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Abstract 18 

Perceiving the environment automatically informs how we can interact with it through 19 

affordance mechanisms. However, it remains unknown how our knowledge about the 20 

environment shapes how it is perceived. In this training study, we evaluated whether motor and 21 

function knowledge about novel objects affects visual object processing. Forty-three participants 22 

associated a usage or function to a novel object in interactive virtual reality while their EEG was 23 

recorded. Both usage and function influenced the mu-band (8-12 Hz) rhythms, suggesting that 24 

motor and function object information influence motor processing during object recognition. 25 

Learning the usage also prevented the reduction of the theta-band (4–8 Hz) rhythms recorded 26 

over the posterior cortical areas, suggesting a predominant top-down influence of tool use 27 

information on visuo-motor pathways. The modulation being specifically induced by learning an 28 

object usage, the results support further the embodied cognition approach rather than the 29 

reasoning-based approach of object processing. 30 

 31 
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 33 

Introduction 34 

The perceived world through our eyes appears automatically translated as potential 35 

interaction with it (Gibson, 1979). This phenomenon called affordance rely on brain mechanisms 36 

detecting and preparing possible actions through perception. Affordances can also be learned 37 

through our everyday usage of objects and tools. In the last decade, affordance processing has 38 

been highly investigated in cognitive neuroscience using neuroimaging techniques (de Wit, de 39 

Vries, van der Kamp, & Withagen, 2017; Reynaud, Lesourd, Navarro, & Osiurak, 2016; 40 
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Sakreida et al., 2016; Thill, Caligiore, Borghi, Ziemke, & Baldassarre, 2013). fMRI analysis 41 

unveiled the neuronal networks involved in the perception of and action triggered by the 42 

affordances during object recognition (Brandi, Wohlschlager, Sorg, & Hermsdorfer, 2014; 43 

Buxbaum, Kyle, Tang, & Detre, 2006; Mizelle, Kelly, & Wheaton, 2013; Sakreida et al., 2016; 44 

Tettamanti, Conca, Falini, & Perani, 2017). Some networks being well-identified, understanding 45 

their dynamics is the next milestone that cognitive and neuro-scientists have to reach (Kopell, 46 

Gritton, Whittington, & Kramer, 2014). Our focus here is that affordance processing is never 47 

naïve as perception is always relying on our pre-existing knowledge about the environment. 48 

Consequently, how such top-down knowledge influences the automatic activation of visuomotor 49 

pathways during object processing? To investigate this question, we used EEG recordings 50 

coupled with an original virtual reality (VR) setup where participants perceived novel objects 51 

trained beforehand with novel object knowledge, which is an object usage or a function. The 52 

goal of the study was to test whether former object knowledge modulates the visual extraction of 53 

affordances during object processing.  54 

Recent theories suggest that alpha (8-12 Hz) and theta (4-8 Hz) rhythms control the 55 

access to stored information in long-term memory via inhibition of task-irrelevant cell 56 

assemblies in visual tasks (Jensen & Mazaheri, 2010; Klimesch, Fellinger, & Freunberger, 2011; 57 

Klimesch, Freunberger, & Sauseng, 2010; Klimesch, Sauseng, & Hanslmayr, 2007). The 58 

amplitude of occipital alpha oscillations and the synchronization of their phases are increased 59 

during object recognition, reflecting the access and retrieval of semantic information 60 

(Freunberger, Klimesch, Griesmayr, Sauseng, & Gruber, 2008). Also, the visual shape of objects 61 

modulates the alpha oscillations recorded over posterior cortical areas during object recognition 62 
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(Vanni, Revonsuo, & Hari, 1997). Thus, alpha-band oscillations would signal the effect of top-63 

down object knowledge on affordance processing. 64 

On a similar frequency-band but topographically and functionally distinct, mu-band 65 

oscillations (8-12 Hz) are understood as a processing linking perception and action (Pineda, 66 

2005). Recorded over central areas, they have been associated with motor planning (Llanos, 67 

Rodriguez, Rodriguez-Sabate, Morales, & Sabate, 2013; Sabate, Llanos, Enriquez, & Rodriguez, 68 

2012). Recently, Freeman et al. (2016) revealed that affording objects increases the central mu-69 

band power desynchronization during object processing. Similarly, Proverbio (2012) showed that 70 

the perception of tools evokes less motor mu-band activity than non-tool objects, reflecting the 71 

sensitivity of the mu-band in processing object affordance. Altogether, these studies revealed 72 

markers of affordances processing. As an extension of these results, our training study 73 

investigates the causal role played by usage and functional object knowledge on the dynamics of 74 

visuo-motor processing of objects. 75 

In this EEG study, we trained participants to manipulate two novel objects. Following the 76 

appearance of an object and a tone, the task of the participant was to transport it from a location 77 

to another. This motor task was chosen to guide the perception of the objects towards their 78 

ecological value. In the middle of the experiment, half of the participants learned how to use one 79 

of the two objects with a specific manipulation (usage condition). The other half of the 80 

participants learned the function of one of the objects (function condition), without additional 81 

manipulation. Following the additive model, one would expect that learning the object usage 82 

would strengthen the activation of the motor system during object processing, as indexed by the 83 

reduction of mu-band oscillatory activity (Freeman et al., 2016). However, previous work 84 

indicated that the processing of visual and learned affordances interfere with each other due to 85 
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conflicting motor programs (Jax & Buxbaum, 2010; Kalénine, Wamain, Decroix, & Coello, 86 

2016; Wamain, Sahaï, Decroix, Coello, & Kalénine, 2018). Hence, an alternative hypothesis is 87 

that learning an object usage reduces the activation of the motor system and be reflected as a 88 

reduction of mu-band activity. Because the reduced activation would rely on motor conflicts, 89 

such reduction would occur specifically when a manipulation is learned, and not following the 90 

learning of the function. 91 

The question is whether uniquely embodied motor information is involved in visual 92 

object processing. Indeed, the alternative possibility is that objects and tools processing is 93 

predominantly guided by semantic information, such as the object’s function, as recently 94 

suggested by the reasoning-based approach (Federico & Brandimonte, 2020; Osiurak & Badets, 95 

2016; Osiurak, Rossetti, & Badets, 2017). Theoretically, we hypothesized that motor knowledge 96 

induced by learning an object usage would interfere with the automatic extraction of visual 97 

affordances. Practically, this would be expressed by increased reaction times (Jax & Buxbaum, 98 

2010), and reduced early alpha-band synchronization (Wamain et al., 2018) and late motor mu-99 

band desynchronization (Freeman et al., 2016) recorded over centro-parietal cortical areas. 100 

Training participants to learn an object function without a manipulation offered a control 101 

condition to test the specific impact of motor knowledge on visual object processing. These 102 

hypotheses were investigated on both phases and amplitudes of occipital alpha and motor mu-103 

band (8-12 Hz) oscillations. 104 

Methods 105 

Participants 106 

Forty-three adult volunteers (mean age = 21 years old, range 19-29, including 12 males) 107 

from the University of Plymouth participated in the study in exchange for money or course 108 
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credit. All participants reported being right-handed and having normal vision. Due to the use of a 109 

VR headset, participants wearing correction glasses were not accepted. EEG data from six 110 

participants were removed due to excessive numbers of artifacts. The experimental procedure 111 

and written consent form for this study were approved by the ethics committee of the University 112 

of Plymouth and conform with the 2008 Helsinki Declaration. 113 

Experimental setup and procedure 114 

The experiment used Unity software (Unity technologies, version 7.1.0f3) to create the 115 

virtual environment and the HTC Vive (HTC Corp.) headset and controllers. Participants were 116 

wearing both the EEG and VR headsets and were seated in a chair next to a desk. A button box 117 

was placed on the desk situated on the right side of the participants and connected to the 118 

computer to detect movement onsets. The virtual environment was composed of a small wooden 119 

textured box, a white and a red dashed area situated on the table, a big box situated in front of the 120 

participant and, a small black cube on their left (Fig. 1A). The size and height of the room, 121 

virtual table, and the button box were fitted to the dimensions of the physical environment. For a 122 

comfortable position of the hand on the button box, the distance between the chair and the desk 123 

was adjusted for each participant. Participants were instructed to manipulate a VR controller, 124 

represented by two possible 3-D models (Fig. 1B). 125 

The experiment was divided into three phases termed as pre-training, training, and post-126 

training phases composed of 120 trials, 50 trials, and 120 trials, respectively. The trials for the 127 

pre-training and post-training phases were divided into four blocks of 30 trials. The training 128 

phase was divided into two blocks of 25 trials. After each block of trials, a time break was 129 

proposed to the participant and the VR headset was removed if desired. The pre-training period 130 

was used to control the possible effects of visual attention and familiarity with the two stimuli 131 
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and the task on the EEG activities. The trial procedure is depicted in Fig. 1C. At the beginning of 132 

each trial, the participant had to place the right hand on the button box and look at the white 133 

fixation cross situated in the front of him/her, at the location of the invisible controller. After 134 

1000 ms, the fixation cross disappeared. Subsequently, one of two visual representations of the 135 

controller appeared after a random time interval between 1000 ms and 1400 ms. Participants 136 

were instructed to prepare to grasp-and-move the controller from the white to the red area after 137 

hearing a tone (i.e. go-signal) triggered after a random time interval between 800 ms and 1200 138 

ms. We used this delayed response paradigm to prevent contamination of the EEG signal from 139 

movement-related effects. Once the controller was placed on the red area, next to the black cube, 140 

the participant was instructed to return it to the white area. Then, the 3-D model of the controller 141 

disappeared. The black cube had no other importance in the experiment. The motor task had to 142 

be performed as fast as possible. If the button box was released before the onset of the go-signal, 143 

the participant received a written feedback on a virtual panel at the end of the trial, reminding 144 

him/her to move only after the tone. At the end of each trial, participants were instructed to put 145 

their right hand back on the button when ready to start a new trial. Participants were instructed to 146 

avoid movements and eye blinks during the trials, especially before the go-signal. They were 147 

able to move freely between trials. The visual representation of the controller was randomly 148 

assigned to each trial. 149 

During both pre-training and post-training phases, participants had to grasp-and-move the 150 

two object-stimuli without distinction. The purpose of the training phase was to transform the 151 

representation of one of the two objects into a tool (i.e. a key that opens the box on the table). 152 

The object trained was randomly assigned to each participant at the beginning of the training 153 
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phase. Following a mixed experimental design, two different trainings (usage vs function 154 

conditions) represented a between-subject factor. 155 

Training phase in the function condition 156 

In the training phase of the function condition, 22 participants were instructed to grasp-157 

and-move both objects. When transported on the red area, the trained object triggered an audio-158 

visual animation of the opening of a box located in the front of the participant. The transportation 159 

of the non-trained object did not trigger any sound or animation. Hence, in the function 160 

condition, participants associated with the trained object the novel function information “a key 161 

that opens the box”, as mentioned by the experimenter. Crucially, no additional motor 162 

information was learned. 163 

Training phase in the usage condition 164 

In the usage condition, 21 participants were trained to execute a challenging key-like 165 

movement with the trained object. At the commencement of the training, a very brief video was 166 

depicting the usage of the object to learn and perform. The participants were instructed to 167 

perform the tool use when the trained object appeared and the grasp-to-move action when the 168 

non-trained object appeared. The tool use learned by the participants was a series of three 169 

rotations (i.e. to the left, to the right, and to the left again) of the object in the hole of the wooden 170 

box to open it. The rotations were restricted by the respective angles: turn the controller 90° to 171 

the left, then turn 180° to the right, and finally turn 90° to the left back to the center, with a 172 

precision of ± 10°. Exceeding ± 10° of precision failed to open the box and consequently of the 173 

trial. After the three rotations, the trigger button of the controller must have been pressed to open 174 

the box, thus constraining the handgrip associated with the tool use. At the end of a failed trial, 175 

participants received feedback advising which rotation was performed incorrectly, assuring 176 
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motor learning. Following a correct series of rotations and button press, the same audio-visual 177 

animation as in the training of the object function was triggered. Thus, in the usage condition, 178 

participants associated both novel function information "a key that opens the box", as mentioned 179 

by the experimenter, and novel motor information (i.e. a handgrip, wrists rotations and a button 180 

press). 181 

Behavioral and electroencephalographic recording 182 

The release of the button box was used to calculate the movement onset of the 183 

participant. Then, the lift of the grasped controller was detected and used to calculate the 184 

grasping onset. The action onset was detected when the objects were transported to the red area. 185 

The object and movement onsets were used to time-lock EEG analysis. The action sequence was 186 

segmented and calculated as follow: a) Initiation times, as the time between go-signal onsets and 187 

movement onsets; b) Grasping times, as the time between movement onsets and grasping onsets; 188 

c) Execution times, as the time between grasping onsets and action onsets. We evaluated these 189 

time intervals depending on the stimulus-object during the and pre- and post-training phases of 190 

each condition. EEG data were collected from 61 actively amplified Ag/AgCl electrodes 191 

(easyCAP, Brain Products, Gilching, Germany) mounted on an elastic cap and following the 192 

standard International 10-20 montage. Electrode impedances were kept below 20 kΩ. The 193 

signals were amplified using a BrainAmp MR Plus amplifier (Brain Products) and continuously 194 

sampled at 500 Hz. The virtual environment and the EEG recording were run on separate 195 

computers. 196 

Data processing 197 

The training paradigm implemented in this experiment was chosen to estimate the 198 

Training Effect (TE) of a given object, reflecting the specific consequences of learning the 199 
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function and usage of the objects on reaction times and EEG activities. This TE was calculated 200 

with the following formula: TE = object post-training – object pre-training. This TE was calculated 201 

separately for the trained and non-trained objects in both conditions (learning usage or learning 202 

function). Hence, the comparison of the TE for the trained and non-trained objects allowed to 203 

isolate the effect of the training. Therefore, it is hypothesized that the TE values concerning the 204 

non-trained object would be minimal whereas the TE values about the trained object would be 205 

maximal. 206 

Only successful trials during the pre- and post-training phases were used for the 207 

behavioral and EEG analyses. Successful trials were defined as trials where participants initiated 208 

the action after the go-signal onset. 209 

EEG recordings were processed with MNE-Python (Gramfort et al., 2014, 2013). Data 210 

were filtered with a .1 Hz high pass filter and a 40 Hz low pass filter. The friction of the VR 211 

headset on the frontal and prefrontal electrodes (Fp1, Fp2, F7, F3, Fz, F4, F8, Fpz, AF7, AF3, 212 

AF4, AF8, F5, F1, F2, F6) during testing motivated us to remove these channels during data 213 

cleaning to increase the signal-noise ratio. Each trial was time-locked on the object onset and 214 

included a length of 2400ms, starting 1200ms before the object onset and finishing 1200ms after 215 

the object onset. The Autoreject algorithm (Jas, Engemann, Bekhti, Raimondo, & Gramfort, 216 

2017) was used to detect and repair artifacts. The motivation to use this algorithm was to 217 

maximize the signal-noise ratio in adapting automatically the artefact detection parameters for 218 

each participant. It implements topographic interpolations (Perrin, Pernier, Bertrand, & Echallier, 219 

1989) to correct bad segments. The signal of each trial was then transformed using a surface 220 

Laplacian filter, resulting in a reference-free current source density (CSD) which increases the 221 
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spatial resolution of the signal and reduces the artifacts due to volume conduction (Kayser & 222 

Tenke, 2015b, 2015a; Tenke & Kayser, 2012). 223 

Time-frequency representations (TFRs) of the oscillatory activity were computed for 224 

each trial using a wavelet approach (Tallon-Baudry & Bertrand, 1999) to evaluate the specificity 225 

of the TE on the alpha and mu-band oscillations. A family of Morlet wavelets (Gaussian-226 

windowed complex sine wave) was built to perform the convolution via fast Fourier transform 227 

over each channel. The family of wavelets was parametrized to extract frequencies from 4 Hz to 228 

35 Hz. The number of cycles of the wavelets was linearly-adapted, from 3 cycles for the lowest 229 

frequency and 10 cycles for the highest frequency. This precaution was used to keep a well-230 

balanced trade-off between time and frequency resolution at each frequency. Following the 231 

convolution, each trial vector was re-segmented on a time-window starting 1000 ms before the 232 

object onset and finishing 800 ms after the object onset. This re-segmentation allowed the 233 

removal of edge artifacts. 234 

On one hand, to evaluate the TE on the amplitude of the mu-band oscillations, the CSD 235 

signals were transformed into decibels relative to a baseline, where the baseline represents the 236 

averaged signal from -1000 to 0 ms period relative to the object onset. 237 

On the other hand, to evaluate the TE on the phase of the mu-band oscillations, the inter-238 

trial coherence (ITC, also called inter-trial phase-coherence, phase-locking factor, or phase-239 

locking value Lachaux et al., 1999) was calculated. The ITC corresponds to the magnitude of the 240 

amplitude-normalized complex numbers averaged across trials for each time point, frequency, 241 

condition, and electrodes of interest. Ranging from 0 to 1, a value of 0 representing an absence of 242 

synchronization of phases across trials, and a value of 1 representing a perfect synchronization of 243 

the phases over trials. Hence, the ITC coupled with amplitude analysis helped to disentangle 244 
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evoked from induced oscillatory activities. For each participant, the calculation of the ITC 245 

involved an equal total number of trials within each condition. 246 

Statistical Analysis 247 

RStudio (v. 0.99.489) and the rstatix (v. 0.6.0) package were used to perform analysis of 248 

variances (ANOVAs) and planned comparisons analysis with Tukey’s HSD tests. 249 

Concerning the behavioral data, repeated-measures mixed-design ANOVAs were 250 

performed, with the Stimulus (trained vs non-trained object) as a within-subjects independent 251 

variable and the Training (usage vs function conditions) as a between-subjects independent 252 

variable. The TE on Movement, Grasping and Action Times were entered as dependent 253 

variables. 254 

Concerning the EEG data, the activation of the visual system has been evaluated through 255 

the analysis of the alpha-band (8-12 Hz) activity recorded over the midline occipital electrode Oz 256 

and the activation of the motor system through the analysis of the mu-band (8-12 Hz) activity 257 

recorded over the midline centro-parietal electrode CPz (as in Proverbio, 2012; Wamain, 258 

Gabrielli, & Coello, 2016; Wamain et al., 2018). These two electrodes were selected to test our 259 

hypothesis. However, electrodes C3 and C4, located over left and right motor areas, respectively, 260 

have also been found sensitive to the motor activation indexed by the mu-band oscillations 261 

(Cannon et al., 2014; Muthukumaraswamy, Johnson, & McNair, 2004). Hence, electrodes C3 262 

and C4 were also analyzed to evaluate the broad/narrow activation of the motor network during 263 

visual object processing. Electrodes CPz, Oz, C3 and C4 represented the four regions of interest 264 

(ROIs). The EEG signals of interest were the 8–12 Hz log-transformed (decibels) amplitude and 265 

ITC. Oscillatory amplitudes were converted into decibels to facilitate statistical comparisons and 266 

interpretation. Given that 1) the possible alpha modulation would occur following a minimum of 267 
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one cycle (i.e. 100 ms for an oscillation of 10 Hz), 2) last a few cycles, and 3) could be 268 

contaminated from a potential tone onset, the time window of interest concerned the 100–600 ms 269 

time interval following the object onset. To calculate the TE on the EEG data, the 8–12 Hz 270 

amplitude and ITC recorded within the 100–600 ms time interval following the object onset were 271 

averaged for each ROI. Repeated-measures mixed-design ANOVAs were performed, with the 272 

Stimulus (trained vs non-trained object) and the ROI (CPz, Oz, C3 and C4) as within-subjects 273 

independent variables and the Training (usage vs function conditions) as a between-subjects 274 

independent variable. The TE on the mu-band amplitude and ITC were entered as dependent 275 

variables. 276 

Data availability statement. 277 

A public data repository containing scrips and data is available at https://osf.io/6bjuz/. 278 

Results 279 

Behavioral Results 280 

First, movement times below 200 ms were considered as errors (i.e. default in the button 281 

press) and were discarded, representing 3.99 % of the trials. Second, for each participant and 282 

each movement, grasping and action times above or below four standard deviations from the 283 

mean were considered as outliers and removed, representing 4.92 % of the remaining trials. 284 

During the training phase in usage condition, participants correctly performed the 285 

challenging tool use in 40.2% and 52.5% of the trials in the first and second trial blocks, 286 

respectively. A Pearson correlation analysis between the trial number and the percentage of 287 

success to perform the tool use in the training phase indicated a reliable increase of the 288 

performance over time (r = .50, p < .0001). The ANOVA evaluating the TE on Movement Times 289 

did not revealed effects of the Stimulus (F(1,47) < 0.01; p = .99, η2
p < .001), the Training (F(1, 290 

47) = 0.24; p = .63, η2
p < .001) nor their interaction (F(1, 47) = 1.69; p = .20, η2

p < .001). 291 
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Concerning the TE on Grasping Times, the ANOVA did not indicated effects of the Stimulus 292 

(F(1, 47) = 0.08; p = .78, η2
p < .001), the Training (F(1, 47) = 2.36; p = .13, η2

p = .047) nor their 293 

interaction (F(1, 47) = .35; p = .55, η2
p < .001). Similarly, the ANOVA evaluating the TE on 294 

Action Times did not revealed effects of the Stimulus (F(1,47) = 0.45; p = .50, η2
p = .001), the 295 

Training (F(1, 47) = 0.02; p = .89, η2
p = .001) nor their interaction (F(1, 47) = 0.76; p = .39, η2

p = 296 

.002). 297 

Electrophysiological Results 298 

The EEG analysis revealed a clear increase of amplitude in the theta-band (4-8 Hz) in the 299 

first 400 ms following the onset of all objects (Fig. 2). Then, the alpha- and beta-band (16-24 Hz) 300 

signal amplitude reduced in 200-800 ms time-window, as found in (Kourtis & Vingerhoets, 301 

2015).  302 

The ANOVA on the 8-12 Hz signal amplitude revealed a main effect of the Stimulus 303 

(F(1,156) = 7.29, p = .008, η2
p = .024), such as the TE were increased for non-trained objects 304 

(Mean = -0.11 dB, CI = 0.04 dB) compared with the trained objects (Mean = -0.03 dB, CI = 0.04 305 

dB, Fig. 3). This TE reflects a reduction of the mu-band amplitude specific to non-trained 306 

objects, independently of the type of training. This also means that the trainings prevented the 307 

reduction of the mu-band amplitude during visual processing of the trained objects. No other 308 

main (all F < 0.52; all p > .47, all η2
p < .002) or interaction effects were reported (all F < 0.3; all 309 

p > .65, all η2
p < .003). 310 

The ITC analysis indicated a strong synchronization in the first 200 ms following object 311 

perception, especially in the 4-10 Hz frequency range. The ANOVA revealed an effect of the 312 

Training (F(1,156) = 4.89, p = .028, η2
p = .018), with the TE on the 8-12 Hz ITC being generally 313 

reduced across the four ROIs when learning the object function (Mean = -0.01, CI = 0.01) 314 
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compared with the learning the object usage (Mean = -0.03, CI = 0.01). The ANOVA also 315 

revealed a marginally significant interaction effect between the Training and the Stimulus 316 

(F(1,156) = 3.89, p = .051, η2
p = .011). The TE on the ITC seemed reduced for the trained object 317 

(Mean = -0.03, CI = 0.02) compared with the non-trained object (Mean = -0.01, CI = 0.02) when 318 

learning the function (p = .059) but not in learning the usage (p = .566). The ANOVA did not 319 

reveal other effect (all F < 1.54; all p > .22, all η2
p < .008) on the TE of the 8-12 Hz ITC. 320 

The visualization of the TFRs of the TE on the ITC did not reveal particular modulation 321 

across the frequency spectrum. However, the TFRs show that the apparent 8-12 Hz oscillatory 322 

signal originates from slower theta-band activity. The visualization of the TFRs of the TE 323 

showed that the amplitude of slow oscillations was frequency-specific and very distinct in the 324 

two learning conditions (Fig. 2). A post-hoc ANOVA has been conducted to test the TE on the 325 

theta-band (4-8 Hz) amplitude depending on the Stimulus, Training and ROIs. The analysis 326 

revealed a main effect of the Stimulus (F(1,156) = 15.68, p = .0001, η2
p = .038), such as the TE 327 

was increased for non-trained objects (Mean = -0.14 dB, CI = 0.04 dB) compared with the 328 

trained objects (Mean = -0.05 dB, CI = 0.04 dB, Fig. 4). Crucially, the analysis indicated a 329 

significant interaction effect between the Stimulus and the Training (F(1,117) = 6.12, p = .014, 330 

η2
p = .015), with the TE on the amplitude of theta-band oscillations being significantly reduced 331 

for the non-trained object (Mean = -0.19 dB, CI = 0.06 dB) compared with the trained object 332 

(Mean = -0.04 dB, CI = 0.05 dB) when learning the usage (p < .0001) but not when learning the 333 

function only (p = .34). This indicates a modulation of theta-band oscillations during visual 334 

object processing, but specifically when the object is associated with motor content. The 335 

ANOVA did not reveal any other effect (all F < 1.51; all p > .22, all η2
p < .006). 336 
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Discussion 337 

In this study, we assessed whether the affordance processing of objects is primarily 338 

guided by motor and/or semantic information, hence defending either the embodied cognition or 339 

reasoning-based approach of visual object processing. Using an immersive virtual reality setup 340 

coupled with EEG recording, participants were trained with novel object usage or function 341 

before and after performing a delayed grasp-and-move task. In both training conditions, the EEG 342 

training effects were particularly visible on the non-trained objects. This means that the 343 

processing of the non-trained objects, rather than the trained objects, differed in the pre- and 344 

post-training phases. Therefore, these effects suggest that training the objects prevented the 345 

reduction of the EEG signals during visual object processing that would have occurred 346 

otherwise. In this sense, both functional and motoric information modulated the motor network 347 

during visual object processing, as indexed by the mu-band oscillations. However, only the 348 

learning of tool use increased the posterior theta-band activity. This brings novel information on 349 

the mechanistic role played by theta-band rhythms and learned object information on perception, 350 

such as visual object processing appears predominantly guided by embodied motor knowledge 351 

rather than conceptual knowledge about the function. 352 

We expected delays in reaction times with the trained compared to the non-trained object 353 

induced via the tool use training, indicating a competition between the multiple action 354 

components recruited during recognition (Cisek, 2007; Cisek & Kalaska, 2005, 2010), such as 355 

different handgrips, as found in previous studies (Jax & Buxbaum, 2010, 2013). Indeed, 356 

participants reported using a different hand grip to perform the tool use during the training phase. 357 

However, the analysis of the behavioral TE effect did not reveal such lags. The most likely 358 

reason is that, in our delayed-response paradigm, the pre-tone periods were long enough to plan 359 
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robust motor decisions. Considering only our behavioral data, the study would support the 360 

literature proposing that motor knowledge about objects is selectively activated upon task 361 

requirements (Daprati & Sirigu, 2006; Lindemann, Stenneken, van Schie, & Bekkering, 2006). 362 

However, our EEG data surely challenge this claim. 363 

In both learning conditions, the trained objects were associated with the perceptual 364 

outcome of the box opening. Thus, the theta-band modulations induced by learning the object 365 

usage might rely primarily on the manipulative information rather than the visual information 366 

associated with the novel object. This would indicate that, along with the motor mu-band 367 

oscillation, the increase of the posterior theta-band oscillatory activity directly depends on the 368 

learned object affordance (Borghi & Riggio, 2015). The present EEG analysis revealed evidence 369 

that associating function knowledge to a novel object suffices to shape motor processing 370 

involved during object recognition. Associating motor contents along with such function 371 

knowledge (i.e. the tool use) impacted the theta-band activity recorded in a broad range of 372 

posterior cortical areas during object recognition. 373 

Theta rhythms have been associated with executive control (Cavanagh & Frank, 2014; 374 

Harper, Malone, & Bernat, 2014; Töllner et al., 2017), attention mechanisms (Clayton, Yeung, & 375 

Kadosh, 2015) and working memory (Gulbinaite, van Rijn, & Cohen, 2014; Klimesch et al., 376 

2010). Theta rhythms play a role in large-scale network communication allowing the access to 377 

episodic and recent information from memory (see Herweg, Solomon, & Kahana, 2020; 378 

Klimesch et al., 2010 for reviews), crucial for object recognition. Using an incidental learning 379 

task, Hanslmayr, Spitzer, & Bäuml (2009) found that parietal theta-band event-related 380 

synchronization (ERS) is associated with the recollection of non-semantic information. The 381 

present training effect on theta-band activity could reflect the influence of top-down information 382 
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derived from memory on the bilateral Structure system, that is the dorso-dorsal visuo-motor 383 

pathways specialized in the extraction of the geometrical features crucial for grasping actions. 384 

The results suggest that novel embodied motor representations contribute to the activation of the 385 

Structure system during object recognition. This contribution would occur even when the 386 

perception is influenced by tool use representations irrelevant to the task at hand, such as 387 

grasping to move the object. It would support the affordance competition hypothesis (Cisek, 388 

2007; Cisek & Kalaska, 2010) proposing that all motor representations, even irrelevant ones to 389 

the task, are gathered to feed action decision-making processing. Hence, one could question the 390 

behavioral relevance to distinguish task-relevant from task-irrelevant motor representations 391 

involved in perceptual processing such as object recognition. 392 

A recent eye-tracking study suggested that object and tool recognition relies on the visual 393 

decoding of the functional ends (Federico & Brandimonte, 2020), indicating that semantic 394 

information, rather than motor information, is at the core of the processing. Theoretically, such a 395 

proposal question whether tools are primarily grounded on sensorimotor (embodied cognition 396 

approach) or semantic (reasoning-based approach) representations. Experimentally, the problem 397 

with known tools is that they are always associated with both sensorimotor and semantic 398 

knowledge and can be hardly isolated. The present EEG results suggest that semantics can affect 399 

motor processing during object recognition. However, tool use information remained the 400 

predominant source of top-down modulation on distributed visuo-motor pathways, hence 401 

favoring the embodied approach of object processing. Supporting this idea, a recent study 402 

showed that learning semantic invariants such as an object label influences object processing and 403 

the oscillatory activity in posterior cortical areas, but only when a novel manipulation (i.e. a tool 404 

use) is learned simultaneously (Foerster, Borghi, & Goslin, 2020). 405 
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In conclusion, tool use information, rather than function information, represent the main 406 

source of influence on visual object processing. This effect relies on theta-band oscillation, 407 

which could sign for the activation of learned affordances in action systems (Borghi & Riggio, 408 

2015). Learning a novel tool use or a tool function affected the mu-band oscillations, which 409 

suggests that both motor and function knowledge about the surrounding objects interfere with the 410 

processing of their visual affordance. 411 
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Figure 1. (A) Virtual environment perceived by the participants. (B) The two possible stimuli-584 

objects manipulated during the experiment. (C) After viewing a fixation cross, one of the 585 

two objects randomly appeared. After a time-interval between 800ms and 1200ms, 586 

participants heard a tone (i.e. the go-signal) and had to grasp and move the object as fast as 587 

possible. During the training phase of the object function, moving one of the two objects 588 

opened the box. During the training phase of the object usage, participants had to perform a 589 

novel tool-use to open the box with one of the two objects. 590 

 591 

Figure 2. Amplitude of oscillatory activity recorded at electrode CPz during the pre- and post-592 

training phases when learning the object usage (N=20; top) and function (N=21; bottom). 593 

The training effect (TE) appears particularly important in the theta-band during the learning 594 

of the object usage. 595 

 596 

Figure 3. Difference of training effect (TE) between the trained and the non-trained objects on 597 

the amplitude of the 8-12 Hz oscillations during visual object processing across scalp (top). 598 

Training effects depending on the regions of interest (centro-parietal, occipital, left and right 599 

motor areas), the stimulus (trained or non-trained) and the training (learning object usage or 600 

function; bottom). Training participants to associate a novel usage and functional 601 

knowledge to novel objects prevented the reduction of mu-band amplitude during visual 602 

object processing. Error bars represent one standard error of the mean. 603 

 604 

Figure 4. Difference of training effect (TE) between the trained and the non-trained objects on 605 

the amplitude of theta-band (4-8 Hz) oscillations during object processing across scalp 606 
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(top). Training effects depending on the regions of interest (centro-parietal, occipital, left 607 

and right motor areas), the stimulus (trained or non-trained) and the training (learning object 608 

usage or function; bottom). Learning the usage of a novel object prevented the 609 

desynchronization of theta-band oscillations from central to occipital cortical areas during 610 

visual object processing. Error bars represent one standard error of the mean. 611 












