
HAL Id: hal-03418999
https://hal.science/hal-03418999v1

Preprint submitted on 8 Nov 2021 (v1), last revised 21 Dec 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Local Reasoning about Parameterized Reconfigurable
Distributed Systems

Emma Ahrens, Marius Bozga, Radu Iosif, Joost-Pieter Katoen

To cite this version:
Emma Ahrens, Marius Bozga, Radu Iosif, Joost-Pieter Katoen. Local Reasoning about Parameterized
Reconfigurable Distributed Systems. 2021. �hal-03418999v1�

https://hal.science/hal-03418999v1
https://hal.archives-ouvertes.fr

Local Reasoning about Parameterized
Reconfigurable Distributed Systems

Emma Ahrens* Marius Bozga† Radu Iosif‡

Joost-Pieter Katoen§

November 8, 2021

Abstract

This paper presents a Hoare-style calculus for formal reasoning about recon-
figuration programs of distributed systems. Such programs delete or create interac-
tions or components while the system components change state according to their
local behaviour. Our proof calculus uses a configuration logic that supports local
reasoning and that relies on inductive predicates to describe distributed systems
with an unbounded number of components. The validity of reconfiguration pro-
grams relies on havoc invariants, assertions about the ongoing interactions in the
system. We present a proof system for such invariants in an assume/rely-guarantee
style. We illustrate the feasibility of our approach by proving the correctness of
self-adjustable tree architectures and provide tight complexity bounds for entail-
ment checking in the configuration logic.

1 Introduction
The relevance of dynamic reconfiguration. Dynamic reconfigurable distributed sys-
tems are en vogue. For instance, distributed architectures of modern data centers
have the possibility to change their communication topology at runtime. This en-
ables demand-aware data center networks which (self-)adjust to their workload. We
refer the interested reader to the recent survey [?] for more details. This develop-
ment provides e.g., new impulses to distributed algorithm design [?] and has given rise
to self-adjustable network architectures whose topology reconfigurations are akin to
amendments of dynamic data structures such as splay trees [?]. This paper focuses on
a formal framework to reason about elementary properties of such systems.

*Emma.Ahrens@rwth-aachen.de, RWTH Aachen University, D-52056, Germany
†Marius.Bozga@univ-grenoble-alpes.fr, Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG,

38000, France
‡Radu.Iosif@univ-grenoble-alpes.fr, Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG, 38000,

France
§katoen@cs.rwth-aachen.de, RWTH Aachen University, D-52056, Germany

1

Distributed systems. The distributed systems with dynamic reconfigurations con-
sidered in this paper consist of an unbounded number of components and have a flex-
ible, i.e., not a priori fixed, topology. Communication is assumed to be correct, i.e.,
packet losses and corruptions are abstracted from. We also abstract from low-level
coordination mechanisms between processes such as semaphores, compare-and-swap
operations and the like. Components are finite-state abstractions of sequential pro-
grams, whose transitions are labelled with events. They communicate via interactions
— a form of handshaking — modelled as sets of events that occur simultaneously in
multiple components. We thus distinguish between behaviour (encapsulated by com-
ponents) and coordination (described by interactions). System architectures are hyper-
graphs of components and interactions defining the coordination within the distributed
system.

An illustrative example. We illustrate the setting by a token ring example, consisting
of a finite but unbounded number of components, indexed from 1 to n, connected via
an unidirectional ring (Fig. 1). A token may be passed from a component i in state t
(it has a token) to its neighbour, with index (i mod n)+1, which must be in state n (it
has no token). As result of this interaction, the i-th component moves to state n while
the (i mod n)+1 component moves to state t. Note that token passing interactions are
possible as long as at least two components are in different states; if all the components
are in the same state at the same time, the ring is in a deadlock configuration.

During operation, components can be added to, or removed from the ring. On
removing the component with index i, its incoming (from i− 1, if i > 1, or from n, if
i = 1) and outgoing (to (i mod n)+1) connectors are deleted before the component is
deleted, and its left and right neighbours are reconnected in order to re-establish the
ring-shaped topology. Consider the program in Listing 1, where the variables x, y and
z are assigned the indices 1, 2 and 3, respectively. The program removes first the right
connector between y and z (line 3), then removes the left connector between x and y
(line 4), before removing the component indexed by y (line 5) and reconnecting the x
and y components (line 6). Note that the order of the commands is crucial: assume
that component x is the only one in state t in the entire system. Then the token may
move from x to y and is deleted together with the component (line 5). In this case,
the resulting ring has no token and the system is in a deadlock configuration. The
reconfiguration program in Listing 2 is obtained by swapping lines 3 and 4 from Listing
1. In this case, the deleted component is in state n before the reconfiguration and its left
connector is removed before its right one, thus ensuring that the token does not move
to the y component (deleted at line 5).

The framework developed in this paper allows to prove that, when applied to a token
ring of size n ≥ 2, with at least two components in state n and at least one component
in state t, the program in Listing 2 yields a system with at least two components in
different states, for any n≥ 2. Using, e.g. invariant synthesis methods similar to those
in [?], token ring systems can be automatically proved to be deadlock-free, under this
assumption.

The contributions of this paper. Whereas various formalisms for modelling dis-
tributed systems support dynamic reconfiguration, see e.g., [?, ?], the formal verifi-

2

Figure 1: Reconfiguration of a Parametric Token Ring System

n t

in

out S

1

n t

in

out S

2

n t

in

out S

3

n t

in

out S

n

. . .

out in
T

out

in

T

outin

out

in

T

Listing 1: Delete Component (wrong version)

1 with x,y,z : T(x,y)∗S(y) ∗
2 T(y,z)∧ state(y,S,n) do
3 disconnect(T,y,z);
4 disconnect(T,x,y);
5 delete(S,y);
6 connect(T,x,z); od

Listing 2: Delete Component (correct version)

1 with x,y,z : T(x,y)∗S(y) ∗
2 T(y,z)∧ state(y,S,n) do
3 disconnect(T,x,y);
4 disconnect(T,y,z);
5 delete(S,y);
6 connect(T,x,z); od

cation of system properties under reconfigurations has received scant attention. We
provide a Hoare-style framework to formally reason about properties of reconfigurable
distributed systems. Our approach annotates reconfiguration programs (i.e. programs
that delete and create interactions or components) with assertions written in a config-
uration logic, that describes both the topology of the system (i.e. the components and
connectors that form its coordinating architecture) and the local states of the compo-
nents. The annotations of the reconfiguration program are proved to be valid under
so-called havoc invariants, expressing global properties about the states of the com-
ponents, that remain, moreover, unchanged under the ongoing interactions in the sys-
tem. In order to prove these havoc invariants for networks of any size, we develop
an induction-based proof system, that uses a parallel composition rule in the style of
assume/rely-guarantee reasoning. In contrast with existing formal verification tech-
niques, we do not consider the network topology to be fixed in advance, and allow it to
change dynamically, as described by the reconfiguration program. This paper provides
the details of our proof systems and the semantics of reconfiguration programs. We il-
lustrate the usability of our approach by proving the correctness of self-adjustable tree
architectures and provide tight complexity bounds for the problem of entailment be-
tween formulæ in the configuration logic, relevant for the automation of our approach.

3

Main challenges. Formal reasoning about reconfigurable distributed systems faces
two technical challenges. The first issue is the huge complexity of nowadays distributed
systems, that requires highly scalable proof techniques, which can only be achieved by
local reasoning, a key ingredient of other successful proof techniques, based on Sepa-
ration Logic [?]. To this end, atomic reconfiguration commands in our proof system are
specified by axioms that only refer to the components directly involved in the action,
while framing out the rest of the distributed system. This principle sounds appeal-
ing, but is technically challenging, as components from the local specification interfere
with components from the frame 1. To tackle this issue, we provide a compositional
proof rule in the spirit of rely/assume-guarantee reasoning [?, ?], whose assumptions
are automatically synthesized from the formulæ describing the split of the system.

The second issue is dealing with the non-trivial interplay between reconfigurations
and interactions. Reconfigurations change the system by adding/removing compo-
nents/interactions while the system is running, i.e. while state changes occur within
components by firing interactions. Although changes to the structure of the distributed
system at first sight seem orthogonal to the component’s state changes, the impact of a
reconfiguration can be immense. For instance, deleting a component holding the token
in a token-ring network yields a deadlocked system, while adding a component with
a token could lead to a race scenario, where two components access a shared resource
simultaneously. Technically, this means that a frame rule cannot be directly applied to
sequentially composed reconfigurations, as e.g. an unbounded number of interactions
may fire between two atomic reconfiguration actions.

2 Models of Distributed Systems
Given integers i and j, we write [i, j] for the set {i, i+1, . . . , j}, assumed to be empty if
i > j. For a tuple a = 〈a1, . . . ,ak〉, we write 〈a〉i

def
= ai for its i-th element and 〈a〉[i, j]

def
=

〈ai, . . . ,a j〉 for the subsequence of a from i to j included. We sometimes abuse notation
and write a ∈ a instead of a = 〈a〉i, for some i ∈ [1,k]. Function applications are lifted
to sets f (A) def

= { f (a) | a ∈ A} and tuples f (〈a1, . . . ,ak〉)
def
= 〈 f (a1), . . . , f (ak)〉. When

no confusion arises, we write f (a1, . . . ,ak) instead of f (〈a1, . . . ,ak〉). By P (A) we
denote the powerset of a set A. We denote the domain of a function f by dom(f). By
f [a← b] we denote the function that maps a into b and behaves like f for all elements
of dom(f)\{a}. The cardinality of a finite set A is denoted as ||A||.

A signature is a tuple S= 〈C1, . . . ,Cn, I1, . . . , Im〉 of relation symbols. The relation
symbols C def

= {C1, . . . ,Cn} of arity #(Ci) = 1 are called component types and the sym-
bols I def

= {I1, . . . , Im} of arity #(I j)≥ 2 are called interaction types. Let S, C and I be
fixed in the rest of the paper.

Let Q and P be finite sets of states and ports, respectively. Each component type Ci

is associated with a finite-state machine B(Ci)
def
= (Qi,Pi,q0

i ,−→i), called the behavior
of Ci, where Qi ⊆Q is a set of states, Pi ⊆ P is a set of ports, q0

i ∈Qi is the initial state,
−→i⊆ Qi×Pi×Qi is a transition relation, the elements of which are called transitions,

1Essentially the equivalent of the environment in a parallel compositional proof system.

4

denoted as q
p−→i q′. The states q and q′ are the pre- and post-state and the port p is

the label of the transition. For each component type Ci, we denote ports(Ci)
def
= Pi and

require that ports(Ci)∩ ports(C j) = /0, for all i, j ∈ [1,n]. Each interaction type I is
associated a distinct tuple ports(I) = 〈p1, . . . , p#(I)〉 ∈ P#(I). Intuitively, an interaction
of type I fires transitions labeled by p1, . . . , p#(I), from several behaviors, all at once.

Example 1 We model token rings using the signature S
def
= 〈S,T〉, where the compo-

nent type S (station) has arity 1 and the interaction type T (transfer) has arity 2. The
set of states is Q def

= {t,n}, where t (n) means that the component has (doesn’t have)
the token, and the set of ports is P def

= {in,out}. The behavior B(S)
def
= (Q,P,q0,−→)

has initial state n and transitions t
out−→ n, n in−→ t (Fig. 1). The interaction type T is

associated to the tuple ports(T) = 〈out, in〉 ∈ P2. �

Definition 1 (Configurations) Let V and U be countably infinite sets of variables and
indices, respectively. A configuration is a tuple (σ,ν,ρ), where:

• σ
def
= 〈Cσ

1 , . . . ,C
σ
n , I

σ
1 , . . . , I

σ
m〉 is a structure that interprets the relation symbols in

the signature S= 〈C1, . . . ,Cn, I1, . . . , Im〉; each component type Ci is interpreted
by a set Cσ

i ⊆ U and each interaction type I j is interpreted by a relation Iσ
j ⊆

U#(I j). A tuple u∈ Iσ
j is called an interaction of type I j, sometimes denoted as the

pair [I j,u]. We denote by nodes(σ) def
=

⋃n
i=1 Cσ

i ∪
⋃m

j=1{〈u〉k | u ∈ Iσ
j , k ∈ [1,#(I j)]}

the set of indices that occur in σ.

• ν : V→ U is a store, i.e. a total function associating variables to indices, and

• ρ : U×C→ Q is a state map, i.e. a total function associating an index u and a
component type Ci a state in Qi, where B(Ci) = (Qi,Pi,q0

i ,−→i) is the behavior
of Ci.

We denote by Γ the set of configurations.

Example 2 Consider the token ring system in Fig. 1. A configuration (σ,ν,ρ) of
this system has structure σ

def
= 〈Sσ = {1,2,3, . . . ,n},Tσ = {〈1,2〉,〈2,3〉, . . . ,〈n,1〉}〉,

where the set Sσ contains the indices of n components and the interactions Tσ relate
each component of index i to its successor, of index (i mod n)+ 1. The state map is
ρ(1,S) = t and ρ(i,S) = n for i ∈ {2, . . . ,n}. �

An action is a function f : Γ→ P (Γ)>, where the complete lattice (P (Γ),⊆,∪,∩)
is extended with a greatest element >, with the conventions S∪> def

= > and S∩> def
= S,

for each S ∈ P (Γ) and let P (Γ)>
def
= P (Γ)∪{>}. We say that an action f is disabled in

(σ,ν,ρ) iff f (σ,ν,ρ) = /0 and that it faults in (σ,ν,ρ) iff f (σ,ν,ρ) = >. The compo-
sition of actions f and g is (f ◦g)(σ,ν,ρ) def

=
⋃

(σ′,ν′,ρ′)∈g(σ,ν,ρ) f (σ′,ν′,ρ′) and the iter-

ation of an action f is f ∗ def
=

⋃
∞
i=0 f i, where f 0(σ,ν,ρ)

def
= {(σ,ν,ρ)} and f i+1 def

= f i ◦ f ,
for all (σ,ν,ρ) ∈ Γ.

5

A state change is an action f such that, for all (σ′,ν′,ρ′) ∈ f (σ,ν,ρ), we have
σ′ = σ, ν′ = ν and ρ′(u,C) = ρ(u,C), for all u,C such that u ∈ U\Cσ; these actions
only change the states of the components from the structure, but not the structure, the
store, or the states of the components outside of the structure. Given state changes f
and g, the composition f ◦ g and iteration f ∗ are also state changes. In the following,
we shall also consider actions that change the structure, the store and the state map for
indices outside of the structure (§4).

Definition 2 (Havoc) Given an interaction type I and a tuple u = 〈u1, . . . ,u#(I)〉, such
that ports(I)= 〈p1, . . . , p#(I)〉 and p j ∈Pi j , where Ci j is a component type with behavior

B(Ci j)
def
= (Qi j ,Pi j ,q

0
i j
,−→i j), for all j ∈ [1,#(I)], the atomic state change c[I,u] maps a

configuration (σ,ν,ρ) onto the set of configurations (σ,ν,ρ′), such that:

1. for all j ∈ [1,#(I)], we have u j ∈Cσ
i j

and ρ(u j,Ci j)
p j−→i j ρ′(u j,Ci j), and

2. ρ(u,C) = ρ′(u,C), for all (u,C) ∈ (U×C)\{(u j,Ci j) | j ∈ [1,#(I)]},

if u ∈ Iσ and the empty set, otherwise. The havoc action is the iteration h
def
= c∗ of the

action c
def
=

⋃{
c[I,u] | I ∈ I,u ∈ U#(I)

}
.

Intuitively, an atomic state change c[I,u] corresponds to firing an interaction [I,u],
which happens only if all indices from the interaction denote components from the
structure and, moreover, each such component is in a state from which a transition (la-
beled by the port specified by the type of the interaction) is enabled (1). The states of
the components not involved in the interaction are not changed (2). Note that the action
is disabled if either the tuple of indices is not an interaction (u 6∈ Iσ), or at least one
element of the tuple u is not the index of a component from the structure.

Example 3 Consider the atomic state changes c[T,〈i,(i mod n)+1〉], for all i ∈ [1,n],
applied to the configuration in Example 2. Since Tσ = {〈1,2〉,〈2,3〉, . . . ,〈n,1〉}, the
action c[T,〈i, j〉] is disabled, for all j 6= (i mod n) + 1. The interaction type T has

ports(T) = 〈out, in〉 and the transitions of B(S) are t
out−→ n and n

in−→ t. The first
transition is only possible if the component is in state t, which is the case only for
the component with index 1, because ρ(1,S) = t and ρ(i,S) = n for i ∈ [2,n]. In this
configuration, only the atomic state change c[T,〈1,2〉] is enabled, the outcome of which
is the configuration (σ,ν,ρ′), where ρ′(1,S) def

= n, ρ′(2,S) def
= t and ρ′(j,S) def

= ρ(j,S),
for any j ∈U\{1,2}. In this new configuration, only c[T,〈2,3〉] is enabled. Continuing
this way, the token is moved around the ring and the system gets back to the starting
configuration (Example 2) after n steps. Consequently, the havoc action h applied to
(σ,ν,ρ) yields the set of configurations in which exactly one component is in state t
and the other are in state n. �

3 Configuration Logic
We define a configuration logic (CL) that is, an assertion language describing sets of
configurations. Let A be a countably infinite set of predicate symbols, where #(A) ≥

6

1 denotes the arity of a predicate symbol A ∈ A. The CL formulæ are inductively
described by the following syntax:

φ ::= emp | x = y |C(x) | I(x1, . . . ,x#(I)) | state(x,C,q) |
true | A(x1, . . . ,x#(A)) | φ1 ∗φ2 | φ1∧φ2 | ¬φ1 | ∃x . φ1

where C ∈ C and I ∈ I are component and interaction types, respectively, q ∈ Q are
states, A ∈ A are predicate symbols and x,y,x1, . . . ∈ V are variables. The atomic for-
mulæ C(x), I(x1, . . . ,x#(I)), state(x,C,q) and A(x1, . . . ,x#(A)) are called component, in-

teraction, state and predicate atoms, respectively. We use the shorthands false def
= ¬true,

φ1∨φ2
def
= ¬(¬φ1∧¬φ2), ∀x . φ1

def
= ¬(∃x . ¬φ1) and Cq(x) def

= C(x)∧ state(x,C,q). Let
size(φ) denote the number of occurrences of symbols in φ.

Intuitively, a formula emp describes configurations with empty structure, C(x) de-
scribes configurations with structures consisting of a single instance of the component
type C, indexed by x, and I(x1, . . . ,xk) describes a single interaction of type I, between
components indexed by x1, . . . ,xk, respectively. The formula Cq1(x1) ∗ . . . ∗Cqk(xk) ∗
I(x1, . . . ,xk) describes a structure consisting of k pairwise distinct instances of the com-
ponent type C, in states q1, . . . ,qk, respectively, joined by an interaction of type I. The
formula I(x1, . . . ,xk) ∗ I(x′1, . . . ,x

′
k) states the existence of two interactions of type I,

with distinct tuples of indices, given by the values of 〈x1, . . . ,xk〉 and 〈x′1, . . . ,x′k〉, re-
spectively, i.e. the values of xi and x′i must differ for at least one i ∈ [1,k].

A formula is said to be predicateless if it has no occurrences of predicate atoms.
By fv(φ) we denote the set of free variables that do not occur within the scope of an
existential quantifier. A formula is quantifier-free if it has no occurrence of existential
quantifiers. By convention, the formulæ∗ φ∈F φ and

∧
φ∈F φ are considered to be the

same as emp and true, respectively, when F is the empty set of formulæ. A substitution
is a partial mapping θ : V → V and the formula φθ is the result of replacing each
free variable x ∈ fv(φ)∩ dom(θ) by θ(x) in φ. We denote by [x1/y1, . . . ,xk/yk] the
substitution that replaces xi with yi, for all i ∈ [1,k].

The semantics of predicateless CL formulæ is given in terms of configurations
(σ,ν,ρ), with structure σ= 〈Cσ

1 , . . . ,C
σ
n , I

σ
1 , . . . , I

σ
m〉, by a satisfaction relation (σ,ν,ρ) |=

φ defined inductively on the structure of the formula φ. In particular, the interpretation
of the separated conjunction ∗ relies on the following notion of composition of struc-
tures and configurations:

Definition 3 (Composition) Two structures σ1 and σ2 are disjoint, denoted σ1⊥σ2,
if Cσ1 ∩Cσ2 = /0, for all C ∈ C and Iσ1 ∩ Iσ2 = /0, for all I ∈ I. Their disjoint union
is the structure σ1]σ2

def
= 〈Cσ1

1 ∪Cσ2
1 , . . . ,Cσ1

n ∪Cσ2
n , Iσ1

1 ∪ Iσ2
1 , . . . , Iσ1

m ∪ Iσ2
m 〉, which is

undefined if σ1 6⊥σ2. The composition of configurations is (σ1,ν1,ρ1)• (σ2,ν2,ρ2)
def
=

(σ1]σ2,ν1,ρ1) and is defined iff σ1⊥σ2, ν1 = ν2 and ρ1 = ρ2. Composition is lifted
to P (Γ)> as Γ1 •Γ2

def
= {γ1 • γ2 | γi ∈ Γi, i = 1,2} and Γ1 •> = >•Γ1 = >, for each

Γ1,Γ2 ∈ P (Γ)>. We consider the partial order γ1 v γ2 iff γ2 = γ1 • γ0, for some γ0 ∈ Γ.

It is worth mentioning that (Γ,•) is a partial commutative and cancellative multi-unit
monoid, i.e. if γ1•γ2 and γ1•γ3 are both defined and equal, then γ2 = γ3 (cancellativity),
and for each γ ∈ Γ, there exists a unique unit element γ0 ∈ Γ, namely the configuration

7

with empty structure and same store and state map as γ, such that γ • γ0 = γ0 • γ =
γ. In other words, (Γ,•) is a multi-unit separation algebra [?, ?]. Satisfaction of
predicateless formulæ is defined inductively on the structure of formulæ:

(σ,ν,ρ) |= emp iff Cσ
i = /0, for all i ∈ [1,n] and Iσ

j = /0, for all j ∈ [1,m]

(σ,ν,ρ) |= x = y iff ν(x) = ν(y)
(σ,ν,ρ) |= Ck(x) iff Cσ

k = {ν(x)}, Cσ
i = /0, for all i ∈ [1,n]\{k}

and Iσ
j = /0, for all j ∈ [1,m]

(σ,ν,ρ) |= Ik(x1, . . . ,x#(Ik)) iff Cσ
i = /0, for all i ∈ [1,n], Iσ

k = {〈ν(x1), . . . ,ν(x#(Ik))〉}
and Iσ

j = /0, for all j ∈ [1,m]\{k}
(σ,ν,ρ) |= state(x,C,q) iff ρ(ν(x),C) = q
(σ,ν,ρ) |= φ1 ∗φ2 iff there exist configurations γ1 and γ2, such that

(σ,ν,ρ) = γ1 • γ2 and γi |= φi, for both i = 1,2.

The semantics of the boolean formulæ true, φ1 ∧ φ2 and ∃x . φ1 is defined as usual,
with existential quantifiers ranging over the set U of indices. We do not consider magic
wand2 (−−∗) in CL, as we make no explicit use of this logical connective in the rest of
this paper.

3.1 Symbolic Configurations and Inductive Definitions
The CL logic is used to describe configurations of distributed systems of unbounded
size, by means of predicate symbols, defined inductively by a given set of rules. This
style of specification recalls the usual definitions of Algebraic Datatypes [?] or heap
memory shapes in Separation Logic (SL) [?]. For reasons related to the existence of
(least) fixed points, the definitions of predicates are given in a restricted fragment of
the logic.

A symbolic configuration is a quantifier-free CL formula of the form ξ∧π, where
the formulæ ξ and π, called spatial and pure, respectively, are generated inductively by
the following syntax:

ξ ::= emp |C(x) | I(x1, . . . ,x#(I)) | A(x1, . . . ,x#(A)) | ξ1 ∗ξ2 (spatial formulæ)
π ::= true | x = y | state(x,C,q) | π1∧π2 (pure formulæ)

Intuitively, pure formulæ are independent of the structure σ in a configuration (σ,ν,ρ).
Their truth value is determined exclusively by the store ν and the state map ρ, i.e.
π and π ∗ true are equivalent, if π is pure. We write x 'φ y (x 6'φ y) if and only if
the equality (disequality) between x and y is asserted by the symbolic configuration φ.
Note that x 6'φ y is not the negation of x'φ y, as we can have, e.g. x'emp∗x=z∗z=y y and
x 6'C(x)∗C(y) y. We denote by S the set of symbolic configurations.

Definition 4 (Systems of Inductive Definitions) A system of inductive definitions (SID)
is a set D of rules of the form A(x1, . . . ,x#(A))←∃y1 . . .∃yk . φ, where φ is a symbolic
configuration, fv(φ) ⊆ {x1, . . . ,x#(A)}∪{y1, . . . ,yk} and each variable in x1, . . . ,x#(A)
occurs in φ. Given formulæ ψ and ϕ, the unfolding step ψ⇐D ϕ replaces a predicate
atom A(z1, . . . ,z#(A)) in ψ with the formula ∃y1 . . .∃yk . φ[x1/z1, . . . ,x#(A)/z#(A)], where
A(x1, . . . ,x#(A))←∃y1 . . .∃yk . φ is a rule in D .

2A formula φ−−∗ ψ holds in γ if for any γ′⊥γ, such that γ′ |= φ, we have γ• γ′ |= ψ.

8

The size and width of a SID are defined as size(D)
def
= ∑A(x1,...,x#(A))←D ϕ size(ϕ) and

width(D)
def
= maxA(x1,...,x#(A))←D ϕ size(ϕ). By A(x1, . . . ,x#(A)) ←D ϕ, we mean that

A(x1, . . . ,x#(A))← ϕ ∈ D . We write ψ⇐∗D ϕ for the reflexive and transitive closure
of the ⇐D relation and say that ϕ is a complete unfolding of ψ, written ψ⇐◦D ϕ, if
and only if ψ⇐∗D ϕ and ϕ is a predicateless formula. We denote by def(D) the set of
predicate atoms having a complete unfolding using the rules in D . Note that def(D) is
closed under renaming of free variables and the set of representatives3 is computable
by a least fixed point iteration, in time O(size(D)). Complete unfoldings define the
semantics of predicate atoms, as follows:

(σ,ν,ρ) |=D A(x1, . . . ,x#(A)) iff (σ,ν,ρ) |= ϕ, for some complete unfolding A(x1, . . . ,x#(A))⇐◦D ϕ

Example 4 The rules below, written using the signature from the token ring Example
1, define the chains of S and T components, with at least h, t ∈ N components in state
n and t, respectively:

chain0,0(x,x)← S(x) chain0,1(x,x)← St(x) chainh,t(x,z)←∃y. St(x)∗T(x,y)∗ chainh,t−̇1(y,z)
chain1,0(x,x)← Sn(x) chainh,t(x,z)←∃y. Sn(x)∗T(x,y)∗ chainh−̇1,t(y,z)

where k−̇1 def
= max(k− 1,0), k ∈ N. The complete unfoldings of the predicate atom

chain1,1(x,y) are of the form ∃x1 . . .∃xn−2 . S
t/n(x)∗T(x,x1)∗St/n(x1)∗ . . .∗St/n(xn−2)∗

T(xn−2,y)∗St/n(y) with at least one S component in state t and one in state n. Conse-
quently, the configurations from Example 2 are models of the formula ∃x∃y . chain1,1(x,y)∗
T(y,x), for all n ∈ N. �

In the following, we extend the |=D relation homomorphically to all CL formulæ.
If γ |=D φ, we say that γ is an D-model of φ and define [[φ]]D

def
= {γ | γ |=D φ}. A formula

φ is D-satisfiable if [[φ]]D 6= /0 and consistent if it is D-satisfiable, for some SID D .
Given formulæ φ and ψ, we say that φ D-entails ψ, written φ |=D ψ, if and only if
[[φ]]D ⊆ [[ψ]]D .

3.2 Precise and Tight Formulæ
We define two restrictions on CL formulæ, for later use (§5). First, we adapt the notion
of precision, originally introduced for SL [?, ?] to CL.

Definition 5 (Precision) A formula ϕ is precise on a set of configurations C if and
only if, for every configuration γ ∈ C , there exists at most one configuration γ′, such
that γ′ v γ and γ′ |=D ϕ. A set Φ of formulæ is precisely closed if ϕ is precise on [[φ]]D ,
for any two formulæ ϕ,φ ∈Φ.

Symbolic configurations using predicate atoms are not precise for Γ, in general4. To
understand this point, consider a structure consisting of two overlapping models of

3Predicate atoms A(x1, . . . ,x#(A)), where the tuple of variable names 〈x1, . . . ,x#(A)〉 depends canonically
on A.

4Unlike the predicates that define acyclic data structures (lists, trees) in SL, which are typically precise.

9

chainh,t(x,y), starting and ending in x and y, respectively, with a component that branches
on two interactions after x and another component that joins the two branches before
y. Then chainh,t(x,y) is not precise on configurations with such structures. On the
positive side, we can state the following:

Proposition 1 The set of symbolic configurations built using predicate atoms chainh,t(x,y),
for h, t ≥ 0 (Example 4) is precisely closed.

The existence of a decision procedure for the problem given a formula ϕ and a
set of configurations C , is ϕ precise on C? is an open problem, considered for future
work. Moreover, we are not aware of the decidability status of this problem for SL
[?, ?] either.

The second restriction on CL formulae forbids formulæ describing configurations
with loosely dangling interactions that do not connect to components from the struc-
ture:

Definition 6 A configuration (σ,ν,ρ) is tight if and only if, for each interaction u ∈ Iσ
j

and each k ∈ [1,#(I j)], we have 〈u〉k ∈Cσ
i , where Ci is the unique component type such

that 〈ports(I j)〉k ∈ ports(Ci). A formula ϕ is tight if and only if every D-model of ϕ is
tight. A set Φ of formulæ is tight if and only if each formula ϕ ∈Φ is tight.

For instance, a predicate atom chainh,t(x,y), for h, t ≥ 0 (Example 4) is tight, because,
in each configuration (σ,ν,ρ) ∈ [[chainh,t(x,y)]]D , the interactions 〈i,(i mod n)+1〉 ∈
Tσ are between the ports(T)= 〈out, in〉 of the components indexed by i,(i mod n)+1∈
Sσ. In the rest of this paper, we proceed under the following assumptions:

Assumption 1 The set of symbolic configurations built using predicate atoms from
def(D) is precisely closed and, moreover, def(D) is tight.

As our examples show, most useful sets of predicate symbols are precisely closed
(Prop. 1 and 3) whereas tightness can, moreover, be effectively decided (see Prop.
6 in §7).

4 A Language for Programming Reconfigurations
This section defines reconfiguration actions, that change the structure of a configura-
tion. We distinguish between reconfigurations and atomic state changes (Def. 2), that
change configurations in orthogonal ways. The interplay between the two types of
actions is captured by the semantics of the sequential composition rule.

4.1 Syntax and Operational Semantics
Reconfiguration programs, ranged over by R, are inductively defined by the following
syntax:

R ::= new(C,x) | delete(C,x) | connect(I,x1, . . . ,x#(I)) | disconnect(I,x1, . . . ,x#(I))
| skip | with x1, . . . ,xk : ϕ do R1 od | R1;R2 | R1 +R2 | R∗1

10

where C ∈ C is a component type, I ∈ I is an interaction type, x,x1, . . . ∈ V are pro-
gram variables and ϕ is a predicateless formula of the CL logic (§3). For instance,
Fig. 1 shows two reconfiguration programs, written using the component and interac-
tion types from Example 1.

The primitive commands are new(C,x) and delete(C,x), that create and delete a
component of type C, indexed by the store value of x, connect(I,x1, . . . ,x#(I)) and
disconnect(I,x1, . . . ,x#(I)), that create and delete an interaction of type I, between com-
ponents indexed by the store values of x1, . . . ,x#(I), respectively. Note that, since each
type I interaction is associated a distinct tuple ports(I) ∈ P#(I) and each port belongs
to at most one component type C, the component types of the participants to the in-
teraction are uniquely identified by I. As usual, the skip command does nothing, but
becomes useful in combination with the following conditional construct. We denote by
P the set of primitive commands, in the following.

A conditional is a program of the form (with x1, . . . ,xk : ϕ do R od) that performs
the following steps, with no state changes in between:

1. assigns the so-called bound variables x1, . . . ,xk to some indices u1, . . . ,uk ∈ U
such that the configuration after the assignment contains a model of the predi-
cateless formula ϕ, and

2. launches the first command of the program R on this configuration; after this, the
remainder of R proceeds normally, in interleaving with havoc state changes.

Upon completion of R, the values of x1, . . . ,xk are forgotten. The action is disabled if
the current configuration is not a model of ∃x1 . . .∃xk . ϕ∗true. For instance, the condi-
tional (with x,y,z :T(x,y)∗Sn(y)∗T(y,z) doR od) applies the reconfiguration program
R to any part of a token ring configuration (Example 2) consisting of two adjacent T
interactions that share an S component in state n. To avoid technical complications,
we assume that nested conditionals use pairwise disjoint tuples of bound variables —
every program can be statically changed to meet this condition, by renaming bound
variables.

The sequential composition R1;R2 executes R1 followed by R2, with an arbitrary
sequence of atomic state changes (Def. 2) in between. This is because, even though
being sequential, a reconfiguration program runs in parallel with the state changes that
occur as a result of firing the interactions. Last, R1 +R2 executes either R1 or R2, and
R∗ executes R zero or more times in sequence, nondeterministically.

Example 5 The reconfiguration program (with x : St(x) do delete(S,x) od)∗ deletes
all S components in state t from a token ring configuration (Example 2). �

It is worth noticing that the reconfiguration language does not have explicit as-
signments between variables. As a matter of fact, the conditionals are the only con-
structs that nondeterministically bind variables to indices that satisfy a given logical
condition. This design choice sustains the view of a distributed system as a cloud
of components and interactions in which reconfigurations can occur anywhere a lo-
cal condition is met. In other words, we do not need variable assignments to tra-
verse the architecture — the program works rather by identifying a part of the sys-
tem that matches a small pattern, and applying the reconfiguration locally to that

11

Figure 2: Operational Semantics of the Reconfiguration Language

u ∈ U\Cσ
i σ′ = 〈Cσ

1 , . . . ,C
σ
i ∪{u}, . . . ,Cσ

n , I
σ
1 , . . . , I

σ
m〉

new(Ci,x) : (σ,ν,ρ) (σ′,ν[x← u],ρ[(u,Ci)← q0
i])

ν(x) ∈Cσ
i σ′ = 〈Cσ

1 , . . . ,C
σ
i \{ν(x)}, . . . ,Cσ

n , I
σ
1 , . . . , I

σ
m〉

delete(Ci,x) : (σ,ν,ρ) (σ′,ν,ρ)

ν(x) 6∈Cσ
i

delete(Ci,x) : (σ,ν,ρ)

σ′ = 〈Cσ
1 , . . . ,C

σ
n , I

σ
1 , . . . , I

σ
j ∪{(ν(x1), . . . ,ν(x#(I j)))}, . . . , I

σ
m〉

connect(I j,x1, . . . ,x#(I j)) : (σ,ν,ρ) (σ′,ν,ρ)

u = 〈ν(x1), . . . ,ν(x#(I j))〉 ∈ Iσ
j

σ′ = 〈Cσ
1 , . . . ,C

σ
n , I

σ
1 , . . . , I

σ
j \{u}, . . . , Iσ

m〉

disconnect(I j,x1, . . . ,x#(I j)) : (σ,ν,ρ) (σ′,ν,ρ)

〈ν(x1), . . . ,ν(x#(I j))〉 6∈ Iσ
j

disconnect(I j,x1, . . . ,x#(I j)) : (σ,ν,ρ)

u1,u′1, . . . ,uk,u′k ∈ U (σ,ν[x1← u1, . . . ,xk ← uk],ρ) |= ϕ∗ true
R : (σ,ν[x1← u1, . . . ,xk ← uk],ρ) (σ′,ν′,ρ′)

with x1, . . . ,xk : ϕ do R od : (σ,ν,ρ) (σ′,ν′[x1← u′1, . . . ,xk ← u′k],ρ
′) skip : γ γ

R1 : γ γ0 γ1 ∈ h(γ0) R2 : γ1 γ′

R1;R2 : γ γ′

R1 : γ γ′

R1 +R2 : γ γ′

Rn : γ γ′
, Rn =

{
Rn−1;R if n≥ 1
skip if n = 0R∗ : γ γ′

subsystem. For instance, a typical pattern for writing reconfiguration programs is
(with x1 : ϕ1 do R1 od+ . . .+with xk : ϕk do Rk od)

∗, where R1, . . . ,Rk are star-free
sequential compositions of primitive commands. This program continuously choses a
reconfiguration sequence Ri nondeterministically and either applies it on a small part of
the configuration that satisfies ϕi, or does nothing, if no such subconfiguration exists.

The operational semantics of reconfiguration programs is given by the structural
rules in Fig. 2, that define the judgements R : γ γ′ and R : γ , where γ and γ′ are
configurations and R is a program. Intuitively, R : γ γ′ means that γ′ is a successor
of γ following the execution of R and R : γ means that R faults in γ. The semantics of
a program R is the action 〈〈R〉〉 : Γ→ P (Γ)>, defined as:

〈〈R〉〉(γ) def
=

{
> if R : γ

{γ′ | R : γ γ′} otherwise

The only primitive commands that may fault are delete(C,x) and disconnect(I,x1, . . . ,x#(I));
for both, the premisses of the faulty rules are disjoint from the ones for normal termi-
nation, thus the action 〈〈R〉〉 is properly defined for all programs R. Notice the rule
for sequential composition, that uses the havoc action h in the premiss to capture the
interleaving of state changes and reconfiguration actions.

4.2 Reconfiguration Proof System
To reason about the correctness properties of reconfiguration programs, we introduce
a Hoare-style proof system consisting of a set of axioms that formalize the primitive

12

Figure 3: Proof System for the Reconfiguration Language

B(C) = (Q,P,q,−→)
{emp} new(C,x) {Cq(x)} {C(x)} delete(C,x) {emp}

{emp} skip {emp}

{emp} connect(I,x1, . . . ,x#(I)) {I(x1, . . . ,x#(I))}

{I(x1, . . . ,x#(I))} disconnect(I,x1, . . . ,x#(I)) {emp}

a. Axioms for Atomic Programs

{φ∧ (ϕ∗ true)} R {ψ}
fv(φ)∩x = /0

{∀x . ¬(ϕ∗ true)∨φ} with x : ϕ do R od {∃x . ψ}
{φ} R1 {φ0} {φ1} R2 {ψ}

h([[φ0]]D)⊆ [[φ1]]D{φ} R1;R2 {ψ}
{φ} R1 {ψ} {φ} R2 {ψ}

{φ} R1 +R2 {ψ}
{φ} R {φ}

h([[φ]]D)⊆ [[φ]]D{φ} R∗ {φ}
b. Inference Rules for Composite Programs

{φi} R {ψi} | i ∈ [1,k]

{
∨k

i=1 φi} R {
∨k

i=1 ψi}

{φi} R {ψi} | i ∈ [1,k]

{
∧k

i=1 φi} R {
∧k

i=1 ψi}

{φ′} R {ψ′} φ |=D φ′

ψ′ |=D ψ{φ} R {ψ}
{φ} R {ψ} R ∈ L

modif(R)∩ fv(ϕ) = /0{φ∗ϕ} R {ψ∗ϕ}
c. Structural Inference Rules

commands (Fig. 3a), a set of inference rules for the composite programs (Fig. 3b) and
a set of structural rules (Fig. 3c). The judgements are Hoare triples {φ} R {ψ}, where
φ and ψ (called pre- and postcondition, respectively) are CL formulæ with predicate
symbols interpreted by a given SID D . The triple {φ} R {ψ} is valid, written |=D

{φ} R {ψ}, if 〈〈R〉〉([[φ]]D)⊆ [[ψ]]D , where 〈〈R〉〉([[φ]]D)
def
=

⋃
γ∈[[φ]]D 〈〈R〉〉(γ) is the result

of the action 〈〈R〉〉 lifted to sets of configurations. Note that a triple is valid only if the
program does not fault on any model of the precondition. In other words, an invalid
Hoare triple {φ} R {ψ} cannot distinguish between 〈〈R〉〉([[φ]]D) 6⊆ [[ψ]]D (non-faulting
incorrectness) and 〈〈R〉〉([[φ]]D) => (faulting).

The axioms (Fig. 3a) give the local specifications of the primitive commands in the
language by Hoare triples whose preconditions describe only those resources (com-
ponents and interactions) necessary to avoid faulting. In particular, delete(C,x) and
disconnect(I,x1, . . . ,x#(I)) require a single component C(x) and an interaction I(x1, . . . ,x#(I))
to complete, respectively. The rules for sequential composition and iteration (Fig 3b)
use a semantic side condition based on the havoc action (Def. 2). In particular, for-
mula φ is said to be havoc invariant (for the given SID D) iff h([[φ]]D)⊆ [[φ]]D . For the
moment, we assume the existence of an external procedure able to prove havoc condi-
tions of the form h([[φ]]D) ⊆ [[ψ]]D and defer its description to §5. Similarly, the side
condition of the consequence rule (Fig. 3c left) consists of two semantic entailments;
we give a decision procedure for checking such entailment conditions in §7.

The frame rule (Fig. 3c bottom-right) allows to apply the specification of a local

13

program, defined below, to a set of configurations that may contain more resources
(components and interactions) than the ones asserted by the precondition. Formally,
the set of local programs L is the least set that contains the primitive commands P and
is closed under the application of the following rules:

R ∈ L⇒ with x : π do R od ∈ L, if π is pure R1,R2 ∈ L⇒ R1 +R2 ∈ L

The extra resources, not required to execute a local program, are specified by a frame
ϕ, whose free variables are not modified by the program. Formally, the set of variables
modified by a local program R ∈ L is defined inductively on its structure:

modif(new(C,x)) def
= {x} modif(R)

def
= /0, for all R ∈P\{new(C,x) |C ∈ C,x ∈ V}

modif(with x : ϕ do R od)
def
= x∪modif(R) modif(R1 +R2)

def
= modif(R1)∪modif(R2)

We write ` {φ} R {ψ} if and only if {φ} R {ψ} can be derived from the axioms using
the inference rules from Fig. 3 and show the soundness of the proof system in the
following. For a set Γ of configurations, we denote by minvΓ the set of v-minimal
elements of Γ (Def. 3). The next lemma gives sufficient conditions for the soundness
of the axioms (Fig. 3a):

Lemma 1 For each axiom {φ} R {ψ}, where R ∈P, the following hold:

1. [[φ]]D = minv{γ ∈ Γ | 〈〈R〉〉(γ) 6=>},

2. 〈〈R〉〉([[φ]]D) = [[ψ]]D .

The frame rule is sound only for programs whose semantics are local actions, de-
fined below:

Definition 7 (Locality) Given a set of variables X ⊆ V, an action f : Γ→ P (Γ)> is
local for X if f (γ1 • γ2) ⊆ f (γ1) • {γ2}↑X for all γ1,γ2 ∈ Γ, where, for any set C of
configurations, we define:

C↑X def
= {(σ,ν′,ρ′) | (σ,ν,ρ) ∈ C ,∀x ∈ V\X . ν

′(x) = ν(x), ∀u ∈ U\ν(X) ∀C ∈ C . ρ
′(u,C) = ρ(u,C)}.

Intuitively, an action local for X allows for the change of the store values of the vari-
ables in X and the states of the components indexed by these values, only. Essentially,
the new(C,x) commands are local for {x}, because the fresh index associated to x is
nondeterministically chosen and the state of the new component of type C is the initial
state of the behavior B(C), whereas the other primitive commands are local for the
empty set.

We show that the semantics of every local program is a local action. Moreover,
L is precisely the set of programs with local semantics, as it can be easily seen that
with x : ψ do R od conditionals with non-pure conditions and sequential compositions
(thus iterations) are not local.

Lemma 2 For every program R ∈ L, the action 〈〈R〉〉 is local for modif(R).

Example 6 To understand why L defines the precise set of local commands, consider
the following programs:

14

• with x : C(x) do delete(C,x) od is not local because, if we consider γ1 to be a
configuration containing only one component of type C and γ2 to be an empty
configuration, such that γ1 • γ2 is defined, we have:

〈〈with x : C(x) do delete(C,x) od〉〉(γ2 • γ1) = 〈〈with x : C(x) do delete(C,x) od〉〉(γ1) = {γ2}
〈〈with x : C(x) do delete(C,x) od〉〉(γ2) = 〈〈with x : C(x) do delete(C,x) od〉〉(γ2)•{γ1}↑x= /0 .

• skip;skip is not local because, if we take γ1 and γ2, such that γ1 |= St(x) and
γ2 |= T(x,y)∗Sn(y), with the signature from Example 1, we have:

〈〈skip;skip〉〉(γ1 • γ2) = [[St(x)∗T(x,y)∗Sn(y)]] ∪
[[Sn(x)∗T(x,y)∗St(y)]]

〈〈skip;skip〉〉({γ2}) = [[St(x)∗T(x,y)∗Sn(y)]]�

The soundness of the proof system in Fig. 3 is a consequence of the soundness of
each axiom and inference rule, stated below:

Theorem 1 Given a SID D , for any triple {φ} R {ψ}, if ` {φ} R {ψ} then |=D

{φ} R {ψ}.

Reconfiguration proofs can often be simplified, by safely skipping the check of
one or more havoc side conditions of sequential compositions, as explained below. A
sequential composition of reconfiguration commands of the form

disconnect(I1,x1); . . .disconnect(Ik,xk);connect(Ik+1,xk+1); . . .connect(I`,x`)

is said to be a single reversal sequence. Such reconfiguration programs first disconnect
components and then reconnect them in a different way (see Fig. 7 for an example).
For such programs, only the first and last application of the sequential composition rule
require havoc invariance proofs. For space reasons, we only sketch the explanation
below:

Remark 1 Given the following annotation of a single reversal reconfiguration se-
quence:
{φ0} disconnect(I1,x1); {φ1} . . . {φk−1} disconnect(Ik,xk); {φk}

connect(Ik+1,xk+1); {φk+1} . . . {φ`−1} connect(I`,x`) {φ`}

such that {φi−1} disconnect(Ii,xi) {φi}, i ∈ [1,k] and {φ j−1} connect(I j,x j) {φ j},
j ∈ [k+1, `] are valid triples and the formulæ φ1 and φ`−1 are havoc invariant, we
show that the Hoare triple:
{φ0} disconnect(I1,x1); . . .disconnect(Ik,xk);connect(Ik+1,xk+1); . . .connect(I`,x`) {φ`}

is valid. To this end, it suffices to prove the following points:

• φ1, . . . ,φk are havoc invariants, by induction on k, as havoc invariance is pre-
served by interaction removal, and

• φ`−1 is havoc invariant w.r.t. the state changes in each D-model of φ`−2, . . . ,φk,
respectively. Intuitively, this is because every interaction from a configuration
γ j ∈ [[φ j]]D occurs also in every configuration γ`−1 ∈ [[φ`−1]]D , hence each state
change has the same effect in γ j, j ∈ [k, `−2] and γ`−1.

15

4.3 A Reconfiguration Proof Example
Example 7 We prove that the outcome of the reconfiguration program from Fig. 1
(Listing 2), started in a token ring configuration with at least two S components in state
n and at least one in state t, is a token ring with at least one component in each state.
The pre- and postcondition are ∃a,b . chain2,1(a,b)∗T(b,a) and ∃a,b . chain1,1(a,b)∗
T(b,a), respectively, with the definitions of chainh,t(x,y) given in Example 4.

{∃a,b . chain2,1(a,b)∗T(b,a)}{
∀x,y,z . ¬(T(x,y)∗Sn(y)∗T(y,z)∗ true) ∨
∃a,b. chain2,1(a,b)∗T(b,a)

}
with x,y,z : T(x,y)∗Sn(y)∗T(y,z) do{
∃a∃b . chain2,1(a,b)∗T(b,a)∧

(
T(x,y)∗Sn(y)∗T(y,z)∗ true

)}
(?){

T(x,y)∗
�� ��Sn(y)∗T(y,z)∗chain1,1(z,x)

}
disconnect(T,x,y);{�� ��Sn(y) ∗T(y,z)∗

�� ��chain1,1(z,x)
}

(hinv)

disconnect(T,y,z);{
Sn(y)∗

�� ��chain1,1(z,x)
}

(hinv)

delete(S,y);{�� ��chain1,1(z,x)
}

(hinv)

connect(T,x,z)
{chain1,1(z,x)∗T(x,z)}
od
{∃a∃b . chain1,1(a,b)∗T(b,a)}

The inference rule for conditional programs sets up the precondition (?) for the
body of the conditional. This formula is equivalent to T(x,y)∗Sn(y)∗T(y,z)∗chain1,1(z,x).
To understand this, we derive from (?):

∃a∃b . chain2,1(a,b)∗T(b,a)∧ (T(x,y)∗Sn(y)∗T(y,z)∗ true)
≡ ∃x∃y∃z . T(x,y)∗Sn(y)∗T(y,z)∗ chain1,1(z,x)∧ (T(x,y)∗Sn(y)∗T(y,z)∗ true)
≡ T(x,y)∗Sn(y)∗T(y,z)∗ chain1,1(z,x),

where the equivalence of the formulæ ∃a∃b . chain2,1(a,b)∗T(b,a) and ∃x∃y∃z .T(x,y)∗
Sn(y)∗T(y,z)∗chain1,1(z,x) can be proven by the decision procedure from §7 (see Ex-
amples 9 and 11).

The following four annotations above are obtained by applications of the axioms
and the frame rule (the frame formulæ are displayed within boxes). The sequential
composition rule is applied by proving first that the annotations marked as (hinv) are
havoc invariant. �

4.4 Another Example of a Reconfiguration Proof
Example 8 In previous examples, we have looked at the reconfiguration program from
Fig. 1 (Listing 2) which allows us to delete components from a token ring. An orthog-
onal operation is the addition of new components into a ring such that the resulting
system remains a valid token ring. Figure 4 contains such a reconfiguration program.

16

Figure 4: Another Reconfiguration Program for the Parametric Token Ring System

Listing 3: New Component

1 with x,z : T(x,z) do
2 disconnect(T,x,z);
3 new(S,y);
4 connect(T,y,z);
5 connect(T,x,y) od

If the precondition states that the system is a valid token ring (with at least one
component in state n and at least another one in state t), then the execution of the
program yields again a valid token ring (with at least two component in state n - the
new component is added without a token).

{∃a,b . chain1,1(a,b)∗T(b,a)}{
∀x,z . ¬(T(x,z)∗ true) ∨
∃a,b. chain1,1(a,b)∗T(b,a)

}
with x,z : T(x,z) do{
∃a∃b . chain1,1(a,b)∗T(b,a)∧

(
T(x,z)∗ true

)}
(?){

T(x,z)∗
�� ��chain1,1(z,x)

}
disconnect(T,x,z);
{chain1,1(z,x)} (hinv)
new(S,y);{
Sn(y)∗

�� ��chain1,1(z,x)
}

(hinv)

connect(T,y,z);{�� ��Sn(y) ∗T(y,z)∗
�� ��chain1,1(z,x)

}
{chain2,1(y,x)} (hinv)
connect(T,x,y)
{chain2,1(y,x)∗T(x,y)}
od
{∃a∃b . chain2,1(a,b)∗T(b,a)}

Again, the precondition (?) is given by the inference rule for conditional programs.
Then we can derive that

∃a∃b . chain1,1(a,b)∗T(b,a)∧
(
T(x,z)∗ true

)
≡ T(x,z)∗ chain1,1(z,x).

In the subsequent lines, some axioms and the frame rule are applied (here, the frame
is displayed in the postconditions of the commands within the boxes). The annota-
tions marked as (hinv) must be shown to be havoc invariant and then the sequential
composition rule is applied to complete the proof. �

17

5 The Havoc Proof System
This section describes a set of axioms and inference rules for proving the validity of
havoc queries of the form h([[φ]]D)⊆ [[ψ]]D , where φ and ψ are CL formulæ interpreted
over a SID D and h is the havoc action (Def. 2). Let D be a fixed SID for the rest of this
section. A havoc query is valid if and only if, in each D-model (σ,ν,ρ) of φ, by firing
a sequence of enabled interactions from σ, we obtain a configuration5 (σ,ν,ρ′) that is
a D-model of ψ. Such queries are used as side conditions in the rules for sequential
composition and iteration (Fig. 3b) of reconfiguration programs. Thus, having a proof
system for the validity of havoc queries is crucial for the applicability of the rules in
Fig. 3 to obtain proofs of reconfiguration programs.

For reasons of conciseness and scalability, the havoc proof system uses a compo-
sitional rule, able to split a query of the form h([[φ1 ∗φ2]]D) ⊆ [[ψ1 ∗ψ2]]D into two
queries of the form h([[φi ∗ϕi]]D ⊆ [[ψi ∗ϕi]]D), where each ϕi defines a simple abstrac-
tion of the effect of executing the system described by φ3−i over the one described by
φi, for i = 1,2. The formulæ ϕ1 and ϕ2 can be viewed as the environment assumptions
of a parallel composition proof rule [?, ?]. But first, reasoning about havoc actions
compositionally requires a relaxation of the definition of atomic state changes (Def.
2):

Definition 8 Given an interaction type I and a tuple u = 〈u1, . . . ,u#(I)〉, such that
ports(I) = 〈p1, . . . , p#(I)〉 and p j ∈ Pi j , where Ci j is a component type of behavior

B(Ci j)
def
= (Qi j ,Pi j ,q

0
i j
,−→i j), for all j ∈ [1,#(I)], the open state change o[I,u] maps

a configuration (σ,ν,ρ) into the set of configurations (σ,ν,ρ′), such that:

1. for all j ∈ [1,#(I)], if u j ∈Cσ
i j

then ρ(u j,Ci j)
p j−→i j ρ′(u j,Ci j), and

2. ρ(u,C) = ρ′(u,C), for all (u,C) ∈ (U×C)\{(u j,Ci j) | j ∈ [1,#(I)]}

if u ∈ Iσ and the empty set, otherwise.

The only difference with Def. 2 is point (1), i.e. instead of requiring all components
involved in an interaction to be part of the structure, now the interaction can fire even
if some components are not present, hence the name open state change.

5.1 Regular Expressions and Havoc Triples
Proving the validity of a statement h([[φ]]D) ⊆ [[ψ]]D involves reasoning about the se-
quences of atomic state changes that define the outcome of the havoc action. We specify
languages of such sequences using extended regular expressions, defined inductively
by the following syntax:

L ::= ε | Σ[α] | L1 ·L2 | L1∪L2 | L∗1 | L1 ./η1,η2 L2

where ε denotes the empty string, Σ[α] is an alphabet symbol associated with either an
interaction atom or a precise predicate atom α (Def. 5) and ·, ∪ and ∗ are the usual

5We recall that an atomic state change can only change the state map, not the structure nor the store.

18

concatenation, union and Kleene star. By L1 ./η1,η2 L2 we denote the interleaving (zip)
product of the languages described by L1 and L2 with respect to the sets η1 and η2 of
alphabet symbols of the form Σ[α], respectively.

The language of a regular expression L in a configuration γ = (σ,ν,ρ) is formally
defined below:

〈〈ε〉〉γ def
= {ε} 〈〈Σ[α]〉〉γ def

= {[I,u] | u ∈ Iσ′ ,σ′ v σ,(σ′,ν,ρ) |=D α}
〈〈L1 ·L2〉〉γ

def
= {w1w2 | wi ∈ 〈〈Li〉〉γ, i = 1,2} 〈〈L1∪L2〉〉γ

def
= 〈〈L1〉〉γ∪〈〈L2〉〉γ

〈〈L∗〉〉γ def
=

⋃
i≥0 〈〈Li〉〉γ 〈〈L1 ./η1,η2 L2〉〉γ

def
= {w | w↓〈〈ηi〉〉γ∈ 〈〈Li〉〉γ, i = 1,2}

where 〈〈η〉〉γ def
= {〈〈Σ[α]〉〉γ | Σ[α] ∈ η} and w↓〈〈η〉〉γ is the word obtained from w by delet-

ing each symbol not in 〈〈η〉〉γ from it. The i-th composition of L with itself is defined,
as usual, by L0 def

= ε and Li+1 = Li ·L, for i≥ 0. We stress the role of precision (Def. 5)
in the definition of languages: if α is not precise, then 〈〈Σ[α]〉〉γ may mix interactions
from different substructures of γ, that are D-models of α, which clutters the meaning
of these symbols in a regular expression. Note that, since interaction atoms are always
precise on Γ, only predicate atoms may raise problems.

The proof rules infer judgements of the form η.{{φ}} L {{ψ}}, called havoc triples,
where φ and ψ are CL formulæ, L is a regular expression, and η is an environment (a
set of alphabet symbols), whose role will be made clear below (Def. 12 and Lemma 3).
Intuitively, a havoc triple requires that each finite sequence of atomic state changes in
L, when applied to a model of the precondition φ, yields a model of the postcondition
ψ.

Definition 9 A havoc triple η . {{φ}} L {{ψ}} is valid, written |=D η . {{φ}} L {{ψ}},
if and only if, for each γ ∈ [[φ]]D and each w ∈ 〈〈L〉〉γ, we have o[w](γ) ⊆ [[ψ]]D , where
o[ε](γ)

def
= {γ} and o[w · [I,u]] def= o[I,u]◦o[w], for each sequence w of interactions.

For a symbolic configuration φ, we denote by inter(φ) and preds(φ) the sets of
interaction and predicate atoms from φ, respectively and let atoms(φ) def

= inter(φ)∪
preds(φ). We show that the validity of a havoc triple is a sufficient argument for the
validity of a query h([[φ]]D) ⊆ [[ψ]]D . Because havoc triples are evaluated via open
state changes (Def. 9), the dual implication is not true, in general. Defining Σ[φ]

def
=⋃

α∈atoms(φ) Σ[α], we have:

Proposition 2 If |=D η.{{φ}} Σ[φ]∗ {{ψ}} then h([[φ]]D)⊆ [[ψ]]D .

5.2 Havoc Axioms and Inference Rules
We describe next a set of axioms and inference rules used to prove the validity of havoc
triples. The side conditions of some of these rules use the following shorthands:

Definition 10 For a symbolic configuration φ and an interaction atom I(x1, . . . ,x#(I)),
we write:

19

• φ † I(x1, . . . ,x#(I)) if and only if φ contains a subformula Cq(y), such that y'φ xi
and q is not the pre-state of some transition with label 〈ports(I)〉i in B(C), for
some i ∈ [1,#(I)]; intuitively, any interaction described by I(x1, . . . ,x#(I)) must
be disabled in any model of φ,

• φ‡I(x1, . . . ,x#(I)) if and only if, for each I(y1, . . . ,y#(I))∈ inter(φ), there exists i∈
[1,#(I)], such that xi 6'φ yi; intuitively, an interaction described by I(x1, . . . ,x#(I))
cannot be part of a model of φ.

The axioms (Fig. 5a) introduce havoc triples for the empty sequence (ε), that
changes nothing and the sequence consisting of a single interaction atom, that can be
either disabled in every model (†), or enabled in some model (Σ) of the precondition,
respectively; in particular, the (Σ) axiom describes the open state change produced by
an interaction (Def. 8), firing on a (possibly empty) set of components, whose states
match the pre-states of transitions for the associated behaviors. The (⊥) axiom intro-
duces trivially valid triples with unsatisfiable (false) preconditions.

The redundancy rule (I) in Fig. 5b adds an interaction atom to the precondition of
a havoc triple, provided that the atom is never interpreted as an interaction from the
language denoted by the regular expression from the triple, where supp(L) denotes the
set of alphabet symbols of the form Σ[α] from a regular expression L. Conversely, the
rule (E) removes an interaction from the precondition, provided that the precondition
(with that interaction atom) is consistent6.

The composition rule (./) splits a proof obligation into two simpler havoc triples
(Fig. 5c). The pre- and postconditions of the premisses are subformulæ of the pre-
and postcondition of the conclusion, joined by separating conjunction and extended by
so-called frontier formulæ, describing those sets of interaction atoms that may cross
the boundary between the two separated conjuncts.

Definition 11 (Frontier) Given symbolic configurations φ1 and φ2, the frontier of φi

and φ3−i is the formula F (φi,φ3−i)
def
= ∗α∈inter(φ3−i)\(inter(φ3−i)∪inter(φi))

α, where φi is
the largest tight subformula of φi, for i = 1,2.

As a remark, the largest tight subformula (Def. 6) of a symbolic configuration can be
effectively computed using the result of Prop. 6. The frontier formulæ play the role
of assumptions in a rely/assume-guarantee style of reasoning [?, ?]. They are required
for the soundness of the (./) rule, under the semantics of open state changes (Def. 8),
which considers that the interactions from F (φi,φ3−i) can fire anytime, unless they are
explicitly disabled by some component from φi, for i = 1,2. Moreover, provided that
the predicate atoms are tight (Assumption 1), no interaction arising from an unfold-
ing of a predicate atom in φi, can impact a component from φ3−i, hence it is sound
to consider only the finite set of interactions F (φi,φ3−i). The regular expression of
the conclusion is the interleaving of the regular expressions from the premisses, with
respect to the environments ηi, which are the sets of predicate and interaction atoms
from both the precondition φi and the frontier F (φi,φ3−i), for i = 1,2.

6Without the φ ‡ α side condition, we would obtain a trivial proof for any triple, by adding an interaction
atom twice to the precondition, i.e. using the rule (E), followed by (⊥).

20

Figure 5: Proof System for Havoc Triples

(ε)
η.{{φ}} ε {{φ}}

(†) α=I(x1 ,...,x#(I))

φ†αη.{{φ}} Σ[α] {{false}}
(⊥)

η.{{false}} L {{ψ}}

(Σ)
α=I(x1 ,...,x#(I))

i1 ,...,ik∈[1,#(I)], k≥0
B(C j)=〈Q j ,Pj ,q0

j ,−→ j〉η.{{α∗∗k
j=1C

q j
j (xi j)}} Σ[α] {{α∗∗k

j=1
∨

q j

〈ports(I)〉i j−−−−−−−→ j r j

C
r j
j (xi j)}}

a. Axioms

η\{Σ[α]}.{{φ}} L {{ψ}}
(I) α=I(x1 ,...,x#(I))

Σ[α]∈η\supp(L)η.{{φ∗α}} L {{ψ∗α}}
η∪{Σ[α]}.{{φ∗α}} L {{ψ∗α}}

(E) α=I(x1,...,x#(I))

φ‡αη.{{φ}} L {{ψ}}
b. Redundancy Rules

ηi .{{φi ∗F (φi,φ3−i)}} Li {{ψi ∗F (φi,φ3−i)}} | i = 1,2
(./) ηi=Σ[φi∗F (φi ,φ3−i)], i=1,2

η1 ∪η2 .{{φ1 ∗φ2}} L1 ./η1 ,η2 L2 {{ψ1 ∗ψ2}}

c. Composition Rule

η.{{
∨k

i=1 φ∧δi}} L1 {{
∨k

i=1 φ∧δ′i}} η.{{
∨k

i=1 φ∧δ′i}} L2 {{ψ}}
(·) δi,δ

′
i , i∈[1,k]

state atoms
η.{{

∨k
i=1 φ∧δi}} L1 ·L2 {{ψ}}
η.{{φ}} L {{φ}}

(∗)
η.{{φ}} L∗ {{φ}}

η.{{φ}} L1 {{ψ}} η.{{φ}} L2 {{ψ}}
(∪)

η.{{φ}} L1 ∪L2 {{ψ}}
η.{{φ}} L1 ∪L2 {{ψ}}

(⊂)
η.{{φ}} L1 {{ψ}}

d. Regular Expression Rules

η.{{φ}} L {{ψ′}}
(C) ψ′|=D ψ

η.{{φ}} L {{ψ}}

η′ .{{φ∗ϕ}} L′ {{ψ}}

∣∣∣∣∣∣
A(x1,...,x#(A))⇐D∃z . ϕ, ϕ∈S, z ∩ fv(φ)= /0

η′=
(

η\{Σ[A(x1 ,...,x#(A))]}
)
∪Σ[ϕ]

L′=L
[

Σ[A(x1 ,...,x#(A))]←
(⋃

Σ[ϕ]
)]

(LU)
η.{{φ∗A(x1, . . . ,x#(A))}} L {{ψ}}

η.{{φ∧δi}} L {{ψi}} | i ∈ [1,k]
(∨) δi , i∈[1,k]

state atoms
η.{{

∨k
i=1 φ∧δi}} L {{

∨k
i=1 ψi}}

η.{{φ∧δi}} L {{ψi}} | i ∈ [1,k]
(∧) δi , i∈[1,k]

state atoms
η.{{

∧k
i=1 φ∧δi}} L {{

∧k
i=1 ψi}}

e. Structural Rules

The rules in Fig. 5d introduce regular expressions built using concatenation, Kleene
star and union. In particular, for reasons related to the soundness of the proof system,
the concatenation rule (·) applies to havoc triples whose preconditions are finite dis-
junctions of symbolic configurations, sharing the same set of component, interaction
and predicate atoms and different conjunctions of state atoms, whereas the cut formulæ
(postcondition of the left and precondition of the right premiss) share the same struc-
ture as the precondition. The (⊂) rule is the dual of (∪), that restricts the language from
the conclusion to a subset of the one from the premiss. As a remark, by applying the
(E) and (⊂) rules in any order, one can derive the havoc invariance of the intermediate
assertions in a single-reversal reconfiguration sequence (Remark 1).

Finally, the rules in Fig. 5e modify the structure of the pre- and postconditions.

21

In particular, the left unfolding rule (LU) has a premiss for each unfolding step of a
predicate atom from the conclusion’s precondition. The environment and the regular
expression in each premiss are obtained by replacing the alphabet symbol of the un-
folded predicate symbol by the set of alphabet symbols from the unfolding step, where
L[Σ[α]← L′] denotes the regular expression obtained by replacing each occurrence of
the alphabet symbol Σ[α] in L with the regular expression L′.

5.3 Havoc Proofs
A proof tree is a finite tree T whose nodes are labeled by havoc triples and, for each
node n not on the frontier of T , the children of n are the premisses of the application of
a rule from Fig. 5, whose conclusion is the label of n. For the purposes of this paper,
we consider only proof trees that meet the following condition:

Assumption 2 The root of the proof tree is labeled by a havoc triple η.{{φ}} L {{ψ}},
such that φ is a symbolic configuration and η = {Σ[α] | α ∈ atoms(φ)}.

It is easy to check that the above condition on the shape of the precondition and the
relation between the precondition and the environment holds recursively, for the la-
bels of all nodes in a proof tree that meets assumption 2. Moreover, havoc triples
of the form Σ[φ] . {{

∨k
i=1 φ∧δi}} L {{ψ}}, where φ is a symbolic configuration and

each δi is a conjunction of state atoms, can be handled as well, by proving each triple
Σ[φ].{{φ∧δi}} L {{ψ}} individually. Before tackling the soundness of the havoc proof
system (Fig. 5), we state an invariance property of the environments of havoc triples
that occur in a proof tree:

Definition 12 A havoc triple η.{{φ}} L {{ψ}} is distinctive if and only if 〈〈Σ[α1]〉〉γ∩
〈〈Σ[α2]〉〉γ = /0, for all Σ[α1],Σ[α2] ∈ η and all γ ∈ [[φ]]D .

The next lemma is proved inductively on the structure of the proof tree, using As-
sumption 2.

Lemma 3 Given a proof tree T , each node in T is labeled with a distinctive havoc
triple.

In order to deal with inductively defined predicates that occur within the pre- and
postconditions of the havoc triples, we use cyclic proofs [?]. A cyclic proof tree T is
a proof tree such that every node on the frontier is either the conclusion of an axiom
in Fig. 5a, or there is another node m whose label matches to the label of n via a
substitution of variables; we say that n is a bud and m is its companion. A cyclic proof
tree is a cyclic proof if and only if every infinite path through the proof tree extended
with bud-companion edges, goes through the conclusion of a (LU) rule infinitely often7.
We denote byη.{{φ}} L {{ψ}} the fact that η.{{φ}} L {{ψ}} labels the root of a cyclic
proof and state the following soundness theorem:

Theorem 2 If η.{{φ}} L {{ψ}} then |=D η.{{φ}} L {{ψ}}.
7This condition can be effectively decided by checking the emptiness of a Büchi automaton [?].

22

The proof is by induction on the structure of the proof tree, using Lemma 3 for
(I) rules. We conclude the presentation of the havoc proof system with a remark con-
cerning the equivalence between regular expressions, needed to apply the rules in Fig.
5c-d. Given a symbolic configuration φ, two regular expressions are congruent, de-
noted L1 ∼=φ L2, if and only if 〈〈L1〉〉γ = 〈〈L2〉〉γ, for all configurations γ ∈ [[φ]]D . Despite
the universal condition that ranges over a possibly infinite set of configurations, con-
gruence of regular expressions with alphabet symbols of the form Σ[α], where α is an
interaction or a predicate atom, is decidable by an argument similar to the one used
to prove equivalence of symbolic automata [?]. For space reasons, we only sketch the
justification of this point below:

Remark 2 We build finite automata that recognize the regular languages L(Li), i =
1,2 with the alphabet symbols Σ[α] taken as such and check the equivalence L(L1) =
L(L2) using these automata. Since the alphabet symbols are interpreted as disjoint
sets in every model of the precondition of a distinctive havoc triple, we can assume
w.l.o.g. that the sets 〈〈Σ[α]〉〉γ are pairwise disjoint, in each configuration γ∈ [[φ]]D , and
define a language morphism F, that maps each element of 〈〈Σ[α]〉〉γ onto the symbol
Σ[α]. Then F(〈〈L1〉〉γ) = F(〈〈L2〉〉γ) if and only if L(L1) = L(L2), where the choice of
γ ∈ [[φ]]D is not important, provided that the sets 〈〈Σ[α]〉〉γ are pairwise disjoint.

5.4 A Havoc Proof Example
We demonstrate the use of the havoc proof system (Fig. 5) for the havoc invariance
side conditions from Example 7. In fact, we prove a more general statement, namely
that chainh,t(x,y) is havoc invariant, i.e. that

{chainh,t(x,y)}.{{chainh,t(x,y)}} Σ[chainh,t(x,y)]∗ {{chainh,t(x,y)}}

is valid, for all h, t ≥ 0. An immediate consequence is that chain1,1(z,x) is havoc
invariant. The havoc invariance proof for Sn(y) ∗T(y,z) ∗ chain1,1(z,x) is an instance
of the subgoal (A) below, whereas the proof for Sn(y) ∗ chain1,1(z,x) can be obtained
by applying rules (E) and (⊂) to (A), for h = t = 1.

For space reasons, we introduce backlinks from buds to companions whose labels
differ by a renaming of free variables and of the h and t indices in chainh,t , such that
each pair (h′, t ′) in the label of a companion is lexicographically smaller or equal to
a pair (h, t) in the bud. This is a compact (folded) representation of a proof tree, ob-
tained by repeatedly appending the subtree rooted at the companion to the bud, until
all buds are labeled with triples that differ from their companion’s only by a renaming
of free variables8. Note that such folding is only possible because the definitions of
chainh,t(x,y) and chainh′,t ′(x,y), for h, t,h′, t ′ ≥ 1 are the same, up to the indices of the
predicate symbols (Example 4).

(ε)
/0.{{S(x)}} ε {{S(x)}}

(ε)
/0.{{Sn(x)}} ε {{Sn(x)}}

(ε)
/0.{{St(x)}} ε {{St(x)}} (A) (B)

(LU)
{Σ[chainh,t (z,x)]}.{{chainh,t (z,x)}} Σ[chainh,t (z,x)]

∗ {{chainh,t (z,x)}} (1)

8This is bound to happen, because a pair (h, t) of positive integers cannot be decreased indefinitely.

23

In the proof of the subgoal (A) below, alphabet symbols are abbreviated as Σz,y
def
=

Σ[T(z,y)] and Σ1
y,x

def
= Σ[chainh−̇1,t(y,x)]. The rule (∪) uses the congruence (Σz,y ∪

Σ1
y,x)
∗∼=Sn(z)∗T(z,y)∗chainh−̇1,t (y,x)

Σ1
y,x
∗∪ [Σ1

y,x
∗ ·Σz,y · (Σz,y∪Σ1

y,x)
∗], which can be checked us-

ing finite automata (Remark 2). The rule (C) strenghtens the postcondition chainh,t(z,x)
to an unfolding chainh,t(z,x)⇐D ∃y . Sn(z)∗T(z,y)∗ chainh−̇1,t(y,x), whose existen-
tially quantified variable is, moreover, bound to the free variable y from the precondi-
tion. The frontier formulæ in the application of rule (./) are just emp.

(ε)
/0.{{Sn(z)}} ε {{Sn(z)}}

backlink to (1)

{Σ1
y,x}.{{chainh−̇1,t (y,x)}} Σ1

y,x
∗ {{chainh−̇1,t (y,x)}}

(./)
{Σ1

y,x}.{{Sn(z)∗chainh−̇1,t (y,x)}} Σ1
y,x
∗ {{Sn(z)∗chainh−̇1,t (y,x)}}

(I)
(A1) {Σz,y ,Σ1

y,x}.{{Sn(z)∗T(z,y)∗chainh−̇1,t (y,x)}} Σ1
y,x
∗ {{Sn(z)∗T(z,y)∗chainh−̇1,t (y,x)}}

(C)
{Σz,y ,Σ1

y,x}.{{Sn(z)∗T(z,y)∗chainh−̇1,t (y,x)}} Σ1
y,x
∗ {{chainh,t (z,x)}} (A2)

(∪)
(A) {Σz,y ,Σ1

y,x}.{{Sn(z)∗T(z,y)∗chainh−̇1,t (y,x)}} (Σz,y ∪Σ1
y,x)
∗ {{chainh,t (z,x)}}

backlink to (A1)

{Σz,y ,Σ1
y,x}. {{Sn(z)∗T(z,y)∗chainh−̇1,t (y,x)}}

Σ1
y,x
∗ {{Sn(z)∗T(z,y)∗chainh−̇1,t (y,x)}}

(†)
{Σz,y ,Σ1

y,x}. {{Sn(z)∗T(z,y)∗chainh−̇1,t (y,x)}}

Σz,y {{false}}

(⊥)
{Σz,y ,Σ1

y,x}. {{false}}

(Σz,y ∪Σ1
y,x)
∗ {{false}}

(·)
{Σz,y ,Σ1

y,x}.{{Sn(z)∗T(z,y)∗chainh−̇1,t (y,x)}} Σ1
y,x
∗ ·Σz,y · (Σz,y ∪Σ1

y,x)
∗ {{false}}

(C)
(A2) {Σz,y ,Σ1

y,x}.{{Sn(z)∗T(z,y)∗chainh−̇1,t (y,x)}} Σ1
y,x
∗ ·Σz,y · (Σz,y ∪Σ1

y,x)
∗ {{chainh,t (z,x)}}

In the proof of the subgoal (B), we use the shorthand Σ2
y,x

def
= Σ[chainh,t−̇1(y,x)] and the

congruence (Σz,y∪Σ2
y,x)
∗ ∼=St(z)∗T(z,y)∗chainh,t−̇1(y,x)

Σ2
y,x
∗∪ [Σ2

y,x
∗ ·Σz,y · (Σz,y∪Σ2

y,x)
∗].

similar to (A1)

(B1) {Σz,y ,Σ2
y,x}.{{St(z)∗T(z,y)∗chainh,t−̇1(y,x)}} Σ2

y,x
∗ {{St(z)∗T(z,y)∗chainh,t−̇1(y,x)}}

(C)
{Σz,y ,Σ2

y,x}.{{St(z)∗T(z,y)∗chainh,t−̇1(y,x)}} Σ2
y,x
∗ {{chainh,t (z,x)}} (B2)

(∪)
(B) {Σz,y ,Σ2

y,x}.{{St(z)∗T(z,y)∗chainh,t−̇1(y,x)}} (Σz,y ∪Σ2
y,x)
∗ {{chainh,t (z,x)}}

backlink to (B1)

{Σz,y ,Σ2
y,x}. {{St(z)∗T(z,y)∗chainh,t−̇1(y,x)}}

Σ2
y,x
∗ {{St(z)∗T(z,y)∗chainh,t−̇1(y,x)}}

(C)

{Σz,y ,Σ2
y,x}. {{St(z)∗T(z,y)∗chainh,t−̇1(y,x)}}

Σz,y {{Sn(z)∗T(z,y)∗chainh,t−̇1(y,x)}}

similar to (A)

{Σz,y ,Σ2
y,x}. {{Sn(z)∗T(z,y)∗chainh,t−̇1(y,x)}}

(Σz,y ∪Σ2
y,x)
∗ {{chainh,t (z,x)}}

(·)
(B2) {Σz,y ,Σ2

y,x}.{{St(z)∗T(z,y)∗chainh,t−̇1(y,x)}} Σ2
y,x
∗ ·Σz,y · (Σz,y ∪Σ2

y,x)
∗ {{chainh,t (z,x)}}

The proof of (B1) is similar to the proof of (A1), with Σ1
y,x and chainh−̇1,t(y,x) replaced

by Σ2
y,x and chainh,t−̇1(y,x), respectively. The proof of the right-most subtree is similar

to the proof of (A), with chainh−̇1,t(y,x) replaced by chainh,t−̇1(y,x). In the proof of (C)
below, we use the shorthands Σy,v

def
= Σ[T(y,v)], Σ1

v,x
def
= Σ[chainh−̇1,t−̇1(v,x)] and Σ2

v,x
def
=

Σ[chainh,t−̇2(v,x)]. The frontier formulæ are empty for the application of rule (./) in
the proof of the subgoal (G) because both St(z)∗T(z,y)∗Sn(y) and chainh−̇1,t−̇1(v,x)
are provably tight formulæ (Prop. 6).

backlink to (D) backlink to (E)
(∨)

{Σz,y}. {{St(z)∗T(z,y)∗S(x)}}

Σz,y {{Sn(z)∗T(z,y)∗chainh,t−̇1(y,x)}}

(Σ)
{Σz,y}. {{St(z)∗T(z,y)∗Sn(x)}}

Σz,y {{Sn(z)∗T(z,y)∗St(x)}}
(C)

(D) {Σz,y}. {{St(z)∗T(z,y)∗Sn(x)}}

Σz,y {{Sn(z)∗T(z,y)∗chainh,t−̇1(y,x)}}

(†)
{Σz,y}. {{St(z)∗T(z,y)∗St(x)}}

Σz,y {{false}}
(C)

(E) {Σz,y}. {{St(z)∗T(z,y)∗St(x)}}

Σz,y {{Sn(z)∗T(z,y)∗chainh,t−̇1(y,x)}} (F) (G)
(LU)

(C) {Σz,y ,Σ2
y,x}.{{St(z)∗T(z,y)∗chainh,t−̇1(y,x)}} Σz,y {{Sn(z)∗T(z,y)∗chainh,t−̇1(y,x)}}

24

(Σ)
{Σz,y}.{{St(z)∗T(z,y)∗Sn(y)}} Σz,y {{Sn(z)∗T(z,y)∗St(y)}}

(ε)
{Σ1

v,x}.{{chainh−̇1,t−̇1(v,x)}} ε {{chainh−̇1,t−̇1(v,x)}}
(./)

{Σz,y ,Σ1
v,x}.{{St(z)∗T(z,y)∗Sn(y)∗chainh−̇1,t−̇1(v,x)}} Σz,y {{Sn(z)∗T(z,y)∗St(y)∗chainh−̇1,t−̇1(v,x)}}

(I)
{Σz,y ,Σy,v ,Σ1

v,x}.{{St(z)∗T(z,y)∗Sn(y)∗T(y,v)∗chainh−̇1,t−̇1(v,x)}} Σz,y {{Sn(z)∗T(z,y)∗St(y)∗T(y,v)∗chainh−̇1,t−̇1(v,x)}}
(C)

(F) {Σz,y ,Σy,v ,Σ1
v,x}.{{St(z)∗T(z,y)∗Sn(y)∗T(y,v)∗chainh−̇1,t−̇1(v,x)}} Σz,y {{Sn(z)∗T(z,y)∗chainh,t−̇1(y,x)}}

(†)
{Σz,y ,Σy,v ,Σ2

v,x}.{{St(z)∗T(z,y)∗St(y)∗T(y,v)∗chainh,t−̇2(v,x)}} Σz,y {{false}}
(C)

(G) {Σz,y ,Σy,v ,Σ2
v,x}.{{St(z)∗T(z,y)∗St(y)∗T(y,v)∗chainh,t−̇2(v,x)}} Σz,y {{Sn(z)∗T(z,y)∗chainh,t−̇1(y,x)}}

6 A Worked-out Example: Reconfigurable Trees
In addition to token rings (Fig. 1), we apply our method to reconfiguration scenarios
of distributed systems with tree-shaped architectures. Such (virtual) architectures are
e.g. used in flooding and leader election algorithms. They are applicable, for instance,
when every component in the system must notify a designated controller, placed in the
root of the tree, about an event that involves each component from the frontier of the
tree. Conversely, the root component may need to notify the rest of the components.
The tree architecture guarantees that the notification phase takes time O(logn) in the
number n of components in the tree, when the tree is balanced, i.e. the lengths of the
longest and shortest paths between the root and the frontier differ by at most a constant
factor. A reconfiguration of a tree places a designated component (whose priority has
increased dynamically) closer to the frontier (dually, closer to the root) in order to
receive the notification faster. In balanced trees, reconfigurations involve structure-
preserving rotations. For instance, self-adjustable splay-tree networks [?] use the zig
(left rotation), zig-zig (left-left rotation) and zig-zag (left-right rotation) operations [?]
to move nodes in the tree, while keeping the balance between the shortest and longest
paths.

Fig. 6 shows a model of reconfigurable tree architectures, in which each leaf
component sends a notification to its parent before entering the leaf idle state. An
inner component waits for notifications from both its left (` recv) and right (r recv)
children before sending a notification to its parent (send), unless this component is
the root (Fig. 6a). We model notifications by the interaction types I` and Ir, with
ports(I`) = 〈send, ` recv〉 and ports(Ir) = 〈send,r recv〉. The notification phase is com-
pleted when the root is in state right, every inner component is in the idle state and
every leaf is in the leaf idle state. Fig. 6b shows a right rotation that reverses the
positions of components with identifiers x and y, implemented by the reconfiguration
program from Fig. 7. The rotation applies only to configurations in which both x and
y are in state idle, by distinguishing the case when y is a left or a right child of z. For
simplicity, Fig. 7 shows the program in case y is a left child, the other case being
symmetric.

Note that, applying the rotation in a configuration where the Node component in-
dexed by x is in state right (both a and b have sent their notifications to x) and the one
indexed by y is in state idle (c has not yet sent its notification to y) yields a configuration
from which c cannot send its notification further, because x has now become the root
of the subtree changed by the rotation (a similar scenario is when y is in state right, x

25

Figure 6: Reconfiguration of a Tree Architecture

idle

left

right

leaf idle leaf busy

`
recv

r rec
v

send

send

Node

(a)

x

y

a b

c

z
` recv / r recv

send

sendsend

send

r recv` recv

send

r recv` recv

Right
====⇒
Rotation

x

ya

b c

z
` recv / r recv

sendsend

send

send

r recv

send

r recv

` recv

` recv

(b)

treeidle(x) ← Nodeleaf idle(x)
treeidle(x) ← ∃y∃z . Nodeidle(x)∗ I`(y,x) ∗

Ir(z,x)∗ treeidle(y)∗ treeidle(z)

tree¬idle(x) ← Nodeleaf busy(x)
tree¬idle(x) ← ∃y∃z . Nodeleft(x)∗ I`(y,x) ∗

Ir(z,x)∗ treeidle(y)∗ tree¬idle(z)
tree¬idle(x) ← ∃y∃z . Noderight(x)∗ I`(y,x) ∗

Ir(z,x)∗ treeidle(y)∗ treeidle(z)
tree¬idle(x) ← ∃y∃z . Nodeidle(x)∗ I`(y,x) ∗

Ir(z,x)∗ tree¬idle(y)∗ tree¬idle(z)

tree(x) ← Nodeleaf idle(x)
tree(x) ← Nodeleaf busy(x)
tree(x) ← ∃y∃z . Node(x)∗ I`(y,x) ∗

Ir(z,x)∗ tree(y)∗ tree(z)

tseg(x,x) ← Node(x)
tseg(x,u) ← ∃y∃z . Node(x)∗ I`(y,x) ∗

Ir(z,x)∗ tseg(y,u)∗ tree(z)
tseg(x,u) ← ∃y∃z . Node(x)∗ I`(y,x) ∗

Ir(z,x)∗ tree(y)∗ tseg(z,u)

(c)

is in state idle and a, b and c have sent their notifications to their parents). We prove
that, whenever a right rotation is applied to a tree, such that the subtrees rooted at a, b
and c have not sent their notifications yet, the result is another tree in which the sub-
trees rooted at a, b and c are still waiting to submit their notifications. This guarantees
that the notification phase will terminate properly with every inner component (except
for the root) in state idle and every leaf component in state leaf idle, even if one or
more reconfigurations take place in between. In particular, this proves the correctness
of more complex reconfigurations of splay tree architectures, using e.g. the zig-zig and
zig-zag operations [?].

The proof in Fig. 7 uses the inductive definitions from Fig. 6c. The predicates
treeidle(x), tree¬idle(x) define trees where all components are idle, and where some
notification are still being propagated, respectively. The predicate tree(x) conveys no
information about the states of the components and the predicate tseg(x,u) defines a
tree segment, from component x to component u. To use the havoc proof system from
Fig. 5, we need the following statement9:

Proposition 3 The set of symbolic configurations using predicate atoms treeidle(x),
tree¬idle(x), tree(x) and tseg(x,y) is precisely closed.

Moreover, each predicate atom treeidle(x), tree¬idle(x), tree(x) and tseg(x,y) is
tight, because, in each D-model (σ,ν,ρ), the interactions 〈u,v〉 ∈ Iσ

` ∪ Iσ
r are between

9This is similar to Prop. 1.

26

Figure 7: Proof of a Tree Rotation

{
∃x,y,z,a,b,c.tseg(r,z)∗I`(a,x)∗Ir(c,y)∗I`(y,z)∗I`(x,y)∗Ir(b,x)∗

Nodeidle(x)∗Nodeidle(y)∗tree¬idle(a)∗tree¬idle(b)∗tree¬idle(c)

}
with x,y,z,a,b,c : I`(a,x)∗ Ir(c,y)∗ I`(y,z)∗ I`(x,y)∗ Ir(b,x)∗Nodeidle(x)∗Nodeidle(y) do{

tseg(r,z)∗I`(a,x)∗Ir(c,y)∗I`(y,z)∗I`(x,y)∗Ir(b,x)∗
Nodeidle(x)∗Nodeidle(y)∗tree¬idle(a)∗tree¬idle(b)∗tree¬idle(c)

}
disconnect(Ir,b,x);{

tseg(r,z)∗I`(a,x)∗Ir(c,y)∗I`(y,z)∗I`(x,y)∗
(Nodeidle(x)∗tree¬idle(a)∨Nodeleft(x)∗treeidle(a))∗Nodeidle(y)∗tree¬idle(b)∗tree¬idle(c)

}
(hinv)

disconnect(I`,x,y);{
tseg(r,z)∗I`(a,x)∗Ir(c,y)∗I`(y,z)∗
(Nodeidle(x)∗tree¬idle(a)∨Nodeleft(x)∗treeidle(a))∗Nodeidle(y)∗tree¬idle(b)∗tree¬idle(c)

}
disconnect(I`,y,z);{

tseg(r,z)∗I`(a,x)∗Ir(c,y)∗
(Nodeidle(x)∗tree¬idle(a)∨Nodeleft(x)∗treeidle(a))∗Nodeidle(y)∗tree¬idle(b)∗tree¬idle(c)

}
connect(I`,b,y); tseg(r,z)∗I`(a,x)∗Ir(c,y)∗I`(b,y)∗

(Nodeidle(x)∗tree¬idle(a)∨Nodeleft(x)∗treeidle(a))∗
(Nodeidle(y)∗tree¬idle(b)∗tree¬idle(c)∨Nodeleft(y)∗treeidle(b)∗tree¬idle(c)∨Noderight(y)∗treeidle(b)∗treeidle(c))

connect(Ir,y,x);

tseg(r,z)∗I`(a,x)∗Ir(c,y)∗I`(b,y)∗Ir(y,x)∗(
(Nodeidle(x)∗tree¬idle(a)∨Nodeleft(x)∗treeidle(a))∗

(Nodeidle(y)∗tree¬idle(b)∗tree¬idle(c)∨Nodeleft(y)∗treeidle(b)∗tree¬idle(c)∨Noderight(y)∗treeidle(b)∗treeidle(c))
)
∨

Noderight(x)∗Nodeidle(y)∗treeidle(a)∗treeidle(b)∗treeidle(c)

 (hinv)

connect(I`,x,z)
tseg(r,z)∗I`(a,x)∗Ir(c,y)∗I`(b,y)∗Ir(y,x)∗I`(x,z)∗(
(Nodeidle(x)∗tree¬idle(a)∨Nodeleft(x)∗treeidle(a))∗

(Nodeidle(y)∗tree¬idle(b)∗tree¬idle(c)∨Nodeleft(y)∗treeidle(b)∗tree¬idle(c)∨Noderight(y)∗treeidle(b)∗treeidle(c))
)
∨

Noderight(x)∗Nodeidle(y)∗treeidle(a)∗treeidle(b)∗treeidle(c)

od

∃x,y,z,a,b,c.tseg(r,z)∗I`(a,x)∗Ir(c,y)∗I`(b,y)∗Ir(y,x)∗I`(x,z)∗(
(Nodeidle(x)∗tree¬idle(a)∨Nodeleft(x)∗treeidle(a))∗

(Nodeidle(y)∗tree¬idle(b)∗tree¬idle(c)∨Nodeleft(y)∗treeidle(b)∗tree¬idle(c)∨Noderight(y)∗treeidle(b)∗treeidle(c))
)
∨

Noderight(x)∗Nodeidle(y)∗treeidle(a)∗treeidle(b)∗treeidle(c)

{
∃x,y,z,a,b,c.tseg(r,z)∗I`(x,z)∗tree¬idle(x)∧(I`(a,x)∗Ir(c,y)∗I`(b,y)∗Ir(y,x)∗true)

}
the ports(I`) = 〈send, ` recv〉 and ports(Ir) = 〈send,r recv〉 of the components u,v ∈
Nodeσ in the structure. Together with Prop. 3, this shows that Assumption 1 loses no
generality for the SID from Fig. 6c.

The precondition of the reconfiguration program in Fig. 7 states that x and y are
idle components, and the a, b and c subtrees are not idle, whereas the postcondition
states that the x subtree is not idle. As mentioned, this is sufficient to guarantee the
correct termination of the notification phase after the right rotation. As in the proof
from Example 7, proving the correctness of the sequential composition of primitive
commands requires proving the havoc invariance of the annotations. However, since in
this case, the reconfiguration sequence is single-reversal (Remark 1), we are left with
proving havoc invariance10 only for the second and second-last annotations, marked
with (hinv) in Fig. 7.

10These proofs rely on the havoc invariance proofs for tree(x), treeidlex, tree¬idlex and tseg(x,u) given in
Appendix F.

27

7 Entailment Problems
We describe a decision procedure for the entailment problem of CL, between symbolic
configurations with predicate symbols defined by SIDs. Together with proving havoc
invariants, deciding entailments is a key ingredient for mechanising the correctness
proofs of reconfiguration programs (§4). We fix a SID D , for the rest of this section. An
instance of the entailment problem consists of CL formulæ φ and ∃y1 . . .∃yr .

∨h
`=1 ψ`,

where φ,ψ1, . . . ,ψh are symbolic configurations, such that fv(∃y1 . . .∃yr .
∨h

`=1 ψ`) ⊆
fv(φ), and asks whether every D-model of φ is an D-model of ∃y1 . . .∃yr . ψ`, for some
` ∈ [1,h].

Example 9 The reconfiguration proof from Example 7 relies on the following entail-
ments:

chain2,1(a,b)∗T(b,a) |=D ∃x∃y∃z . T(x,y)∗Sn(y)∗T(y,z)∗ chain1,1(z,x)
T(x,y)∗Sn(y)∗T(y,z)∗ chain1,1(z,x) |=D ∃a∃b . chain2,1(a,b)∗T(b,a) �

We define a decidable class of entailment problems by two fairly natural conditions
(Def. 13), typically met in our examples. These conditions rely on the following notion.
The profile of a formula ϕ = ∃x1 . . .∃xk . φ, where φ is a symbolic configuration, is the
pointwise greatest function λϕ : A→ 2N mapping each predicate symbol A onto a set
of positions λϕ(A)⊆ [1,#(A)], such that:

• {yi | A(y1, . . . ,y#(A)) ∈ preds(ϕ), i ∈ λϕ(A)} ⊆ fv(ϕ), and

• for all rules A(x1, . . . ,x#(A))←D φ, all predicate symbols B(y1, . . . ,y#(B)) that
occur in φ and all j ∈ λϕ(B), we have y j = xi, for some i ∈ λϕ(A).

Intuitively, the profile of ϕ identifies those parameters of a predicate symbol that are
always replaced by a top-level free variable in each unfolding of ϕ, according to the
rules in D; it can be computed by a greatest fixed point iteration over the rules in D , in
time O(size(D) ·width(D)).

Definition 13 Given a profile λ, a rule A(x1, . . . ,x#(A))←D ∃z1 . . .∃zk . φ ∗ ∗ h
`=1B

`(y`1, . . . ,y
`
#(B`)

),
where φ is a predicateless symbolic configuration without occurrences of equality
atoms, is called:

1. progressing if and only if each component (resp. interaction) atom of φ is of the
form Ci(x1) (resp. I j(y), x1 ∈ y) and the sets {y`1, . . . ,y`#(B`)

}, ` ∈ [1,h], partition
{x2, . . . ,x#(A),z1, . . . ,zk},

2. λ-connected if and only if, for each ` ∈ [1,h], there exists an interaction atom in
φ that contains both y`1 and a variable in {xi | i ∈ λ(A)}∪{x1}.

A SID is progressing (λ-connected) if and only if all its rules are progressing (λ-
connected).

For instance, the SIDs from Example 4 and Fig. 6c are both progressing and con-
nected. For two predicate symbols A and B, we write A �D B if and only if B oc-
curs in the body of a rule from D that defines A. For a symbolic configuration φ, let

28

depD(φ)
def
= {B | A�∗D B, A(x1, . . . ,x#(A)) ∈ preds(φ)}, where �∗D is the reflexive and

transitive closure of the �D relation. The following shows that the entailment problem
becomes undecidable when the conditions of Def. 13 are even slightly lifted:

Proposition 4 The entailment A(x1, . . . ,xk) |=D B(x1, . . . ,xk) is undecidable, even when
D is progressing and only the rules defining the predicate symbols from depD(φ) are
λφ-connected.

We prove the decidability of entailment problems for symbolic configurations in-
terpreted over progressing and connected SIDs (Def. 13), via a reduction to a decidable
entailment problem for Separation Logic (SL), interpreted over heaps. Let K ≥ 1 be a
fixed integer in the rest of this section. A heap is a finite partial function h : U⇀fin UK.
The composition of two heaps h1 and h2 is their disjoint union h1]h2, defined if and
only if dom(h1)∩dom(h2) = /0. The SL formulæ are:

φ ::= emp | x 7→ (y1, . . . ,yK) | x=̇y | A(x1, . . . ,x#(A)) | φ1 ∗φ2 | ∃x . φ1 .

Predicateless SL formulæ are interpreted by the relation:

(ν,h) |=SL emp iff dom(h) = /0 (ν,h) |=SL x=̇y iff ν(x) = ν(y) and dom(h) = /0

(ν,h) |=SL x 7→ (y1, . . . ,yK) iff dom(h) = {ν(x)} and h(ν(x)) = 〈ν(y1), . . . ,ν(yK)〉 .

As usual, the separating conjunction is interpreted using the composition of heaps and
the predicate symbols are interpreted inductively over a set D of rules A(x1, . . . ,x#(A))←
φ, where φ is a SL formula, such that fv(φ) ⊆ {x1, . . . ,x#(A)}. An entailment between
SL formulæ, denoted as φ |=SL

D ψ is valid if and only if, for each store-heap pair (ν,h),
if (ν,h) |=SL

D φ then (ν,h) |=SL
D ψ, where |=SL

D is the homomorphic extension of |=SL to
SL formulæ with predicate atoms. The profile of a SL SID is defined similar to the one
for CL.

Definition 14 Given a profile λ, a SL rule A(x1, . . . ,x#(A))← φ is said to be:

1. progressing if and only if φ = ∃t1 . . .∃tk . x1 7→ (y1, . . . ,yK)∗ψ, where ψ contains
only predicate and equality atoms, and

2. λ-connected if and only if φ = ∃t1 . . .∃tk . x1 7→ (y1, . . . ,yK) ∗ψ and, for every
predicate atom B(z1, . . . ,z#(B)) in ψ, we have z1 ∈ {xi | i ∈ λ(A)}∪{y1, . . . ,yK}.

Note that the definitions of progressing and connected rules are different for SL, com-
pared to CL (Def. 13); in the rest of this section, we rely on the context to distinguish
progressing (connected) SL rules from progressing (connected) CL rules. The tight
complexity class for the entailment problem between SL formulæ interpreted by pro-
gressing and connected SIDs is given below:

Theorem 3 ([?]) The SL entailment problem φ |=SL
D ψ is 2EXP-complete, if D is pro-

gressing and λφ-connected.

29

Figure 8: Gaifman Heap for a Chain Configuration

n t

in

out S

x 7→ 1

n t

in

out S

y 7→ 2

n t

in

out S

z 7→ 3

outin
T

outin
T

(a)

1 2 1 2

S T
n t

1 2 1 2

S T
n t

1 2 1 2

S T
n t

x y z

(b)

The reduction of CL to SL entailments is based on the idea of representing a log-
ical structure σ, over a signature S = 〈C1, . . . ,Cn, I1, . . . , Im〉, by an undirected Gaif-
man graph, in which every k-tuple from the interpretation of a relation symbol be-
comes a k-clique. Let the degree of an index u ∈ nodes(σ) be the maximum num-
ber of interactions, of a given type, involving u and the degree of σ be the maxi-
mum degree among all u ∈ nodes(σ), denoted as δ(σ). We encode a configuration
(σ,ν,ρ) ∈ Γ by a store-heap pair (ν,h), where h is defined below, using the integer
function posb(j, i,k, `) def

= n+ b ·∑ j
h=1 #(Ih)+ i · #(I j+1)+ k · ||Q||+ `, where Q is the

finite set of states used to describe the behaviors of component types (§2):

Definition 15 Given a state map ρ, a structure σ and an integer b≥ δ(σ), a Gaifman
heap of (σ,ρ) is a heap h : U⇀fin UK, where K= posb(m,0,n,0), such that dom(h) =
nodes(σ) and, for all u ∈ dom(h), such that h(u) = 〈u1, . . . ,uK〉, the following hold:

1. for all i ∈ [1,n], we have ui = u if and only if u ∈Cσ
i ,

2. for all j ∈ [1,m], if u1, . . . ,uh are the tuples from Iσ
j containing u, then there exist

integers 0 ≤ k1 < .. . < kh < b, such that 〈h(u)〉ipos(j,ki) = ui, for each i ∈ [1,h],

where the entries from ipos(j,k) def
= [posb(j−1,k,0,0),posb(j−1,k+1,0,0)]

encode the i-th tuple from Iσ
j ,

3. for all i∈ [1,n] and k∈ [1, ||Q||], we have 〈h(u)〉spos(i,k)= u if and only if ρ(u,Ci)=

qk, where spos(i,k) def
= posb(m,0, i−1,k) is the position of the k-th state in Cσ

i and
q1, . . . ,q||Q|| is the enumeration of Q, in some fixed predefined order.

We denote by Gb(σ,ρ) the set of Gaifman heaps for (σ,ρ) and b.

Intuitively, if h ∈ Gb(σ,ρ) and u ∈ dom(h) is an index, then the first n entries of
h(u) represent the types Ci of the components indexed by u (i.e. u ∈ Cσ

i), the next
b ·∑m

j=1 #(I j) entries are used to encode the interactions of each type I j, whereas the
last n · ||Q|| entries are used to represent the state map (i.e. the state ρ(u,Ci), for each
component type Ci).

Example 10 Fig. 8b shows a Gaifman heap for the configuration in Fig. 8a, over the
signature from Example 2, where each index belongs to at most b = 2 tuples of the
interaction type T. �

Note that the Gaifman heap encoding is not unique: two Gaifman heaps for the
same structure and state map may actually differ by the order of tuples from the encod-
ing of an interaction type Iσ

j (point 2 of Def. 15) and by the choice of the unconstrained
locations in h(u), for each u ∈ dom(h).

30

In the following, we build an SID D defining the Gaifman heaps of the D-models
of the predicate atoms from the CL entailment. Because the degree of heaps is always
fixed by K, which is a parameter of SL, this construction is only possible under the
following assumption:

Assumption 3 There exists an integer B≥ 1, such that δ(σ)≤B, for every configura-
tion (σ,ν,ρ)∈ [[α]]D , where α∈ def(D) is a predicate atom and fix K def

= posB(m,0,n,0).

In our examples, it is sufficient to take B = 2, for the predicate atoms chainh,t(x,y)
(Example 4) and tree(x), treeidle(x), tree¬idle(x) and tseg(x,y) (Fig. 6c). Moreover,
the existence of a bound on the degree of a model of a predicate atom is subject to the
following cut-off result:

Proposition 5 There exists an integer B≥ 1, such that δ(σ)≤B, for each (σ,ν,ρ) ∈
[[A(x1, . . . ,x#(A))]]D only if B= O(size(D)c), for a constant c≥ 1.

However, there are distributed systems with coordinating architectures described by
structures of unbounded degree, such as star topologies, having a designated controller
node, with which every other node communicates. We conjecture that it is possible
to lift Assumption 3 and tackle these more general cases by means of domain-specific
results, considered for future work.

Back to the definition of D , we associate to each variable x, that occurs free or ex-
istentially quantified in D , a unique K-tuple of variables η(x) ∈VK, that represents the
image of the store value ν(x) in a Gaifman heap h, namely h(ν(x)) = ν(η(x)). More-
over, we consider, for each predicate symbol A, that is defined by D , an annotated pred-
icate symbol Aι of arity #(Aι) = (K+1) ·#(A), where ι : [1,#(A)]× [1,m]→ 2[0,B−1]

is a mapping associating a parameter position k ∈ [1,#(A)] and an interaction sym-
bol I j, for j ∈ [1,m], a set of integers ι(k, j) denoting the positions of the encod-
ings of the interactions of type I j, involving the value of xk, in the D-models of
Aι(x1, . . . ,x#(A),η(x1), . . . ,η(x#(A))) (point 2 of Def. 15). Then D consists of rules
of the form:

Aι(x1, . . . ,x#(A),η(x1), . . . ,η(x#(A))) ← ∃z1 . . .∃zp∃η(z1) . . .∃η(zp) . φ ∗ (1)

∗ h
`=1 B

`
ι`(y

`
1, . . . ,y

`
#(B`)

,η(y`1), . . . ,η(y
`
#(B`)

))

for which there exist a stem rule A(x1, . . . ,x#(A))←∃z1 . . .∃zp . φ ∗ ∗ h
`=1B

`(y`1, . . . ,y
`
#(B`)

)

in D . A rule of the form (1) is well-formed if and only if, for each i ∈ [1,#(A)] and
j ∈ [1,m], there exists a set of integers Yi, j ⊆ [0,B−1], such that:

• ||Yi, j||= ||I j
φ
(xi)||, where I j

φ
(x) def

= {I j(y) ∈ inter(φ) | 〈y〉k 'φ x, k ∈ [1,#(I j)]}, and

• Yi, j ⊆ ι(i, j) and ι(i, j)\Yi, j =Z j(xi), where Z j(x)
def
=

⋃h
`=1

⋃#(B`)
k=1 {ι`(k, j) | x'φ y`k}

denotes the set of positions used to encode the interactions of type I j involving
the store value of the variable x, in a D-model of∗ h

`=1B
`(y`1, . . . ,y

`
#(B`)

).

31

Let D be the set of well-formed rules (1), whose predicateless subformulæ φ are defined
below:

φ
def
= x1 7→ η(x1) ∗ ∗x∈fv(φ) CompStateφ(x) ∗ ∗#(A)

i=1 Interφ(xi), where we define:

CompStateφ(x)
def
=∗ Ci(x) occurs in φ 〈η(x)〉i =̇ x ∗ ∗ state(x,Ci,qk) occurs in φ 〈η(x)〉spos(i,k) =̇ x

Interφ(xi)
def
=∗m

j=1∗r j
q=1 〈η(xi)〉ipos(j,k j

q)
=̇ x j

q, for the following sets:

{I j(x
j
1), . . . , I j(x

j
r j)}

def
= I j

φ
(xi), the interaction atoms involving xi in φ, and

{k j
1, . . . ,k

j
r j}

def
= ι(i, j)\Z j(xi), the encoding positions of their corresponding interactions.

We write x=̇y for ∗k
i=1 〈x〉i=̇〈y〉i, where x and y are tuples of variables of length

k. Intuitively, the SL formula CompStateφ(x) realizes the encoding of the component
and state atoms from φ, in the sense of points (1) and (3) from Def. 15, whereas the
formula Interφ(xi) realizes the encodings of the interactions involving a parameter xi in
the stem rule of (1)11 (point 2 of Def. 15). The main result of this section relies on the
two technical lemmas below:

Lemma 4 If D is progressing, for each D-model (σ,ν,ρ) of A(x1, . . . ,x#(A)) ∈ def(D)

and each heap h ∈ GB(σ,ρ), there exists a mapping ι : [1,#(A)]× [1,m]→ 2[0,B−1]

and a store ν, such that the following hold:

1. ν(xi) = ν(xi) ∈ dom(h) and ν(η(xi)) = h(ν(xi)), for each i ∈ [1,#(A)],

2. {u ∈ Iσ
j | ν(xi) ∈ u} = {〈h(ν(xi))〉ipos(j,k) | k ∈ ι(i, j)}, for all i ∈ [1,#(A)] and

j ∈ [1,m],

3. (ν,h) |=SL
D Aι(x1, . . . ,x#(A),η(x1), . . . ,η(x#(A))).

The following lemma states the dual of Lemma 4:

Lemma 5 If D is progressing, for a predicate atom A(x1, . . . ,x#(A)) ∈ def(D), each
mapping ι : [1,#(A)]×[1,m]→ 2[0,B−1] and each D-model (ν,h) of Aι(x1, . . . ,x#(A),η(x1), . . . ,η(x#(A))),
the following hold:

1. for each i ∈ [1,#(A)], we have ν(xi) ∈ dom(h) and h(ν(xi)) = ν(η(xi)), and

2. there is a structure σ and a state map ρ, such that h∈GB(σ,ρ) and (σ,ν,ρ) |=D

A(x1, . . . ,x#(A)).

Theorem 4 If D is progressing and λA(x1,...,x#(A))
-connected, then the entailment A(x1, . . . ,x#(A)) |=D

∃y1 . . .∃yr .
∨h

`=1B
`(z`1, . . . ,z

`
#(B`)

) is 2EXP-complete.

The proof of the upper bound uses a result on SL entailments (Theorem 3), that
relies on an algorithm simply exponential in the size and doubly exponential in the

11The definition of Interφ(xi) uses the fact that the rule is well-formed, which implies ||I j
φ
(xi)|| =

||ι(i, j)\Z j(xi)||.

32

width of D (a generalization of the method described in [?, ?]). Since our reduction of
CL to SL entailments uses annotated predicate symbols Aι , the number of rules in D
is increased by at most one exponential, yielding the 2EXP upper bound. Moreover,
this matches the 2EXP-hard lower bound, obtained by reduction from SL entailments
[?]. The undecidability result of Prop. 4 shows the importance of the fact that D is
λA(x1,...,x#(A))

-connected, as entailments between predicate atoms become undecidable
whenever this condition is lifted.

Note that, even if restricted, the form of entailments from Theorem 4 suffices in our
examples, that can be easily pre-processed to fit within the decidable class:
Example 11 Consider the entailments from Example 9, for instance:

chain2,1(a,b)∗T(b,a) |=D ∃x∃y∃z . T(x,y)∗Sn(y)∗T(y,z)∗ chain1,1(z,x)

By unfolding the left hand side, we obtain two entailments, corresponding to the two
rules defining chain2,1(a,b) (Example 4):

St(a)∗T(a,c)∗ chain2,0(c,b)∗T(b,a) |=D ∃x∃y∃z . T(x,y)∗Sn(y)∗T(y,z)∗ chain1,1(z,x)
Sn(a)∗T(a,c)∗ chain1,1(c,b)∗T(b,a) |=D ∃x∃y∃z . T(x,y)∗Sn(y)∗T(y,z)∗ chain1,1(z,x)

Next, we introduce the following progressing and connected rules:

A1(x) ← ∃y∃z . St(x)∗T(x,y)∗ chain2,0(y,z)∗T(z,x)
A2(x) ← ∃y∃z . Sn(x)∗T(x,y)∗ chain1,1(y,z)∗T(z,x)
B(x) ← ∃y∃z . T(y,x)∗Sn(x)∗T(x,z)∗ chain1,1(z,y)

The previous entailment is valid if and only if A1(x) |=D ∃y . B(y) and A2(x) |=D

∃y . B(y). �

Finally, we apply the result of Theorem 4 to decide the following tightness problem
for symbolic configurations (Def. 6):

Proposition 6 The problem is a given symbolic configuration tight? is in 3EXP.

The proof uses a reduction to an entailment problem between predicate symbols
annotated with tuples of sets of ports that are provided in each unfolding of a predicate
atom. The blowup from 2EXP (Theorem 4) to 3EXP is caused by the annotation of
predicate symbols, that increases the number of rules by an exponential factor.

8 Related Work
The ability of reconfiguring coordinating architectures of software systems has recently
received much interest in the Software Engineering community [?, ?]. We consider
programmed reconfiguration, in which the in the architecture changes occur according
to a sequential program, executed in parallel with the system to which reconfiguration
applies. The languages used to write such programs are classified according to the
underlying formalism used to define their operational semantics: process algebras,
e.g. π-ADL [?], DARWIN [?], graph rewriting [?, ?], chemical reactions [?], etc. We

33

separate architectures from behaviors, thus relating to the BIP framework [?] and its
extensions for dynamic reconfigurable systems DR-BIP [?]. In a similar vein, the REO
language [?] supports reconfiguration by changing the structure of connectors [?].

Checking the correctness of a dynamically reconfigurable system considers mainly
runtime verification methods, i.e. checking a given finite trace of observed configura-
tions against a logical specification. For instance, in [?], configurations are described
by annotated hyper-graphs and configuration invariants of finite traces, given first-order
logic, are checked using ALLOY [?]. More recently, [?, ?, ?] apply temporal logic for
runtime verification of reconfigurable systems. Model checking of temporal specifi-
cation is also applied to REO programs, under simplifying assumption that render the
system finite-state [?]. In contrast, we use induction to deal with parameterized systems
of unbounded sizes.

To the best of our knowledge, our work is the first to tackle the verification of
reconfiguration programs, by formally proving the absence of bugs, using a Hoare-style
annotation of a reconfiguration program with assertions that describe infinite sets of
configurations, with unboundedly many components. Reasoning about the correctness
of unbounded networks of parallel processes uses mostly hard-coded architectures (see
[?] for a survey), whereas more recent architecture description logics [?, ?] do not deal
with the reconfigurability aspect of distributed systems.

Our assertion language is a resource logic that supports local reasoning [?]. Local
reasoning about parallel programs has been traditionally within the scope of Concur-
rent Separation Logic (CSL), that introduced a parallel composition rule [?], with a
non-interfering (race-free) semantics of shared-memory parallelism [?]. Considering
interference in CSL requires more general proof rules, combining ideas of assume-
and rely-guarantee [?, ?] with local reasoning [?, ?] and abstract notions of framing
[?, ?, ?]. These rules generalize from both standard CSL parallel composition and
rely-guarantee rules, allowing even to reason about properties of concurrent objects,
such as (non-)linearizability [?]. However, the body of work on CSL deals almost
entirely with shared-memory multithreading programs, instead of distributed systems,
which is the aim of our work.

9 Conclusions and Future Work
We present a framework for deductive verification of reconfiguration programs, based
on a configuration logic that supports local reasoning. We prove the absence of de-
sign bugs in ideal networks, without packet loss and communication delays, using a
discrete event-based model of behavior, the usual level of abstraction in formal verifi-
cation of parameterized distributed systems. Our configuration logic relies on inductive
predicates to describe systems with unbounded number of components. It is used to
annotate reconfiguration programs with Hoare triples, whose validity relies on havoc
invariants about the ongoing interactions in the system. These invariants are tack-
led with a specific proof system, that uses a parallel composition rule in the style of
assume/rely-guarantee reasoning. Finally, we give the tight complexity of entailments
between predicate atoms in the configuration logic, as a step towards automating the
search for proofs of reconfiguration programs.

34

As future work, we consider push-button techniques for havoc invariant synthe-
sis, allowing broadcast interactions between all the components, and extensions of the
finite-state model of behavior, using timed and hybrid automata.

References

35

A Proofs from Section 3
Proposition 1 The set of symbolic configurations built using predicate atoms chainh,t(x,y),
for h, t ≥ 0 (Example 4) is precisely closed.

Proof. Let ϕi
def
= φi ∗∗ ki

j=1chainhi, j ,ti, j(xi, j,yi, j) be symbolic configurations, where
φi is a predicateless symbolic configuration and hi, j, ti, j ≥ 0 are integers, for all j ∈
[1,ki] and i = 1,2. We prove that ϕ1 is precise on [[ϕ2]]D . Let γ = (σ,ν,ρ) ∈ [[ϕ2]]D be a
configuration and suppose that there exist configurations γ′ = (σ′,ν,ρ),γ′′ = (σ′′,ν,ρ),
such that γ′ v γ, γ′′ v γ, γ′ |=D ϕ1 and γ′′ |=D ϕ1. Then there exist configurations γ′0

def
=

(σ′0,ν,ρ), . . . ,γ
′
k1

def
= (σ′k1

,ν,ρ) and γ′′0
def
= (σ′′0 ,ν,ρ), . . . ,γ

′′
k1

def
= (σ′′k1

,ν,ρ), such that:

• γ′ =∗ k1
j=0γ′j and γ′′ =∗ k1

j=0γ′′j ,

• γ′0 |= φ1 and γ′′0 |= φ1, and

• γ′j |=D chainh1, j ,t1, j(x1, j,y1, j) and γ′′j |=D chainh1, j ,t1, j(x1, j,y1, j), for all j ∈ [1,k1].

Since φ1 is a predicateless symbolic heap, we have Sσ′0 = Sσ′′0 and Tσ′0 = Tσ′′0 , thus
γ′0 = γ′′0 . Moreover, for each j ∈ [1,k1], we have Sσ′j = Sσ′′j and Tσ′j = Tσ′′j , because
both relations consist of all the interactions 〈u1,u2〉,〈u2,u3〉, . . . ,〈u`−1,u`〉 ∈ Tσ, such
that ν(x1, j) = u1 and ν(y1, j) = u`. Thus, we obtain γ′j = γ′′j , leading to γ′ = γ′′. �

B Proofs from Section 4
Lemma 1 For each axiom {φ} R {ψ}, where R ∈P, the following hold:

1. [[φ]]D = minv{γ ∈ Γ | 〈〈R〉〉(γ) 6=>},

2. 〈〈R〉〉([[φ]]D) = [[ψ]]D .

Proof. (1) Let σ /0 be the structure with Cσ /0

i = Iσ /0

j = /0, for all i ∈ [1,n] and all
j ∈ [1,m]. The proof goes by case split on the type of the primitive command R, which
determines the precondition φ of the axiom:

• R = new(Ci,x) and φ = emp: “⊆” Any configuration with empty structure is
v-minimal and, moreover, new(Ci,x) never faults. “⊇” Suppose, for a contradic-
tion, the existence of a configuration (σ,ν,ρ)∈minv{γ ∈ Γ | 〈〈new(Ci,x)〉〉(γ) 6=>}
such that (σ,ν,ρ) 6|= emp. Then (σ /0,ν,ρ)@ (σ,ν,ρ), thus 〈〈new(Ci,x)〉〉(σ /0,ν,ρ)=
>, contradiction.

• R = delete(Ci,x) and φ = Ci(x): “⊆” Let (σ,ν,ρ) be a configuration, such that
Cσ

i = {ν(x)}, Cσ
j = /0, for all j ∈ [1,n]\{i} and Iσ

j = /0, for all j ∈ [1,m]. We have
that 〈〈delete(Ci,x)〉〉(σ,ν,ρ) 6= > and show that 〈〈delete(Ci,x)〉〉(γ) = >, for all
configurations γ @ (σ,ν,ρ). Let γ be any such configuration. Then there exists
a configuration (σ′,ν,ρ) such that σ′ 6= σ /0 and γ • (σ′,ν,ρ) = (σ,ν,ρ). Then
γ = (σ /0,ν,ρ) is the only possibility and we have 〈〈delete(Ci,x)〉〉(γ) = >. “⊇”

36

Let (σ,ν,ρ) ∈ minv{γ ∈ Γ | 〈〈delete(Ci,x)〉〉(γ) 6=>} be a configuration. Then
ν(x) ∈Cσ

i and, since (σ,ν,ρ) is v-minimal, we have Cσ
i = {ν(x)}, Cσ

j = /0, for
all j ∈ [1,n]\{i} and Iσ

j = /0, for all j ∈ [1,m], thus (σ,ν,ρ) |=Ci(x).

• R = connect(I j,x1, . . . ,x#(I j)) and φ = emp: similar to the case R = new(Ci,x)
and φ = emp.

• R = disconnect(I j,x1, . . . ,x#(I j)) and φ = I j(x1, . . . ,x#(I j)): similar to the case
R= delete(Ci,x) and φ =Ci(x).

• R= skip and φ = emp: trivial.

(2) The proof goes by case split on the type of the primitive command R, which deter-
mines the pre- and post-condition φ and ψ of the axiom, respectively:

• R= new(Ci,x), φ= emp and ψ=Ci(x)∧state(x,Ci,q0
i), where B(Ci)= (Qi,Pi,q0

i ,−→i
):

〈〈new(Ci,x)〉〉([[emp]]) = 〈〈new(Ci,x)〉〉({(σ,ν,ρ) ∈ Γ | σ = σ /0})
= {(〈Cσ /0

1 , . . . ,Cσ /0

i ∪{u}, . . . ,C
σ /0
n , Iσ /0

1 , . . . , Iσ /0
m 〉,ν[x← u],ρ[(u,Ci)← q0

i]) | u ∈ U}
= [[Ci(x)∧ state(x,Ci,q0

i)]]

The third step applies the definition 〈〈R〉〉([[φ]]) = {γ′ | ∃γ ∈ [[φ]] . R : γ γ′} to
the case R = new(Ci,x), where the judgement new(Ci,x) : γ γ′ is defined in
Fig. 2. The rest is by the semantics of CL.

• R= delete(Ci,x), φ =Ci(x) and ψ = emp:

〈〈delete(Ri,x)〉〉([[Ci(x)]]) =
〈〈delete(Ri,x)〉〉({(σ,ν,ρ) ∈ Γ |Cσ

i = {ν(x)},Cσ
j = /0, j ∈ [1,n]\{i}, Iσ

k = /0,k ∈ [1,m]}) =
{(σ /0,ν,ρ) | (σ,ν,ρ) ∈ Γ}= [[emp]]

The third step applies the definition 〈〈R〉〉([[φ]]) = {γ′ | ∃γ ∈ [[φ]] . R : γ γ′} to
the case R = delete(Ci,x), where the judgement delete(Ci,x) : γ γ′ is defined
in Fig. 2. The rest is by the semantics of CL.

• R = connect(I j,x1, . . . ,x#(I j)), φ = emp and ψ = I j(x1, . . . ,x#(I j)): similar to the
case R= new(Ci,x).

• R = disconnect(I j,x1, . . . ,x#(I j)), φ = I j(x1, . . . ,x#(I j)) and ψ = emp: similar to
the case R= delete(Ci,x).

• R= skip and φ = emp: trivial. �

Lemma 2 For every program R ∈ L, the action 〈〈R〉〉 is local for modif(R).

Proof. By induction on the structure of the local program R. For the base case
R ∈P, we check the following points, for all γi = (σi,ν,ρ) ∈ Γ, for i = 1,2, such that
σ1⊥σ2:

37

• R= new(Ci,x): we compute 〈〈new(Ci,x)〉〉(γ1 • γ2) ={
(〈Cσ1]σ2

1 , . . . ,Cσ1]σ2
i ∪{u}, . . . , Iσ1]σ2

1 , . . . , Iσ1]σ2
m 〉,ν[x← u],ρ[(u,Ci)← q0

i]) | u ∈ U\Cσ1]σ2
i

}
⊆{

(〈Cσ1
1 , . . . ,Cσ1

i ∪{u}, . . . , I
σ1
1 , . . . , Iσ1

m 〉),ν[x← u],ρ[(u,Ci)← q0
i]) | u ∈ U\Cσ1

i
}
•
{

γ2
}
↑{x}=

〈〈new(Ci,x)〉〉(γ1)•
{

γ2
}
↑{x} , as required, since modif(new(Ci,x)) = {x}.

• R= delete(Ci,x): we distinguish the following cases:

– if ν(x) ∈Cσ1
i , we compute 〈〈delete(Ci,x)〉〉(γ1 • γ2) =

{(〈Cσ1]σ2
1 , . . . ,Cσ1]σ2

i \{ν(x)}, . . . , Iσ1]σ2
1 , . . . , Iσ1]σ2

m 〉,ν,ρ)}=
{(〈Cσ1

1 , . . . ,Cσ1
i \{ν(x)}, . . . , I

σ1
1 , . . . , Iσ1

m 〉,ν,ρ)}•{γ2}=
〈〈delete(Ci,x)〉〉(γ1)•{γ2}↑ /0 , as required, since modif(delete(Ci,x)) = /0.

– else ν(x) 6∈Cσ1
i and 〈〈delete(Ci,x)〉〉(γ1) =>, thus we obtain:

〈〈delete(Ci,x)〉〉(γ1 • γ2)⊆>=>•{γ2}↑ /0= 〈〈delete(Ci,x)〉〉(γ1)•{γ2}↑ /0

as required, since modif(delete(Ci,x)) = /0.

• R= connect(I j,x1, . . . ,x#(I j)): we compute 〈〈connect(I j,x1, . . . ,x#(I j))〉〉(γ1•γ2)={
(〈Cσ1]σ2

1 , . . . ,Cσ1]σ2
n , Iσ1]σ2

1 , . . . , Iσ1]σ2
j ∪{〈ν(x1), . . . ,ν(x#(I j))〉}, . . . , I

σ1]σ2
m 〉

}
={

(〈Cσ1
1 , . . . ,Cσ1

n , Iσ1
1 , . . . , Iσ1

j ∪{〈ν(x1), . . . ,ν(x#(I j))〉}, . . . , I
σ1
m 〉
}
•{γ2}=

〈〈connect(I j,x1, . . . ,x#(I j))〉〉(γ1)•{γ2}↑ /0 , as required, since modif(connect(I j,x1, . . . ,x#(I j))) = /0.

• R= disconnect(I j,x1, . . . ,x#(I j)): we distinguish the following cases:

– if 〈ν(x1), . . . ,ν(x#(I j))〉 ∈ Iσ1
j , we compute 〈〈disconnect(I j,x1, . . . ,x#(I j))〉〉(γ1•

γ2) ={
(〈Cσ1]σ2

1 , . . . ,Cσ1]σ2
n , Iσ1]σ2

1 , . . . , Iσ1]σ2
j ∪{〈ν(x1), . . . ,ν(x#(I j))〉}, . . . , I

σ1]σ2
m 〉,ν,ρ)

}
={

(〈Cσ1
1 , . . . ,Cσ1

n , Iσ1
1 , . . . , Iσ1

j ∪{〈ν(x1), . . . ,ν(x#(I j))〉}, . . . , I
σ1
m 〉,ν,ρ)

}
•{γ2}={

(〈Cσ1
1 , . . . ,Cσ1

n , Iσ1
1 , . . . , Iσ1

j ∪{〈ν(x1), . . . ,ν(x#(I j))〉}, . . . , I
σ1
m 〉,ν,ρ)

}
•{γ2}↑ /0

as required, since modif(disconnect(I j,x1, . . . ,x#(I j))) = /0.

– else 〈ν(x1), . . . ,ν(x#(I j))〉 6∈ Iσ1
j and 〈〈disconnect(I j,x1, . . . ,x#(I j))〉〉(γ1) =

>, thus:

〈〈disconnect(I j,x1, . . . ,x#(I j))〉〉(γ1 • γ2)⊆>=>•{γ2}↑ /0=

〈〈disconnect(I j,x1, . . . ,x#(I j))〉〉(γ1)•{γ2}↑ /0

as required, since modif(disconnect(I j,x1, . . . ,x#(I j))) = /0.

• R= skip: this case is a trivial check.

For the inductive step, we check the following points:

38

• R= R1 +R2: we compute 〈〈R1 +R2〉〉(γ1 • γ2) =

〈〈R1〉〉(γ1 • γ2)∪〈〈R2〉〉(γ1 • γ2)⊆ [by the inductive hypothesis]
〈〈R1〉〉(γ1)•{γ2}↑modif(R1) ∪〈〈R2〉〉(γ1)•{γ2}↑modif(R2)⊆ [modif(R1 +R2) =modif(R1)∪modif(R2)]
〈〈R1〉〉(γ1)•{γ2}↑modif(R1+R2) ∪〈〈R2〉〉(γ1)•{γ2}↑modif(R1+R2)=(
〈〈R1〉〉(γ1)∪〈〈R2〉〉(γ1)

)
•{γ2}↑modif(R1+R2)= 〈〈R1 +R2〉〉(γ1)•{γ2}↑modif(R1+R2)

• R= (with x : π do R1 od), where π is a pure formula: we distinguish the cases

– if γ1 • γ2 |= π, we compute

〈〈with x : π do R1 od〉〉(γ1 • γ2) ⊆ 〈〈R1〉〉({γ1 • γ2}↑x)
⊆ 〈〈R1〉〉(γ1)•{γ2}↑x∪modif(R1)

= 〈〈R1〉〉(γ1)•{γ2}↑modif(when π do R1)

– else γ1 • γ2 6|= π and

〈〈with x : π do R1 od〉〉(γ1 • γ2) = /0⊆ 〈〈R1〉〉(γ1)•{γ2}↑modif(when π do R1)

�

Theorem 1 Given a SID D , for any triple {φ} R {ψ}, if ` {φ} R {ψ} then |=D

{φ} R {ψ}.

Proof. We prove that the inference rules in Fig. 3 are sound. For the axioms,
soundness follows from Lemma 1. The rules for the composite programs are proved
below by a case split on the syntax of the program from the conclusion {φ} R {ψ},
assuming that |=D {φi} Ri {ψi}, for each premiss {φi} Ri {ψi} of the rule:

• R = with x1, . . . ,xk : ϕ do R od: let (σ,ν,ρ) ∈ [[φ]]D be a configuration and dis-
tinguish the cases

– if (σ,ν[x1← u1, . . . ,xk ← uk],ρ) |= ϕ ∗ true, for some u1, . . . ,uk ∈ U, then
we obtain (σ,ν[x1← u1, . . . ,xk← uk],ρ) |=D φ∧(ϕ∗true), because fv(φ)∩
{x1, . . . ,xk}= /0. Then 〈〈with x1, . . . ,xk : ϕ doR od〉〉(σ,ν,ρ)= 〈〈R〉〉(σ,ν[x1←
u1, . . . ,xk ← uk],ρ) ⊆ [[ψ]]D ⊆ [[∃x . ψ]]D follows from the premiss of the
rule.

– othewise, we have (σ,ν,ρ) |=∀x1 . . .∀xk .¬(ϕ∗true) and 〈〈with x : ϕ doR od〉〉(σ,ν,ρ)=
/0⊆ [[∃x . ψ]]D follows.

• the cases R = R1;R2, R = R1 +R2 and R = R∗1 are simple checks using the
operational semantics rules from Fig. 2.

Concerning the structural rules, we show only the soundness of the frame rule below;
the other rules are simple checks, left to the reader. Let γ ∈ [[φ∗ϕ]]D be a configuration.
By the semantics of ∗, there exists γ1 ∈ [[φ]]D and γ2 ∈ [[ϕ]]D , such that γ = γ1 •γ2. Since
R ∈ L, by Lemma 2, we obtain 〈〈R〉〉(γ1 • γ2) ⊆ 〈〈R〉〉(γ1) • {γ2}↑modif(R). Since γ1 ∈
[[φ]]D , by the hypothesis on the premiss we obtain 〈〈R〉〉(γ1) ⊆ [[ψ]]D . Moreover, since
γ2 ∈ [[ϕ]]D and modif(R)∩ fv(ϕ), we obtain {γ2}↑modif(R)⊆ [[ϕ]]D , leading to 〈〈R〉〉(γ)⊆
[[ψ∗ϕ]]D , as required. �

39

C Proof from Section 5
Proposition 2 If |=D η.{{φ}} Σ[φ]∗ {{ψ}} then h([[φ]]D)⊆ [[ψ]]D .

Proof. Let γ = (σ,ν,ρ) be a D-model of φ, i.e. we have γ ∈ [[φ]]D . It is sufficient
to prove that h(γ)⊆

⋃
{o[w](γ) | w ∈ 〈〈Σ[φ]∗〉〉γ}, because o[w](γ)⊆ [[ψ]]D for each w ∈

〈〈Σ[φ]∗〉〉γ, by the hypothesis |=D η.{{φ}} Σ[φ]∗ {{ψ}} (Def. 9). Let γ′= (σ,ν,ρ′)∈ h(γ)
be a configuration. Then there exists a finite sequence w = (I1,u1), . . . ,(Ik,uk), such
that γ′ ∈ c[w](γ), where c[w] def

= c[Ik,uk] ◦ . . . ◦ c[I1,u1], by Def. 2. Note that c[I,u] ⊆
o[I,u] pointwise, for each interaction type I and tuple u ∈ U#(I), by Def. 2 and 8;
indeed the two definitions are identical, except for point (1) of Def. 2, which is stronger
than point (1) of Def. 8. We are thus left with proving w ∈ 〈〈Σ[φ]∗〉〉γ, or equivalently,
(I j,u j) ∈ 〈〈Σ[φ]〉〉γ, for each j ∈ [1,k]. Since γ′ ∈ c[w](γ), by Def. 2, we have u j ∈ Iσ

j ,
for each j ∈ [1,k], because the structure σ cannot be changed by a state change c[I j,u j].
Since, moreover, γ |=D φ by the choice of γ, we obtain (I j,u j) ∈ 〈〈Σ[φ]〉〉γ, for each
j ∈ [1,k]. �

Lemma 3 Given a proof tree T , each node in T is labeled with a distinctive havoc
triple.

Proof. The proof goes by induction on the structure of the proof tree. For the base
case, the tree consists of a single root node and let η.{{φ}} L {{ψ}} be the label of the
root node. By Assumption 2, φ is a symbolic configuration and η = {Σ[α1], . . . ,Σ[αk]},
where atoms(φ) = {α1, . . . ,αk} is the set of interaction and predicate atoms from φ. Let
γ be a D-model of φ, hence there exist configurations γ0,γ1, . . . ,γk, such that γ=•k

i=0 γi
and γi |=D αi, for all i∈ [1,k]. Because the composition γi •γ j is defined, we obtain that
〈〈Σ[αi]〉〉γi ∩ 〈〈Σ[α j]〉〉γ j = /0, for all i 6= j ∈ [1,k]. Moreover, since each formula αi ∈
atoms(φ) is precise on [[φ]]D , by Assumption 1, we have 〈〈Σ[αi]〉〉γi = 〈〈Σ[αi]〉〉γ, hence
〈〈Σ[αi]〉〉γ ∩〈〈Σ[α j]〉〉γ = /0, for all i 6= j ∈ [1,k]. For the inductive step, we distinguish
the cases below, based on the type of the inference rule that expands the root:

• (I) Let η.{{φ∗ I(x1, . . . ,x#(I))}} L {{ψ∗ I(x1, . . . ,x#(I))}} be the label of the root
and let γ ∈ [[φ∗ I(x1, . . . ,x#(I))]]D be a configuration. Then there exists config-
urations γ0 and γ1, such that γ = γ0 • γ1, γ0 |=D φ and γ1 |= I(x1, . . . ,x#(I)). By
Assumption 2, we have η = Σ[φ]∪{Σ[I(x1, . . . ,x#(I))]}. By the inductive hypoth-
esis, the premiss η\{I(x1, . . . ,x#(I))} . {{φ}} L {{ψ}} of the rule is distinctive,
hence the interpretations of the atoms in the environment {〈〈Σ[α]〉〉γ0 | α ∈ atoms(φ)}
are pairwise disjoint. Since each predicate atom α ∈ atoms(φ) is precise on
[[φ]]D , by Assumption 1, the sets {〈〈Σ[α]〉〉γ | α ∈ atoms(φ)} are pairwise dis-
joint. Since I(x1, . . . ,x#(I)) is precise on Γ, we obtain that 〈〈I(x1, . . . ,x#(I))〉〉γ1 =
〈〈I(x1, . . . ,x#(I))〉〉γ and, since γ = γ0 • γ1, the set 〈〈I(x1, . . . ,x#(I))〉〉γ is disjoint
from the sets {〈〈Σ[α]〉〉γ | α ∈ atoms(φ)}, thus η.{{φ∗ I(x1, . . . ,x#(I))}} L {{ψ∗ I(x1, . . . ,x#(I))}}
is distinctive.

• (E) Let η.{{φ}} L {{ψ}} be the label of the root and let γ ∈ [[φ]]D be a configura-
tion. By Assumption 2, we have η = Σ[φ] and let I(x1, . . . ,x#(I)) be an interaction
atom, such that φ ‡ I(x1, . . . ,x#(I)). Let γ′ be any model of I(x1, . . . ,x#(I)). By φ ‡

40

I(x1, . . . ,x#(I)), we have I(x1, . . . ,x#(I)) 6∈ η and, moreover, the composition γ• γ′

is defined, thus γ • γ′ ∈ [[φ∗ I(x1, . . . ,x#(I))]]D . By the inductive hypothesis, the
havoc triple η∪{Σ[I(x1, . . . ,x#(I))]}.{{φ∗ I(x1, . . . ,x#(I))}} L {{ψ∗ I(x1, . . . ,x#(I))}}
is distinctive, hence 〈〈Σ[α1]〉〉γ•γ

′ ∩〈〈Σ[α2]〉〉γ•γ
′
= /0, for all Σ[α1],Σ[α2]∈ η. Since

γ′ |= I(x1, . . . ,x#(I)), η = Σ[φ] and φ ‡ I, we obtain 〈〈Σ[α]〉〉γ•γ′ = 〈〈Σ[α]〉〉γ, for all
Σ[α] ∈ η, thus η.{{φ}} L {{ψ}} is distinctive.

• (./) Let η1∪η2 . {{φ1 ∗φ2}} L1 ./η1,η2 L2 {{ψ1 ∗ψ2}} be the label of the root,
ηi = Σ[φi ∗F (φi,φ3−i)], for i = 1,2, and let γ be a D-model of the precondi-
tion of this havoc triple. Then there exists two configurations γ1, γ2, such that
γ = γ1 • γ2 and γi |=D φi, for i = 1,2. By Assumption 2, we have η1 ∪ η2 =
Σ[φ1]∪ Σ[φ2]. Let γ′i be a structure, such that γ′i v γ3−i and γ′i |= F (φi,φ3−i),
for i = 1,2. By the definition of F (φi,φ3−i), as separated conjunction of inter-
action atoms from φ3−i, these substructures exist, and moreover, because each
interaction atom is precise on Γ, they are unique. Then we have γi • γ′i |=D φi ∗
F (φi,φ3−i), for i = 1,2. By the inductive hypothesis, since each havoc triple ηi .

{{φi ∗F (φi,φ3−i)}} Li {{ψi ∗F (φi,φ3−i)}} is distinctive, the sets {〈〈Σ[α]〉〉γi•γ′i | α ∈ atoms(φi)}
are pairwise disjoint, for i = 1,2. By Assumption 1, each predicate atom α ∈
atoms(φ1 ∗φ2) is precise on [[φ1 ∗φ2]]D , hence the sets {〈〈Σ[α]〉〉γ | α ∈ atoms(φi)}
are pairwise disjoint as well, for i = 1,2. Moreover, since the configurations γ1
and γ2 share no interactions, the havoc triple η1∪η2.{{φ1 ∗φ2}} L1 ./η1,η2 L2 {{ψ1 ∗ψ2}}
is distinctive.

• (LU) Let η . {{φ∗A(x1, . . . ,x#(A))}} L {{ψ}} be the label of the root let γ be a
D-model of the precondition of this havoc triple. Then there exist configura-
tions γ0 = (σ0,ν,ρ) and γ1 = (σ1,ν,ρ), such that γ = γ0 • γ1, γ0 |=D φ and γ1 |=D

A(x1, . . . ,x#(A)). By Assumption 2, we have η = Σ[φ]∪{Σ[A(x1, . . . ,x#(A))]}. By
the inductive hypothesis, each of the premisses η′ .{{φ∗ϕ}} L′ {{ψ}} is distinc-
tive, where:

– A(x1, . . . ,x#(A))⇐D ∃z1 . . .∃zh . ϕ is an unfolding step and ϕ is a symbolic
configuration, such that (σ1,ν[z1 ← u1, . . . ,zh ← uh],ρ) |=D ϕ, for some
indices u1, . . . ,uh ∈ U,

– η′ = (η\{Σ[A(x1, . . . ,x#(A))]})∪Σ[ϕ].

Because we assumed that {z1, . . . ,zh}∩fv(φ)= /0 (if necessary, by an α-renaming
of existentially quantified variables), we have γ′0 |=D φ and γ′1 |=D A(x1, . . . ,x#(A)),

where γ′0
def
= (σ0,ν[z1 ← u1, . . . ,zh ← uh],ρ) and γ′1

def
= (σ1,ν[z1 ← u1, . . . ,zh ←

uh],ρ), thus γ′ |=D φ∗A(x1, . . . ,x#(A)), where γ′= γ′0•γ′1. Because η′.{{φ∗ϕ}} L′ {{ψ}}
is distinctive and γ′ |=D φ∗ϕ, we obtain 〈〈Σ[α1]〉〉γ

′ ∩〈〈Σ[α2]〉〉γ
′
= /0, for all α1 ∈

atoms(φ) and α2 ∈ atoms(φ)∪ atoms(ϕ). By Assumption 1, A(x1, . . . ,x#(A)) is
precise on [[φ∗A(x1, . . . ,x#(A))]]D , hence 〈〈Σ[A(x1, . . . ,x#(A))]〉〉γ

′
=

⋃
α∈atoms(ϕ) 〈〈Σ[α]〉〉

γ′ .

Since 〈〈Σ[α]〉〉γ′ = 〈〈Σ[α]〉〉γ, for each α ∈ atoms(φ)∪{A(x1, . . . ,x#(A))}, we ob-
tain that 〈〈Σ[α1]〉〉γ∩〈〈Σ[α2]〉〉γ = /0, for all α1,α2 ∈ atoms(φ)∪{A(x1, . . . ,x#(A))},
i.e. η.{{φ∗A(x1, . . . ,x#(A))}} L {{ψ}} is distinctive.

41

• (∨) Let η . {{
∨k

i=1 φ∧δi}} L {{
∨k

i=1 ψi}} be the label of the root and let γ be
a D-model of the precondition of this triple. Then γ |=D φ∧ δi, for some i ∈
[1,k]. By the inductive hypothesis, the triple η.{{φ∧δi}} L {{ψi}} is distinctive,
hence 〈〈Σ[α1]〉〉γ ∩ 〈〈Σ[α1]〉〉γ = /0, for all α1,α2 ∈ atoms(φ). Since atoms(φ) =
atoms(

∨k
i=1 φ∧δi), we obtain that η.{{

∨k
i=1 φ∧δi}} L {{

∨k
i=1 ψi}} is distinctive.

• (∧) and (·): these cases are similar to (∨).

• (C), (∗), (∪) and (⊂): these cases are trivial, because the precondition and the
environment does not change between the conclusion and the premisses of these
rules. �

Theorem 2 If η.{{φ}} L {{ψ}} then |=D η.{{φ}} L {{ψ}}.

Proof. For each axiom and inference rule in Fig. 5, with premisses ηi.{{φi}} Li {{ψi}},
for i = 1, . . . ,k, k ≥ 0, and conclusion η.{{φ}} L {{ψ}}, we prove that:

(?) |=D η.{{φ}} L {{ψ}}, if |=D ηi .{{φi}} Li {{ψi}}, for all i ∈ [1,k]

Let us show first that (?) is a sufficient condition. If η . {{φ}} L {{ψ}} then there
exists a cyclic proof whose root is labeled by η . {{φ}} L {{ψ}} and we apply the
principle of infinite descent to prove that |=D η . {{φ}} L {{ψ}}. Suppose, for a con-
tradiction, that this is not the case and there exists a configuration γ0 ∈ [[φ]]D and a
word w0 ∈ 〈〈L〉〉γ, such that o[w0](γ0) 6⊆ [[ψ]]D . Assuming that (?) holds, each in-
valid node, with label ηi . {{φi}} Li {{ψi}} and counterexample γi = (σi,νi,ρi), not
on the frontier of the proof tree, has a successor, whose label is invalid, for all i ≥ 0.
Let preds(φi) = {Ai

1(x
i
1), . . . ,A

i
ki
(xi

ki
)} be the set of predicate atoms from φi, for each

i ≥ 0. Consequently, there exists a set of configurations Γi = {γi
0, . . . ,γ

i
ki
}, such that

γi = γi
0 • . . .• γi

ki
and γi

j |=D Ai
j(xi

j), for all j ∈ [1,ki] and all i≥ 0.

Fact 1 For each i≥ 0, either Γi+1 ⊆ Γi or there exists j ∈ [1,ki], such that Γi+1 =
(
Γi \

{γi
j}
)
∪{γ′ ∈ [[A(x1, . . . ,x#(A))]]D | γ

′ v γi
j, A(x1, . . . ,x#(A)) ∈ preds(ϕi

j)}, where Ai
j(xi

j)⇐D
∃zi

j . ϕi
j is an unfolding step and ϕi

j ∈ S is a symbolic configuration.

Proof. By inspection of the inference rules in Fig. 5b-e. The only interesting cases
are:

• (./) in this case Γi+1 is a possibly strict subset of Γi, because the models of
the preconditions from the premises are subconfigurations of the model of the
precondition in the conclusion,

• (LU) in this case Γi+1 is obtained by replacing an element γi
j from Γi with a set

of configurations γ′, such that γ′ v γi
j and γ′ is a model of a predicate atom from

an unfolding of the predicate atom for which γi
j is a model. �

For a configuration γi
j, we denote by n(i, j) the minimum length of a complete

unfolding Ai
j(xi

j)⇐◦D ϕi
j, such that γi

j |= ϕi
j, taken among all such complete unfoldings.

Let mi be the multiset of numbers n(i, j), for all j ∈ [1,ki] and i ≥ 0. By Fact 1, the

42

sequence of multisets m0,m1, . . . is such that either mi =mi+1 or mi �mi+1, where the
Dershowitz-Manna multiset ordering ≺ is defined as m ≺ m′ if and only if there exist
two multisets X and Y , such that X 6= /0, X ⊆ m′, m = (m′ \X)∪Y , and for all y ∈ Y
there exists some x ∈ X , such that y < x. By the fact that the cyclic proof tree is a cyclic
proof, the infinite path goes infinitely often via a node whose label is the conclusion of
the application of (LU). Then the infinite sequence of multisets m0,m1, . . . contains a
strictly decreasing subsequence in the multiset order, which contradicts the fact that ≺
is well-founded. We are left with proving (?) for each type of axiom and inference rule
in Fig. 5:

• (ε) For each configuration γ, we have 〈〈ε〉〉γ = {ε} and o[ε] is the identity (Def.
9).

• (†) In any D-model (σ,ν,ρ) of φ, the action o[I,〈ν(x1), . . . ,ν(x#(I))〉] is disabled,
by the side condition φ † I(x1, . . . ,x#(I)) (Def. 10).

• (⊥) Because the precondition has no models.

• (Σ) By Def. 8.

• (I) Let γ = (σ,ν,ρ) ∈ [[φ∗ I(x1, . . . ,x#(I))]]D be a configuration. By Lemma 3, we
have that η.{{φ∗ I(x1, . . . ,x#(I))}} L {{ψ∗ I(x1, . . . ,x#(I))}} is distinctive. By the
side condition Σ[I(x1, . . . ,x#(I))] ∈ η\ supp(L), it follows that 〈〈I(x1, . . . ,x#(I))〉〉γ
is disjoint from the interpretation 〈〈Σ[α]〉〉γ of any alphabet symbol Σ[α]∈ supp(L),
hence the interaction (I,〈ν(x1), . . . ,ν(x#(I))〉) does not occur in 〈〈L〉〉γ. By the in-
ductive hypothesis, we have |=D η . {{φ}} L {{ψ}}, which leads to the required
|=D η.{{φ∗ I(x1, . . . ,x#(I))}} L {{ψ∗ I(x1, . . . ,x#(I))}}.

• (E) Let γ = (σ,ν,ρ) ∈ [[φ]]D be a configuration and ω
def
= Σ[α1] · . . . ·Σ[αk] be a

finite concatenation of alphabet symbols from supp(L). If αi = I(x1, . . . ,x#(I)),
for some i ∈ [1,k], then we have 〈〈Σ[αi]〉〉γ = /0, because of the side condition
φ ‡ I(x1, . . . ,x#(I)). Then o[w](γ) = /0⊆ [[ψ]]D , for each w ∈ 〈〈ω〉〉γ. Otherwise, if
I(x1, . . . ,x#(I)) does not occur on ω, then o[w](γ) ⊆ [[ψ]]D , for each w ∈ 〈〈L〉〉γ ∩
〈〈ω〉〉γ, by the inductive hypothesis.

• (./) Let γ = (σ,ν,ρ) ∈ [[φ1 ∗φ2]]D be a configuration. Then there exist config-
urations γi = (σi,ν,ρ) ∈ [[φi]]D , for i = 1,2, such that γ = γ1 • γ2. Let γ′i be
configurations such that γ′i v γ3−i and γ′i |= F (φi,φ3−i), for i = 1,2. Because
F (φi,φ3−i) is a separated conjunction of interaction atoms, each of which is
precise on Γ, it follows that F (φi,φ3−i) is precise on Γ, thus γ′i are unique, for
i = 1,2. Let γ′′i

def
= γi • γ′3−i, for i = 1,2. Moreover, since ηi = Σ[φi ∗F (φi,φ3−i)],

the only interactions in 〈〈ηi〉〉γ are the ones in 〈〈ηi〉〉γ
′′
i , hence 〈〈ηi〉〉γ = 〈〈ηi〉〉γ

′′
i ,

for i = 1,2. Let w ∈ 〈〈L1 ./η1,η2 L2〉〉γ be a word. Then w ↓〈〈ηi〉〉γ∈ 〈〈Li〉〉γ, for
i = 1,2. Because 〈〈ηi〉〉γ = 〈〈ηi〉〉γ

′′
i , we obtain w ↓〈〈ηi〉〉γ= w ↓

〈〈ηi〉〉
γ′′i
∈ 〈〈Li〉〉γ

′′
i , for

i = 1,2. Since, moreover, γ′′i |=D φi ∗ F (φi,φ3−i), by the inductive hypothe-
sis we obtain that o[w↓

〈〈ηi〉〉
γ′′i
](γ′′i) ⊆ [[ψi ∗F (φi,φ3−i)]]D , for i = 1,2. We par-

tition w = w1w′1w′′1w′′′1 . . .wkw′kw′′k w′′′k , for some k ≥ 1, in three types of (possibly
empty) blocks, such that, for all j ∈ [1,k], we have:

43

– w j ∈
(
〈〈η1〉〉γ

′′
1 \ 〈〈η2〉〉γ

′′
2
)∗,

– w′j,w
′′′
j ∈

(
〈〈η1〉〉γ

′′
1 ∩〈〈η2〉〉γ

′′
2
)∗, and

– w′′j ∈
(
〈〈η2〉〉γ

′′
2 \ 〈〈η1〉〉γ

′′
1
)∗.

If o[w](γ) = /0, there is nothing to prove. Otherwise, let γ′ = (σ,ν,ρ′) ∈ o[w](γ)
and ρ1

def
= ρ,ρ′1,ρ

′′
1 ,ρ
′′′
1 , . . . ,ρk,ρ

′
k,ρ
′′
k ,ρ
′′′
k

def
= ρ′ be an arbitrary sequence of state

maps such that, for all j ∈ [1,k], we have (σ,ν,ρ′j) ∈ o[w j](σ,ν,ρ j), (σ,ν,ρ′′j) ∈
o[w′j](σ,ν,ρ

′
j), (σ,ν,ρ

′′′
j)∈ o[w′′j](σ,ν,ρ′′j), and (σ,ν,ρ j+1)∈ o[w′′′j](σ,ν,ρ′′′j), if

j < k. Consider the sets of component indices Ci
def
=

⋃n
j=1 Cσi

j from σi and denote
by ρi, j, ρ′i, j, ρ′′i, j and ρ′′′i, j the finite restrictions of ρ j, ρ′j, ρ′′j and ρ′′′j to Ci, for
i = 1,2, respectively. We prove the following:

1. ρ2, j = ρ′2, j, for all j ∈ [1,k], and

2. ρ′′1, j = ρ′′′1, j, for all j ∈ [1,k].

We prove the first point, the argument for the second point being symmetric. It
is sufficient to prove that the state of the components with indices in C2, which
are the only ones ρ2, j and ρ′2, j account for, is not changed by w j, for all j ∈ [1,k].
Since w j ∈

(
〈〈η1〉〉γ

′′
1 \ 〈〈η2〉〉γ

′′
2
)∗, the only interactions on w j are the ones from

γ′′1 = γ1 •γ′1 that do not occur in γ′′2 = γ2 •γ′2, where γ′1 v γ2 and γ′2 v γ1. It follows
that the interactions occurring on w j are the ones from γ1 that do not occur in
γ′′2 . Since γ′′2 |=∗ α∈inter(φ1)\(inter(φ1)∪inter(φ2))

α [= F (φ2,φ1)], the interactions
occurring on w j must occur in some model γ of a tight subformula of φ1. Hence,
the interactions from γ can only change the state of a component from γ. Since
γv γ1 and γ1 •γ2 is defined, there can be no component indexed by some element
of C2, whose state is changed by an interaction from γ, thus ρ2, j = ρ′2, j (1).
Consequently, we obtain two sequences of words and finite state maps:

– w1,w′1,w
′′′
1 , . . . ,wk,w′k,w

′′′
k and ρ1,1,ρ

′
1,1,ρ

′′
1,1, . . . ,ρ1,k,ρ

′
1,k,ρ

′′
1,k, where (σ1,ν1,ρ

′
1, j)∈

o[w1](σ1,ν1,ρ1, j), (σ1,ν1,ρ
′′
1, j) ∈ o[w′1](σ1,ν1,ρ

′
1, j) and (σ1,ν1,ρ1, j+1) ∈

o[w′′′1](σ1,ν1,ρ
′′
1, j), for all j ∈ [1,k−1], and

– w′1,w
′′
1 ,w

′′′
1 , . . . ,w

′
k,w
′′
k ,w

′′′
k and ρ′2,1,ρ

′′
2,1,ρ

′′′
2,1, . . . ,ρ

′
2,k,ρ

′′
2,k,ρ

′′′
2,k, where (σ2,ν2,ρ

′′
2, j)∈

o[w′1](σ2,ν2,ρ
′
2, j), (σ2,ν2,ρ

′′′
2, j) ∈ o[w′′1](σ2,ν2,ρ

′′
2, j) and (σ2,ν2,ρ

′
2, j+1) ∈

o[w′′′1](σ2,ν2,ρ
′′′
2, j), for all j ∈ [1,k−1].

Note that w↓
〈〈η1〉〉

γ′′1
= w1w′1w′′′1 . . .wkw′kw′′′k and w↓

〈〈η2〉〉
γ′′2
= w′1w′′1w′′′1 . . .w′kw′′k w′′′k .

By the inductive hypothesis, we have o[w↓
〈〈ηi〉〉

γ′′i
](γ′′i)⊆ [[ψi ∗F (φi,φ3−i)]]D , hence

(σi,ν,ρ
′′′
i,k) ∈ o[w↓

〈〈ηi〉〉
γ′′i
](γ′′i), for i = 1,2. Moreover, σ1 •σ2 = σ and the state

maps ρ′ and ρ′′′1,k ∪ ρ′′′2,k agree on all pairs (u,Ci), such that u ∈ Cσ
i , hence γ′ =

(σ,ν,ρ′) ∈ [[ψ1 ∗ψ2]]D .

Proving (?) for the rest of the rules is a standard check, left to the reader. �

44

D Proofs from Section 6
Proposition 3 The set of symbolic configurations using predicate atoms treeidle(x),
tree¬idle(x), tree(x) and tseg(x,y) is precisely closed.

Proof. Let ϕi
def
= φi ∗∗ ki

j=1tree?(xi, j) ∗∗ `i
j=ki+1tseg(xi, j,yi, j) be symbolic con-

figurations, where φi is a predicateless symbolic configuration and tree?(x) is either
treeidle(x), tree¬idle(x) or tree(x), for all j ∈ [1, `i] and i = 1,2. We prove that ϕ1 is
precise on [[ϕ2]]D . Let γ = (σ,ν,ρ) ∈ [[ϕ2]]D be a configuration and suppose that there
exist configurations γ′ = (σ′,ν,ρ),γ′′ = (σ′′,ν,ρ), such that γ′ v γ, γ′′ v γ, γ′ |=D ϕ1

and γ′′ |=D ϕ1. Then there exist configurations γ′0
def
= (σ′0,ν,ρ), . . . ,γ

′
`1

def
= (σ′`1

,ν,ρ) and

γ′′0
def
= (σ′′0 ,ν,ρ), . . . ,γ

′′
`1

def
= (σ′′`1

,ν,ρ), such that:

• γ′ =∗ `1
j=0γ′j and γ′′ =∗ `1

j=0γ′′j ,

• γ′0 |= φ1 and γ′′0 |= φ1,

• γ′j |=D tree?(x1, j) and γ′′j |=D tree?(x2, j), for all j ∈ [1,k1], and

• γ′j |=D tseg(x1, j,y1, j) and γ′′j |=D tseg(x2, j,y2, j), for all j ∈ [k1 +1, `1].

Since φ1 is a predicateless symbolic heap, we have Nodeσ′0 =Nodeσ′0 , Leaf σ′0 = Leaf σ′0 ,

I
σ′0
` = I

σ′′0
` and I

σ′0
r = I

σ′′0
r , thus γ′0 = γ′′0 . Next, for each j ∈ [1,k1], we have I

σ′j
` = I

σ′′j
` and

I
σ′j
r = I

σ′′j
r , because these relations correspond to the same tree whose root is ν(x1, j),

whose frontier contains only indices u ∈ Nodeσ′j ∩Nodeσ′′j , such that ρ(u,Node) ∈
{leaf idle, leaf busy}. The interpretation of I` and Ir in both cases is uniquely de-
termined by the fact that the base cases of the inductive definitions of tree?(x) declare
components in states leaf idle and leaf busy, which, moreover, do not occur any other

rules in D . Finally, for each j ∈ [k1 +1, `1], we have I
σ′j
` = I

σ′′j
` and I

σ′j
r = I

σ′′j
r , because

the structures in which these relations are interpreted correspond to the same tree whose
root is ν(x1, j) and frontier contains ν(y1, j) together with indices u ∈ Nodeσ′j ∩Nodeσ′′j ,
such that ρ(u,Node) ∈ {leaf idle, leaf busy}. We obtain, consequently, that γ′j = γ′′j ,
for all j ∈ [1, `1], leading to γ′ = γ′′. �

E Proofs from Section 7
Proposition 4 The entailment A(x1, . . . ,xk) |=D B(x1, . . . ,xk) is undecidable, even when
D is progressing and only the rules defining the predicate symbols from depD(φ) are
λφ-connected.

Proof. By a reduction from the known undecidable problem of universality of
context-free languages. A context-free grammar G = 〈N,T,S,∆〉 consists of a finite set
N of nonterminals, a finite set T of terminals, a start symbol S ∈ N and a finite set ∆

of productions of the form A→ w, where A ∈ N and w ∈ (N∪T)∗. Given finite strings

45

u,v ∈ (N∪T)∗, the step relation u⇒ v replaces a nonterminal A of u by the right-hand
side w of a production A→ w and ⇒∗ denotes the reflexive and transitive closure of
⇒. The language of G is the set L(G) of finite strings w ∈ T ∗, such that s⇒∗ w. The
problem T ∗ ⊆ L(G) is known as the universality problem, known to be undecidable
[?]. Moreover, we assume w.l.o.g. that:

• T = {0,1}, because every terminal can be encoded as a binary string,

• L(G) does not contain the empty string ε, because computing a grammar G′

such that L(G′) = L(G)∩ T+ is possible and, moreover, we can reduce from
the modified universality problem problem T+ ⊆ L(G′) instead of the original
T ∗ ⊆ L(G),

• G is in Greibach normal form, i.e. it contains only production rules of the form
A0→ aA1 . . .An, where A0, . . .An ∈ N, for some n≥ 0 and a ∈ T .

We consider the signature S = 〈I0, I1〉, where #(I0) = #(I1) = 2. For each nontermi-
nal A0 ∈ N, we have a predicate A0(x,y) and a rule A0(x,y)← ∃x1 . . .∃xn . Ia(x,x1) ∗
A1(x1,x2)∗ . . .∗An(xn,y), for each rule A0→ aA1 . . .An of G. Moreover, we consider
the rules B(x,y)← ∃z . Ia(x,z) ∗B(z,y) and B(x,y)← Ia(x,y), for all a ∈ {0,1} and
let D be the resulting SID. It is easy to check that the SID is progressing and estab-
lished and that, moreover, the rules for B(x,y) are connected. Finally, the entailment
B(x,y) |=D A(x,y) is valid if and only if T+ ⊆ L(G). �

Proposition 5 There exists an integer B≥ 1, such that δ(σ)≤B, for each (σ,ν,ρ) ∈
[[A(x1, . . . ,x#(A))]]D only if B= O(size(D)c), for a constant c≥ 1.

Proof. Given rules ρ1,ρ2 ∈ D , we write (ρ1, i1) (ρ2, i2) for the conjunction of
the following:

• ρ1 is a rule A(x1, . . . ,x#(A))←D ∃y1 . . .∃yr . φ∗∗ h
`=1B

`(z`1, . . . ,z
`
#(B`)

), where φ

is a symbolic configuration and i1 ∈ [1,#(A)],

• ρ2 defines B, where i2 ∈ [1,#(B)], and

• B= B` and xi 'φ z`j, for some ` ∈ [1,h].

If, moreover, there exists a variable y ∈ fv(φ), such that xi 'φ y and y occurs in an
interaction atom in φ, we write (ρ1, i1) ̇(ρ2, i2) instead of (ρ1, i1) (ρ2, i2). If the rule
ρ1 defines A, the sequence (ρ1, i1) (ρ2, i2) . . . (ρn, in) corresponds to one or
more unfoldings A(x1, . . . ,x#(A))⇐D ϕ2⇐D . . .⇐D ϕn that differ only by the choices
of the rules and predicate atoms along the way. The following fact gives an equivalent
condition for degree boundedness:

Fact 2 There exists an integer b ≥ 1, such that δ(σ) ≤ b, for every configuration
(σ,ν,ρ) ∈ [[A(x1, . . . ,x#(A))]]D if and only if there exists an integer K ≥ 1, such that
every unfolding corresponding to the K-th iteration of an elementary cycle (ρ1, i1)
(ρ2, i2) . . . (ρr, ir) (ρ1, i1), where (ρ`, i`) ̇(ρ`+1, i`+1), for some ` ∈ [1,r−1],
is D-unsatisfiable.

46

Proof. “⇒” Suppose, for a contradiction, that there exists an elementary cycle γ =
(ρ1, i1) (ρ2, i2) . . . (ρr, ir) (ρ1, i1), such that (ρ`, i`) ̇(ρ`+1, i`+1), for some
` ∈ [1,r−1] and for each K ≥ 1, there exists an unfolding A(x1, . . . ,x#(A))⇐D ∃z . ψ

corresponding to γK , such that ψ is a symbolic configuration and ∃z . ψ is D-satisfiable.
Let (σ,ν,ρ) be a D-model of ψ. Then there are at least K interaction atoms I(x)
in ψ and variables y ∈ x, such that xi1 'ψ y. Clearly the interactions (I,ν(x)) must
be pairwise distinct, otherwise ψ, and consequently ϕK could not be satisfiable (all
these interaction atoms are connected by separating conjunctions). Then ν(xi1) occurs
in at least K distinct interactions. Since this happens for each K ≥ 1, we obtain a
contradiction with the hypothesis.

“⇐” Since no k-unfolding corresponding to an elementary cycle (ρ1, i1) (ρ2, i2)
. . . (ρr, ir) (ρ1, i1) yields a satisfiable formula, and the length of each elementary
cycle is bounded by ||D|| ·width(D). �

We are left with proving that the bound b on the maximum number of tuples to
which an index may belong in a D-model of A(x1, . . . ,x#(A)) depends only on D . Let
A(x1, . . . ,x#(A))⇐D ∃z . ψ be an unfolding corresponding to γK , such that ψ is D-
unsatisfiable. By Fact 2, we know that for each elementary cycle γ as above, such an
integer K exists. We define the undirected graph (V ,E):

• V is the set of pairs (ρ,x), where:

ρ : A(x1, . . . ,x#(A))←D ∃y1 . . .∃yr . φ∗∗ h
`=1B

`(z`1, . . . ,z
`
#(B`)

)

is a rule of D , φ is a symbolic configuration, such that x ∈ fv(φ), and

• E is the set of undirected edges between (ρ,x) and (ρ′,y), where ρ is a rule as
above and either:

– ρ = ρ′, y ∈ fv(φ) and x'φ y, or

– ρ′ defines the predicate atom B`(y1, . . . ,y#(B`)), y = y j and x'φ z`j.

Clearly, we have ||V || ≤ size(D) ·width(D), because ||D|| ≤ size(D) and there are at
most width(D) variables in each rule of D . Since ψ is unsatisfiable, at least one of the
following holds:

• ψ contains two component atoms Ci(x) and Ci(y), such that x'ψ y. In this case,
there exists an elementary path from (ρ,x) to (ρ′,y), for some rules ρ,ρ′ ∈D , in
(V ,E), of length at most ||V ||, hence b≤ size(D) ·width(D).

• ψ contains two interaction atoms I j(x1, . . . ,x#(I j)) and I j(y1, . . . ,y#(I j)), such that
xi'ψ yi, for each i∈ [1,#(I j)]. In this case, consider the product graph (V #(I j),EI j),
where EI j has an edge between 〈(ρ1,x1), . . . ,(ρ#(I j),x#(I j))〉 and 〈(ρ′1,x′1), . . . ,(ρ′#(I j)

,x′#(I j)
)〉

if and only if there is an edge between (ρi,xi) and (ρ′i,x
′
i) in E , for all i ∈

[1,#(I j)]. Then there exists a path between 〈(ρ1,x1), . . . ,(ρ#(I j),x#(I j))〉 and 〈(ρ′1,y1), . . . ,(ρ
′
#(I j)

,y#(I j))〉,
for some rules ρ1,ρ

′
1, . . . ,ρ#(I j),ρ

′
#(I j)
∈ D , of length at most ||V ||#(I j). Hence

B≤ ||V ||#(I j) ≤ (size(D) ·width(D))#(I j).

47

• ψ contains two state atoms state(x,Ci,q) and state(y,Ci,q′), such that x 'ψ y
and q 6= q′. Similar to the first point, we obtain b≤ ||V ||, in this case.

In all cases, we have B=O
(
(size(D) ·width(D))2maxm

j=1 #(I j)
)
=O

(
size(D)2maxm

j=1 #(I j)
)

.
�

Lemma 4 If D is progressing, for each D-model (σ,ν,ρ) of A(x1, . . . ,x#(A)) ∈ def(D)

and each heap h ∈ GB(σ,ρ), there exists a mapping ι : [1,#(A)]× [1,m]→ 2[0,B−1]

and a store ν, such that the following hold:

1. ν(xi) = ν(xi) ∈ dom(h) and ν(η(xi)) = h(ν(xi)), for each i ∈ [1,#(A)],

2. {u ∈ Iσ
j | ν(xi) ∈ u} = {〈h(ν(xi))〉ipos(j,k) | k ∈ ι(i, j)}, for all i ∈ [1,#(A)] and

j ∈ [1,m],

3. (ν,h) |=SL
D Aι(x1, . . . ,x#(A),η(x1), . . . ,η(x#(A))).

Proof. Since (σ,ν,ρ) |=D A(x1, . . . ,x#(A)), there exists a complete unfolding
A(x1, . . . ,x#(A))⇐◦D ∃t1 . . .∃tk . ψ, where ψ is a predicateless symbolic configuration,
and indices u1, . . . ,uk ∈ U, such that (σ,ν[t1 ← u1, . . . , tk ← uk],ρ) |= ψ. By an α-
renaming of the existentially quantified variables, if necessary, we can assume that
t1, . . . , tk are pairwise distinct and {x1, . . . ,x#(A)}∩{t1, . . . , tk} = /0. Moreover, because
D is progressing, there are no equality atoms in ψ, hence we can assume w.l.o.g. that
ν′

def
= ν[t1← u1, . . . , tk ← uk] is injective. The proof goes by induction on the length of

the complete unfolding above.
For the base case, the length is one and there exists a rule A(x1, . . . ,x#(A))←D

∃t1 . . .∃tk . ψ. Since D is progressing, by point (1) of Def. 13, we have #(A) = 1,
k = 0 and x1 is the only variable that occurs in ψ. Since (σ,ν′,ρ) |= ψ, we obtain
that nodes(σ) = {ν(x1)}, because ν′(x1) = ν(x1), by the definition of ν′. Because
h ∈ GB(σ,ρ), we have dom(h) = {ν(x1)}, by Def. 15. We define the store ν as
ν(η(x1))

def
= h(ν(x1)) and ν(x) = ν′(x), for each x that does not occur in η(x1), thus

taking care of point (1) of the statement. Let ι(1, j) def
= {k1, . . . ,kh} be the set of integers

whose existence is stated by point (2) of Def. 15, relative to ν(x1), thus taking care of
point (2) of the statement. The proof for point (3) relies on the following:

• (ν,h) |=SL x1 7→η(x1): dom(h)= {ν(x1)} and ν(η(x1))= h(ν(x1)), by definition
of ν.

• (ν, /0) |=SL CompStateψ(x1): h ∈ GB(σ,ρ), by points 1 and 3 of Def. 15.

• (ν, /0) |=SL Interψ(x1): h ∈ GB(σ,ρ), by the definition of ι(1, j), for all j ∈ [1,m]
and by point 2 of Def. 15.

We obtain (ν,h) |=SL x1 7→η(x1)∗CompStateψ(x1)∗Interψ(x1), thus (ν,h) |=SL
D Aι(x1,η(x1)),

because Aι(x1,η(x1))← x1 7→ η(x1)∗CompStateψ(x1)∗ Interψ(x1) is a rule of D .
For the inductive step, let A(x1, . . . ,x#(A))⇐D ∃z1 . . .∃zp . φ∗∗ h

`=1B
`(y`1, . . . ,y

`
#(B`)

)

be the first step of the unfolding, hence (σ,ν′,ρ) |=D φ ∗∗ h
`=1B

`(y`1, . . . ,y
`
#(B`)

) and

48

there exist structures σ0, . . . ,σh, such that σ=σ0•. . .•σh, (σ0,ν
′,ρ) |= φ and (σ`,ν

′,ρ) |=D

B`(y`1, . . . ,y
`
#(B`)

), for all ` ∈ [1,h]. We define the heaps h1, . . . ,hh as the restrictions
of h to nodes(σ1), . . . ,nodes(σh), respectively, and infer that h` ∈ GB(σ`,ρ), for all
` ∈ [1,h], by proving the following fact:

Fact 3 Given a configuration (σ,ν,ρ) and h ∈ Gρ(σ,ν), for any subconfiguration
(σ′,ν,ρ)v (σ,ν,ρ), we have h′ ∈Gρ(σ

′,ν), where h′ is the restriction of h to nodes(σ′).

Proof. We have dom(h′) = dom(h)∩nodes(σ′) = nodes(σ)∩nodes(σ′) = nodes(σ′),
because dom(h) = nodes(σ) ⊇ nodes(σ′). The points (1-3) of Def. 15 are by easy
inspection. �

Next, we prove that dom(hi)∩ dom(h j) = /0, for all i 6= j ∈ [1,h]. Suppose, for a
contradiction, that there exists u ∈ dom(hi)∩ dom(h j), for some i 6= j ∈ [1,h]. Since
h` ∈GB(σ`,ρ), we obtain u∈ nodes(σi)∩nodes(σ j), by Def. 15. Let Bi(yi

1, . . . ,y
i
#(Bi)

)⇐◦D
∃ti . ψi and B j(y j

1, . . . ,y
j
#(Bi)

)⇐◦D ∃t j . ψ j be the complete unfoldings of the pred-

icate atoms Bi(yi
1, . . . ,y

i
#(Bi)

) and B j(y j
1, . . . ,y

j
#(Bi)

) in the above unfolding, respec-
tively. Because we have assumed that ν′ is injective, there exists a variable x ∈ (ti ∪
{yi

1, . . . ,y
i
#(Bi)
})∩ (t j ∪{y j

1, . . . ,y
j
#(B j)
}), such that ν′(x) = u. Since t1, . . . , tk are pair-

wise distinct, by the above assumption, we obtain that ti ∩ t j = /0. Since, moreover,
{yi

1, . . . ,y
i
#(Bi)
}⊆ ti∪{x1, . . . ,x#(A)} and {y j

1, . . . ,y
j
#(B j)
}⊆ t j∪{x1, . . . ,x#(A)}, we must

have x∈{yi
1, . . . ,y

i
#(Bi)
}∩{y j

1, . . . ,y
j
#(B j)
}, which contradicts the fact that D is progress-

ing (point 1 of Def. 13). Let h0
def
= h \

(⋃h
`=1 h`

)
. Since dom(hi)∩ dom(h j) = /0, for

all i 6= j ∈ [1,h], the composition h = h0] h1] . . .] hh is properly defined. Since
(σ`,ν

′,ρ) |=D B`(y`1, . . . ,y
`
#(B`)

) and h` ∈GB(σ`,ρ), by the induction hypothesis, there

exist stores ν` and mappings ι`, such that:

• ν`(y`i) = ν′(y`i) ∈ dom(h`), for all i ∈ [1,#(B`)],

• h`(ν`(y`i)) = ν`(η(y`i)),

• {u ∈ Iσ`
j | ν`(xi) ∈ u} = {〈h`(ν`(xi))〉ipos(j,k) | k ∈ ι(i, j)}, for all i ∈ [1,#(B`)],

j ∈ [1,m],

• (ν`,h`) |=SL
D B

`
ι`(y

`
1, . . . ,y

`
#(B`)

).

for all ` ∈ [1,h]. We define the store ν as follows:

• ν(η(xi))
def
= h(ν′(xi)), for each i ∈ [1,#(A)],

• ν(η(y`i))
def
= ν`(η(y`i)), for each ` ∈ [1,h] and i ∈ [1,#(B`)].

• ν agrees with ν′ everywhere else.

Point (1) follows directly from the definition of ν. For each i ∈ [1,#(A)] and each
j ∈ [1,m], let {I j(y1), . . . , I j(yhi)}

def
= I j

φ
(xi) and let k1, . . . ,khi ∈ [0,B−1] be integers,

49

such that 〈h(ν(xi))〉ipos(j,k`) = ν′(y`), for all ` ∈ [1,hi]. The existence of these integers

is stated by point (2) of Def. 15, relative to ν(xi). We define ι(i, j) def
= {k1, . . . ,khi}∪

Z j(xi), for all i∈ [1,#(A)] and j∈ [1,m], where Z j(xi)=
⋃h

`=1
⋃#(B`)

k=1 {ι`(k, j) | xi 'φ y`k}.
This takes care of point (2) of the statement. Suppose, for a contradiction, that {k1, . . . ,khi}∩
Z j(xi) 6= /0, for some i ∈ [1,#(A)] and j ∈ [1,m]. By the condition on ι` from the induc-
tive hypothesis, there exists a tuple u ∈ Iσ0

j ∩ Iσ`
j , for some ` ∈ [1,h], which contradicts

the fact that the composition σ0 •σ` is defined. Hence {k1, . . . ,khi}∩Z j(xi) = /0 and
the annotated rule below:

Aι(x1, . . . ,x#(A),η(x1), . . . ,η(x#(A))) ← ∃z1 . . .∃zp∃η(z1) . . .∃η(zp) . φ ∗
∗ h

`=1 B
`
ι`(y

`
1, . . . ,y

`
#(B`)

,η(y`1), . . . ,η(y
`
#(B`)

))

is well-formed and thus belongs to D . To prove point (3) of the statement, namely that
(ν,h) |=SL

D Aι(x1, . . . ,x#(A),η(x1), . . . ,η(x#(A))), we are left with proving that (ν,h0) |=
φ, where:

φ = x1 7→ η(x1) ∗ ∗x∈fv(φ) CompStateφ(x) ∗ ∗#(A)
i=1 Interφ(xi)

To this end, we show the following points:

• (ν,h0) |= x1 7→ η(x1): by the definition of ν, it suffices to prove that dom(h0) =
{ν(x1)}, or equivalently, nodes(σ) \

⋃h
`=1 nodes(σ`) = {ν(x1)}. “⊆” Let u ∈

dom(h0) be an index. Then there exists a variable y ∈ fv(φ∗∗ h
`=1ψ`), such that

ν′(y)= u. If y occurs in a component or interaction atom from some ψ`, `∈ [1,h],
then u ∈ nodes(σ`), contradiction. Hence y must occur in a component or inter-
action atom from φ and y ∈ fv(φ)\

⋃h
`=1{y`1, . . . ,y`#(B`)

}. Since D is progressing,
we obtain y = x1. “⊇” Because D is progressing, x1 occurs in a component or
interaction atom from φ, thus ν(x1) = ν′(x1) ∈ nodes(σ). Suppose, for a con-
tradiction, that ν′(x1) ∈ nodes(σ`), for some ` ∈ [1,h]. Then ν′(x1) = ν(y), for
some y ∈ fv(ψ`) = {y`1, . . . ,y`#(B`)

}∪ t`, which contradicts the assumption that ν′

is injective.

• (ν, /0) |= CompStateφ(x), for each x ∈ fv(φ): h ∈ GB(σ,ρ), by points 1 and 3 of
Def. 15.

• (ν, /0) |= Interφ(xi), for each i ∈ [1,#(A)]: h ∈ GB(σ,ρ), by the definition of
ι(1, j), for all j ∈ [1,m] and by point 2 of Def. 15.

Lemma 5 If D is progressing, for a predicate atom A(x1, . . . ,x#(A)) ∈ def(D), each
mapping ι : [1,#(A)]×[1,m]→ 2[0,B−1] and each D-model (ν,h) of Aι(x1, . . . ,x#(A),η(x1), . . . ,η(x#(A))),
the following hold:

1. for each i ∈ [1,#(A)], we have ν(xi) ∈ dom(h) and h(ν(xi)) = ν(η(xi)), and

2. there is a structure σ and a state map ρ, such that h∈GB(σ,ρ) and (σ,ν,ρ) |=D

A(x1, . . . ,x#(A)).

50

Proof. Since (ν,h) |=SL
D Aι(x1, . . . ,x#(A),η(x1), . . . ,η(x#(A))), there exists a com-

plete unfolding Aι(x1, . . . ,x#(A),η(x1), . . . ,η(x#(A)))⇐◦D ∃t1 . . .∃tk∃η(t1) . . .∃η(tk) . ψ,
such that (ν[t1← u1, . . . , tk← uk,η(t1)← v1, . . . ,η(tk)← vk],h) |= ψ, for some indices
u1, . . . ,uk ∈U and tuples of indices v1, . . . ,vk ∈UK. Since each rule in D has a stem in
D , we consider the complete unfolding A(x1, . . . ,x#(A))⇐◦D ∃t1 . . .∃tk . ψ. We assume
in the following that:

• t1, . . . , tk are pairwise distinct and η(t1), . . . ,η(tk) are pairwise disjoint tuples.
This assumption is w.l.o.g. because existentially quantified variables can be α-
renamed, if necessary.

• the store ν
′ def= ν[t1← u1, . . . , tk← uk,η(t1)← v1, . . . ,η(tk)← vk] is injective over

fv(ψ). This assumption is w.l.o.g. because the only equalities in ψ are of the
form x=̇y, where x ∈ fv(φ) and y ∈ η(x).

The two points of the statement are proved by induction on the length of the complete
unfolding:
(1) For the base case, because D is progressing, we have #(A) = 1, k = 0 and there
exists a rule Aι(x1,η(x1))←D x1 7→ (η(x1)) ∗CompStateφ(x1) ∗ Interφ(x1), such that
(ν,h) |= x1 7→ (η(x1)), thus ν(x1)∈ dom(h) and h(ν(x1)) = ν(η(x1)). For the inductive
case, let

Aι(x1, . . . ,x#(A),η(x1), . . . ,η(x#(A))) ⇐D ∃z1 . . .∃zp∃η(z1) . . .∃η(zp) . φ ∗
∗ h

`=1 B
`
ι`(y

`
1, . . . ,y

`
#(B`)

,η(y`1), . . . ,η(y
`
#(B`)

))

be the first step of the complete unfolding. Let i ∈ [1,#(A)] and prove that ν(xi) ∈
dom(h) and h(ν(xi)) = ν(η(xi)). If i= 1 then x1 7→ (η(x1)) is a subformula of φ and the
result follows from the fact that (ν′,h) |=SL

D φ ∗ ∗ h
`=1 B

`
ι`(y

`
1, . . . ,y

`
#(B`)

,η(y`1), . . . ,η(y
`
#(B`)

)).

Otherwise, i∈ [2,#(A)] and, because D is progressing, it must be that xi = y`j, for some
` ∈ [1,h] and j ∈ [1,#(B`)]. In this case, the result follows by an application of the
inductive hypothesis.

(2) For the base case, we have dom(h) = ν(x1) and define the structure σ and the state
map ρ below:

• σ
def
= 〈Cσ

1 , . . . ,C
σ
n , I

σ
1 , . . . , I

σ
m〉 is such that, for all i ∈ [1,n] and j ∈ [1,m]:

Cσ
i =

{
{ν(x1)} , if 〈h(ν(x1))〉i = ν(x1)
/0 , otherwise

Iσ
j =

{
{ν(η(x1))} , if 〈h(ν(x1))〉ipos(j,k) = ν(η(x1)), for some k ∈ [0,B−1]
/0 , otherwise

• for all i ∈ [1,n] and s ∈ [1, ||Q||], we have ρ(ν(x1),Ci) = qs if 〈h(ν(x1))〉spos(i,s) =
ν(x1) and ρ(ν(x1),Ci) is random, otherwise.

51

By the definition of σ and ρ, we have h ∈ GB(σ,ρ). To prove that (σ,ν,ρ) |=D

A(x1, . . . ,x#(A)), let Aι(x1,η(x1)) ←D φ be the single rule applied on the complete
unfolding of Aι(x1,η(x1)) and let A(x1)←D φ be its stem. We infer that (σ,ν,ρ) |= φ

using the fact that (ν,h) |=SL φ, by a case split on the type of component and interaction
atoms in φ.

For the inductive case, let the first step of the complete unfolding of Aι(x1, . . . ,x#(A),η(x1), . . . ,η(x#(A)))
be:

Aι(x1, . . . ,x#(A),η(x1), . . . ,η(x#(A))) ⇐D ∃z1 . . .∃zp∃η(z1) . . .∃η(zp) . φ ∗
∗ h

`=1 B
`
ι`(y

`
1, . . . ,y

`
#(B`)

,η(y`1), . . . ,η(y
`
#(B`)

))

where the stem of the rule applied at this step is:

A(x1, . . . ,x#(A))←D ∃z1 . . .∃zp . φ ∗ ∗ h
`=1B

`(y`1, . . . ,y
`
#(B`)

)

Since (ν′,h) |=SL
D φ ∗∗ h

`=1 B
`
ι`(y

`
1, . . . ,y

`
#(B`)

,η(y`1), . . . ,η(y
`
#(B`)

)), there exist heaps
h0, . . . ,hh, such that the following hold:

• h= h0] . . .]hh,

• (ν′,h0) |=SL φ, and

• (ν′,h`) |=SL
D B

`
ι`(y

`
1, . . . ,y

`
#(B`)

,η(y`1), . . . ,η(y
`
#(B`)

)), for all ` ∈ [1,h].

By the inductive hypothesis, there exist structures σ1, . . . ,σh and state maps ρ1, . . . ,ρh,
such that h` ∈ GB(σ`,ρ`) and (σ`,ν

′,ρ`) |=D B`(y`1, . . . ,y
`
#(B`)

), for all ` ∈ [1,h]. We
define a structure σ0 and a statemap ρ0 as follows:

• σ0
def
= 〈Cσ0

1 , . . . ,Cσ0
n , Iσ0

1 , . . . , Iσ0
m 〉 is such that, for all i ∈ [1,n] and j ∈ [1,m]:

Cσ0
i =

{
{ν(x1)} , if 〈h(ν(x1))〉i = ν(x1)
/0 , otherwise

Iσ0
j = {ν′(y) | I j(y) ∈ I j

φ
(x1)}

• ρ0(u,Ci)= qs if 〈h0(ν(x1))〉spos(i,s)= ν(x1), for each u∈ dom(h0) and s∈ [1, ||Q||],
otherwise ρ0(u,Ci) is random.

Next, we prove that the composition σq •σr is defined, for all q,r ∈ [0,h]. To this end,
we show:

• Cσq
i ∩Cσr

i = /0, for all i ∈ [1,n], by the following case split:

– q = 0 and r ∈ [1,h]: by the definition of σ0, we have Cσ0
i = {ν(x1)} and

ν(x1) 6∈ dom(hr) = nodes(σr), since hr ∈ GB(σr,ρ). Moreover, Cσr
i ⊆

nodes(σr).

– q,r∈ [1,h]: because hq ∈GB(σq,ρ), hr ∈GB(σr,ρ) and dom(hq)∩dom(hr)=

/0, we obtain nodes(σq)∩nodes(σr) = /0. Moreover, Cσq
i ⊆ nodes(σq) and

Cσr
i ⊆ nodes(σr).

52

• Iσq
j ∩ Iσr

j = /0, for all j ∈ [1,m], by the following case split:

– q = 0 and r ∈ [1,h]: let u∈ Iσ0
j be an arbitrary interaction. By the definition

of σ0, we have ν(x1)∈ u. Since D is progressing, x1 6∈ {yr
1, . . . ,y

r
#(Br)} and,

moreover, because we assumed ν to be injective over fv(ψ), ν(x1) cannot
occur in an interaction from σr.

– q,r∈ [1,h]: because Iσq
j ⊆ nodes(σq)= dom(hq), Iσr

j ⊆ nodes(σr)= dom(hr)
and dom(hq)∩dom(hr) = /0.

Consequently, the composition σ
def
= σ0 • . . . • σh is defined. Moreover, we define

ρ(u,Ci)
def
= ρ`(u,Ci) if u ∈ dom(h`), for ` ∈ [1,h] and ρ(u,Ci) is random, for all u 6∈

dom(h) and all i ∈ [1,n]. We conclude by proving the following points:

• h ∈ GB(σ,ρ): we show that dom(h) =
⋃h

`=0 dom(h`) = nodes(σ), as required
by Def. 15. The points (1-3) are an easy check, by the definition of σ0 and the
fact that h` ∈ GB(σ`,ρ`), for all ` ∈ [1,h]. “⊆” Let u ∈ dom(h) be an index. If
u ∈ dom(h0), then u = ν(x1). Since D is progressing, x1 occurs in a component
or interaction atom in φ, hence u ∈ nodes(σ0), by the definition of σ0. Else,
u ∈ dom(h`), for some ` ∈ [1,h], thus u ∈ nodes(σ`), because h` ∈ GB(σ`,ρ`).
“⊇” Let u ∈ nodes(σ) =

⋃h
`=0 nodes(σ`) be an index. If u ∈ nodes(σ`), for

some ` ∈ [1,h], we obtain u ∈ dom(h`) ⊆ dom(h), because h` ∈ GB(σ`,ρ`).
Otherwise, u ∈ nodes(σ0) \

(⋃h
`=1 nodes(σ`)

)
. If u ∈ Cσ0

i , for some i ∈ [1,n],
then u = ν(x1) ∈ dom(h0) ⊆ dom(h), by the definition of σ0. Else, u occurs
in an interaction u ∈ Iσ0

j , for some j ∈ [1,m]. By the definition of σ0, there

exists an interaction atom I j(y) ∈ I j
φ
(x1), such that u = ν

′(y), for some variable
in y, different than x1. Because D is progressing, we have y = y`s, for some
` ∈ [1,h] and s ∈ [1,#(B`)] and y`s occurs in a component or interaction atom
from the complete unfolding of B`(y`1, . . . ,y

`
#(B`)

) using the rules in D . Hence

u = ν
′(y`s) ∈ nodes(σ`), which contradicts with the choice of u.

• (σ,ν,ρ) |=SL
D A(x1, . . . ,x#(A)): by the inductive hypothesis, (ν′,σ`) |=D B`(y`1, . . . ,y

`
#(B`)

),

for all ` ∈ [1,h] and we are left with proving that (ν′,σ0) |= φ. Because D is pro-
gressing the only component atoms in φ are of the form Ci(x1), i ∈ [1,n] and the
only interaction atoms in φ are of the form I j(y), with x ∈ y. The conclusion
follows from the definition of σ0. �

Theorem 4 If D is progressing and λA(x1,...,x#(A))
-connected, then the entailment A(x1, . . . ,x#(A)) |=D

∃y1 . . .∃yr .
∨h

`=1B
`(z`1, . . . ,z

`
#(B`)

) is 2EXP-complete.

Proof. We prove a many-one reduction from CL to SL entailments:

A(x1, . . . ,x#(A)) |=D ∃y1 . . .∃yr .
∨h

`=1B
`(z`1, . . . ,z

`
#(B`)

) ⇐⇒
Aι(x1, . . . ,xk,η(x1), . . . ,η(xk)) |=SL

D ∃y1 . . .∃yr .
∨h

`=1
∨

ι′:[1,#(B`)]×[1,m]→2[0,B−1]

B
`
ι′(z

`
1, . . . ,z

`
#(B`)

,η(z`1), . . . ,η(z
`
#(B`)

))

53

for each mapping ι : [1,#(A)]× [1,m]→ 2[0,B−1].

“⇒” Let (ν,h) be a D-model of Aι(x1, . . . ,x#(A),η(x1), . . . ,η(x#(A))), for some map-
ping ι. By Lemma 5, we have h(ν(xi)) = ν(η(xi)), for all i ∈ [1,#(A)] and, moreover,
there exists a structure σ and a state map ρ, such that h ∈ GB(σ,ρ) and (σ,ν,ρ) |=D

A(x1, . . . ,x#(A)). By the hypothesis, we obtain (σ,ν,ρ) |=D ∃y1 . . .∃yr .
∨h

`=1B
`(z`1, . . . ,z

`
#(B`)

),

hence there exist indices u1, . . . ,ur ∈ U, such that (σ,ν′,ρ) |= B`(z`1, . . . ,z
`
#(B`)

), for

some ` ∈ [1,h], where ν
′ def
= ν[y1 ← u1, . . . ,yr ← ur]. By Lemma 4, there exists a

mapping ι′ and a store ν
′′, such that ν

′′(z`i) = ν
′(z`i) and h(ν′(z`i)) = ν

′′(η(z`i)), for
all i ∈ [1,#(B`)] and, moreover, (ν′′,h) |=SL

D B
`
ι′(z

`
1, . . . ,z

`
#(B`)

,η(z`1), . . . ,η(z
`
#(B`)

)). We

conclude this direction by observing that ν
′′ agrees with ν over x1, . . . ,xk, because

ν
′′(η(xi)) = h(ν′′(xi)) = h(ν(xi)) = ν(η(xi)), for all i ∈ [1,#(A)], leading to the re-

quired (ν,h) |=D ∃y1 . . .∃yr .B
`
ι′(z

`
1, . . . ,z

`
#(B`)

,η(z`1), . . . ,η(z
`
#(B`)

)).

“⇐” Let (σ,ν,ρ) be a D-model of A(x1, . . . ,x#(A)) and let h ∈ GB(σ,ρ). Clearly,
such a heap always exists, an effective construction is possible following Def. 15. By
Lemma 4, there exists a store ν, such that ν(xi) = ν(xi) and ν(η(xi)) = h(ν(xi)), for all
i∈ [1,#(A)] and a mapping ι, such that (ν,h) |=SL

D Aι(x1, . . . ,x#(A),η(x1), . . . ,η(x#(A))).
By the hypothesis, we obtain:

(ν,h) |=SL
D ∃y1 . . .∃yr .

h∨
`=1

∨
ι′:[1,m]×[1,#(B`)]→2[0,B−1]

B
`
ι′(z

`
1, . . . ,z

`
#(B`)

,η(z`1), . . . ,η(z
`
#(B`)

))

hence there exist indices u1, . . . ,ur ∈U, such that (ν′,h) |=SL
D B

`
ι′(z

`
1, . . . ,z

`
#(B`)

,η(z`1), . . . ,η(z
`
#(B`)

)),

where ν
′ = ν[y1 ← u1, . . . ,y` ← u`], for some ` ∈ [1,h] and some mapping ι′. By

Lemma 5, there exists a structure σ′ and a state map ρ′, such that h ∈ GB(σ′,ρ′) and
(σ′,ν′,ρ′) |=D B`(z`1, . . . ,z

`
#(B`)

). Since h∈GB(σ,ρ)∩GB(σ′,ρ′), we conclude σ = σ′

and ρ = ρ′, by Def. 15, thus (σ,ν′,ρ) |=D B`(z`1, . . . ,z
`
#(B`)

), leading to (σ,ν,ρ) |=D

∃y1 . . .∃yr .
∨h

`=1B
`(z`1, . . . ,z

`
#(B`)

).

Moreover, D is λAι (x1,...,x#(Aι)
,η(x1),...,η(x#(Aι)

))-connected if D is λA(x1,...,x#(A))
-connected.

We compute the upper bound given by the above reduction. We use the result of [?,

Theorem 32], that gives a 22poly(width(D)·logsize(D))
upper bound for SL entailments of the

form φ |=SL
D ∃y1 . . .∃yr .

∨h
`=1 ψ`, where poly (x) is a polynomial function and:

• φ,ψ1, . . . ,ψh are quantifier-free formulæ, and assume w.l.o.g. that max(size(φ),size(ψ1),
. . . ,size(ψh)) = O(width(D)) and size(φ)+∑

h
`=1 size(ψ`) = O(size(D)),

• D is progressing and λφ-connected, and

• each equational atom in a rule A(x1, . . . ,x#(A))←D φ is of the form x=̇y or x ˙6=y,
where {x,y}∩{xi | i ∈ λφ(A)} 6= /0. The reduction from [?, Theorem 31] is used
to remove equalities and, moreover, our reduction introduces no disequalities.

54

By Prop. 5, we have B=O(size(D)c), for a constant c≥ 1 and K= posB(m,0,n,0) =
O(size(D)c), by Assumption 3. We compute:

width(D)≤ (K+1) ·width(D) = O(size(D)c ·width(D)) = O(size(D)c+1)

Note that there are 2B·m·width(D) = 2O(size(D)c+1·width(D)) = 2O(size(D)c+2) mappings ι :
[1,m]× [1,#(A)]→ 2[0,B−1]. We compute:

size(D) ≤ ||D|| ·width(D)

= ||D|| ·width(D) ·2O(size(D)c+2) ·width(D)

= size(D)2c+3 ·2O(size(D)c+2)

Using [?, Theorem 32], we obtain a 22poly(size(D))
upper bound.

The lower bound is obtained by reduction from the SL entailment problem A(x1, . . . ,xk) |=SL
D

B(x1, . . . ,xk), where D is progressing and λA(x1,...,xk)
-connected [?, Theorem 18]. The

idea of the reduction is to encode each SL atomic proposition of the form x 7→ (y1, . . . ,yK)
by the CL formula C(x) ∗ I(x,y1, . . . ,yK), where C is a component type and I is an
interaction type of arity K+ 1. Then each D-model (ν,h) of a SL predicate atom
A(x1, . . . ,x#(A)) is represented by a set of configurations (σ,ν,ρ), sharing the same
structure σ over the signature S= 〈C, I〉, such that Cσ = dom(h) and Iσ = {h(u) | u ∈ dom(h)}
(the state map in these configurations is random). Moreover, if D is progressing and
λA(x1,...,xk)

-connected, then the CL SID D obtained from the reduction is progressing
and λA(x1,...,xk)

-connected. Since the reduction takes polynomial time, we obtain a
2EXP-hard lower bound. �

Proposition 6 The problem is a given symbolic configuration tight? is in 3EXP.

Proof. For a given a predicateless symbolic configuration φ and x ∈ fv(φ), we
consider the following sets of ports:

• prov(x,φ) def
=

⋃
{ports(C j) |C j(y) occurs in φ, y'φ x},

• req(x,φ) def
= {〈ports(I j)〉k | I j(y) occurs in ϕ, 〈y〉k 'φ x}.

We build a new SID D], by annotating each predicate symbol A∈A with a tuple of sets
of ports p provided by a component, in each complete unfolding of an annotated atom
Ap(x1, . . . ,x#(A)), i.e. 〈p〉i = prov(xi,φ), for each Ap(x1, . . . ,x#(A))⇐◦D] ∃z . φ, where
φ is a predicateless symbolic configuration, for each i ∈ [1,#(A)]. Concretely, for each
rule A(x1, . . . ,x#(A))←D ∃z1 . . .∃zk . φ∗∗ h

`=1B
`(y`) in D], where φ is a predicateless

symbolic configuration, there are zero or more annotated rules Ap(x1, . . . ,x#(A))←D]

∃z1 . . .∃zk . φ∗∗ h
`=1B

`
p`(y

`), such that:

1. 〈p〉i = prov(xi,φ)∪
⋃h

`=1{〈p`〉 j | 〈y`〉 j 'φ xi}, the ports provided by a component
indexed by the value of the xi parameter are the ones in 〈p〉i, in each rule that
defines Ap(x1, . . . ,x#(A)),

55

2. req(x,φ) ⊆ prov(x,φ)∪
⋃h

`=1{〈p`〉 j | 〈y`〉 j 'φ x}, for each x ∈ fv(φ), i.e. each
port required by an interaction in φ is provided either by φ or by a subsequent
unfolding of a predicate atom; we say that φ∗∗ h

`=1B
`
p`(y

`) is tightly annotated
in this case.

We prove the following facts:

Fact 4 Each configuration γ ∈ [[Ap(x1, . . . ,x#(A))]]D] is tight.

Proof. Let γ be a D]-model of Ap(x1, . . . ,x#(A)), i.e. there exists a complete unfolding
Ap(x1, . . . ,x#(A))⇐◦D] ϕ, such that γ |= ϕ. Proving that γ is tight is by induction on the
length of this unfolding. �

Fact 5 For each complete unfolding of an annotated predicate atom Ap(x1, . . . ,x#(A))⇐◦D]

∃z . φ, where φ is a predicateless symbolic configuration, we have 〈p〉i = prov(xi,φ),
for each i ∈ [1,#(A)].

Proof. The proof of this fact goes by induction on the length of the unfolding. �

Fact 6 Given a SID D and a predicateless symbolic configuration φ, the following
hold:

1. The set def(D) is tight if and only if A(x1, . . . ,x#(A)) |=D∪D]

∨
p∈P#(A) Ap(x1, . . . ,x#(A)),

for each predicate atom A(x1, . . . ,x#(A)) ∈ def(D).

2. Provided that def(D) is tight, the formula φ∗∗ h
`=1A

`(x`) is tight if and only if
φ∗∗ h

`=1A
`
p`(x

`) is tightly annotated, for all A1
p1(x1), . . . ,Ah

ph(xh) ∈ def(D]).

Proof. (1) We prove the following equivalent condition, for each A(x1, . . . ,x#(A)) ∈
def(D):

(†) {γ ∈ [[A(x1, . . . ,x#(A))]]D | γ is tight}=
⋃

p∈P#(A)

[[Ap(x1, . . . ,x#(A))]]D]

The equivalence of (1) with (†) follows from Fact 4. We prove (†) below:
“⊆” Let γ = (σ,ν,ρ) be a tight D-model of A(x1, . . . ,x#(A)). Then there exists a com-
plete unfolding A(x1, . . . ,x#(A))⇐◦D ϕ, such that (σ,ν,ρ) |= ϕ and prove that there
exists a complete unfolding Ap(x1, . . . ,x#(A))⇐◦D] ϕ. First, we annotate the unfolding
A(x1, . . . ,x#(A))⇐◦D ϕ with tuples of sets of ports, backwards, starting with the last step
of the unfolding, say B(y1, . . . ,y#(B))⇐ ∃z . ψ, where ψ is a predicateless symbolic

configuration. In this case, we annotate B with the tuple p, where 〈p〉i
def
= prov(yi,ψ),

for all i ∈ [1,#(B)]. Next, assume that B1, . . . ,Bh have been already annotated with
tuples p1, . . . ,ph in a step A(x1, . . . ,x#(A)) ⇐ ∃z1 . . .∃zk . φ ∗∗ h

`=1B
`(y`), where φ

is a predicateless symbolic configuration and annotate A with the tuple p, defined as
〈p〉i

def
= prov(xi,φ)∪

⋃h
`=1{〈p〉 j | 〈y`〉 j 'φ xi}, for all i ∈ [1,#(A)]. The result is an an-

notated unfolding of Ap(x1, . . . ,x#(A)) and we are left with proving that this is indeed
an unfolding of D]. This proof goes by induction on the length of the unfolding:

56

• In the base case, the unfolding consists of a single step Ap(x1, . . . ,x#(A)) ⇐
∃z . ψ, where ψ is a predicateless symbolic configuration. Since (σ,ν,ρ) |=
∃z . ψ and (σ,ν,ρ) is tight, we obtain that req(x,ψ) ⊆ prov(x,ψ), for each
x ∈ fv(ψ), thus Ap(x1, . . . ,x#(A))⇐D] ∃z . ψ .

• For the inductive case, let Ap(x1, . . . ,x#(A))⇐ ∃z1 . . .∃zk . φ ∗∗ h
`=1B

`
p`(y

`) be
the first step of the unfolding Ap(x1, . . . ,x#(A))⇐ ϕ, where φ is a predicateless
symbolic configuration. Then there exists a step A(x1, . . . ,x#(A))⇐D ∃z1 . . .∃zk . φ∗
∗ h

`=1B
`(y`) and complete unfoldings B`(y`)⇐◦D ϕ`, for all ` ∈ [1,h], such that

ϕ = ∃z1 . . .∃zk . φ ∗∗ h
`=1ϕ`. Since (σ,ν,ρ) |= ϕ, there exist indices u1, . . . ,uk

and structures σ0, . . . ,σk, such that:

– (σ0,ν[x1← u1, . . . ,xk← uk],ρ) |= φ,

– (σ`,ν[x1← u1, . . . ,xk← uk],ρ) |= ϕ`, for all ` ∈ [1,h], and

– σ = σ0 • . . .•σ`.

By the inductive hypothesis, there exist complete unfoldings B`
p`(y

`)⇐◦D] ϕ`,

hence (σ`,ν[x1 ← u1, . . . ,xk ← uk],ρ) |=D] B`
p`(y

`), for all ` ∈ [1,h]. By fact
(2) above, the configuration (σ`,ν[x1 ← u1, . . . ,xk ← uk],ρ) is tight, for each
` ∈ [1,h]. Since (σ,ν,ρ) is tight, also (σ,ν[x1 ← u1, . . . ,xk ← uk],ρ) is tight.
Assuming w.l.o.g. that ϕ` = ∃z` . φ`, for all ` ∈ [1,h], we obtain:

req(x,φ) ⊆ prov(x,φ)∪
⋃h

`=1{prov(〈y`〉 j,φ
`) | 〈y`〉 j 'φ x}, by Fact 5

= prov(x,φ)∪
⋃h

`=1{〈p`〉 j | 〈y`〉 j 'φ x}

for each x ∈ fv(φ), thus Ap(x1, . . . ,x#(A))⇐D] ∃z1 . . .∃zk . φ∗∗ h
`=1B

`
p`(y

`).

”⊇” Let γ ∈ [[Ap(x1, . . . ,x#(A))]]D] be a configuration, for some p ∈ P#(A). By fact (2)
above, γ is tight. Moreover, there exists a complete unfolding Ap(x1, . . . ,x#(A))⇐◦D] ϕ,
such that γ |= ϕ. By erasing the annotations from each predicate symbol in the unfold-
ing, we obtain a complete unfolding A(x1, . . . ,x#(A))⇐◦D] ϕ, hence γ∈ [[A(x1, . . . ,x#(A))]]D .

(2) “⇒” Let γ = (σ,ν,ρ) be a D-model of φ ∗∗ h
`=1A

`(x`). Suppose, for a con-
tradiction, that there exists a free variable x ∈ fv(φ) and a port p ∈ req(x,φ), such
that p 6∈ prov(x,φ) ∪

⋃h
`=1{〈p`〉 j | 〈y`〉 j 'φ x}, for some annotated predicate atoms

A1
p1(x1), . . . ,Ah

ph(xh) ∈ def(D]). By Fact 5, we reach a contradiction with the fact
that γ is tight.
“⇐” Let γ= (σ,ν,ρ) be a D-model of φ∗∗ h

`=1A
`(x`). Then there exist configurations

γ0 = (σ0,ν,ρ), . . . ,γh = (σh,ν,ρ), such that γ = γ0 • . . .• γh, γ0 |= φ and γ` |=D A`(x`),
for all ` ∈ [1,h]. Let u ∈ Iσ

j be an interaction. If u ∈ Iσ`
j , for some ` ∈ [1,h], be-

cause A`(x`) is tight, for each k ∈ [1,#(I j)], there exists a component type Ci, such
that 〈ports(I j)〉k ∈ ports(Ci) and 〈u〉k ∈Cσ`

i ⊆Cσ
i . Otherwise, we have u ∈ Iσ0

j and let
p1, . . . ,p` ∈ P#(A) be tuples of ports, such that γ |=D] φ ∗∗ h

`=1A
`
p`(x

`). Such tuples
exist, by point (1) and the fact that all predicate atoms are tight. Since the formula
φ∗∗ h

`=1A
`
p`(x

`) is tighly annotated, by Fact 5, we obtain that, for each k ∈ [1,#(I j)],
there exists a component type Ci, such that 〈ports(I j)〉k ∈ ports(Ci) and 〈u〉k ∈Cσ

i . �

57

By Fact 6, in order to decide whether a given symbolic configuration is tight,
one must check the entailment A(x1, . . . ,x#(A)) |=D∪D]

∨
p∈P#(A) Ap(x1, . . . ,x#(A)), for

each predicate atom A(x1, . . . ,x#(A)) ∈ def(D). We have width(D]) = width(D) and,
since ||P|| is a constant, we obtain size(D])≤ size(D) ·width(D) ·2width(D) = size(D) ·
2O(width(D)). Using the upper bound from the proof of Theorem 4, we obtain the upper

bound 22poly(size(D)·2width(D))
= 222poly(width(D)·logsize(D))

. �

F Havoc Invariance Proofs for Trees
In order to shorten the following proofs, we introduce the rule (I†) that allows us to
remove a disabled interaction atom α from the pre- and postcondition, the environment
and the language if certain conditions hold.

Lemma 6 Using the notation in §5, the following rule is sound:
η\{Σ[α]}.{{φ}} L {{ψ}}

(I†)
α=I(x1 ,...,x#(I))
Σ[α]∈η\supp(L)
φ†α.η.{{φ∗α}} Σ[α]∪L {{ψ∗α}}

Proof. We assume that φ and ψ are two symbolic configurations, η is an environ-
ment and α = I(x1, . . . ,x#(I)) an interaction atom. Furthermore, Σ[α] ∈ η\ supp(L) and
φ † α. Then we can apply the rule (∪) first and the rules (C), (Σ) and (I) on the subtrees
and obtain:

(†)
η.{{φ∗α}} Σ[α] {{false}}

(C)
η.{{φ∗α}} Σ[α] {{ψ∗α}}

η\{Σ[α]}.{{φ}} L {{ψ}}
(I)

η.{{φ∗α}} L {{ψ∗α}}
(∪)

η.{{φ∗α}} Σ[α]∪L {{ψ∗α}}.

Hence the rule can by derived from the rules in Fig. 5.

F.1 Havoc Invariance of the Predicate Atom tree(x)

The invariance of the predicate tree(x) is proven via the rules in Fig. 5. The proof is
divided into subtrees labeled by letters. Backlinks are indicated by numbers and in
each cycle in the proof tree the rule (LU) is applied at least once.

(ε)
/0. {{Nodeleaf idle(x)}}

ε {{tree(x)}}

(ε)
/0. {{Nodeleaf busy(x)}}

ε {{tree(x)}}

(A)

{Σ[I`(y,x)],Σ[Ir (z,x)],Σ[tree(y)],Σ[tree(z)]}

. {{Node(x)∗ I`(y,x)∗ Ir (z,x)∗ tree(y)∗ tree(z)}}

Σ[I`(y,x)]∪Σ[Ir (z,x)]∪Σ[tree(y)]∪Σ[tree(z)]

{{tree(x)}}
(LU)

(1) {Σ[tree(x)]}.{{tree(x)}} Σ[tree(x)] {{tree(x)}}
(∗)

{Σ[tree(x)]}.{{tree(x)}} Σ[tree(x)]∗ {{tree(x)}}

(B) {Σ[I`(y,x)],Σ[Ir (z,x)],Σ[tree(y)],Σ[tree(z)]}

. {{Node(x)∗ I`(y,x)∗ Ir (z,x)∗ tree(y)∗ tree(z)}}

Σ[I`(y,x)]

{{Node(x)∗ I`(y,x)∗ Ir (z,x)∗ tree(y)∗ tree(z)}} similar to (B)

(C) {Σ[I`(y,x)],Σ[Ir (z,x)],Σ[tree(y)],Σ[tree(z)]}

. {{Node(x)∗ I`(y,x)∗ Ir (z,x)∗ tree(y)∗ tree(z)}}

Σ[tree(y)]

{{Node(x)∗ I`(y,x)∗ Ir (z,x)∗ tree(y)∗ tree(z)}} similar to (C)
(∪)

{Σ[I`(y,x)],Σ[Ir (z,x)],Σ[tree(y)],Σ[tree(z)]}. {{Node(x)∗ I`(y,x)∗ Ir (z,x)∗ tree(y)∗ tree(z)}}

Σ[I`(y,x)]∪Σ[Ir (z,x)]∪Σ[tree(y)]∪Σ[tree(z)] {{Node(x)∗ I`(y,x)∗ Ir (z,x)∗ tree(y)∗ tree(z)}}
(C)

(A) {Σ[I`(y,x)],Σ[Ir (z,x)],Σ[tree(y)],Σ[tree(z)]}. {{Node(x)∗ I`(y,x)∗ Ir (z,x)∗ tree(y)∗ tree(z)}}

Σ[I`(y,x)]∪Σ[Ir (z,x)]∪Σ[tree(y)]∪Σ[tree(z)] {{tree(x)}}

58

(D) (E) (F)
(LU)

{Σ[I`(y,x)],Σ[tree(y)]}. {{Node(x)∗ I`(y,x)∗ tree(y)}}

Σ[I`(y,x)] {{Node(x)∗ I`(y,x)∗ tree(y)}}

(ε)
{Σ[tree(z)]}. {{tree(z)}}

ε {{tree(z)}}
(./)

{Σ[I`(y,x)],Σ[tree(y)],Σ[tree(z)]}.{{Node(x)∗ I`(y,x)∗ tree(y)∗ tree(z)}} Σ[I`(y,x)] {{Node(x)∗ I`(y,x)∗ tree(y)∗ tree(z)}}
(I)

(B) {Σ[I`(y,x)],Σ[Ir (z,x)],Σ[tree(y)],Σ[tree(z)]}. {{Node(x)∗ I`(y,x)∗ Ir (z,x)∗ tree(y)∗ tree(z)}}

Σ[I`(y,x)] {{Node(x)∗ I`(y,x)∗ Ir (z,x)∗ tree(y)∗ tree(z)}}

backlink to (1)

{Σ[tree(y)]}.{{tree(y)}} Σ[tree(y)] {{tree(y)}}
(ε)

/0.{{Node(x)∗ tree(z)}} ε {{Node(x)∗ tree(z)}}
(./)

{Σ[tree(y)]}.{{Node(x)∗ tree(y)∗ tree(z)}} Σ[tree(y)] {{Node(x)∗ tree(y)∗ tree(z)}}
(I)

(C) {Σ[I`(y,x)],Σ[Ir (z,x)],Σ[tree(y)],Σ[tree(z)]}. {{Node(x)∗ I`(y,x)∗ Ir (z,x)∗ tree(y)∗ tree(z)}}

Σ[tree(y)] {{Node(x)∗ I`(y,x)∗ Ir (z,x)∗ tree(y)∗ tree(z)}}

(†)
{Σ[I`(y,x)]}.{{Node(x)∗ I`(y,x)∗Nodeleaf idle(y)}} Σ[I`(y,x)] {{false}}

(C)
(D) {Σ[I`(y,x)]}.{{Node(x)∗ I`(y,x)∗Nodeleaf idle(y)}} Σ[I`(y,x)] {{Node(x)∗ I`(y,x)∗ tree(y)}}

(Σ)
{Σ[I`(y,x)]}. {{Nodeidle(x)∗ I`(y,x)∗Nodeleaf busy(y)}}

Σ[I`(y,x)] {{Nodeleft (x)∗ I`(y,x)∗Nodeleaf idle(y)}}
(C)

{Σ[I`(y,x)]}. {{Nodeidle(x)∗ I`(y,x)∗Nodeleaf busy(y)}}

Σ[I`(y,x)] {{Node(x)∗ I`(y,x)∗ tree(y)}}

(†)
{Σ[I`(y,x)]}. {{Nodeq(x)∗ I`(y,x)∗Nodeleaf busy(y)}}

Σ[I`(y,x)] {{false}}
(C) for q 6= idle

{Σ[I`(y,x)]}. {{Nodeq(x)∗ I`(y,x)∗Nodeleaf busy(y)}}

Σ[I`(y,x)] {{Node(x)∗ I`(y,x)∗ tree(y)}}
(∨)

(E) {Σ[I`(y,x)]}.{{Node(x)∗ I`(y,x)∗Nodeleaf busy(y)}} Σ[I`(y,x)] {{Node(x)∗ I`(y,x)∗ tree(y)}}

backlink to (D) backlink to (E)
(∨)

{Σ[I`(y,x)]}. {{Node(x)∗ I`(y,x)∗Node(y)}}

Σ[I`(y,x)] {{Node(x)∗ I`(y,x)∗Node(y)}}

(ε)
{Σ[tree(v)],Σ[tree(w)]}. {{tree(v)∗ tree(w)}}

ε {{tree(v)∗ tree(w)}}
(./)

{Σ[I`(y,x)],Σ[tree(v)],Σ[tree(w)]}. {{Node(x)∗ I`(y,x)∗Node(y)∗ tree(v)∗ tree(w)}}

Σ[I`(y,x)] {{Node(x)∗ I`(y,x)∗Node(y)∗ I`(v,y)∗ Ir (w,y)∗ tree(v)∗ tree(w)}}
(I)

{Σ[I`(y,x)],Σ[I`(v,y)],Σ[Ir (w,y)],Σ[tree(v)],Σ[tree(w)]}. {{Node(x)∗ I`(y,x)∗Node(y)∗ I`(v,y)∗ Ir (w,y)∗ tree(v)∗ tree(w)}}

Σ[I`(y,x)] {{Node(x)∗ I`(y,x)∗Node(y)∗ I`(v,y)∗ Ir (w,y)∗ tree(v)∗ tree(w)}}
(C)

(F) {Σ[I`(y,x)],Σ[I`(v,y)],Σ[Ir (w,y)],Σ[tree(v)],Σ[tree(w)]}. {{Node(x)∗ I`(y,x)∗Node(y)∗ I`(v,y)∗ Ir (w,y)∗ tree(v)∗ tree(w)}}

Σ[I`(y,x)] {{Node(x)∗ I`(y,x)∗ tree(y)}}

F.2 Havoc Invariance of the Predicate Atom treeidle(x)

The invariance of the predicate treeidle(x) is proven via the rules in Fig. 5 and the proof
is structured similar to the previous invariance proof.

(ε)
/0. {{Nodeleaf idle(x)}}

ε {{treeidle(x)}}

(A)

{Σ[I`(y,x)],Σ[Ir (z,x)],Σ[treeidle(y)],Σ[treeidle(z)]}. {{Nodeidle(x)∗ I`(y,x)∗ Ir (z,x)∗ treeidle(y)∗ treeidle(z)}}

Σ[I`(y,x)]∪Σ[Ir (z,x)]∪Σ[treeidle(y)]∪Σ[treeidle(z)] {{treeidle(x)}}
(LU)

(2) {Σ[treeidle(x)]}.{{treeidle(x)}} Σ[treeidle(x)] {{treeidle(x)}}
(∗)

{Σ[treeidle(x)]}.{{treeidle(x)}} Σ[treeidle(x)]
∗ {{treeidle(x)}}

59

(B) {Σ[I`(y,x)],Σ[treeidle(y)],Σ[treeidle(z)]}

. {{Nodeidle(x)∗ I`(y,x)∗ treeidle(y)∗ treeidle(z)}}

Σ[I`(y,x)]

{{Nodeidle(x)∗ I`(y,x)∗ treeidle(y)∗ treeidle(z)}}

(C) {Σ[I`(y,x)],Σ[treeidle(y)],Σ[treeidle(z)]}

. {{Nodeidle(x)∗ I`(y,x)∗ treeidle(y)∗ treeidle(z)}}

Σ[treeidle(y)]

{{Nodeidle(x)∗ I`(y,x)∗ treeidle(y)∗ treeidle(z)}} similar to (C)
(∪)

{Σ[I`(y,x)],Σ[treeidle(y)],Σ[treeidle(z)]}. {{Nodeidle(x)∗ I`(y,x)∗ treeidle(y)∗ treeidle(z)}}

Σ[I`(y,x)]∪Σ[treeidle(y)]∪Σ[treeidle(z)] {{Nodeidle(x)∗ I`(y,x)∗ treeidle(y)∗ treeidle(z)}}
(I†)

{Σ[I`(y,x)],Σ[Ir (z,x)],Σ[treeidle(y)],Σ[treeidle(z)]}. {{Nodeidle(x)∗ I`(y,x)∗ Ir (z,x)∗ treeidle(y)∗ treeidle(z)}}

Σ[I`(y,x)]∪Σ[Ir (z,x)]∪Σ[treeidle(y)]∪Σ[treeidle(z)] {{Nodeidle(x)∗ I`(y,x)∗ Ir (z,x)∗ treeidle(y)∗ treeidle(z)}}
(C)

(A) {Σ[I`(y,x)],Σ[Ir (z,x)],Σ[treeidle(y)],Σ[treeidle(z)]}. {{Nodeidle(x)∗ I`(y,x)∗ Ir (z,x)∗ treeidle(y)∗ treeidle(z)}}

Σ[I`(y,x)]∪Σ[Ir (z,x)]∪Σ[treeidle(y)]∪Σ[treeidle(z)] {{treeidle(x)}}

(D) (E)
(LU)

{Σ[I`(y,x)],Σ[treeidle(y)]}. {{Nodeidle(x)∗ I`(y,x)∗ treeidle(y)}}

Σ[I`(y,x)] {{Nodeidle(x)∗ I`(y,x)∗ treeidle(y)}}
(ε)

{Σ[treeidle(z)]}.{{treeidle(z)}} ε {{treeidle(z)}}
(./)

(B) {Σ[I`(y,x)],Σ[treeidle(y)],Σ[treeidle(z)]}. {{Nodeidle(x)∗ I`(y,x)∗ treeidle(y)∗ treeidle(z)}}

Σ[I`(y,x)] {{Nodeidle(x)∗ I`(y,x)∗ treeidle(y)∗ treeidle(z)}}

(ε)
{Σ[treeidle(z)]}.{{Nodeidle(x)∗ treeidle(z)}} ε {{Nodeidle(x)∗ treeidle(z)}}

backlink to (2)

{Σ[treeidle(y)]}.{{treeidle(y)}} Σ[treeidle(y)] {{treeidle(y)}}
(./)

{Σ[treeidle(y)],Σ[treeidle(z)]}.{{Nodeidle(x)∗ treeidle(y)∗ treeidle(z)}} Σ[treeidle(y)] {{Nodeidle(x)∗ treeidle(y)∗ treeidle(z)}}
(I)

(C) {Σ[I`(y,x)],Σ[treeidle(y)],Σ[treeidle(z)]}. {{Nodeidle(x)∗ I`(y,x)∗ treeidle(y)∗ treeidle(z)}}

Σ[treeidle(y)] {{Nodeidle(x)∗ I`(y,x)∗ treeidle(y)∗ treeidle(z)}}

(†)
{Σ[I`(y,x)]}.{{Nodeidle(x)∗ I`(y,x)∗Nodeleaf idle(y)}} Σ[I`(y,x)] {{false}}

(C)
(D) {Σ[I`(y,x)]}.{{Nodeidle(x)∗ I`(y,x)∗Nodeleaf idle(y)}} Σ[I`(y,x)] {{Nodeidle(x)∗ I`(y,x)∗ treeidle(y)}}

(†)
{Σ[I`(y,x)]}. {{Nodeidle(x)∗ I`(y,x)∗Nodeidle(y)}}

Σ[I`(y,x)] {{Nodeidle(x)∗ I`(y,x)∗Nodeidle(y)}}

(ε)
{Σ[treeidle(v)],Σ[treeidle(w)]}. {{treeidle(v)∗ treeidle(w)}}

ε {{treeidle(v)∗ treeidle(w)}}
(./)

{Σ[I`(y,x)],Σ[treeidle(v)],Σ[treeidle(w)]}. {{Nodeidle(x)∗ I`(y,x)∗Nodeidle(y)∗ treeidle(v)∗ treeidle(w)}}

Σ[I`(y,x)] {{Nodeidle(x)∗ I`(y,x)∗Nodeidle(y)∗ treeidle(v)∗ treeidle(w)}}
(I)

{Σ[I`(y,x)],Σ[I`(v,y)],Σ[Ir (w,y)],Σ[treeidle(v)],Σ[treeidle(w)]}

. {{Nodeidle(x)∗ I`(y,x)∗Nodeidle(y)∗ I`(v,y)∗ Ir (w,y)∗ treeidle(v)∗ treeidle(w)}}

Σ[I`(y,x)]

{{Nodeidle(x)∗ I`(y,x)∗Nodeidle(y)∗ I`(v,y)∗ Ir (w,y)∗ treeidle(v)∗ treeidle(w)}}
(C)

(E) {Σ[I`(y,x)],Σ[I`(v,y)],Σ[Ir (w,y)],Σ[treeidle(v)],Σ[treeidle(w)]}

. {{Nodeidle(x)∗ I`(y,x)∗Nodeidle(y)∗ I`(v,y)∗ Ir (w,y)∗ treeidle(v)∗ treeidle(w)}}

Σ[I`(y,x)]

{{Nodeidle(x)∗ I`(y,x)∗ treeidle(y)}}

60

F.3 Havoc Invariance of the Predicate Atom tree¬idle(x)

The proof of the invariance of the predicate tree¬idle(x) is similar to the previous proofs.

(ε)
/0.{{Nodeleaf busy(x)}} ε {{tree¬idle(x)}} (A) (B) similar to (A)

(LU)
(3) {Σ[tree¬idle(x)]}.{{tree¬idle(x)}} Σ[tree¬idle(x)] {{tree¬idle(x)}}

(∗)
{Σ[tree¬idle(x)]}.{{tree¬idle(x)}} Σ[tree¬idle(x)]

∗ {{tree¬idle(x)}}

(C)

{Σ[Ir (z,x)],Σ[treeidle(y)],Σ[tree¬idle(z)]}

. {{Nodeleft (x)∗ Ir (z,x)∗ treeidle(y)∗ tree¬idle(z)}}

Σ[Ir (z,x)]

{{Nodeleft (x)∗ Ir (z,x)∗ treeidle(y)∗ tree¬idle(z)}}

(D)

{Σ[Ir (z,x)],Σ[treeidle(y)],Σ[tree¬idle(z)]}

. {{Nodeleft (x)∗ Ir (z,x)∗ treeidle(y)∗ tree¬idle(z)}}

Σ[treeidle(y)]

{{Nodeleft (x)∗ Ir (z,x)∗ treeidle(y)∗ tree¬idle(z)}}

(E)

{Σ[Ir (z,x)],Σ[treeidle(y)],Σ[tree¬idle(z)]}

. {{Nodeleft (x)∗ Ir (z,x)∗ treeidle(y)∗ tree¬idle(z)}}

Σ[tree¬idle(z)]

{{Nodeleft (x)∗ Ir (z,x)∗ treeidle(y)∗ tree¬idle(z)}}
(∪)

{Σ[Ir (z,x)],Σ[treeidle(y)],Σ[tree¬idle(z)]}. {{Nodeleft (x)∗ Ir (z,x)∗ treeidle(y)∗ tree¬idle(z)}}

Σ[Ir (z,x)]∪Σ[treeidle(y)]∪Σ[tree¬idle(z)] {{Nodeleft (x)∗ Ir (z,x)∗ treeidle(y)∗ tree¬idle(z)}}
(I†)
{Σ[I`(y,x)],Σ[Ir (z,x)],Σ[treeidle(y)],Σ[tree¬idle(z)]}. {{Nodeleft (x)∗ I`(y,x)∗ Ir (z,x)∗ treeidle(y)∗ tree¬idle(z)}}

Σ[I`(y,x)]∪Σ[Ir (z,x)]∪Σ[treeidle(y)]∪Σ[tree¬idle(z)] {{Nodeleft (x)∗ I`(y,x)∗ Ir (z,x)∗ treeidle(y)∗ tree¬idle(z)}}
(C)

(A) {Σ[I`(y,x)],Σ[Ir (z,x)],Σ[treeidle(y)],Σ[tree¬idle(z)]}. {{Nodeleft (x)∗ I`(y,x)∗ Ir (z,x)∗ treeidle(y)∗ tree¬idle(z)}}

Σ[I`(y,x)]∪Σ[Ir (z,x)]∪Σ[treeidle(y)]∪Σ[tree¬idle(z)] {{tree¬idle(x)}}

/0. {{Noderight (x)}}

ε {{Noderight (x)}}

backlink to (2)

{Σ[treeidle(y)]}. {{treeidle(y)}}

Σ[treeidle(y)] {{treeidle(y)}}

backlink to (2)

{Σ[treeidle(z)]}. {{treeidle(z)}}

Σ[treeidle(z)] {{treeidle(z)}}
(./)

{Σ[treeidle(y)],Σ[treeidle(z)]}.{{Noderight (x)∗ treeidle(y)∗ treeidle(z)}} Σ[treeidle(y)]∪Σ[treeidle(z)] {{Noderight (x)∗ treeidle(y)∗ treeidle(z)}}
(I†)

{Σ[I`(y,x)],Σ[Ir (z,x)],Σ[treeidle(y)],Σ[treeidle(z)]}. {{Noderight (x)∗ I`(y,x)∗ Ir (z,x)∗ treeidle(y)∗ treeidle(z)}}

Σ[I`(y,x)]∪Σ[Ir (z,x)]∪Σ[treeidle(y)]∪Σ[treeidle(z)] {{Noderight (x)∗ I`(y,x)∗ Ir (z,x)∗ treeidle(y)∗ treeidle(z)}}
(C)

(B) {Σ[I`(y,x)],Σ[Ir (z,x)],Σ[treeidle(y)],Σ[treeidle(z)]}. {{Noderight (x)∗ I`(y,x)∗ Ir (z,x)∗ treeidle(y)∗ treeidle(z)}}

Σ[I`(y,x)]∪Σ[Ir (z,x)]∪Σ[treeidle(y)]∪Σ[treeidle(z)] {{tree¬idle(x)}}

(F) (G) (H) (I)
(LU)

{Σ[Ir (z,x)],Σ[tree¬idle(z)]}. {{Nodeleft (x)∗ Ir (z,x)∗ tree¬idle(z)}}

Σ[Ir (z,x)] {{Nodeleft (x)∗ Ir (z,x)∗ tree¬idle(z)}}

(ε)
{Σ[treeidle(y)]}. {{treeidle(y)}}

ε {{treeidle(y)}}
(./)

(C) {Σ[Ir (z,x)],Σ[treeidle(y)],Σ[tree¬idle(z)]}. {{Nodeleft (x)∗ Ir (z,x)∗ treeidle(y)∗ tree¬idle(z)}}

Σ[Ir (z,x)] {{Nodeleft (x)∗ Ir (z,x)∗ treeidle(y)∗ tree¬idle(z)}}

(ε)
{Σ[Ir (z,x)],Σ[tree¬idle(z)]}. {{Nodeleft (x)∗ Ir (z,x)∗ tree¬idle(z)}}

ε {{Nodeleft (x)∗ Ir (z,x)∗ tree¬idle(z)}}

backlink to (2)

{Σ[treeidle(y)]}. {{treeidle(y)}}

Σ[treeidle(y)] {{treeidle(y)}}
(./)

(D) {Σ[Ir (z,x)],Σ[treeidle(y)],Σ[tree¬idle(z)]}. {{Nodeleft (x)∗ Ir (z,x)∗ treeidle(y)∗ tree¬idle(z)}}

Σ[treeidle(y)] {{Nodeleft (x)∗ Ir (z,x)∗ treeidle(y)∗ tree¬idle(z)}}

(ε)
{Σ[treeidle(y)]}.{{Nodeleft (x)∗ treeidle(y)}} ε {{Nodeleft (x)∗ treeidle(y)}}

backlink to (3)

{Σ[tree¬idle(z)]}.{{tree¬idle(z)}} Σ[tree¬idle(z)] {{tree¬idle(z)}}
(./)

{Σ[treeidle(y)],Σ[tree¬idle(z)]}.{{Nodeleft (x)∗ treeidle(y)∗ tree¬idle(z)}} Σ[tree¬idle(z)] {{Nodeleft (x)∗ treeidle(y)∗ tree¬idle(z)}}
(I)

(E) {Σ[Ir (z,x)],Σ[treeidle(y)],Σ[tree¬idle(z)]}. {{Nodeleft (x)∗ Ir (z,x)∗ treeidle(y)∗ tree¬idle(z)}}

Σ[tree¬idle(z)] {{Nodeleft (x)∗ Ir (z,x)∗ treeidle(y)∗ tree¬idle(z)}}

61

(Σ)
{Σ[Ir (z,x)]}.{{Nodeleft (x)∗ Ir (z,x)∗Nodeleaf busy(z)}} Σ[Ir (z,x)] {{Noderight (x)∗ Ir (z,x)∗Nodeleaf idle(z)}}

(C)
(F) {Σ[Ir (z,x)]}.{{Nodeleft (x)∗ Ir (z,x)∗Nodeleaf busy(z)}} Σ[Ir (z,x)] {{Nodeleft (x)∗ Ir (z,x)∗ tree¬idle(z)}}

(†)
{Σ[Ir (z,x)]}. {{Nodeleft (x)∗ Ir (z,x)∗Nodeleft (z)}}

Σ[Ir (z,x)] {{false}}
(C)

{Σ[Ir (z,x)]}. {{Nodeleft (x)∗ Ir (z,x)∗Nodeleft (z)}}

Σ[Ir (z,x)] {{Nodeleft (x)∗ Ir (z,x)∗Nodeleft (z)}}

(ε)
{Σ[treeidle(v)],Σ[tree¬idle(w)]}. {{treeidle(v)∗ tree¬idle(w)}}

ε {{treeidle(v)∗ tree¬idle(w)}}
(./)

{Σ[Ir (z,x)],Σ[treeidle(v)],Σ[tree¬idle(w)]}. {{Nodeleft (x)∗ Ir (z,x)∗Nodeleft (z)∗ treeidle(v)∗ tree¬idle(w)}}

Σ[Ir (z,x)] {{Nodeleft (x)∗ Ir (z,x)∗Nodeleft (z)∗ treeidle(v)∗ tree¬idle(w)}}
(I)

{Σ[Ir (z,x)],Σ[I`(v,z)],Σ[Ir (w,z)],Σ[treeidle(v)],Σ[tree¬idle(w)]}

. {{Nodeleft (x)∗ Ir (z,x)∗Nodeleft (z)∗ I`(v,z)∗ Ir (w,z)∗ treeidle(v)∗ tree¬idle(w)}}

Σ[Ir (z,x)]

{{Nodeleft (x)∗ Ir (z,x)∗Nodeleft (z)∗ I`(v,z)∗ Ir (w,z)∗ treeidle(v)∗ tree¬idle(w)}}
(C)

(G) {Σ[Ir (z,x)],Σ[I`(v,z)],Σ[Ir (w,z)],Σ[treeidle(v)],Σ[tree¬idle(w)]}

. {{Nodeleft (x)∗ Ir (z,x)∗Nodeleft (z)∗ I`(v,z)∗ Ir (w,z)∗ treeidle(v)∗ tree¬idle(w)}}

Σ[Ir (z,x)]

{{Nodeleft (x)∗ Ir (z,x)∗ tree¬idle(z)}}

(Σ)
{Σ[Ir (z,x)]}. {{Nodeleft (x)∗ Ir (z,x)∗Noderight (z)}}

Σ[Ir (z,x)] {{Noderight (x)∗ Ir (z,x)∗Nodeidle(z)}}
(C)

{Σ[Ir (z,x)]}. {{Nodeleft (x)∗ Ir (z,x)∗Noderight (z)}}

Σ[Ir (z,x)] {{Noderight (x)∗ Ir (z,x)∗Noderight (z)}}

(ε)
{Σ[treeidle(v)],Σ[treeidle(w)]}. {{treeidle(v)∗ treeidle(w)}}

ε {{treeidle(v)∗ treeidle(w)}}
(./)

{Σ[Ir (z,x)],Σ[treeidle(v)],Σ[treeidle(w)]}. {{Nodeleft (x)∗ Ir (z,x)∗Noderight (z)∗ treeidle(v)∗ treeidle(w)}}

Σ[Ir (z,x)] {{Nodeleft (x)∗ Ir (z,x)∗Noderight (z)∗ treeidle(v)∗ treeidle(w)}}
(I)

{Σ[Ir (z,x)],Σ[I`(v,z)],Σ[Ir (w,z)],Σ[treeidle(v)],Σ[treeidle(w)]}

. {{Nodeleft (x)∗ Ir (z,x)∗Noderight (z)∗ I`(v,z)∗ Ir (w,z)∗ treeidle(v)∗ treeidle(w)}}

Σ[Ir (z,x)]

{{Nodeleft (x)∗ Ir (z,x)∗Noderight (z)∗ I`(v,z)∗ Ir (w,z)∗ treeidle(v)∗ treeidle(w)}}
(C)

(H) {Σ[Ir (z,x)],Σ[I`(v,z)],Σ[Ir (w,z)],Σ[treeidle(v)],Σ[treeidle(w)]}

. {{Nodeleft (x)∗ Ir (z,x)∗Noderight (z)∗ I`(v,z)∗ Ir (w,z)∗ treeidle(v)∗ treeidle(w)}}

Σ[Ir (z,x)]

{{Nodeleft (x)∗ Ir (z,x)∗ treeidle(z)}}

62

(†)
{Σ[Ir (z,x)]}. {{Nodeleft (x)∗ Ir (z,x)∗Nodeidle(z)}}

Σ[Ir (z,x)] {{false}}
(C)

{Σ[Ir (z,x)]}. {{Nodeleft (x)∗ Ir (z,x)∗Nodeidle(z)}}

Σ[Ir (z,x)] {{Nodeleft (x)∗ Ir (z,x)∗Nodeidle(z)}}

(ε)
{Σ[tree¬idle(v)],Σ[tree¬idle(w)]}. {{tree¬idle(v)∗ tree¬idle(w)}}

ε {{tree¬idle(v)∗ tree¬idle(w)}}
(./)

{Σ[Ir (z,x)],Σ[tree¬idle(v)],Σ[tree¬idle(w)]}. {{Nodeleft (x)∗ Ir (z,x)∗Nodeidle(z)∗ tree¬idle(v)∗ tree¬idle(w)}}

Σ[Ir (z,x)] {{Nodeleft (x)∗ Ir (z,x)∗Nodeidle(z)∗ tree¬idle(v)∗ tree¬idle(w)}}
(I)

{Σ[Ir (z,x)],Σ[I`(v,z)],Σ[Ir (w,z)],Σ[tree¬idle(v)],Σ[tree¬idle(w)]}

. {{Nodeleft (x)∗ Ir (z,x)∗Nodeidle(z)∗ I`(v,z)∗ Ir (w,z)∗ tree¬idle(v)∗ tree¬idle(w)}}

Σ[Ir (z,x)]

{{Nodeleft (x)∗ Ir (z,x)∗Nodeidle(z)∗ I`(v,z)∗ Ir (w,z)∗ tree¬idle(v)∗ tree¬idle(w)}}
(C)

(I) {Σ[Ir (z,x)],Σ[I`(v,z)],Σ[Ir (w,z)],Σ[tree¬idle(v)],Σ[tree¬idle(w)]}

. {{Nodeleft (x)∗ Ir (z,x)∗Nodeidle(z)∗ I`(v,z)∗ Ir (w,z)∗ tree¬idle(v)∗ tree¬idle(w)}}

Σ[Ir (z,x)]

{{Nodeleft (x)∗ Ir (z,x)∗ tree¬idle(z)}}

F.4 Havoc Invariance of the Predicate Atom tseg(x,u)

Lastly, we prove the invariance of the predicate tseg(x,u) via the rules in Fig. 5.

(ε)
/0. {{Node(x)}}

ε {{tseg(x,u)}}

(A)

{Σ[I`(y,x)],Σ[Ir (z,x)],Σ[tseg(y,u)],Σ[tree(z)]}

. {{Node(x)∗ I`(y,x)∗ Ir (z,x)∗ tseg(y,u)∗ tree(z)}}

Σ[I`(y,x)]∪Σ[Ir (z,x)]∪Σ[tseg(y,u)]∪Σ[tree(z)]

{{tseg(x,u)}}

similar to (A)

{Σ[I`(y,x)],Σ[Ir (z,x)],Σ[tree(y)],Σ[tseg(z,u)]}

. {{Node(x)∗ I`(y,x)∗ Ir (z,x)∗ tree(y)∗ tseg(z,u)}}

Σ[I`(y,x)]∪Σ[Ir (z,x)]∪Σ[tree(y)]∪Σ[tseg(z,u)]

{{tseg(x,u)}}
(LU)

(4) {Σ[tseg(x,u)]}.{{tseg(x,u)}} Σ[tseg(x,u)] {{tseg(x,u)}}
(∗)

{Σ[tseg(x,u)]}.{{tseg(x,u)}} Σ[tseg(x,u)]∗ {{tseg(x,u)}}

(B) similar to (B) (C) (D)
(∪)

{Σ[I`(y,x)],Σ[Ir (z,x)],Σ[tseg(y,u)],Σ[tree(z)]}. {{Node(x)∗ I`(y,x)∗ Ir (z,x)∗ tseg(y,u)∗ tree(z)}}

Σ[I`(y,x)]∪Σ[Ir (z,x)]∪Σ[tseg(y,u)]∪Σ[tree(z)] {{Node(x)∗ I`(y,x)∗ Ir (z,x)∗ tseg(y,u)∗ tree(z)}}
(C)

(A) {Σ[I`(y,x)],Σ[Ir (z,x)],Σ[tseg(y,u)],Σ[tree(z)]}. {{Node(x)∗ I`(y,x)∗ Ir (z,x)∗ tseg(y,u)∗ tree(z)}}

Σ[I`(y,x)]∪Σ[Ir (z,x)]∪Σ[tseg(y,u)]∪Σ[tree(z)] {{tseg(x,u)}}

(E) (F) similar to (F)
(LU)

{Σ[I`(y,x)],Σ[tseg(y,u)]}. {{Node(x)∗ I`(y,x)∗ tseg(y,u)}}

Σ[I`(y,x)] {{Node(x)∗ I`(y,x)∗ tseg(y,u)}}
(ε)

{Σ[tree(z)]}.{{tree(z)}} ε {{tree(z)}}
(./)

{Σ[I`(y,x)],Σ[tseg(y,u)],Σ[tree(z)]}.{{Node(x)∗ I`(y,x)∗ tseg(y,u)∗ tree(z)}} Σ[I`(y,x)] {{Node(x)∗ I`(y,x)∗ tseg(y,u)∗ tree(z)}}
(I)

(B) {Σ[I`(y,x)],Σ[Ir (z,x)],Σ[tseg(y,u)],Σ[tree(z)]}. {{Node(x)∗ I`(y,x)∗ Ir (z,x)∗ tseg(y,u)∗ tree(z)}}

Σ[I`(y,x)] {{Node(x)∗ I`(y,x)∗ Ir (z,x)∗ tseg(y,u)∗ tree(z)}}

(ε)
{Σ[tree(z)]}. {{Node(x)∗ tree(z)}}

ε {{Node(x)∗ tree(z)}}

backlink to (4)

{Σ[tseg(y,u)]}. {{tseg(y,u)}}

Σ[tseg(y,u)] {{tseg(y,u)}}
(./)

{Σ[tseg(y,u)],Σ[tree(z)]}. {{Node(x)∗ tseg(y,u)∗ tree(z)}}

Σ[tseg(y,u)] {{Node(x)∗ tseg(y,u)∗ tree(z)}}
(I)

(C) {Σ[I`(y,x)],Σ[Ir (z,x)],Σ[tseg(y,u)],Σ[tree(z)]}. {{Node(x)∗ I`(y,x)∗ Ir (z,x)∗ tseg(y,u)∗ tree(z)}}

Σ[tseg(y,u)] {{Node(x)∗ I`(y,x)∗ Ir (z,x)∗ tseg(y,u)∗ tree(z)}}

63

(ε)
{Σ[tseg(y,u)]}.{{Node(x)∗ tseg(y,u)}} ε {{Node(x)∗ tseg(y,u)}}

backlink to (1)

{Σ[tree(z)]}.{{tree(z)}} Σ[tree(z)] {{tree(z)}}
(./)

{Σ[tseg(y,u)],Σ[tree(z)]}.{{Node(x)∗ tseg(y,u)∗ tree(z)}} Σ[tree(z)] {{Node(x)∗ tseg(y,u)∗ tree(z)}}
(I)

(D) {Σ[I`(y,x)],Σ[Ir (z,x)],Σ[tseg(y,u)],Σ[tree(z)]}. {{Node(x)∗ I`(y,x)∗ Ir (z,x)∗ tseg(y,u)∗ tree(z)}}

Σ[tree(z)] {{Node(x)∗ I`(y,x)∗ Ir (z,x)∗ tseg(y,u)∗ tree(z)}}

(Σ)
{Σ[I`(y,x)]}. {{Nodeidle(x)∗ I`(y,x)∗Nodep(y)}}

Σ[I`(y,x)] {{Nodeleft (x)∗ I`(y,x)∗Nodep′ (y)}}
(C)

for (p = right,

p′ = idle)
or (p = leaf busy,

p′ = leaf idle)
{Σ[I`(y,x)]}. {{Nodeidle(x)∗ I`(y,x)∗Nodep(y)}}

Σ[I`(y,x)] {{Node(x)∗ I`(y,x)∗ tseg(y,u)}}

(†)
{Σ[I`(y,x)]}. {{Nodeq(x)∗ I`(y,x)∗Nodep(y)}}

Σ[I`(y,x)] {{false}}
(C)

for (q, p) 6= (idle,right),

(idle, leaf busy){Σ[I`(y,x)]}. {{Node(x)∗ I`(y,x)∗Node(y)}}

Σ[I`(y,x)] {{Node(x)∗ I`(y,x)∗ tseg(y,u)}}
(∨)

(E) {Σ[I`(y,x)]}. {{Node(x)∗ I`(y,x)∗Node(y)}}

Σ[I`(y,x)] {{Node(x)∗ I`(y,x)∗ tseg(y,u)}}

backlink to (E)

{Σ[I`(y,x)]}. {{Node(x)∗ I`(y,x)∗Node(y)}}

Σ[I`(y,x)] {{Node(x)∗ I`(y,x)∗Node(y)}}

(ε)
{Σ[tseg(v,u)],Σ[tree(w)]}. {{tseg(v,u)∗ tree(w)}}

ε {{tseg(v,u)∗ tree(w)}}
(./)

{Σ[I`(y,x)],Σ[tseg(v,u)],Σ[tree(w)]}. {{Node(x)∗ I`(y,x)∗Node(y)∗ tseg(v,u)∗ tree(w)}}

Σ[I`(y,x)] {{Node(x)∗ I`(y,x)∗Node(y)∗ tseg(v,u)∗ tree(w)}}
(I)

{Σ[I`(y,x)],Σ[I`(v,y)],Σ[Ir (w,y)],Σ[tseg(v,u)],Σ[tree(w)]}. {{Node(x)∗ I`(y,x)∗Node(y)∗ I`(v,y)∗ Ir (w,y)∗ tseg(v,u)∗ tree(w)}}

Σ[I`(y,x)] {{Node(x)∗ I`(y,x)∗Node(y)∗ I`(v,y)∗ Ir (w,y)∗ tseg(v,u)∗ tree(w)}}
(C)

(F) {Σ[I`(y,x)],Σ[I`(v,y)],Σ[Ir (w,y)],Σ[tseg(v,u)],Σ[tree(w)]}. {{Node(x)∗ I`(y,x)∗Node(y)∗ I`(v,y)∗ Ir (w,y)∗ tseg(v,u)∗ tree(w)}}

Σ[I`(y,x)] {{Node(x)∗ I`(y,x)∗ tseg(y,u)}}

64

	Introduction
	Models of Distributed Systems
	Configuration Logic
	Symbolic Configurations and Inductive Definitions
	Precise and Tight Formulæ

	A Language for Programming Reconfigurations
	Syntax and Operational Semantics
	Reconfiguration Proof System
	A Reconfiguration Proof Example
	Another Example of a Reconfiguration Proof

	The Havoc Proof System
	Regular Expressions and Havoc Triples
	Havoc Axioms and Inference Rules
	Havoc Proofs
	A Havoc Proof Example

	A Worked-out Example: Reconfigurable Trees
	Entailment Problems
	Related Work
	Conclusions and Future Work
	Proofs from Section 3
	Proofs from Section 4
	Proof from Section 5
	Proofs from Section 6
	Proofs from Section 7
	Havoc Invariance Proofs for Trees
	Havoc Invariance of the Predicate Atom tree(x)
	Havoc Invariance of the Predicate Atom treeidle(x)
	Havoc Invariance of the Predicate Atom treeidle(x)
	Havoc Invariance of the Predicate Atom tseg(x,u)

