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Abstract: We present an analysis and characterization of the coherent dynamics of bubble clouds. The study is two 
folds. First, through analysis of the Rayleigh-Plesset equation, we systematically show that the diagonal dominance 
of the virtual-mass matrix of the system of Lagrangian bubbles is parametrized by the cloud interaction parameter 
that controls the coherent dynamics of bubbles (d'Agostino and Brennen, J. Fluid. Mech., 1989). Second, based on 
this insight, we introduce the principal component analysis (PCA) of a time series of Lagrangian bubble dynamic 
data. Through PCA of test data, we show that the variance of the principal component can be directly correlated with 
the interaction parameter when a proper normalization (weighting) of the data is made. We further show that the 
incoherence of the bubble dynamics due to the initial polydispersity and the nonlinear oscillations of bubbles can 
appear in the slope of the decay of the variances. These results may help further understand the interaction parameter 
as well as suggest that the weighted PCA can be a simple, systematic means to characterize the coherent dynamics 
of bubbles with various parameters. 
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1. Introduction 

   The dynamics of cavitation bubble clouds are of critical importance in medical and industrial applications as well 
as in sonoluminescence and sonochemistry. Challenges remain in understanding and controlling the dynamics; the 
oscillations of microscopic bubbles in a cloud are subjected many-body interactions and often intractable with 
measurements. Previous studies identified a non-dimensional parameter which dictates the coherent dynamics of 
bubble clouds, the cloud interaction parameter. The parameter can be derived from the scaling analysis of the 
governing equations a-priori and was used to characterize dynamics including in-phase, coherent oscillations of 
bubbles and spatially biased, localized excitation of bubbles in the cloud [1,2]. Further understanding and quantifying 
these coherent features may enable reduced-order representation of the complex dynamics for modeling and control. 
To this end, questions remain in terms of (1) the validity of using the single parameter to characterize the complex 
dynamics that involve many factors such as the cloud shape, polydispersity, profile of excitation (forcing) pressure, 
and (2) availability of further systematic methods to extract the coherent features from data. 

In the present study, we address these questions through a twofold approach. First, we revisit the connection 
between the Lagrangian representation of the bubble dynamics using the Rayleigh-Plesset (R-P) equation. We show 
that the interaction parameter controls the diagonal dominance of the virtual-mass matrix of the R-P equation, and 
thus represents the dominance of the inter-bubble interactions in the cloud. Second, based on this knowledge, we 
explore the use of the principal component analysis (PCA) of the data matrix containing the discrete evolution of 
variables associated with Lagrangian bubbles, as a means to extract and characterize the coherent dynamics of bubbles 
from data. The use of PCA here is primarily inspired by the recent data-science approaches to analyze many-body 
Hamiltonian systems [3]. We perform several sets of numerical experiments. We first perform PCA of bubble dynamic 
data under linear periodic oscillations, using various weighting methods. We show that, with a proper normalization 
(weighting) of the data, the PCA can account for the contribution of the inter-bubble interactions in a manner consistent 
with the R-P equation. We identify that the interaction parameter is correlated with the variance of the first principal 
component. We further show that increasing both the polydispersity of bubbles in the cloud and the forcing amplitude 
can lead to a slower decay of the variances of the following components (discrete spectrum), and therefore that the 
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PCA can quantify the coherence of the bubble dynamics. These results further help understand the interaction 
parameter as well as suggest that the PCA can be a simple, systematic means to characterize the dynamics of bubble 
clouds from data. 

2. Methods 

3.1. Rayleigh-Plesset equation and the cloud interaction parameter 

We consider the Rayleigh-Plesset equation formulated for multiple bubbles under mutual interactions. 
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   Note that Ri is the radius of the i-th bubble, Ri0 is that at equilibrium, rik is the distance between bubble-i and bubble-
k, p0 is the pressure of liquid at equilibrium, pe is the time-dependent pressure at infinity, σ is the surface tension, ν is 
the dynamic viscosity of liquid, γ is the specific heat ratio of the gas, and ρ is the density of liquid. The physical 
parameters of liquid are chosen for ambient water. The R-P equation can be expressed using the following vector form 
of equations as 
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where x denotes the coordinates (position) of the bubbles and 
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(3) is regarded as an equation of motion for the bubble radius. Further discussions on the R-P equation can be 
elsewhere [4]. M is weighting the acceleration of the bubble radius and can be regarded as the added-mass matrix of 
the system. The property of M is critical for the solution of the pseudo-linear system (3). The non-diagonal entries of 
M represent the contribution of the inter-bubble interactions on the accelerations of the radii of the bubbles. To 
mathematically quantify this contribution, we consider the diagonal dominance; M is diagonally dominant if 
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When the bubble dynamics are assumed stationary, by scaling the radius and the inter-bubble distance with the mean, 
<R>, and with the cloud size, L, this condition can be expressed as 1 >  𝑁𝑁𝑏𝑏<𝑅𝑅>

𝐿𝐿 ~B, where B is the cloud interaction 
parameter. Therefore, B is a measure of the diagonal dominance of M. Physically speaking, it has been shown that B 
controls the kinetic energy of liquid induced by the oscillations of the bubbles. To further assess the connections of K 
and M, we express the energy using M as  

𝐾𝐾 = 𝒒𝒒𝐓𝐓𝑻𝑻𝒒𝒒    (4), where 𝑻𝑻 = 𝑸𝑸𝑴𝑴  and  𝑄𝑄𝑖𝑖𝑖𝑖 = �2𝜋𝜋𝜌𝜌𝑅𝑅𝑖𝑖
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With the same scaling, the condition for the diagonal dominance of T is the same as that of A. It is shown that B 
measures the contribution of the non-diagonal components of A to the kinetic energy. 

3.2. Principal component analysis (PCA) 

Assume that the time series of the radius and the radial velocity of each bubble in the cloud, Q = [q1, q2, …, qL] and 
R = [r1, r2, …, rL], are available as a solution of equation (3). The dominant features of the data can be extracted using 
the PCA. We use the singular value decomposition (SVD) to perform the PCA. 

𝑳𝑳𝑸𝑸 = 𝑼𝑼𝚺𝚺𝑽𝑽∗, (5) 
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where Σ is a rectangular diagonal matrix whose diagonal entries correspond to the principal components. L is a 
weighting matrix. L is arbitrary from the data science perspective. For physical systems, L can be chosen such that 
the variance of the principal components represents physically meaningful quantities. PCA of spatio-temporal Eulerian 
flow field data is often denoted as proper orthogonal decomposition (POD). In the POD, L is chosen such that the 
inner product (Lq)*Lq represents the system’s energy [5]. In the present study, we consider two choices of L, namely 
L1 and L2. L1 is defined as the following diagonal matrix. 
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where (－) denotes the time average during the time window of the data. L2 is defined through the Cholesky 
decomposition of the weighting matrix that is used to obtain K in equation (4). 
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With L1, the inner product (Lq)*Lq becomes the measure of the energy induced by each single bubble without 
consideration of the inter-bubble interaction. The POD typically uses this diagonal form of weighting matrixes. With 
L2, the product provides for an approximation of K and therefore accounts for the system’s energy induced by the 
many-body interaction represented by the non-diagonal entries of M. 

3. Results 

 
(a)                                                     (b)                                                       (c) 

Figure 1. (a) PCA variance obtained with the two distinct weighting matrixes, L1 and L2. The results are 
normalized by σ21 obtained with L2. (b) Ratio of the PCA variances obtained with the two weights as a 
function of  B, for the first and second principal components. (c) Ratio of the first PCA variance to the total 
variance as a function of B, for L1 and L2. 

   We perform several sets of numerical experiments. First, we excite a spherical bubble cloud including 100 
monodisperse bubbles with R0 =10 um with external pressure pe = p0 + pasin(2 π ft), where p0 = 1 atm, pa = 103

 Pa, and 
f = 1 MHz. The cloud radius is varied at O(0.1-1) mm such that B satisfies 0 < B < 5. Figure 1a compared the PCA 
variances obtained using L1 and L2, for a cloud with B=5. The sets of the variances are nearly identical with each other, 
except that the first variance is greater with L2. Figure 1b shows the ratio of the variances obtained using L1 and L2 
for the first and second principal components, for clouds with various values of B. The ratio of the first variance is 
linear to B, while the second variance is nearly zero. Figure 1c shows the ratio of the first PCA variance to the total 
variance as a function of B, for the same set of bubble clouds. For the case with L2, the first variance occupies a portion 
greater than 95% of the total variance. These results indicate that the coherent oscillations is captured by the first 
principal component, and that the variance of the first component obtained with L2 can be scaled with B. 
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Figure 2. (a) PCA variance obtained with L2, for various values of polydispersity of bubble clouds with B = 
5. (b) PCA variance obtained with L2, for polydisperse bubble clouds with B = 5 excited by various 
amplitudes of the external pressure.  

Second, we excite a spherical bubble cloud including 100 polydisperse bubbles with B = 5.The bubble size follows 
the lognormal distribution with a reference radius of 10 um and a standard deviation σ. Four cases are simulated with 
σ = 0, 0.3, 0.5, and 0.7. With increasing σ, we include bubbles with wider a range of characteristic frequencies. The 
same external pressure is used as the previous case. Figure 2a shows the obtained PCA variances. The decay of the 
variance becomes less steep with increasing the polydispersity. 
   Third, we excite the same bubble cloud with σ = 0.7 and with various values of pa: pa = 104, 105, and 106

 Pa. With 
increasing pa, the bubble dynamics become more nonlinear. Figure 2b shows the obtained variances. The decay of the 
variance becomes less steep with increasing the amplitude of the forcing pressure. The results of the second and the 
third case indicate that increasing the polydispersity and the forcing pressure can enhance the incoherence of the 
bubble oscillations (the first principal component becomes less dominant), and this enhancement is captured by the 
spectral decay of PCA.  

4. Conclusions 

In conclusion, we established the connections between the cloud interaction parameter and the PCA of Lagrangian 
bubble dynamics data. We identified that the parameter is a measure of the diagonal dominance of the added-mass 
matrix that appears in the R-P equation for multiple bubbles. The PCA can capture the effect of the many-body 
interactions of bubbles when a proper weighting strategy is used. We showed that the variance of the principal 
component is correlated with the interaction parameter. Furthermore, this PCA can inform on the incoherence of the 
oscillations of bubbles, which can be enhanced by the polydispersity and the forcing amplitude, through spectral 
decay. Future work includes further assessing the capabilities of the PCA to characterize the bubble cloud dynamics 
with various parameters.  
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