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Original Investigation | Neurology
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Abstract

IMPORTANCE Histone deacetylase inhibitors have been repeatedly shown to elevate progranulin
levels in preclinical models. This report describes the first randomized clinical trial of a histone
deacetylase inhibitor in frontotemporal dementia (FTD) resulting from progranulin (GRN) gene
variations.

OBJECTIVE To characterize the safety, tolerability, plasma pharmacokinetics, and
pharmacodynamic effects of oral FRM-0334 on plasma progranulin and other exploratory
biomarkers, including fluorodeoxyglucose (FDG)–positron emission tomography (PET), in individuals
with GRN haploinsufficiency.

DESIGN, SETTING, AND PARTICIPANTS In this randomized, double-blind, placebo-controlled,
dose-escalating, phase 2a safety, tolerability, and pharmacodynamic clinical study, 2 doses of a
histone deacetylase inhibitor (FRM-0334) were administered to participants with prodromal to
moderate FTD with granulin variations. Participants were recruited from January 13, 2015, to April 13,
2016. The study included 27 participants with prodromal (n = 8) or mild-to-moderate symptoms of
FTD (n = 19) and heterozygous pathogenic variations in GRN and was conducted at multiple centers
in North America, the UK, and the European Union. Data were analyzed from June 9, 2019, to May
13, 2021.

INTERVENTIONS Daily oral placebo (n = 5), 300 mg of FRM-0334 (n = 11), or 500 mg of FRM-0334
(n = 11) was administered for 28 days.

MAIN OUTCOMES AND MEASURES Primary outcomes were safety and tolerability of FRM-0334
and its peripheral pharmacodynamic effect on plasma progranulin. Secondary outcomes were the
plasma pharmacokinetic profile of FRM-0334 and its pharmacodynamic effect on cerebrospinal fluid
progranulin. Exploratory outcomes were FDG-PET, FTD clinical severity, and cerebrospinal fluid
biomarkers (neurofilament light chain [NfL], amyloid β 1-42, phosphorylated tau 181, and total tau [t-
tau]).

RESULTS A total of 27 participants (mean [SD] age, 56.6 [10.5] years; 16 women [59.3%]; 26 White
participants [96.3%]) with GRN variations were randomized and completed treatment. FRM-0334
was safe and well tolerated but did not affect plasma progranulin (4.3 pg/mL per day change after
treatment; 95% CI, –10.1 to 18.8 pg/mL; P = .56), cerebrospinal fluid progranulin (0.42 pg/mL per
day; 95% CI, –0.12 to 0.95 pg/mL; P = .13), or exploratory pharmacodynamic measures. Plasma
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Abstract (continued)

FRM-0334 exposure did not increase proportionally with dose. Brain FDG-PET data were available in
26 of 27 randomized participants. In a cross-sectional analysis of 26 individuals, bifrontal cortical FDG
hypometabolism was associated with worse Clinical Dementia Rating (CDR) plus National
Alzheimer’s Coordinating Center frontotemporal lobar degeneration sum of boxes score
(b = −3.6 × 10−2 standardized uptake value ratio [SUVR] units/CDR units; 95% CI, −4.9 × 10−2 to
−2.2 × 10−2; P < .001), high cerebrospinal fluid NfL (b = −9.2 × 10−5 SUVR units/pg NfL/mL; 95% CI,
−1.3 × 10−4 to −5.6 × 10−5; P < .001), and high CSF t-tau (−7.2 × 10−4 SUVR units/pg t-tau/mL; 95% CI,
−1.4 × 10−3 to −9.5 × 10−5; P = .03).

CONCLUSIONS AND RELEVANCE In this randomized clinical trial, the current formulation of
FRM-0334 did not elevate PRGN levels, which could reflect a lack of efficacy at attained exposures,
low bioavailability, or some combination of the 2 factors. Bifrontal FDG-PET is a sensitive measure of
symptomatic GRN haploinsufficiency. International multicenter clinical trials of FTD-GRN are feasible.

TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02149160

JAMA Network Open. 2021;4(9):e2125584. doi:10.1001/jamanetworkopen.2021.25584

Introduction

Autosomal dominant variations in the progranulin (PGRN) gene GRN (OMIM 138945)1-6 are among
the most common causes of genetic frontotemporal degeneration (FTD).7 Pathogenic GRN variations
result in haploinsufficiency,7-10 with a variable, roughly 50% reduction in secreted PGRN protein in
the plasma11,12 and cerebrospinal fluid (CSF).11 The potential to restore or replace PGRN has spurred
the development of a number of new GRN therapies that are entering human clinical trials, with 1
agent having recently entered a phase 3 trial.13 Clinical development programs have been aided by
the ability to use blood and CSF PGRN concentrations as pharmacodynamics biomarkers in GRN
haploinsufficiency clinical trials. However, the rarity of trial-ready participants and lack of established
end points are barriers to successful development of new therapies.

The histone deacetylase (HDAC) inhibitor FRM-0334, formerly EVP-0334, was designed as a
potent, orally available drug with brain-to-plasma concentration ratios of 3 to 6 in rodents.14 In
preclinical studies, a similar HDAC inhibitor, suberoylanilide hydroxamic acid, enhanced PGRN
transcription to near-normal levels in human-derived GRN-/+(R493X) cells (−/+ denotes that the cells
have heterozygous loss of function of the GRN gene) and prevented cytosolic TAR DNA-binding
protein 43 accumulation in PGRN-deficient lymphoblasts.15,16 Although suberoylanilide hydroxamic
acid is approved for treatment of cutaneous lymphoma,17 its poor central nervous system
availability18 prioritized the exploration of FRM-0334 in GRN haploinsufficiency. In subsequent
unpublished preclinical studies, FRM-0334 boosted GRN mRNA and PGRN in a dose-dependent
manner in human GRN-/+ lymphoblasts and in the cortex of mice (dosed with oral FRM-0334).
Additionally, single and multiple doses for FRM-0334, ranging from 10 mg to 400 mg daily, were safe,
well tolerated, and associated with dose-proportional plasma exposure in an unpublished, phase 1,
placebo-controlled clinical trial of FRM-0334 in 87 healthy volunteers aged 18 to 65 years. We
investigated the safety, tolerability, and plasma pharmacodynamic (PD) effects (change in PGRN) of
FRM-0334 in a multinational clinical trial completed in PRGN GRN haploinsufficiency. We also
characterized the peripheral pharmacokinetic (PK) profile and central PD effects (change in CSF
PGRN) of FRM-0334 in GRN haploinsufficiency. Additionally, this trial’s inclusion of a variety of
exploratory PD end points allowed for novel analyses comparing cortical fluorodeoxyglucose
positron emission tomography (FDG-PET), clinical measures of functional FTD severity, and
candidate CSF biomarkers of neuronal injury, including neurofilament light chain (NfL), amyloid β
1-42 (Aβ1-42), phosphorylated tau 181 (p-tau181), and total tau (t-tau). We present data from the first
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trial implementing an international, multisite protocol as a mechanism for patient recruitment in the
rare familial FTD space.

Methods

Participants
This randomized clinical trial included participants aged 27 to 75 years with Clinical Laboratory
Improvement Amendments–confirmed pathogenic GRN variations, including prodromal and mild-to-
moderate (Clinical Dementia Rating [CDR] plus National Alzheimer’s Coordinating Center [NACC]
frontotemporal lobar degeneration [FTLD] behavior and language domain sum of boxes <16)19,20

FTD stages. Race and ethnicity information was recorded; participants self-identified their race and
ethnicity. All participants were recruited and randomized from January 13, 2015, to April 13, 2016, at 11
clinical sites in the US, UK, France, Italy, the Netherlands, and Belgium (trial protocol in Supplement 1;
eTable 1 in Supplement 2). Significant comorbid thyroid, hematologic, kidney, cardiovascular,
inflammatory, or hepatic disease was exclusionary. The trial protocol specified that comorbid
neurologic or psychiatric disease (if determined to be unrelated to GRN variations) was also
exclusionary, though these criteria were not cited as the basis for exclusion of any participants
recruited for screening (eFigure in Supplement 2). Ethics approval was obtained at each site from the
local institutional review board and independent ethics committee. Written informed consent (from
participants and legal proxies) was obtained at the start of recruitment, in compliance with the
current revision of the Declaration of Helsinki, current International Conference on Harmonisation
and Good Clinical Practice guidelines, the Consolidated Standards of Reporting Trials (CONSORT)
reporting guideline, and local regulations.

General Procedures
Participants and site staff were blinded to treatment assignment. A central Interactive Voice/Web
Response System21 generated randomization assignments in 2 sequential cohorts. Cohort 1 was
randomized to placebo or low-dose (300 mg daily) FRM-0334. Cohort 2 began after review of cohort
1 safety data and included randomization to placebo or high-dose (500 mg daily) FRM-0334. Overall,
5 patients were randomized to placebo, 11 to low-dose FRM-0334, and 11 to high-dose FRM-0334.
The study drug (FRM-0334 drug substance blended with sodium lauryl sulfate, microcrystalline
cellulose, magnesium stearate, and colloidal silicon dioxide) and placebo (containing microcrystalline
cellulose) were presented as identical, opaque, white gelatin capsules and taken daily for 28 days. A
central pharmacy was used to distribute packaged drugs to blinded site staff. Plasma collection
occurred at screening visit 1 (8-30 days before the first dose), at screening visit 2 (1-7 days before the
first dose), on study day 1 (first day of dose), in weekly intervals during dosing (days 7, 14, 21, and 28),
and at 10 days after the final dose (day 38). Lumbar punctures for CSF collection were performed
using standard clinical practice, aligned with Alzheimer’s Disease Neuroimaging Initiative
procedures,22 on screening day 2 and study day 28 (after final study dose). Cerebrospinal fluid was
collected in the afternoon using a gravity drip into a polypropylene collection tube. Magnetic
resonance imaging was performed on screening day 1 for safety and diagnostic purposes using
scanners, field strengths, and protocols employed for clinical use at each site (eTable 1 in
Supplement 2). Brain FDG-PET was performed on screening day 2 and study day 28.

Outcomes
The primary outcome of safety and tolerability was assessed via treatment-emergent adverse events
(AEs), serum chemistry, hematology, urinalysis, vital signs (including orthostatic measurements),
12-lead electrocardiogram, physical examination, and suicidality assessments.23 The coprimary
outcome of change in plasma PGRN (days 1, 7, 14, 28, and 38) and secondary outcome of change in
CSF PGRN (screening day 2 and study day 28) were measured via enzyme-linked immunoassay. The
cosecondary outcome of FRM-0334 plasma PK properties (maximum observed concentration
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[Cmax], time corresponding to Cmax [Tmax], and area under the curve [AUC]) were assessed via liquid
chromatography and tandem mass spectrometry using day 1 (before dose and 1, 2, 4, 6, 8, and 10
hours after dose) and day 7 (before dose and 1, 2, 4, 6, 8, 10, 12, and 24 hours after dose) plasma.
Exploratory CSF biomarkers (NfL, Aβ1-42, p-tau181, and t-tau, measured via enzyme-linked
immunoassay) and clinical measures (CDR plus NACC FTLD sum of boxes score,19,20 Clinical Global
Impressions Scale, severity and change24 and Frontotemporal Dementia Rating Scale25) were
assessed at screening and on study day 28. Biomarker assay procedures are detailed in the eMethods
in Supplement 2.

Statistical Analysis
All statistical analyses were performed in STATA, version 14.2 (StataCorp LLC). A description of the
original trial protocol statistical analysis plan may be found in the eMethods in Supplement 2.
Treatment-emergent AEs were compared between cohorts using the Fisher exact test with binary
values (0 = patient did not have AE; 1 = patient did have AE). Given the small number of people in the
placebo group, the Kruskal-Wallis test was used for pairwise comparisons of characteristics and
continuous-variable outcome measurers. Given our final sample size and α of .05, we were 80%
powered to detect a roughly 30% difference in change in plasma PGRN after treatment with
FRM-0334 relative to placebo (t test, 2-tailed). Longitudinal changes in plasma PGRN, CSF
biomarkers, clinical severity, and bifrontal FDG-PET standardized uptake value ratio (FDG-SUVR)
were modeled with linear mixed-effects models (controlling for age and sex), allowing each patient’s
outcome measures a random slope and intercept with time. In follow-up sensitivity analyses, we
modeled interactions between FRM-0334 (treatment assignment [placebo vs FRM-0334], baseline
AUC, and baseline Cmax) and time in determining patient outcome measures. The plasma FRM-0334
standard AUC from 0 to the maximum observed time was calculated using cubic splines.26 Linear
regression models were used to assess for baseline relationships between baseline PK values and
age, sex, FTLD clinical severity (CDR plus NACC FTLD, sum of boxes), and follow-up PK values (day 1
vs day 7). Linear regression models (controlling for age and sex) were used to investigate baseline
cross-sectional linear relationships between bifrontal FDG-SUVR, plasma PGRN, CSF biomarker
concentrations, and clinical severity outcome measures. Linear regression models (controlling for
age and sex) were also used to investigate linear relationships between magnitude of change in
PGRN (plasma or CSF) and magnitude of change in FDG-SUVR, CSF biomarker concentrations, and
clinical severity measures after treatment with FRM-0334. Univariate regression models were also
used to compare baseline PK values by age and sex. The Shapiro-Wilks W test was used to confirm
assumptions of normality (of dependent variables and residuals), and the Cameron and Trivedi
decomposition of IM-test was used to confirm assumptions of residual homoscedasticity.
Non-normally distributed dependent variables were log converted before inclusion in our models.
Data were analyzed from June 9, 2019, to May 13, 2021.

FDG-PET Processing and Analysis
Baseline FDG-PET data were only available for 26 of 27 individuals randomized to the study drug.
Baseline FDG-PET data for the remaining participant could not be recovered after conclusion of the
trial, and this participant was excluded from our imaging analyses. A summary of scanner types and
PET acquisition parameters is detailed in eTable 1 in Supplement 2. Digital Imaging and
Communications in Medicine files from a total of 26 trial patients and 52 age-matched individuals
without cognitive pathology from the Berkeley Aging Cohort Study were converted to Neuroimaging
Informatics Technology Initiative format, warped to standard space with Statistical Parametric
Mapping 12 (SPM12) via a PET-only pipeline (eMethods in Supplement 2) and normalized to pons to
obtain parametric FDG-SUVR images. Given the heterogeneity of scanner and acquisition parameters
(eTable 1 in Supplement 2), final FDG-PET SUVR images were downsampled to match the scan with
the least spatial resolution using Analysis of Functional NeuroImages software, version 16.2.16 (NIMH
Scientific and Statistical Computing Core). Voxelwise group comparisons (gene variation carriers vs
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controls) of FDG-SUVR were assessed via analysis of covariance in SPM12, controlling for age and sex,
in separate models including prodromal, symptomatic, and all gene variation carriers. Voxelwise
associations between FDG-SUVR and 2 primary exploratory measures of FTD severity (CSF NfL and
CDR plus NACC FTLD sum of boxes) were assessed in separate multiple regression models (with age
and sex entered as covariates) in SPM12, including all variation carriers and excluding controls.
T-maps from voxelwise analyses were thresholded (primary threshold P < .001 uncorrected for
multiple comparisons, cluster-level familywise error [FWE]–corrected P < .05), converted to Pearson
correlation coefficient r maps using the Computational Anatomy Toolbox, version 12 (Jena University
Hospital, Departments of Psychiatry and Neurology), and rendered on a 3-dimensional brain surface
using BrainNet Viewer.27 A more stringent primary threshold of P < .05 FWE-corrected for multiple
comparisons was also used for supplemental sensitivity analyses. Based on our initial voxelwise
results (revealing a chiefly bifrontal pattern of hypometabolism in GRN variation carriers) we further
investigated potential linear relationships between FDG metabolism in a bifrontal region of interest
(ROI) and clinical measures or fluid biomarkers. Baseline bifrontal macro ROI FDG-SUVR values were
calculated from weighted averages of constituent bilateral frontal SPM12 using ROI definitions from
the Neuromorphometrics Atlas28 and compared (as the dependent variable) with clinical measures
and fluid biomarkers using linear regression models controlling for age and sex. The included ROIs
were anterior, lateral, medial, and posterior orbital gyri, middle and superior frontal gyri, orbital and
triangular part of the inferior frontal gyri, and the frontal pole. Change in bifrontal FDG-SUVR over
time was also assessed via linear mixed-effects models as a follow-up sensitivity analysis, though the
heterogeneity of PET sites and short duration of follow-up limited the potential interpretability of
these analyses. The methods of FDG-PET collection and processing (including estimation of W-maps)
are further detailed in the eMethods in Supplement 2.

Magnetic Resonance Imaging Processing
Magnetic resonance imaging processing methods and scanner characteristics are further detailed in
the eMethods and eTable 1 in Supplement 2. Though the heterogeneity of scanners and field
strengths across sites limited the interpretability of volumetric data, each participant’s relative
degree of total brain atrophy was estimated by dividing total parenchymal volume by total
intracranial volume. This parenchymal volume variable was exclusively used as a covariate in
follow-up sensitivity analyses, controlling for the potential effect of atrophy in multivariate
regression models analyzing bifrontal ROI FDG-SUVR.

Results

A total of 27 participants (mean [SD] age, 56.6 [10.5] years; 16 women [59.3%] and 11 men [40.7%]; 1
Black participant [3.7%] and 26 White participants [96.3%]) with GRN variations were randomized
and completed treatment (eFigure in Supplement 2). Demographic characteristics of individuals
randomized to drug or placebo did not differ at baseline (Table 1). Compared with prodromal GRN
variation carriers, participants with symptomatic FTD had more severe scores on the CDR plus NACC
FTLD sum of boxes, Clinical Global Impressions Scale-severity, and Frontotemporal Dementia Rating
Scale, as well as elevated CSF NfL and CSF t-tau level, but did not otherwise differ demographically.
No discontinuations or dose-limiting adverse effects occurred throughout treatment. Incidence of
treatment-emergent AEs (Table 2) was similar between placebo (4 of 5; 80%), low-dose (7 of 11;
63.6%), and high-dose (7 of 11; 63.6%) cohorts (P > .99 for all comparisons). One patient randomized
to 500 mg FRM-0334 experienced a serious AE (deep vein thrombosis with nonfatal pulmonary
embolism), which was not felt to be related to the study drug in the opinion of the site investigator.
Patients randomized to FRM-0334 experienced higher incidences of cardiac, constitutional,
dermatologic, infectious, psychiatric, and respiratory symptoms and a lower incidence of
gastrointestinal symptoms relative to placebo-treated participants (Table 2).
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There was no effect of FRM-0334 on concentrations of plasma PGRN (4.3 pg/mL per day
change after treatment; 95% CI, −10.1 to 18.8; P = .56), CSF PGRN (0.42 pg/mL per day; 95% CI, −0.12
to 0.95; P = .13) (Figure 1A and B), or exploratory PD outcomes (CSF NfL, CSF Aβ1-42, CSF p-tau181,
and CSF t-tau, CDR plus NACC FTLD sum of boxes, Frontotemporal Dementia Rating Scale, and
bifrontal FDG-SUVR) after 28 days of treatment (Figure 1C; eTable 2 in Supplement 2). Additionally,
treatment assignment, baseline FRM-0334 plasma AUC, and baseline FRM-0334 plasma Cmax were
not associated with improvement in PD outcomes (eTable 2 in Supplement 2).

Plasma FRM-0334 exposure did not rise in proportion to dose (Table 1, Figure 1D). Compared
with the low-dose cohort, the high-dose cohort did not consistently experience higher AUC (high
dose, 4080 hours × ng/mL [1880] vs low dose, 4760 hours × ng/mL [1470]; P = .18) or Cmax (high
dose, 887 ng/mL [404] vs low dose, 1110 ng/mL [339]; P = .11) values on day 1. Compared with the
low- dose cohort, the high-dose cohort also did not consistently experience higher AUC (high dose,
6180 hours × ng/mL [3250] vs low dose, 5650 hours × ng/mL [2000]; P = .62) or Cmax (high dose,
936 ng/mL [380] vs low dose, 889 ng/mL [373]; P = .67) values on day 7. Older age (but not clinical
severity, plasma/CSF PGRN, or sex) predicted higher baseline AUC (84-hour × ng/mL per year of

Table 1. Participant Characteristicsa

Characteristic

Mean (SD)b

GRN variation carriers by treatment assignment GRN variation carriers

Placebo
(n = 5)

FRM-0334
Prodromal
(n = 8)

Symptomatic
(n = 19)

300 mg
(n = 11)

500 mg
(n = 11)

Placebo, No. (%) NA NA NA 1 (12.5) 4 (21.1)

FRM-0334 300 mg, No. (%) NA NA NA 2 (25.0) 9 (47.4)

FRM-0334 500 mg, No. (%) NA NA NA 5 (62.5) 6 (31.6)

Sex, No. (%)

Women 3 (60.0) 7 (63.6) 6 (54.5) 4 (50.0) 12 (63.2)

Men 2 (40.0) 4 (36.4) 5 (45.5) 4 (50.0) 7 (36.8)

Age, y 55.6 (5.9) 59 (9.7) 54.2 (11.1) 51.6 (10.5) 58.4 (8.8)

Baseline clinical severity

Prodromal/symptomatic 1/4 2/9 5/6 NA NA

CDR plus NACC FTLD,
sum of boxes

4.2 (6.8) 8 (6.1) 4.1 (7) 0 9.9 (5.4)c

CGI-S 2.7 (1.5) 3.6 (1.6) 2 (1.7) 1 (0.0) 4.2 (0.9)c

FRS 80 (32) 42 (32) 23 (9) 100 (0) 39 (28)c

Baseline biomarker data

Plasma PGRN, pg/mL 8490 (2120) 9190 (2290) 11020 (2990) 9780 (2800) 9680 (2670)

CSF, pg/mL

PGRN 375 (78) 359 (110) 393 (128) 399 (138) 363 (99)

NfL 1170 (1610) 3070 (2400) 2000 (2340) 627 (435) 3080 (2400)c

Aβ1-42 1020 (232) 792 (222) 920 (240) 912 (197) 867 (256)

p-Tau181 39.4 (2.5) 66.2 (66.8) 41.5 (11.3) 40.8 (12.7) 57.5 (54.3)

Total tau 337 (101) 306 (197) 277 (158) 185 (63.2) 349 (172)c

Bilateral frontal FDG-SUVR 1.4 (0.2) 1.2 (0.3) 1.4 (0.3) 1.5 (0.2) 1.2 (0.3)c

Plasma FRM-0334
pharmacokinetics

Visit 1

AUC, h × ng/mL NA 4760 (1470) 4080 (1880) NA NA

VCmax, ng/mL NA 1110 (339) 887 (404) NA NA

VTmax, h NA 2.7 (2) 2.6 (1.1) NA NA

Visit 7

AUC, h × ng/mL NA 5650 (2000) 6180 (3250) NA NA

Cmax, ng/mL NA 899 (373) 936 (380) NA NA

Tmax, h NA 2.9 (1.0) 3.1 (1.2) NA NA

Abbreviations: Aβ1-42, amyloid β1-42; AUC, area under
the curve (plasma exposure); CDR plus NACC FTLD,
CDR Dementia Staging Instrument plus National
Alzheimer’s Coordinating Center frontotemporal lobar
degeneration behavior and language domain; CGI-S,
Clinical Global Impressions Scale Baseline Severity;
Cmax, maximum plasma concentration; CSF,
cerebrospinal fluid; FRS, Frontotemporal Dementia
Rating Scale; NfL, neurofilament light chain; PGRN,
progranulin; p-tau181, phosphorylated tau 181; Tmax,
time to maximum plasma concentration.
a Details on race and ethnicity are not presented in

order to protect patient confidentiality.
c Baseline Kruskal-Wallis test P < .05 in comparison

between asymptomatic and symptomatic patients,
whereas no other pairwise comparisons (placebo vs
FRM-0334, high-dose vs low-dose FRM-0334,
prodromal vs asymptomatic) met P < .05.
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age, 95% CI, 20.2-148; P = .01, R2 = 0.27) and Cmax (23.3 mg/mL per year of age, 95% CI, 10.2-36.5;
P = .001, R2 = 0.41) (eTable 3 in Supplement 2). Day 1 and day 7 AUC were linearly related (b = 0.52;
95% CI, 0.35-0.69; P < .001; R2 = 0.64), although day 1 and day 7 Cmax was not (b = 0.39; 95% CI,

Table 2. Adverse Events by Treatment Assignment

Variable

No. (%)

Placebo
(n = 5)

FRM-0334
300 mg
(n = 11)

500 mg
(n = 11)

All
(n = 22)

Total experiencing AEs 4 (80.0) 7 (63.6) 7 (63.6) 14 (63.6)

Cardiovascular symptoms 0 1 (9.1) 3 (27.3) 4 (18.2)

Bradycardia 0 0 1 (9.1) 1 (4.5)

Tachycardia 0 0 1 (9.1) 1 (4.5)

Orthostatic hypotension 0 1 (9.1) 0 1 (4.5)

Abdominal hematoma 0 0 1 (9.1) 1 (4.5)

PE/DVT (SAE) 0 0 1 (9.1) 1 (4.5)

Constitutional symptoms 0 0 2 (18.2) 2 (9.1)

Fatigue 0 0 1 (9.1) 1 (4.5)

Decreased appetite 0 0 1 (9.1) 1 (4.5)

Dermatologic symptoms 0 0 2 (18.2) 2 (9.1)

Erythroderma 0 0 1 (9.1) 1 (4.5)

Spider nevus 0 0 1 (9.1) 1 (4.5)

Gastrointestinal symptoms 3 (60.0) 3 (27.3) 4 (36.4) 7 (31.8)

Abdominal pain and dyspepsia 2 (40.0) 0 1 (9.1) 1 (4.5)

Diarrhea 1 (20.0) 3 (27.3) 2 (18.2) 5 (22.7)

Nausea and vomiting 1 (20.0) 0 4 (36.4) 4 (18.2)

Bloating 0 1 (9.1) 0 1 (4.5)

Dental pain 1 (20.0) 0 0 0

Infections 0 3 (27.3) 3 (27.3) 6 (27.3)

Cold sores 0 0 1 (9.1) 1 (4.5)

Viral

Upper respiratory infection 0 2 (18.2) 2 (18.2) 4 (18.2)

Gastritis 0 1 (9.1) 0 1 (4.5)

Musculoskeletal symptoms 0 1 (9.1) 1 (9.1) 2 (9.1)

Neck pain 0 0 1 (9.1) 1 (4.5)

Weakness 0 1 (9.1) 0 1 (4.5)

Neurologic symptoms 1 (20.0) 3 (27.3) 4 (36.4) 7 (31.8)

Headache 1 (20.0) 2 (18.2) 4 (36.4) 6 (27.3)

Worsening FTD symptoms 0 1 (9.1) 0 1 (4.5)

Psychiatric symptoms 0 1 (9.1) 3 (27.3) 4 (18.2)

Worsening apathy 0 0 1 (9.1) 1 (4.5)

Insomnia 0 0 1 (9.1) 1 (4.5)

Worsening

Depression 0 0 1 (9.1) 1 (4.5)

Bruxism 0 1 (9.1) 0 1 (4.5)

Respiratory symptoms 0 0 2 (18.2) 2 (9.1)

Cough 0 0 1 (9.1) 1 (4.5)

Epistaxis 0 0 1 (9.1) 1 (4.5)

Laboratory abnormalities 1 (20.0) 1 (9.1) 3 (27.3) 4 (18.2)

Low white blood cell count 1 (20.0) 0 0 0

High urine bilirubin 0 0 1 (9.1) 1 (4.5)

Elevated

Liver function tests 0 1 (9.1) 0 1 (4.5)

Cholesterol 0 0 1 (9.1) 1 (4.5)

Hematuria 0 0 1 (9.1) 1 (4.5)

Abbreviations: AE, adverse event; DVT, deep vein
thrombosis; FTD, frontotemporal degeneration; PE,
pulmonary embolism; SAE, severe adverse event.

JAMA Network Open | Neurology FRM-0334 and Progranulin Levels in Patients With Progranulin Gene Haploinsufficiency

JAMA Network Open. 2021;4(9):e2125584. doi:10.1001/jamanetworkopen.2021.25584 (Reprinted) September 24, 2021 7/15

Downloaded From: https://jamanetwork.com/ on 11/08/2021

https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2021.25584&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2021.25584


–0.06 to 0.84; P = .08; R2 = 0.14). In patients who received FRM-0334, change in PGRN (plasma and
CSF) was not linearly related to change in bifrontal FDG-SUVR, CSF NfL, CSF Aβ1-42, CSF total tau, or
measures of clinical severity, although an increase in CSF PGRN was associated with a decrease in
p-tau181 (b = −2.3; 95% CI, −4.2 to −0.4; P = .02) (eTable 3 in Supplement 2).

GRN variation carrier status, particularly symptomatic disease (but not prodromal carrier status
alone), was associated with frontal FDG hypometabolism relative to controls (including left > right

Figure 1. Pharmacodynamic and Pharmacokinetic Properties of FRM-0334 in Participants
With GRN Haploinsufficiency

20

15

10

5

–10

–5

0

Ch
an

ge
 in

 C
SF

 P
GR

N
, %

Medication type

Cerebrospinal fluid PGRNB

Placebo
(n = 3)

300 mg 
FRM-0334

(n = 10)

500 mg 
FRM-0334

(n = 9)

Placebo
(n = 3)

300 mg 
FRM-0334

(n = 9)

500 mg 
FRM-0334

(n = 11)

100

80

60

40

0

20

–20

Ch
an

ge
 in

 C
SF

 N
fL

, %

Medication type

Cerebrospinal fluid NfLC

16 000

14 000

12 000

10 000

6000

8000

Pl
as

m
a 

PG
RN

, p
g/

m
L

Time, d

Plasma PGRNA

Start of dosing End of dosing

1 7 14 28 38

Placebo
300 mg
500 mg

1500

1000

500

0

Pl
as

m
a 

FR
M

-O
33

4,
  p

g/
m

L

Time after dose, h

Plasma FRM-0334 levelsD

Day 1 of dosing

0 5 10

1500

1000

500

0

Pl
as

m
a 

FR
M

-O
33

4,
  p

g/
m

L

Time after dose, h

Day 7 of dosing

0 5 10 15 20 25

300 mg
500 mg

After 28 days of treatment, patients randomized to
FRM-0334 did not experience an improvement in
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maximum observed concentration [Cmax]) did not
increase in proportion to dose on day 1 and day 7 of
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dorsal prefrontal, anterior cingulate, orbitofrontal, inferior frontal gyrus, and insular
hypometabolism), with additional left-predominant hypometabolism noted in lateral parietal, lateral
temporal, posterior cingulate, caudate, and thalamic regions (Figure 2; eTable 4 in Supplement 2).
In voxelwise regression analyses including only gene variation carriers with available PET data
(n = 26), greater clinical severity (CDR plus NACC FTLD sum of boxes) was associated with left
greater than right dorsal and lateral prefrontal FDG hypometabolism (Figure 3; eTable 4 in
Supplement 2). High CSF NfL was also associated with dorsal prefrontal and left > right orbitofrontal
FDG hypometabolism (Figure 3; eTable 4 in Supplement 2). In a bifrontal ROI, low FDG-SUVR was
associated with greater CDR plus NACC FTLD sum of boxes score (b = −3.6 × 10−2 SUVR units/CDR
units; 95% CI, –4.9 × 10−2 to −2.2 × 10−2; P < .001), greater Clinical Global Impressions Scale severity
(b = −1 × 10−1 SUVR units/CGI units; 95% CI, –1 × 10−1 to −6 × 10−2; P < .0005), lower Frontotemporal
Dementia Rating Scale score (b = −8.8 × 10−3 SUVR units/Frontotemporal Dementia Rating Scale
units; 95% CI, –3.7 × 10−3 to 1.3 × 10−2; P < .001), elevated CSF NfL (b = −9.2 × 10−5 SUVR units/pg
NfL/mL; 95% CI, –1.3 × 10−4 to −5.6 × 10−5; P < .001), and high CSF t-tau (−7.2 × 10−4 SUVR units/pg
t-tau/mL; 95% CI, −1.4 × 10−3 to −9.5 × 10−5; P = .03), but was not linearly related to plasma PGRN,
CSF PGRN, CSF Aβ1-42, or CSF p-tau181 (Figure 3; eTable 3 in Supplement 2). In follow-up sensitivity
analyses, including parenchymal volume as a covariate, frontal hypometabolism was still linearly
related to clinical severity (b = −1.8 × 10−2 sum of boxes units/SUVR units, 95% CI, −3.5 × 10−2 to
−4.2 × 10−4; R2 = 0.88; P < .045). Greater clinical severity (CDR plus NACC FTLD sum of boxes) was
linearly related to high CSF NfL, but not plasma PGRN, CSF PGRN, CSF Aβ1-42, CSF t-tau, or CSF
p-tau181 (eTable 3 in Supplement 2).

Figure 2. Hypometabolism in GRN Variation Carriers Relative to Age-Matched Controls

Regions of FDG hypometabolism (SUVR) in all GRN variation carriers (N=26)A

Regions of FDG hypometabolism (SUVR) in symptomatic GRN variation carriers (N=18)B
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Regions of fluorodeoxyglucose (FDG) hypometabolism in all GRN variation carriers (A)
and in symptomatic GRN variation carriers (B). The depicted results meet a primary
voxel-level threshold of uncorrected P < .001 and a cluster-level threshold of familywise

error P < .05. Voxels meeting a more stringent threshold of familywise error P < .05 are
detailed in eTable 3 in Supplement 2. No voxels met this threshold in prodromal variation
carriers (n = 8). SUVR indicates standardized uptake value ratio.
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Discussion

This report describes, to our knowledge, the first international multicenter randomized, placebo-
controlled clinical trial in individuals with GRN haploinsufficiency and the first clinical exploration of
HDAC inhibition in this cohort. Treatment with FRM-0334 was safe and well tolerated but was not
associated with improvement in plasma PGRN concentration, CSF PGRN concentration, or
exploratory pharmacodynamic measures. Moreover, the plasma PK profile of FRM-0334 did not
change in proportion to the oral dose, which suggests inconsistent absorption or oral bioavailability

Figure 3. Frontal Fluorodeoxyglucose (FDG) Hypometabolism vs Clinical Severity and Cerebrospinal Fluid (CSF) Biomarkers in GRN Gene Variation Carriers
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In voxelwise analyses, low frontal FDG–standardized uptake value ratio (SUVR) was
associated with higher Clinical Dementia Rating (CDR) plus National Alzheimer’s
Coordinating Center (NACC) frontotemporal lobar degeneration (FTLD) sum of boxes
score (A) and higher CSF neurofilament light chain (NfL) (C). Low bifrontal FDG-SUVR on

a bifrontal composite region of interest was also associated with high CDR plus NACC
FTLD sum of boxes score (B), and CSF NfL (D) but not plasma progranulin (E) or CSF
progranulin (F). The shaded areas in panels B, D, E, and F represent the 95% CIs.
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of the formulation used in this study. Although these results halted clinical development of the
current formulation of FRM-0334 in GRN haploinsufficiency, this trial’s international multicenter
cohort enabled novel opportunities for additional biomarker analyses. Specifically, we found that
bifrontal cortical FDG hypometabolism was associated with greater clinical disease severity and CSF
measures of neurodegeneration including NfL and t-tau levels in patients with PGRN deficiency.

The PD and PK profiles of oral FRM-0334 firmly suggest that further development of the tested
formulation should not be pursued for GRN haploinsufficiency. Histone acetylation is primarily driven
by FRM-0334 Cmax, and within this trial, only a minority of participants in both the low- and high-
dose cohorts experienced a Cmax above 1000 ng/mL (a magnitude equivalent to the minimum Cmax

necessary to drive detectable histone acetylation in preclinical canine studies). Moreover, the
observed variance in FRM-0334 Cmax did not predict change in PGRN (plasma and CSF) or other
exploratory PD measures, further suggesting inadequate target engagement. Additionally, given the
unreliable relationship between FRM-0334 dose level, plasma Cmax, and plasma AUC, it is unknown
whether alternative regimens (including higher or more frequent doses) of the current formulation
could reliably improve the bioavailability of FRM-0334 in future trials. Given the relationship
between FRM-0334 exposure and age, future early phase trials of other orally available HDAC
inhibitors may require design considerations that account for possible unique, age-related
differences in drug oral bioavailability in GRN haploinsufficiency. Given the wide distribution of GRN
expression,29 particularly in the liver, it is possible that GRN haploinsufficiency could give rise to a
wide array of subtle phenotypic differences in a variety of cell types, including peripheral cells
mediating drug absorption or metabolism.

Our FDG-PET analyses were consistent with previous clinical correlations30 and anatomic
descriptions of frontal hypometabolism30,31 in GRN haploinsufficiency but reveal novel fluid-
biomarker relationships to FDG-PET data. Cerebrospinal fluid NfL is interpreted to be a biomarker of
axonal injury and neuronal degeneration32 and correlates with disease severity33,34 and
aggressiveness in sporadic FTLD as well as in GRN haploinsufficiency.35 The observed relationship
with NfL level may attest to the synaptic loss and neuronal metabolism documented on FDG-PET (via
astrocyte-neuron metabolic coupling36). Additionally, although GRN haploinsufficiency is not
typified by tau deposition on autopsy, our findings support previous observations of elevated CSF
t-tau in symptomatic disease.37 The relationship of FDG-PET to t-tau may reflect the lysosomal role
of PGRN in supporting autophagy pathways,38 which may impact tau clearance.39

Fluorodeoxyglucose hypometabolism was not associated with CSF p-tau181, therefore, comorbid
Alzheimer pathology is unlikely to have mediated its relationship to t-tau. It is unclear how much of
our FDG-PET fluid-biomarker correlations were mediated by brain atrophy alone, given our lack of
complementary harmonized magnetic resonance images. Our sensitivity analyses, accounting for
whole-brain parenchymal volume, did provide some evidence that FDG hypometabolism tracks
clinical GRN deficiency severity even after the effect of volume is considered.

Limitations
Our study had several limitations affecting its interpretability. The inconsistent bioavailability of
FRM-0334 made it difficult to reliably extrapolate the broader effect of consistent HDAC inhibition
in PGRN deficiency or whether higher exposure levels of FRM-0334 may have affected plasma
PGRN. The small sample size of patients randomized to placebo and the relatively short duration of
this trial also limited our ability to detect modest deflections in biomarker trajectory. However, recent
publicly presented open-label trial data do suggest that a similar duration and smaller sample size
may be sufficient to demonstrate biomarker evidence of target engagement from alternative PGRN
boosting strategies.40,41 With regard to our FDG-PET analyses, the heterogeneity of our data
(acquired on differing scanners, with differing resolutions and protocols, in the absence of site-
specific, healthy controls) may have also limited the quality and resolution of our observations.
Moreover, the short duration of our trial provided a relatively short interval to validly discern a true
trajectory of change within our heterogeneous data set. Despite these limitations, our novel
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observations of FDG hypometabolism support further exploration of FDG-PET as an imaging
biomarker of FTLD biological severity in future GRN haploinsufficiency studies (ideally employing
greater homogeneity and harmonization among scanners, acquisition protocols, and
contemporaneous magnetic resonance imaging acquisition).

Conclusions

In conclusion, this randomized clinical trial demonstrated that FRM-0334 did not have a PD effect on
CSF or plasma PGRN concentration. However, this study provided useful data to inform future clinical
trial methodology in similar cohorts. Given the rarity of patients with GRN haploinsufficiency, this
trial demonstrates that international multicenter studies are feasible in this indication.1-6 Such
multicenter trials provide a unique opportunity to collect valuable observational data in rare familial
forms of FTD.
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