavior, and the functional behavior
of a robot.

Appl. Sci. 2021, 11, 6187 8 of 21Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 21

Figure 4. Abstract model of collective behavior in SysML.

3.1.3. Structural Modeling
After identifying the set of functions that describe the collective swarm behaviors,

the necessary components of the AGV system need to be defined. Figure 5 represents the
general architecture of the swarm system represented with a SysML BDD.

Figure 5. General architecture of the swarm in SysML.

The next step consists of identifying the different alternative solutions that can meet
the functional architecture of the AGV system. Then, the final structure of the AGV is
broken down into subsystems and components. Figure 6 shows a general structure with
the different elements of an AGV in a swarm.

Figure 6. The swarm member structure modeled with the SysML BDD diagram.

The structure of the swarm member depends on the functions required. Generally,
robots consist of a motion system such as motors to operate and wheels to provide move-
ment. In addition, the robots contain a power supply system consisting mainly of batteries
to provide energy. Other components are specified according to the appropriate behavior
such as position sensors to provide localization and infrared sensors to explore the envi-
ronment.

Figure 4. Abstract model of collective behavior in SysML.

3.1.3. Structural Modeling

After identifying the set of functions that describe the collective swarm behaviors,
the necessary components of the AGV system need to be defined. Figure 5 represents the
general architecture of the swarm system represented with a SysML BDD.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 21

Figure 4. Abstract model of collective behavior in SysML.

3.1.3. Structural Modeling
After identifying the set of functions that describe the collective swarm behaviors,

the necessary components of the AGV system need to be defined. Figure 5 represents the
general architecture of the swarm system represented with a SysML BDD.

Figure 5. General architecture of the swarm in SysML.

The next step consists of identifying the different alternative solutions that can meet
the functional architecture of the AGV system. Then, the final structure of the AGV is
broken down into subsystems and components. Figure 6 shows a general structure with
the different elements of an AGV in a swarm.

Figure 6. The swarm member structure modeled with the SysML BDD diagram.

The structure of the swarm member depends on the functions required. Generally,
robots consist of a motion system such as motors to operate and wheels to provide move-
ment. In addition, the robots contain a power supply system consisting mainly of batteries
to provide energy. Other components are specified according to the appropriate behavior
such as position sensors to provide localization and infrared sensors to explore the envi-
ronment.

Figure 5. General architecture of the swarm in SysML.

The next step consists of identifying the different alternative solutions that can meet
the functional architecture of the AGV system. Then, the final structure of the AGV is
broken down into subsystems and components. Figure 6 shows a general structure with
the different elements of an AGV in a swarm.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 21

Figure 4. Abstract model of collective behavior in SysML.

3.1.3. Structural Modeling
After identifying the set of functions that describe the collective swarm behaviors,

the necessary components of the AGV system need to be defined. Figure 5 represents the
general architecture of the swarm system represented with a SysML BDD.

Figure 5. General architecture of the swarm in SysML.

The next step consists of identifying the different alternative solutions that can meet
the functional architecture of the AGV system. Then, the final structure of the AGV is
broken down into subsystems and components. Figure 6 shows a general structure with
the different elements of an AGV in a swarm.

Figure 6. The swarm member structure modeled with the SysML BDD diagram.

The structure of the swarm member depends on the functions required. Generally,
robots consist of a motion system such as motors to operate and wheels to provide move-
ment. In addition, the robots contain a power supply system consisting mainly of batteries
to provide energy. Other components are specified according to the appropriate behavior
such as position sensors to provide localization and infrared sensors to explore the envi-
ronment.

Figure 6. The swarm member structure modeled with the SysML BDD diagram.

Appl. Sci. 2021, 11, 6187 9 of 21

The structure of the swarm member depends on the functions required. Gener-
ally, robots consist of a motion system such as motors to operate and wheels to provide
movement. In addition, the robots contain a power supply system consisting mainly of
batteries to provide energy. Other components are specified according to the appropriate
behavior such as position sensors to provide localization and infrared sensors to explore
the environment.

To ensure the design continuity and consistency of the methodology, the designer
creates an allocation matrix that links the hardware components of the swarm system with
the individual functions provided by each swarm robot. Figure 7 represents a component-
function allocation matrix.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 21

To ensure the design continuity and consistency of the methodology, the designer
creates an allocation matrix that links the hardware components of the swarm system with
the individual functions provided by each swarm robot. Figure 7 represents a component-
function allocation matrix.

Figure 7. Component-Function allocations.

3.2. PHASE 2: ROS Implementation
The Robotics Operating System (ROS) is the first large-scale robotics collaborative

project that provides a time-saving computer toolset in the development of a robot, or
robotic system [39]. The main idea for creating a swarm of robots on ROS is to create a
decentralized communication system made up of a set of individual robots. These robots
represent the nodes of the ROS system and a communication topic to subscribe and pub-
lish information between them. Figure 8 represents the interactions of swarm robots in
the ROS environment.

Figure 8. Interactions of swarm robots in the ROS environment.

To implement the model developed on ROS, the swarm designer creates a workspace
made up of different packages which describe the swarm structure and the functions pro-
vided by each robot. For the organization of ROS packages, it is a good practice to group

Figure 7. Component-Function allocations.

3.2. PHASE 2: ROS Implementation

The Robotics Operating System (ROS) is the first large-scale robotics collaborative
project that provides a time-saving computer toolset in the development of a robot, or
robotic system [39]. The main idea for creating a swarm of robots on ROS is to create a
decentralized communication system made up of a set of individual robots. These robots
represent the nodes of the ROS system and a communication topic to subscribe and publish
information between them. Figure 8 represents the interactions of swarm robots in the
ROS environment.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 21

To ensure the design continuity and consistency of the methodology, the designer
creates an allocation matrix that links the hardware components of the swarm system with
the individual functions provided by each swarm robot. Figure 7 represents a component-
function allocation matrix.

Figure 7. Component-Function allocations.

3.2. PHASE 2: ROS Implementation
The Robotics Operating System (ROS) is the first large-scale robotics collaborative

project that provides a time-saving computer toolset in the development of a robot, or
robotic system [39]. The main idea for creating a swarm of robots on ROS is to create a
decentralized communication system made up of a set of individual robots. These robots
represent the nodes of the ROS system and a communication topic to subscribe and pub-
lish information between them. Figure 8 represents the interactions of swarm robots in
the ROS environment.

Figure 8. Interactions of swarm robots in the ROS environment.

To implement the model developed on ROS, the swarm designer creates a workspace
made up of different packages which describe the swarm structure and the functions pro-
vided by each robot. For the organization of ROS packages, it is a good practice to group

Figure 8. Interactions of swarm robots in the ROS environment.

Appl. Sci. 2021, 11, 6187 10 of 21

To implement the model developed on ROS, the swarm designer creates a workspace
made up of different packages which describe the swarm structure and the functions
provided by each robot. For the organization of ROS packages, it is a good practice to
group them together for functional consistency [40]. It is possible to do this as a workspace.
Figure 9 shows an architecture of a swarm robot package.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 21

them together for functional consistency [40]. It is possible to do this as a workspace. Fig-
ure 9 shows an architecture of a swarm robot package.

Figure 9. Organization of the workspace of a swarm member in ROS.

In this workspace, a ‘src’ directory is created in which a package directory that con-
tains the files of a package can be created [41]:
- The build directory is used for building packages and as such contains all object files.
- The devel directory contains the executables and the libraries resulting from the com-

pilation of the packages and, therefore, specified as a target in the CMakeLists.txt file.
- The install directory only contains files that are explicitly installed through the in-

stallation directives specified in the CMakeLists.txt file of the packages.
- CMakeLists.txt: The file indicating how to compile and install the package
- package.xml: The ROS file describing the identity of the package and its dependen-

cies.
- A robot description language: URDF for Universal Robot Description Format is an

XML specification describing the kinematics of a robot, its dynamic characteristics,
its geometry, and its sensors.

- WORLD file: this file describes the work environment. It can correspond to the con-
text diagram (BDD) which defines the SysML environment.

- A node as an executable file in ROS package: ROS nodes use a client library to com-
municate with other nodes. Nodes can subscribe or publish to topics. Nodes can use
or provide a service. The client libraries are rospy for python and roscpp for C++.
These ROS nodes contain the algorithms that translate the individual functions of the
robots.

- Launch file: In this file, the developer must request the other files (urdf file, world
file, cpp functions, etc.) and initialize the initial parameters of the system (swarm size,
area, etc.) to describe the collective behaviors of swarm robots.

- The graphical interface GAZEBO represents the final 3D view of the swarm system.
The last step of the proposed design approach is to validate the AGV design by check-

ing all the design requirements. This step will be illustrated in the case study subject of
the next section.

Figure 9. Organization of the workspace of a swarm member in ROS.

In this workspace, a ‘src’ directory is created in which a package directory that contains
the files of a package can be created [41]:

- The build directory is used for building packages and as such contains all object files.
- The devel directory contains the executables and the libraries resulting from the com-

pilation of the packages and, therefore, specified as a target in the CMakeLists.txt file.
- The install directory only contains files that are explicitly installed through the instal-

lation directives specified in the CMakeLists.txt file of the packages.
- CMakeLists.txt: The file indicating how to compile and install the package
- package.xml: The ROS file describing the identity of the package and its dependencies.
- A robot description language: URDF for Universal Robot Description Format is an

XML specification describing the kinematics of a robot, its dynamic characteristics, its
geometry, and its sensors.

- WORLD file: this file describes the work environment. It can correspond to the
context diagram (BDD) which defines the SysML environment.

- A node as an executable file in ROS package: ROS nodes use a client library to
communicate with other nodes. Nodes can subscribe or publish to topics. Nodes can
use or provide a service. The client libraries are rospy for python and roscpp for C++.
These ROS nodes contain the algorithms that translate the individual functions of
the robots.

- Launch file: In this file, the developer must request the other files (urdf file, world
file, cpp functions, etc.) and initialize the initial parameters of the system (swarm size,
area, etc.) to describe the collective behaviors of swarm robots.

- The graphical interface GAZEBO represents the final 3D view of the swarm system.
- The last step of the proposed design approach is to validate the AGV design by

checking all the design requirements. This step will be illustrated in the case study
subject of the next section.

Appl. Sci. 2021, 11, 6187 11 of 21

4. Case-Study: Application to the Design of AGVs

Automated guided vehicles (AGVs) are driverless mobile platforms used in the indus-
try for the transportation of materials [42]. In this case study, we consider the design of
a general-purpose AGV system that can be adapted to several working environments to
transport material.

4.1. PHASE 1: SysML Modeling
4.1.1. Design Requirements

AGVs are deployed in many different application domains and vehicle types have
increased to meet the customer’s needs. These types of vehicles are used in the man-
ufacturing, automotive, warehousing, food, chemical, and healthcare industries [43,44].
This variety of applications specifies the general-purpose system requirements. The first
SysML diagram to be addressed is the requirements diagram for the AGV model shown in
Figure 10. As shown in this figure, a traceability relation “satisfy” is added to ensure trace-
ability between the different design views. Indeed, when dealing with complex systems
design, this traceability is essential because it helps in verifying that the requirements are
met for each component of the system and for the system as a whole.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 21

4. Case-Study: Application to the Design of AGVs
Automated guided vehicles (AGVs) are driverless mobile platforms used in the in-

dustry for the transportation of materials [42]. In this case study, we consider the design
of a general-purpose AGV system that can be adapted to several working environments
to transport material.

4.1. PHASE 1: SysML Modeling
4.1.1. Design Requirements

AGVs are deployed in many different application domains and vehicle types have
increased to meet the customer’s needs. These types of vehicles are used in the manufac-
turing, automotive, warehousing, food, chemical, and healthcare industries [43, 44]. This
variety of applications specifies the general-purpose system requirements. The first
SysML diagram to be addressed is the requirements diagram for the AGV model shown
in Figure 10. As shown in this figure, a traceability relation “satisfy” is added to ensure
traceability between the different design views. Indeed, when dealing with complex sys-
tems design, this traceability is essential because it helps in verifying that the requirements
are met for each component of the system and for the system as a whole.

Figure 10. Requirement diagram of automatically guided vehicles (AGV) in SysML.

The design of AGV systems is costly in terms of money and time because it should
take into consideration the whole system life cycle, including the installation phase and
logistics. Indeed, defining the AGV traffic rules and the path map is a time-consuming
operation that could increase both installation and operation costs. In addition, one of the
main requirements for the design of AGVs systems is efficiency. It is the main reason for
adopting an AGV system for industrial logistics. In addition, the use of AGV introduces
flexibility into the logistics system. Finally, AGVs need to be intrinsically safe, to never
cause injuries to humans. Some major AGV design requirements have been listed above,
but the list could be as large as this depending on specific needs. In addition, emerging
design requirements may appear during the design cycle depending on the decisions
made and the choices of solutions and technologies used. At this level, we limit ourselves
to the major requirements which allow us to begin the study of the behavior of AGVs and,
in particular, their behavior in swarms.

Figure 10. Requirement diagram of automatically guided vehicles (AGV) in SysML.

The design of AGV systems is costly in terms of money and time because it should
take into consideration the whole system life cycle, including the installation phase and
logistics. Indeed, defining the AGV traffic rules and the path map is a time-consuming
operation that could increase both installation and operation costs. In addition, one of the
main requirements for the design of AGVs systems is efficiency. It is the main reason for
adopting an AGV system for industrial logistics. In addition, the use of AGV introduces
flexibility into the logistics system. Finally, AGVs need to be intrinsically safe, to never
cause injuries to humans. Some major AGV design requirements have been listed above,
but the list could be as large as this depending on specific needs. In addition, emerging
design requirements may appear during the design cycle depending on the decisions made
and the choices of solutions and technologies used. At this level, we limit ourselves to the
major requirements which allow us to begin the study of the behavior of AGVs and, in
particular, their behavior in swarms.

Appl. Sci. 2021, 11, 6187 12 of 21

4.1.2. Behavioral Modeling

The automated guided vehicles (AGVs) are used for automated factory logistics, such
as the transportation of raw materials or final products. They are used for the management
of the flow of resources between the point of origin and the point of destination in order to
meet certain stakeholders’ requirements, for example, companies or customers [6].

The analysis of the behavior of the AGVs begins with the description of the scenarios
of use and the missions to be accomplished by the AGVs. In SysML language, the scenarios
of use can be modeled using SysML use-case diagrams. The AGV mission can be modeled
with a state-machine diagram as is detailed below.

AGV scenario: An AGV usually transfers a pallet of goods from an automated
production line. The pallet must be brought to the shipping area. Sometimes pallets have
to be stored in a warehouse that is composed of a set of racks and shelves or a set of block
storage areas. Figure 11 represents this AGV scenario.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 21

4.1.2. Behavioral Modeling
The automated guided vehicles (AGVs) are used for automated factory logistics, such

as the transportation of raw materials or final products. They are used for the management
of the flow of resources between the point of origin and the point of destination in order
to meet certain stakeholders’ requirements, for example, companies or customers [6].

The analysis of the behavior of the AGVs begins with the description of the scenarios
of use and the missions to be accomplished by the AGVs. In SysML language, the scenar-
ios of use can be modeled using SysML use-case diagrams. The AGV mission can be mod-
eled with a state-machine diagram as is detailed below.

AGV scenario: An AGV usually transfers a pallet of goods from an automated pro-
duction line. The pallet must be brought to the shipping area. Sometimes pallets have to
be stored in a warehouse that is composed of a set of racks and shelves or a set of block
storage areas. Figure 11 represents this AGV scenario.

Figure 11. AGV scenario.

AGV missions: A mission must be accomplished by an AGV. It is started with a task
defined as a sequence of segments of the route map to be followed by AGVs. Thereafter,
each trip is made by an AGV to move a pallet of goods from one place to another. Indeed,
the loading and unloading operations are carried out at the beginning and the end of each
journey. To apply the swarm aspect, each AGV performs the mission in parallel with the
other AGVs (i.e., throughout the mission, each AGV performs a task of the mission). This
mission can be defined using the state machine diagram shown in Figure 12.

Figure 12. AGV missions in SysML.

Figure 11. AGV scenario.

AGV missions: A mission must be accomplished by an AGV. It is started with a task
defined as a sequence of segments of the route map to be followed by AGVs. Thereafter,
each trip is made by an AGV to move a pallet of goods from one place to another. Indeed,
the loading and unloading operations are carried out at the beginning and the end of each
journey. To apply the swarm aspect, each AGV performs the mission in parallel with the
other AGVs (i.e., throughout the mission, each AGV performs a task of the mission). This
mission can be defined using the state machine diagram shown in Figure 12.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 21

4.1.2. Behavioral Modeling
The automated guided vehicles (AGVs) are used for automated factory logistics, such

as the transportation of raw materials or final products. They are used for the management
of the flow of resources between the point of origin and the point of destination in order
to meet certain stakeholders’ requirements, for example, companies or customers [6].

The analysis of the behavior of the AGVs begins with the description of the scenarios
of use and the missions to be accomplished by the AGVs. In SysML language, the scenar-
ios of use can be modeled using SysML use-case diagrams. The AGV mission can be mod-
eled with a state-machine diagram as is detailed below.

AGV scenario: An AGV usually transfers a pallet of goods from an automated pro-
duction line. The pallet must be brought to the shipping area. Sometimes pallets have to
be stored in a warehouse that is composed of a set of racks and shelves or a set of block
storage areas. Figure 11 represents this AGV scenario.

Figure 11. AGV scenario.

AGV missions: A mission must be accomplished by an AGV. It is started with a task
defined as a sequence of segments of the route map to be followed by AGVs. Thereafter,
each trip is made by an AGV to move a pallet of goods from one place to another. Indeed,
the loading and unloading operations are carried out at the beginning and the end of each
journey. To apply the swarm aspect, each AGV performs the mission in parallel with the
other AGVs (i.e., throughout the mission, each AGV performs a task of the mission). This
mission can be defined using the state machine diagram shown in Figure 12.

Figure 12. AGV missions in SysML.

Figure 12. AGV missions in SysML.

Appl. Sci. 2021, 11, 6187 13 of 21

4.1.3. Structural Modeling

In this step, the general structure of the AGV system must be defined. For this, the
AGV structure follows the description given in a block definition diagram as shown in
Figure 5. The AGV swarm consists of a group of AGV individuals. The block definition
diagram shown in Figure 13 represents the structure of the main sub-systems and compo-
nents of one AGV. The motion sub-system of the AGV consists of four wheels and four
motors. Each wheel is driven by one servo-motor with an assembled gearbox. The system
should have four drivers that receive commands and send feedback to the 4-axis controller
board. In addition, the power supply subsystem of each AGV consists of a self-contained
battery. One stereo camera chosen to be Intel Real Sense D435i [45] is added to the front of
the vehicle body to collect RGB images and depth information [46].

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 21

4.1.3. Structural Modeling
In this step, the general structure of the AGV system must be defined. For this, the

AGV structure follows the description given in a block definition diagram as shown in
Figure 5. The AGV swarm consists of a group of AGV individuals. The block definition
diagram shown in Figure 13 represents the structure of the main sub-systems and compo-
nents of one AGV. The motion sub-system of the AGV consists of four wheels and four
motors. Each wheel is driven by one servo-motor with an assembled gearbox. The system
should have four drivers that receive commands and send feedback to the 4-axis controller
board. In addition, the power supply subsystem of each AGV consists of a self-contained
battery. One stereo camera chosen to be Intel Real Sense D435i [45] is added to the front
of the vehicle body to collect RGB images and depth information [46].

Figure 13. Architecture of the AGV system in SysML.

To ensure the continuity and consistency of the design, another allocation matrix
must be defined to relate the hardware components of the AGVs system to the individual
functions provided by each AGV. Figure 14 shows this component-function allocation
matrix.

Figure 14. Component-Function allocations.

Figure 13. Architecture of the AGV system in SysML.

To ensure the continuity and consistency of the design, another allocation matrix must
be defined to relate the hardware components of the AGVs system to the individual func-
tions provided by each AGV. Figure 14 shows this component-function allocation matrix.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 21

4.1.3. Structural Modeling
In this step, the general structure of the AGV system must be defined. For this, the

AGV structure follows the description given in a block definition diagram as shown in
Figure 5. The AGV swarm consists of a group of AGV individuals. The block definition
diagram shown in Figure 13 represents the structure of the main sub-systems and compo-
nents of one AGV. The motion sub-system of the AGV consists of four wheels and four
motors. Each wheel is driven by one servo-motor with an assembled gearbox. The system
should have four drivers that receive commands and send feedback to the 4-axis controller
board. In addition, the power supply subsystem of each AGV consists of a self-contained
battery. One stereo camera chosen to be Intel Real Sense D435i [45] is added to the front
of the vehicle body to collect RGB images and depth information [46].

Figure 13. Architecture of the AGV system in SysML.

To ensure the continuity and consistency of the design, another allocation matrix
must be defined to relate the hardware components of the AGVs system to the individual
functions provided by each AGV. Figure 14 shows this component-function allocation
matrix.

Figure 14. Component-Function allocations.

Figure 14. Component-Function allocations.

Appl. Sci. 2021, 11, 6187 14 of 21

4.2. PHASE 2: ROS Implementation

To verify the development performed in the previous phase, the developed models of
the AGV system need to be implemented in the ROS environment. For this, the designer
creates a workspace composed of a set of packages. To take into account the behavior
of the swarm, the individual AGVs are associated with nodes in the ROS system, and
a communication subject is created for subscribing and posting information exchanged
between the individual AGVs. The ROS packages are implemented based on the different
SysML diagrams developed in the first design phase. Indeed, the BDD block definition
diagram and the IBD internal block diagrams are used to create the URDF file and the
WORLD file in ROS. The URDF file describes the general structure of the AGV system
and the WORLD file describes the working environment (factory). Then the state machine
diagrams and the activity diagrams are used to develop the control algorithms of the AGV
system in ROS. Figure 15 shows the ROS integration methodology.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 14 of 21

4.2. PHASE 2: ROS Implementation
To verify the development performed in the previous phase, the developed models

of the AGV system need to be implemented in the ROS environment. For this, the designer
creates a workspace composed of a set of packages. To take into account the behavior of
the swarm, the individual AGVs are associated with nodes in the ROS system, and a com-
munication subject is created for subscribing and posting information exchanged between
the individual AGVs. The ROS packages are implemented based on the different SysML
diagrams developed in the first design phase. Indeed, the BDD block definition diagram
and the IBD internal block diagrams are used to create the URDF file and the WORLD file
in ROS. The URDF file describes the general structure of the AGV system and the WORLD
file describes the working environment (factory). Then the state machine diagrams and
the activity diagrams are used to develop the control algorithms of the AGV system in
ROS. Figure 15 shows the ROS integration methodology.

Figure 15. ROS integration methodology.

One of the strong points of ROS is the reuse of codes developed by others that can be
found and shared by ROS users (on GitHub site for example). Users can find versions
written in Python and C++ which differ in their restrictions, performance, and the lighten
code. AGV developers can download them and make them usable by compiling them
(using catkin build processes), and new versions of these codes will be available as other
ROS-based packages. Based on the SysML descriptions made in the first design step, AGV
developers can integrate the most suitable codes that respect the AGV requirements, the
functional architecture, and its physical architecture. The software architecture will there-
fore be more easily integrated based on the existing ROS packages. The developer’s task
after that is to adapt the code and integrate it with the remaining ROS elements. In this
study, we choose to adapt the “agvs” packages developed by the company Robotnik Au-
tomation [47] to our case study to validate our methodology. We followed a bottom-up
approach guided by a SysML information model to select a baseline solution of an AGV
in order to create a new AGV design that met the system requirements. This saved a lot
of time in the AGV design process. In the next sections, we will detail how to implement
one single AGV system in the ROS platform. Some remarks will therefore be given on the
simulation of the swarm of AGVs.

4.2.1. Creation of URDF File
The first step is to create the URDF descriptive model of the AGV for the simulation

purpose with the Gazebo tool (the 3D environment of ROS for simulation). The URDF file
can be directly defined using Gazebo tools based on the SysML description of the AGV
structure. However, for a complex 3D design of an AGV, it would be more practical to
generate the URDF file from a 3D CAD tool. For this, some CAD tools, such as SolidWorks
and FreeCad, have plugins allowing the automatic generation of the URDF file by speci-
fying the robot joints and links. In such a case, the SysML description of the robot structure

Figure 15. ROS integration methodology.

One of the strong points of ROS is the reuse of codes developed by others that can
be found and shared by ROS users (on GitHub site for example). Users can find versions
written in Python and C++ which differ in their restrictions, performance, and the lighten
code. AGV developers can download them and make them usable by compiling them
(using catkin build processes), and new versions of these codes will be available as other
ROS-based packages. Based on the SysML descriptions made in the first design step,
AGV developers can integrate the most suitable codes that respect the AGV requirements,
the functional architecture, and its physical architecture. The software architecture will
therefore be more easily integrated based on the existing ROS packages. The developer’s
task after that is to adapt the code and integrate it with the remaining ROS elements. In
this study, we choose to adapt the “agvs” packages developed by the company Robotnik
Automation [47] to our case study to validate our methodology. We followed a bottom-up
approach guided by a SysML information model to select a baseline solution of an AGV
in order to create a new AGV design that met the system requirements. This saved a lot
of time in the AGV design process. In the next sections, we will detail how to implement
one single AGV system in the ROS platform. Some remarks will therefore be given on the
simulation of the swarm of AGVs.

4.2.1. Creation of URDF File

The first step is to create the URDF descriptive model of the AGV for the simulation
purpose with the Gazebo tool (the 3D environment of ROS for simulation). The URDF file
can be directly defined using Gazebo tools based on the SysML description of the AGV
structure. However, for a complex 3D design of an AGV, it would be more practical to
generate the URDF file from a 3D CAD tool. For this, some CAD tools, such as SolidWorks

Appl. Sci. 2021, 11, 6187 15 of 21

and FreeCad, have plugins allowing the automatic generation of the URDF file by specify-
ing the robot joints and links. In such a case, the SysML description of the robot structure
can be used by the CAD designer to define the 3D CAD model of the AGV. Figure 16
shows the procedure for making a multibody model for the Gazebo environment using the
SolidWorks plugin (SW2URDF). For each AGV link (component), it is necessary to specify
the name, the collision type, and the visual component. It is also possible to add cameras,
sensors, or motors to the links. At this stage, the values of the physical properties can be
defined for each component as specified in the SysML structure model of the AGV.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 21

can be used by the CAD designer to define the 3D CAD model of the AGV. Figure 16
shows the procedure for making a multibody model for the Gazebo environment using
the SolidWorks plugin (SW2URDF). For each AGV link (component), it is necessary to
specify the name, the collision type, and the visual component. It is also possible to add
cameras, sensors, or motors to the links. At this stage, the values of the physical properties
can be defined for each component as specified in the SysML structure model of the AGV.

Figure 16. Modeling of an AGV system from Solid Works to Gazebo.

Through CAD software, such as SolidWorks, the SysML BDD shown in Figure 13
helps the 3D CAD designer in modeling the AGV structure. This diagram defines the dif-
ferent components of the system with their physical properties. On the other hand, the
Internal Block diagram (IBD) illustrated in Figure 17 explains the interactions between the
components that help in defining the different links and joints between the AGV elements
during the URDF file generation.

Figure 17. Interaction between system components in SysML.

Figure 18 shows the 3D structure of the AGV according to the model developed with
the IBD and BDD diagrams. The width and length are 0.45 m and 1 m respectively and
the height is 0.3 m. This AGV structure is made of four wheels and four motors. Each
wheel is driven by a servo-motor with an assembled gearbox and each AGV contains an
autonomous battery.

Figure 18. 3D model of an AGV in Gazebo.

Figure 16. Modeling of an AGV system from Solid Works to Gazebo.

Through CAD software, such as SolidWorks, the SysML BDD shown in Figure 13
helps the 3D CAD designer in modeling the AGV structure. This diagram defines the
different components of the system with their physical properties. On the other hand, the
Internal Block diagram (IBD) illustrated in Figure 17 explains the interactions between the
components that help in defining the different links and joints between the AGV elements
during the URDF file generation.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 21

can be used by the CAD designer to define the 3D CAD model of the AGV. Figure 16
shows the procedure for making a multibody model for the Gazebo environment using
the SolidWorks plugin (SW2URDF). For each AGV link (component), it is necessary to
specify the name, the collision type, and the visual component. It is also possible to add
cameras, sensors, or motors to the links. At this stage, the values of the physical properties
can be defined for each component as specified in the SysML structure model of the AGV.

Figure 16. Modeling of an AGV system from Solid Works to Gazebo.

Through CAD software, such as SolidWorks, the SysML BDD shown in Figure 13
helps the 3D CAD designer in modeling the AGV structure. This diagram defines the dif-
ferent components of the system with their physical properties. On the other hand, the
Internal Block diagram (IBD) illustrated in Figure 17 explains the interactions between the
components that help in defining the different links and joints between the AGV elements
during the URDF file generation.

Figure 17. Interaction between system components in SysML.

Figure 18 shows the 3D structure of the AGV according to the model developed with
the IBD and BDD diagrams. The width and length are 0.45 m and 1 m respectively and
the height is 0.3 m. This AGV structure is made of four wheels and four motors. Each
wheel is driven by a servo-motor with an assembled gearbox and each AGV contains an
autonomous battery.

Figure 18. 3D model of an AGV in Gazebo.

Figure 17. Interaction between system components in SysML.

Figure 18 shows the 3D structure of the AGV according to the model developed with
the IBD and BDD diagrams. The width and length are 0.45 m and 1 m respectively and
the height is 0.3 m. This AGV structure is made of four wheels and four motors. Each
wheel is driven by a servo-motor with an assembled gearbox and each AGV contains an
autonomous battery.

Appl. Sci. 2021, 11, 6187 16 of 21

Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 21

can be used by the CAD designer to define the 3D CAD model of the AGV. Figure 16
shows the procedure for making a multibody model for the Gazebo environment using
the SolidWorks plugin (SW2URDF). For each AGV link (component), it is necessary to
specify the name, the collision type, and the visual component. It is also possible to add
cameras, sensors, or motors to the links. At this stage, the values of the physical properties
can be defined for each component as specified in the SysML structure model of the AGV.

Figure 16. Modeling of an AGV system from Solid Works to Gazebo.

Through CAD software, such as SolidWorks, the SysML BDD shown in Figure 13
helps the 3D CAD designer in modeling the AGV structure. This diagram defines the dif-
ferent components of the system with their physical properties. On the other hand, the
Internal Block diagram (IBD) illustrated in Figure 17 explains the interactions between the
components that help in defining the different links and joints between the AGV elements
during the URDF file generation.

Figure 17. Interaction between system components in SysML.

Figure 18 shows the 3D structure of the AGV according to the model developed with
the IBD and BDD diagrams. The width and length are 0.45 m and 1 m respectively and
the height is 0.3 m. This AGV structure is made of four wheels and four motors. Each
wheel is driven by a servo-motor with an assembled gearbox and each AGV contains an
autonomous battery.

Figure 18. 3D model of an AGV in Gazebo. Figure 18. 3D model of an AGV in Gazebo.

4.2.2. Creation of World File

The second step is to create a World file that describes the working environment. ROS
users can reuse and adapt existing World files, or develop them using Gazebo or 3D CAD
Software. In our study, the AGV system environment is a factory that has been adopted
from the ROS/Gazebo library of World files. The file “agvs_office.world” contains the
various factory elements as shown in Figure 19.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 16 of 21

4.2.2. Creation of World File
The second step is to create a World file that describes the working environment.

ROS users can reuse and adapt existing World files, or develop them using Gazebo or 3D
CAD Software. In our study, the AGV system environment is a factory that has been
adopted from the ROS/Gazebo library of World files. The file “agvs_office.world” con-
tains the various factory elements as shown in Figure 19.

Figure 19. 3D model of a factory in Gazebo.

This factory is a flat surface made up of walls, racks, large pallets, empty pallets, and
conveyor frames. All these components are available in the ROS library to build customi-
zable working environments.

4.2.3. Creation of Algorithms
The third step is to create the algorithms that manage the operation of the AGV sys-

tem in the factory. Our methodology simplifies the creation of these algorithms because
the models developed with the state machine diagrams in SysML are used to develop
these operating algorithms. Figure 20 shows the process of creating algorithms to run
AGVs through SysML diagrams.

Figure 20. Creation of AGVs operating algorithms using SysML diagram.

Converting these algorithms to usable software codes is the most difficult step that
requires the ingenuity of IT developers. However, with the preliminary preparation work
(state-machines to algorithms) the complexity of the task of the developers is considerably
reduced, with a better level of conformity between the various pieces of code. Indeed, the
IT developers translate the algorithms into C++ or Python codes to ROS nodes which will

Figure 19. 3D model of a factory in Gazebo.

This factory is a flat surface made up of walls, racks, large pallets, empty pallets,
and conveyor frames. All these components are available in the ROS library to build
customizable working environments.

4.2.3. Creation of Algorithms

The third step is to create the algorithms that manage the operation of the AGV system
in the factory. Our methodology simplifies the creation of these algorithms because the
models developed with the state machine diagrams in SysML are used to develop these
operating algorithms. Figure 20 shows the process of creating algorithms to run AGVs
through SysML diagrams.

Converting these algorithms to usable software codes is the most difficult step that
requires the ingenuity of IT developers. However, with the preliminary preparation work
(state-machines to algorithms) the complexity of the task of the developers is considerably
reduced, with a better level of conformity between the various pieces of code. Indeed, the
IT developers translate the algorithms into C++ or Python codes to ROS nodes which will
be called later by the run files. In most cases, IT developers can find some shared codes
similar to the ones to be implemented in their application, thanks to code sharing by the
ROS community. Their task is therefore to adapt the existing codes and add the missing
ones while being guided by the SysML model.

Appl. Sci. 2021, 11, 6187 17 of 21

Appl. Sci. 2021, 11, x FOR PEER REVIEW 16 of 21

4.2.2. Creation of World File
The second step is to create a World file that describes the working environment.

ROS users can reuse and adapt existing World files, or develop them using Gazebo or 3D
CAD Software. In our study, the AGV system environment is a factory that has been
adopted from the ROS/Gazebo library of World files. The file “agvs_office.world” con-
tains the various factory elements as shown in Figure 19.

Figure 19. 3D model of a factory in Gazebo.

This factory is a flat surface made up of walls, racks, large pallets, empty pallets, and
conveyor frames. All these components are available in the ROS library to build customi-
zable working environments.

4.2.3. Creation of Algorithms
The third step is to create the algorithms that manage the operation of the AGV sys-

tem in the factory. Our methodology simplifies the creation of these algorithms because
the models developed with the state machine diagrams in SysML are used to develop
these operating algorithms. Figure 20 shows the process of creating algorithms to run
AGVs through SysML diagrams.

Figure 20. Creation of AGVs operating algorithms using SysML diagram.

Converting these algorithms to usable software codes is the most difficult step that
requires the ingenuity of IT developers. However, with the preliminary preparation work
(state-machines to algorithms) the complexity of the task of the developers is considerably
reduced, with a better level of conformity between the various pieces of code. Indeed, the
IT developers translate the algorithms into C++ or Python codes to ROS nodes which will

Figure 20. Creation of AGVs operating algorithms using SysML diagram.

As an example of code used in this case study, the simultaneous positioning and
mapping (SLAM) code of the AGV system was implemented to draw a map by estimating
its current location in an arbitrary space. SLAM is defined as the problem of building a map
at the same time as locating the AGV in that plane. In fact, the AGV can rely on two sources
of information: information specific to it and information collected in its environment.
When it is in motion, the AGV can use dead reckoning and the information returned by its
sensors (encoder wheels, the current consumption of motors, the position of a servomotor,
etc.). However, this kind of information is not completely reliable (sliding, play, friction,
etc.). The other source of information comes from sensors and systems dependent on
the environment and external sources (camera and laser). Another ROS visualization
environment (Rviz) can be used to see how the map is created when the robot is moving.
After saving the map, it is possible to move the AGV on a chosen path. Figure 21 represents
the Rviz visualization of an AGV moving on a path in the factory.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 17 of 21

be called later by the run files. In most cases, IT developers can find some shared codes
similar to the ones to be implemented in their application, thanks to code sharing by the
ROS community. Their task is therefore to adapt the existing codes and add the missing
ones while being guided by the SysML model.

As an example of code used in this case study, the simultaneous positioning and
mapping (SLAM) code of the AGV system was implemented to draw a map by estimating
its current location in an arbitrary space. SLAM is defined as the problem of building a
map at the same time as locating the AGV in that plane. In fact, the AGV can rely on two
sources of information: information specific to it and information collected in its environ-
ment. When it is in motion, the AGV can use dead reckoning and the information returned
by its sensors (encoder wheels, the current consumption of motors, the position of a ser-
vomotor, etc.). However, this kind of information is not completely reliable (sliding, play,
friction, etc.). The other source of information comes from sensors and systems dependent
on the environment and external sources (camera and laser). Another ROS visualization
environment (Rviz) can be used to see how the map is created when the robot is moving.
After saving the map, it is possible to move the AGV on a chosen path. Figure 21 repre-
sents the Rviz visualization of an AGV moving on a path in the factory.

Figure 21. Rviz visualization of an AGV moving on a path.

Finally, Gazebo allows visualizing the AGV system working in 3D. Figure 22 shows
the moving of the AGV system in a 3D Gazebo environment. The goal of this simulation
was to verify if the AGV is able to travel a memorized path and transport pallets of goods
to the unloading area so that the main design requirement is verified with simulation.

Figure 22. Gazebo visualization of an AGV moving on a path.

The final step of the proposed design approach is the validation of the design require-
ments using ROS simulation based on the SysML description. Table 1 provides illustrative
validation elements of three design requirements. The table shows the design, the require-
ments, the simulation actions performed in the ROS simulation environment, and the
SysML information used for that purpose.

Figure 21. Rviz visualization of an AGV moving on a path.

Finally, Gazebo allows visualizing the AGV system working in 3D. Figure 22 shows
the moving of the AGV system in a 3D Gazebo environment. The goal of this simulation
was to verify if the AGV is able to travel a memorized path and transport pallets of goods
to the unloading area so that the main design requirement is verified with simulation.

Appl. Sci. 2021, 11, 6187 18 of 21

Appl. Sci. 2021, 11, x FOR PEER REVIEW 17 of 21

be called later by the run files. In most cases, IT developers can find some shared codes
similar to the ones to be implemented in their application, thanks to code sharing by the
ROS community. Their task is therefore to adapt the existing codes and add the missing
ones while being guided by the SysML model.

As an example of code used in this case study, the simultaneous positioning and
mapping (SLAM) code of the AGV system was implemented to draw a map by estimating
its current location in an arbitrary space. SLAM is defined as the problem of building a
map at the same time as locating the AGV in that plane. In fact, the AGV can rely on two
sources of information: information specific to it and information collected in its environ-
ment. When it is in motion, the AGV can use dead reckoning and the information returned
by its sensors (encoder wheels, the current consumption of motors, the position of a ser-
vomotor, etc.). However, this kind of information is not completely reliable (sliding, play,
friction, etc.). The other source of information comes from sensors and systems dependent
on the environment and external sources (camera and laser). Another ROS visualization
environment (Rviz) can be used to see how the map is created when the robot is moving.
After saving the map, it is possible to move the AGV on a chosen path. Figure 21 repre-
sents the Rviz visualization of an AGV moving on a path in the factory.

Figure 21. Rviz visualization of an AGV moving on a path.

Finally, Gazebo allows visualizing the AGV system working in 3D. Figure 22 shows
the moving of the AGV system in a 3D Gazebo environment. The goal of this simulation
was to verify if the AGV is able to travel a memorized path and transport pallets of goods
to the unloading area so that the main design requirement is verified with simulation.

Figure 22. Gazebo visualization of an AGV moving on a path.

The final step of the proposed design approach is the validation of the design require-
ments using ROS simulation based on the SysML description. Table 1 provides illustrative
validation elements of three design requirements. The table shows the design, the require-
ments, the simulation actions performed in the ROS simulation environment, and the
SysML information used for that purpose.

Figure 22. Gazebo visualization of an AGV moving on a path.

The final step of the proposed design approach is the validation of the design require-
ments using ROS simulation based on the SysML description. Table 1 provides illustrative
validation elements of three design requirements. The table shows the design, the require-
ments, the simulation actions performed in the ROS simulation environment, and the
SysML information used for that purpose.

Table 1. System satisfaction with initial requirements.

Requirement ROS Simulation SysML Modeling

• The AGVs system must
move materials to the
correct area at the right
time and path.

• Gazebo allows the 3D
visualization of AGVs in
operation mode.

• The AGV travel a memorized
path and transport pallets of
goods to the unloading area.

• The state machine diagram
describes the mission
accomplished by AGV. Each
trip is mad by an AGV to
move a pallet of goods from
one location to another.

Satisfied

• An AGV system should
consist of flexible
components that allow it
to get the mission done.

• Use of a descriptive model of
an AGV with Gazebo

• Use of a plugin SW2URDF
in SolidWorks

• Creation of URDF file that
describes the structure of the
AGV system.

• The block definition diagram
BDD represents the layout
and main components of the
AGV developed.

• The IBD diagram which
describes the interaction
between the components of
the system.

Satisfied

• The AGV system must be
operated in a
well-defined environment

• Creation of the World file that
describes the
working environment.

• The AGV system is simulated
in factory environment.

• The IBD diagram describes
the interaction between the
AGVs system and
its components

Satisfied

The simulation illustrated in Figure 22 shows only one AGV system. The simulation
of the swarm of AGVs to test collision avoidance, coordination, and collaborative tasks is
a work in progress that will be published in another article. Indeed, the simulation of a
swarm of AGVs requires managing the number of AGVs in the ROS launch configuration
file, but also a specific adaptation in the codes controlling each AGV.

5. Discussion

In the previous case study, we illustrated the top-down methodology based on SysML
diagrams to model the AGV system. The modeling of the complex system is simplified

Appl. Sci. 2021, 11, 6187 19 of 21

because the method groups together the three views of the representations of the AGV
(behavioral view, functional view, and structural view) within the same model. This type
of modeling guarantees data consistency because the rules of SysML give each element
of the model a unique definition, constructed by bringing together information from its
different representations, and prevent them from contradicting each other. In addition,
with the bottom-up methodology based on the ROS environment, it was easy for us to
integrate existing codes and simulation environments for the AGV system according to
the specifications made in the SysML model to adapt them to the specific AGV design.
Indeed, the information contained in the SysML model helps the designer implement the
3D simulation model in ROS, the simulation environment, the AGV attributes, and the
codes that should respect the algorithms specified in SysML for the behavior description.
For this, the information in the different SysML diagrams (BDD, IBD, state machines, etc.)
is transformed to the ROS files (XML files, URDF files, codes, etc.). The validation of the
AGV system design with simulation requires defining the simulation test-cases according
to the SysML requirement diagram.

6. Conclusions and Future Work

In this article, we presented a new integrated methodology based on swarm robotics
principles for the design of automated guided vehicles. This methodology is based on two
phases: a top-down phase using the MBSE method with SysML language and a bottom-
up phase using the ROS software platform. This proposed methodology facilitates the
design of complex systems such as AGV systems because it guides the designer from the
requirements specification phase to the implementation phase. The numerical continuity
during the design process is guaranteed by using the information in the SysML model for
the AGV implementation in the ROS platform. The traceability is guaranteed by using
SysML allocation and traceability matrices. The validation of the AGV design can be
guaranteed by executing the different simulation scenarios described in SysML according
to the design requirements. Finally, we believe that the implementation of this methodology
by AGV manufacturers will be highly beneficial, both in terms of product quality and in
reducing development times and design costs.

As perspectives, we suggest automating the data transformation from the SysML
model to the ROS environment, by automating, for example, the creation of the URDF
file from the BDD SysML diagram. We suggest also automating the validation of the
requirements by developing a plugin in the ROS environment allowing access to the
SysML model.

Author Contributions: Conceptualization, K.A. and A.G.; methodology, K.A.; software, K.A.; val-
idation, A.G. and M.H. (Moncef Hammadi); formal analysis, A.G. and M.H. (Moncef Hammadi);
investigation, K.A.; resources, K.A.; data curation, K.A.; writing—original draft preparation, K.A.
and A.G.; writing—review and editing, K.A., M.H. (Moncef Hammadi) and A.G.; supervision, T.S.
and M.H. (Mohamed Haddar); project administration, M.H. (Mohamed Haddar); All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the research department of ISAE-Supméca for
covering the publication costs of this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Vaidya, S.; Ambad, P.; et Bhosle, S. Industry 4.0—A glimpse. Procedia Manuf. 2018, 20, 233–238. [CrossRef]
2. Lasi, H.; Fettke, P.; Kemper, H.-G.; Feld, T.; Hoffmann, M. Industry 4. Bus. Inf. Syst. Eng. 2014, 6, 239–242. [CrossRef]

http://doi.org/10.1016/j.promfg.2018.02.034
http://doi.org/10.1007/s12599-014-0334-4

Appl. Sci. 2021, 11, 6187 20 of 21

3. Ilanković, N.; Zelić, A.; Gubán, M.; Szabó, L. Smart factories–the product of Indrusty 4. Prosperitas 2020, 7, 19–30. [CrossRef]
4. Benotsmane, R.; Dudás, L.; et Kovács, G. Collaborating robots in Industry 4.0 conception. In IOP Conference Series: Materials

Science and Engineering; IOP Publishing: Bristol, UK, 2018; p. 012023.
5. Ferraguti, F.; Pertosa, A.; Secchi, C.; Fantuzzi, C.; Bonfe, M. A Methodology for Comparative Analysis of Collaborative Robots for

Industry 4. In Proceedings of the 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE), Florence, Italy,
25–29 March 2019; pp. 1070–1075.

6. Sabattini, L.; Digani, V.; Secchi, C.; Cotena, G.; Ronzoni, D.; Foppoli, M.; Oleari, F. Technological roadmap to boost the
introduction of AGVs in industrial applications. In Proceedings of the 2013 IEEE 9th International Conference on Intelligent
Computer Communication and Processing (ICCP), Cluj-Napoca, Romania, 5–7 September 2013; pp. 203–208.

7. Saputra, R.P.; Rijanto, E. Automatic Guided Vehicles System and Its Coordination Control for Containers Terminal Logistics
Application. arXiv 2021, arXiv:2104.08331.

8. Stouten, B.; de Graaf, A.J. Cooperative transportation of a large object-development of an industrial application. In Proceedings
of the IEEE International Conference on Robotics and Automation—ICRA’IEEE, New Orleans, LA, USA, 26 April–1 May 2004;
pp. 2450–2455.

9. Mahadevan, B.; Narendran, T.T. Design of an automated guided vehicle-based material handling system for a flexible manufac-
turing system. Int. J. Prod. Res. 1990, 28, 1611–1622. [CrossRef]

10. Ronzoni, D.; Olmi, R.; Secchi, C.; Fantuzzi, C. AGV global localization using indistinguishable artificial land-marks. In Proceedings
of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 287–292.

11. Luna, R.; Bekris, K.E. Network-guided multi-robot path planning in discrete representations. In Proceedings of the 2010 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010; pp. 4596–4602.

12. Rodríguez-Seda, E.J.; Stipanović, D.M.; Spong, M.W. Collision avoidance control with sensing uncertainties. In Proceedings of
the 2011 American Control Conference, San Francisco, CA, USA, 29 June–1 July 2011; pp. 3363–3368.

13. Sharma, B.; Vanualailai, J.; Prasad, A. A-Strategy: Facilitating Dual-Formation Control of a Virtually Connected Team. J. Adv.
Transp. 2017, 2017, 9213805. [CrossRef]

14. Rajamani, R. Vehicle Dynamics and Control; Springer: New York, NY, USA, 2012.
15. Caruntu, C.F.; Ferariu, L.; Pascal, C.; Cleju, N.; Comsa, C.R. Connected cooperative control for multiple-lane automated vehicle

flocking on highway scenarios. In Proceedings of the 2019 23rd International Conference on System Theory, Control and
Computing (ICSTCC), Sinaia, Romania, 9–11 October 2019; pp. 791–796.

16. Oyelere, S.S. The Application of Model Predictive Control (MPC) to Fast Systems such as Autonomous Ground Vehicles (AGV).
IOSR J. Comput. Eng. 2014, 16, 27–37. [CrossRef]

17. Caruntu, C.F.; Pascal, C.M.; Maxim, A.; Pauca, O. Bio-inspired Coordination and Control of Autonomous Vehicles in Future
Manufacturing and Goods Transportation. IFAC-PapersOnLine 2020, 53, 10861–10866. [CrossRef]

18. Mousavi, M.; Yap, H.J.; Musa, S.N.; Tahriri, F.; Dawal, S.Z.M. Multi-objective AGV scheduling in an FMS using a hybrid of genetic
algorithm and particle swarm optimization. PLoS ONE 2017, 12, e0169817. [CrossRef] [PubMed]

19. Jerald, J.; Asokan, P.; Prabaharan, G.; Saravanan, R. Scheduling optimisation of flexible manufacturing systems using particle
swarm optimisation algorithm. Int. J. Adv. Manuf. Technol. 2004, 25, 964–971. [CrossRef]

20. Ramos, A.L.; Ferreira, J.A.V.; Barcelo, J. Model-Based Systems Engineering: An Emerging Approach for Modern Systems. IEEE
Trans. Syst. Man, Cybern. Part C Appl. Rev. 2011, 42, 101–111. [CrossRef]

21. Barca, J.C.; Sekercioglu, Y.A. Swarm robotics reviewed. Robotica 2013, 31, 345–359. [CrossRef]
22. Hamann, H.; Wörn, H. A framework of space–time continuous models for algorithm design in swarm robotics. Swarm Intell.

2008, 2, 209–239. [CrossRef]
23. Lategahn, J.; Muller, M.; Rohrig, C. Global localization of automated guided vehicles in wireless networks. In Proceedings

of the 2012 IEEE 1st International Symposium on Wireless Systems (IDAACS-SWS), Offenburg, Germany, 20–21 September
2012; pp. 7–12.

24. Aloui, K.; Guizani, A.; Hammadi, M.; Soriano, T.; Haddar, M. System level specification and multi-agent simulation of manu-
facturing systems. In Proceedings of the Third Edition of the International Conference on Advanced Materials, Mechanics and
Manufacturing, Beijing, China, 24–26 September 2021.

25. Aloui, K.; Hammadi, M.; Soriano, T.; Guizani, A.; Haddar, M. On the continuity of the swarm robot design using MBSE method
and simulation. In Proceedings of the 13th International Conference on Modelling, Optimization and Simulation (MOSIM’20),
Agadir, Morocco, 12–14 November 2020.

26. Ferreira, T.; Gorlach, I.A. Development of an automated guided vehicle controller using a model-based systems engineering
approach. S. Afr. J. Ind. Eng. 2016, 27, 206–217.

27. Barth, D.; Gorlach, I.A.; Gruhler, G. Development of a novel controller for a HVAF thermal spray process. In Proceedings of the
International Conference on Competitive Manufacturing (Coma’10), Stellenbosch, South Africa, 3–5 February 2010.

28. Brecher, C.; Nittinger, J.A.; Karlberger, A. Model-based Control of a Handling System with SysML. Procedia Comput. Sci. 2013, 16,
197–205. [CrossRef]

29. Huang, E.; Ramamurthy, R.; McGinnis, L.F. System and simulation modeling using SYSML. In Proceedings of the 2007 Winter
Simulation Conference, Washington, DC, USA, 9–12 December 2007; pp. 796–803.

http://doi.org/10.31570/Prosp_2020_01_2
http://doi.org/10.1080/00207549008942819
http://doi.org/10.1155/2017/9213805
http://doi.org/10.9790/0661-16342737
http://doi.org/10.1016/j.ifacol.2020.12.2812
http://doi.org/10.1371/journal.pone.0169817
http://www.ncbi.nlm.nih.gov/pubmed/28263994
http://doi.org/10.1007/s00170-003-1933-2
http://doi.org/10.1109/TSMCC.2011.2106495
http://doi.org/10.1017/S026357471200032X
http://doi.org/10.1007/s11721-008-0015-3
http://doi.org/10.1016/j.procs.2013.01.021

Appl. Sci. 2021, 11, 6187 21 of 21

30. Mhenni, F.; Choley, J.Y.; Penas, O.; Plateaux, R.; Hammadi, M. A SysML-based methodology for mechatronic systems archi-tectural
design. Adv. Eng. Inform. 2014, 28, 218–231. [CrossRef]

31. Guizani, A.; Hammadi, M.; Choley, J.-Y.; Soriano, T.; Abbes, M.S.; Haddar, M. Multi-agent approach based on a design process for
the optimization of mechatronic systems. Mech. Ind. 2017, 18, 507. [CrossRef]

32. ROS: The Agvs Package. 2015. Available online: http://wiki.ros.org/agvs (accessed on 4 April 2015).
33. Martinez, A.; Fernández, E. Learning ROS for Robotics Programming; Packt Publishing Ltd.: Birmingham, UK, 2013.
34. Quigley, M.; Gerkey, B.; Smart, W.D. Programming Robots with ROS: A Practical Introduction to the Robot Operating System; O’Reilly

Media, Inc.: Newton, MA, USA, 2015.
35. Boucher, M.; Houlihan, D. System Design: New Product Development for Mechatronics; Aberdeen Group: Boston, MA, USA, 2008.
36. Aloui, K.; Guizani, A.; Hammadi, M.; Haddar, M.; Soriano, T. A Top down Approach to Ensure the Continuity of the Different

Design Levels of Swarm Robots. In Proceedings of the 18th IEEE International Multi-Conference on Systems, Signals & Devices,
Monastir, Tunisia, 22–25 March 2021.

37. Schranz, M.; Bagnato, A.; Brosse, E.; Elmenreich, W. Modelling a CPS Swarm System: A Simple Case Study. In Proceedings of the
6th International Conference on Model-Driven Engineering and Software Development, Funchal, Portugal, 22–24 January 2018;
pp. 615–624.

38. Brambilla, M.; Ferrante, E.; Birattari, M.; Dorigo, M. Swarm robotics: A review from the swarm engineering perspective. Swarm
Intell. 2013, 7, 1–41. [CrossRef]

39. Koubâa, A. (Ed.) Robot Operating System (ROS); Springer: Cham, Switzerland, 2017.
40. Stasse, O. Program/Simulation Tools/ROS/Gazebo/OpenHRP. Ph.D. Thesis, GdR Robotique, Inria Sophia Antipolis,

France, 2019.
41. Tuerlinckx, T.; Fisette, P.; Docquier, N. Robotran Embarqué: Robot Operating System. Ecole Polytechnique de Louvain, Université

Catholique de Louvain. 2020. Available online: https://dial.uclouvain.be/downloader/downloader.php?pid=thesis%3A25226
&datastream=PDF_01&cover=cover-mem (accessed on 8 June 2021).

42. Grabd View Research. 2016. Available online: http://www.grandviewresearch.com/industryanalysis/automated-guided-
vehicle-agv-market (accessed on 11 April 2017).

43. Guizani, A.; Hammadi, M.; Choley, J.-Y.; Soriano, T.; Abbes, M.S.; Haddar, M. Multidisciplinary Optimization of Mechatronic
Systems: Application to an Electric Vehicle. In Proceedings of the 2nd Annual International Conference on Material, Machines and
Methods for Sustainable Development (MMMS2020); Springer: Cham, Switzerland, 2014; pp. 1–14.

44. Walenta, R.; Schellekens, T.; Ferrein, A.; Schiffer, S. A decentralised system approach for controlling AGVs with ROS. In
Proceedings of the 2017 IEEE AFRICON, Cape Town, South Africa, 18–20 September 2017; pp. 1436–1441. [CrossRef]

45. Depth Camera D435i—Intel®RealSense™ Depth and Tracking Cameras. Available online: https://www.intelrealsense.com/
depth-camera-d435i/ (accessed on 8 June 2021).

46. Zhang, H.; Watanabe, K.; Motegi, K.; Shiraishi, Y. ROS Based Framework for Autonomous Driving of AGVs. In Proceedings of
the IPS6-04, ICMEMIS, Kiryu, Japan, 4–6 December 2019.

47. Available online: https://github.com/RobotnikAutomation/agvs (accessed on 8 June 2021).

http://doi.org/10.1016/j.aei.2014.03.006
http://doi.org/10.1051/meca/2016080
http://wiki.ros.org/agvs
http://doi.org/10.1007/s11721-012-0075-2
https://dial.uclouvain.be/downloader/downloader.php?pid=thesis%3A25226&datastream=PDF_01&cover=cover-mem
https://dial.uclouvain.be/downloader/downloader.php?pid=thesis%3A25226&datastream=PDF_01&cover=cover-mem
http://www.grandviewresearch.com/industryanalysis/automated-guided-vehicle-agv-market
http://www.grandviewresearch.com/industryanalysis/automated-guided-vehicle-agv-market
http://doi.org/10.1109/afrcon.2017.8095693
https://www.intelrealsense.com/depth-camera-d435i/
https://www.intelrealsense.com/depth-camera-d435i/
https://github.com/RobotnikAutomation/agvs

	Introduction
	Related Works
	Integrated Methodology for Designing AGVs
	PHASE 1: SysML Modeling
	Design Requirements
	Behavioral Modeling
	Structural Modeling

	PHASE 2: ROS Implementation

	Case-Study: Application to the Design of AGVs
	PHASE 1: SysML Modeling
	Design Requirements
	Behavioral Modeling
	Structural Modeling

	PHASE 2: ROS Implementation
	Creation of URDF File
	Creation of World File
	Creation of Algorithms

	Discussion
	Conclusions and Future Work
	References

