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Abstract:
Hemochromatosis (HC) is a genetically heterogeneous disorder in which uncontrolled intestinal iron
absorption may lead to progressive iron overload responsible for disabling and life-threatening
complications such as arthritis, diabetes, heart failure, hepatic cirrhosis, and hepatocellular
carcinoma.
The recent advances in the knowledge of pathophysiology and molecular basis of iron metabolism have
highlighted that HC is caused by mutations in at least five genes, resulting in insufficient hepcidin
production or, rarely, resistance to hepcidin action. This has led to an HC classification based on
different molecular subtypes, mainly reflecting successive gene discovery. This scheme was difficult to
adopt in clinical practice and therefore needs revision. Here we present recommendations for unambiguous
HC classification developed by a working group of the International Society for the Study of Iron in
Biology and Medicine (BIOIRON Society) including both clinicians and basic scientists during a meeting
in Heidelberg, Germany. We propose to deemphasize the use of the molecular subtype criteria in favor of
a classification addressing both clinical issues and molecular complexity. Ferroportin Disease (former
type 4a) has been excluded because of its distinct phenotype. The novel classification aims to be of
practical help whenever a detailed molecular characterization of HC is not readily available.
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Abstract 48 

Hemochromatosis (HC) is a genetically heterogeneous disorder in which uncontrolled 49 

intestinal iron absorption may lead to progressive iron overload responsible for disabling 50 

and life-threatening complications such as arthritis, diabetes, heart failure, hepatic 51 

cirrhosis, and hepatocellular carcinoma. 52 

The recent advances in the knowledge of pathophysiology and molecular basis of iron 53 

metabolism have highlighted that HC is caused by mutations in at least five genes, 54 

resulting in insufficient hepcidin production or, rarely, resistance to hepcidin action. This 55 

has led to an HC classification based on different molecular subtypes, mainly reflecting 56 

successive gene discovery. This scheme was difficult to adopt in clinical practice and 57 

therefore needs revision. Here we present recommendations for unambiguous HC 58 

classification developed by a working group of the International Society for the Study of 59 

Iron in Biology and Medicine (BIOIRON Society) including both clinicians and basic 60 

scientists during a meeting in Heidelberg, Germany. We propose to deemphasize the use 61 

of the molecular subtype criteria in favor of a classification addressing both clinical issues 62 

and molecular complexity. Ferroportin Disease (former type 4a) has been excluded 63 

because of its distinct phenotype. The novel classification aims to be of practical help 64 

whenever a detailed molecular characterization of HC is not readily available.   65 

 66 
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Historical Perspective 82 

It is commonly accepted that the term "hemochromatosis" was coined by the German 83 

pathologist von Recklinghausen in 1889. Of note, this was during the Versammlung 84 

Deutscher Naturforscher (meeting of German scientists) held in Heidelberg, like the 85 

BIOIRON Society (formerly IBIS) meeting in 2019, which led to the current report. 86 

Following the description of patients with "bronze diabetes and cirrhosis" by French 87 

physicians led by Armand Trousseau in the mid-1800s, von Recklinghausen hypothesized 88 

that something circulating in the blood ("Hemo-") was responsible for skin and organ 89 

damage and pigmentation ("-chromatosis") (HC). Recognizing excess iron as the etiology 90 

of organ toxicity took several decades, and was attributable to Joseph Sheldon in 1935, 91 

who was also the first to suggest the genetic origin of the metabolic defect (for a 92 

comprehensive historical review, see1). Overall, these pioneers' works clearly defined a 93 

clinical-pathological entity caused by progressive iron accumulation and characterized by 94 

multi-organ damage (mainly in liver, pancreas, joints, heart, and endocrine glands), without 95 

signs of anemia (to the contrary, some patients show mildly increased Hb levels)2-5. In the 96 

1950s, ferrokinetic studies revealed abnormally increased intestinal iron absorption as the 97 

key pathophysiological feature of HC,6 and repeated/frequent  phlebotomies were 98 

established as the mainstay of treatment7. In 1977, the seminal work by Marcel Simon and 99 

colleagues reported the tight linkage between the major histocompatibility complex (MHC) 100 

and the putative hemochromatosis gene on chromosome 6p, definitively demonstrating 101 

the genetic origin of the disease8. This paved the way to the discovery, in 1996, of the 102 

"hemochromatosis gene” HFE (alias “high Fe”, official full name “homeostatic iron 103 

regulator”)9, which provided additional information about HC. Initially, it appeared that up to 104 

95% of HC cases could be attributed to homozygosity for a single nucleotide change (845 105 

G→A) causing the substitution of cysteine by tyrosine at amino acid 282 (p.Cys282Tyr or 106 

C282Y variant)10-13. A second HFE polymorphism, p.His63Asp, was detected, whose 107 

minor role became clearer later14. The meaning of the p.Cys282Tyr/p.His63Asp compound 108 

heterozygosity is discussed in detail below. The high frequency of p.Cys282Tyr 109 

homozygosity in the original studies resulted from the inclusion of patients mostly of 110 

Northern European ancestry, a region where the variant had originated around 4,000 111 

BC.15,16 Indeed, the p.Cys282Tyr variant, frequent in certain geographical regions,17 is rare 112 

or even absent in large areas of the world, including Asian and African countries, as well 113 

as in native Americans.18,19 Subsequent studies in Southern Europe, in the Mediterranean 114 
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area, and in Brazil found that at least one-third of subjects with a defined HC phenotype 115 

were negative for p.Cys282Tyr at HFE genetic testing.20,21  116 

Over time, it became evident that the genetic basis of HC was more heterogeneous 117 

than initially assumed, and several variants in other iron-controlling genes (collectively 118 

referred to as “non-HFE genes”) were progressively associated with the disorder. These 119 

include variants on genes coding for a second receptor for transferrin (TFR2),22-24 120 

ferroportin (SLC40A1),25 hepcidin (HAMP),26,27 and hemojuvelin (HJV).28,29 In particular, 121 

the discovery of variants in the HAMP and HJV genes made it possible to define a severe 122 

early-onset (juvenile) form of HC, with early cardiac and endocrine impairments, as a 123 

molecularly distinct entity. 124 

Hepcidin is the master regulator of iron homeostasis30-33 and its identification has 125 

represented a considerable advance in the comprehension of the pathophysiological 126 

mechanisms underlying HC. For detailed reviews on hepcidin discovery, functions and 127 

regulation, readers are referred elsewhere34-37. Briefly, hepcidin is a small peptide 128 

hormone produced by the liver, that negatively controls circulating iron levels. Through 129 

interaction with ferroportin38-40 (its receptor and the only cellular iron exporter so far 130 

identified in humans), hepcidin inhibits the absorption of dietary iron in the duodenum and 131 

its release by spleen macrophages involved in recycling iron from senescent erythrocytes. 132 

Molecular defects causing hepcidin deficiency result in uncontrolled intestinal iron 133 

absorption, with progressive iron accumulation in tissues, ultimately leading to HC.1 In 134 

most cases gene defects cause insufficient production of hepcidin, while rarely ferroportin 135 

resistance to hepcidin is observed (see below). As illustrated in Figure 1, hepcidin 136 

regulation by iron is quite complex and involves numerous proteins41,42 whose alterations 137 

can compromise hormone synthesis or function. For this reason, identifying the molecular 138 

causes of HC is far from simple and requires a deep knowledge of its pathogenetic basis, 139 

which is still not completely clarified. In our view, the term “hemochromatosis” should be 140 

reserved for this unique clinical entity caused by genetic lesions that primarily affect the 141 

hepcidin-ferroportin system and not used to describe clinically distinct iron overload 142 

conditions with other causes (see discussion below). 143 

 144 

The current clinical scenario 145 

Unlike in the past, fully expressed and potentially lethal HC (with liver cirrhosis, 146 

diabetes, endocrine dysfunction, and heart failure) is seen rarely in current clinical 147 

practice.43 This can be ascribed to increased awareness of the disease, and, mostly, to the 148 
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routine assessment of iron biomarkers, particularly serum ferritin. Unfortunately, this is 149 

counterbalanced by an increased diagnostic challenge for non-experts in the iron field, 150 

primarily due to the lack of specificity of ferritin.  151 

Ferritin is an essentially intracellular protein that serves to store iron safely. It is also 152 

present at very low concentration (µg/L) in serum, likely through secretion by 153 

macrophages44. Normal values usually range from 30 to 200 or 300 µg/L in females and 154 

males, respectively. The function of secreted extracellular ferritin remains largely 155 

unknown.45,46  Several common conditions lead to increased serum ferritin levels, including 156 

virtually all inflammatory disorders, hepatic cytolysis (e.g., during acute or chronic liver 157 

disease), or the metabolic syndrome.47,48 This translates into a huge number of 158 

consultations, overuse of the “first-level” genetic test looking for the presence of the 159 

common variants in the HFE gene, and even misdiagnosis due to incorrect interpretation 160 

of the results.49  161 

The glycoprotein transferrin is the extracellular carrier of iron that is detectable at high 162 

concentration in blood (g/L; the third most abundant protein after albumin). Transferrin 163 

saturation (TSAT) is calculated as the ratio between serum iron and transferrin (multiplied 164 

by the correction factor 1.42) or, less reliably, between serum iron and total iron binding 165 

capacity, and expressed as a percentage. TSAT is much less requested in clinical practice 166 

but is much more informative about a possible diagnosis of HC. Normal TSAT varies 167 

between 20 and 45%. It has been estimated that hyperferritinemia with normal TSAT is 168 

associated with increased iron stores in less than 10% of cases.50 Importantly, TSAT 169 

elevation is the hallmark of HC.  In HC patients, high TSAT reflects the increased pool of 170 

circulating iron due to insufficient hepcidin production and typically precedes the rise of 171 

serum ferritin by several years.51 TSAT tends to remain elevated even in subjects 172 

effectively iron-depleted by phlebotomies. Occasional reports of normal TSAT in 173 

p.Cys282Tyr homozygotes with hyperferritinemia should always prompt the search for 174 

additional cofactors that raise ferritin, such as metabolic syndrome or alcohol intake.52,53    175 

Liver biopsy was once regarded as the gold standard for the diagnosis of HC, because 176 

it can reveal iron deposition in hepatocytes with the typical decreasing gradient from the 177 

periportal zone (most exposed to iron coming from the gut) to the central-lobular zone in 178 

the hepatic acinus. However, in current practice the demonstration of p.Cys282Tyr 179 

homozygosity along with elevated serum ferritin and TSAT is considered sufficient to make 180 

the diagnosis of HC. Liver biopsy remains useful for prognostic purposes in HC patients 181 

with serum ferritin levels repeatedly >1,000 µg/L, allowing the early identification of 182 

Accepted manuscript / Final version



 7 

advanced fibrosis or even subclinical cirrhosis. These conditions require close surveillance 183 

for hepatocellular carcinoma even after iron depletion.51 Nowadays, liver biopsy is seldom 184 

performed due to its invasiveness, costs, and the increasing availability of non-invasive 185 

tools. Indeed, magnetic resonance imaging (MRI) techniques have largely replaced it for 186 

the determination of liver iron concentration (LIC). This is obtained indirectly by using 187 

various MRI protocols, for which there is still no consensus on the best one. The choice of 188 

the protocol mainly depends on local expertise, as well as on the available equipment and 189 

software (for detailed reviews, see 54-56).  Moreover, hepatic transient elastography 190 

(Fibroscan) is a reliable non-invasive method for detecting liver fibrosis in HC patients, 191 

limiting the need for liver biopsy to those with indeterminate results.57 192 

Currently, HC is typically suspected in subjects with no or minimal symptoms, increased 193 

serum ferritin levels without alternative explanation, high TSAT, and evidence of increased 194 

liver iron stores by MRI. Making the diagnosis at this preclinical early stage51 has the 195 

undoubted advantage of preventing organ damage by a relatively simple and cost-196 

effective treatment (phlebotomy), as well as of allowing normal life expectancy.58,59  197 

The HFE genetic test, available in most laboratories, identifies the commonest inherited 198 

defect in Caucasians predisposing to HFE-related HC, i.e. p.Cys282Tyr homozygosity. 199 

Therefore, in Caucasians, an HFE genetic test is indicated when high TSAT is confirmed 200 

irrespective of parenchymal IO demonstration.  p.Cys282Tyr homozygosity has a variable 201 

and difficult to predict clinical penetrance,60-64 with several inherited and acquired modifiers 202 

potentially contributing to the final phenotype. For this reason, HFE-related HC should not 203 

be viewed as a simple monogenic disorder, but rather as the complex result of the 204 

interplay of environmental, lifestyle, and still unidentified genetic cofactors.1  205 

Regarding the compound p.Cys282Tyr and p.His63Asp heterozygosity, compelling 206 

evidence exists that this genotype per se is characterized by minimal or no clinical 207 

penetrance 65,66. Thus, it cannot be considered diagnostic for HC (for a detailed discussion 208 

see14), but at most as a susceptibility factor that can be associated with mild-to-moderate 209 

IO only in case of digenic inheritance67 (see below) or when other predominant causes of 210 

liver disease are present, namely non-alcoholic fatty liver disease (NAFLD), alcohol, or 211 

HCV. Of note, the latter two are known to cause acquired hepcidin suppression41,68,69. 212 

According to existing guidelines, whenever a subject with p.Cys282Tyr/p.His63Asp 213 

compound heterozygosity has evidence of IO, a secondary cause of liver disease should 214 

be sought and treated70,71, with phlebotomies possibly considered as an adjunctive 215 

treatment. On the other hand, the negative effects of an automatic HC (mis)diagnosis in 216 
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p.Cys282Tyr/p.His63Asp compound heterozygotes are commonly seen at referral centers. 217 

They include patients’ and family members’ unnecessary anxiety, incomplete prior 218 

investigations (e.g., serum ferritin but neither TSAT nor MRI), overlooking of other causes, 219 

and/or unnecessary treatment by phlebotomies. 220 

Clinical elements that should raise a definite suspicion of HC are reported in Table 1. In 221 

Caucasians with a negative first-level HFE test (i.e., p.Cys282Tyr homozygosity is not 222 

detected) and in non-Caucasians, a second-level genetic test should be considered in 223 

order to identify rarer variants in the HFE or in other genes known to be linked to hepcidin 224 

control.  In general, these types of HC are less influenced by cofactors, and characterized 225 

by a more severe and homogeneous clinical picture appearing at a younger age.72 Their 226 

molecular diagnosis is often complex, since variants in HC genes other than HFE are 227 

typically private, i.e. restricted to members of only one or a few families. To this end, 228 

modern approaches based on Next-Generation-Sequencing (NGS) have greatly expanded 229 

the diagnostic possibilities in rarer HC, while at the same time opening enormous 230 

challenges of interpretation of the results. NGS is generally available only at referral 231 

centers and requires specific expertise to avoid misdiagnosis, with long wait time for 232 

results (see below). Nonetheless, treatment of patients with a defined HC phenotype 233 

should not be delayed pending the result of the genetic test. Recently, NGS methods have 234 

also made it possible to estimate the global prevalence of HFE and non-HFE HC in 235 

different populations,19 as summarized in Table 2. 236 

Figure 2 illustrates a possible algorithm for diagnosis of HC, starting from clinical, 237 

biochemical and imaging studies to molecular confirmation. 238 

 239 

The nomenclature of genetic disorders  240 

HC nomenclature suffers from a common problem of classifying genetic diseases. In 241 

contrast to genes, diseases lack a standardized way to review official names and symbols 242 

by formal committees (https://ghr.nlm.nih.gov/primer/mutationsanddisorders/naming). 243 

Disease nomenclature is often derived from the name(s) of the physician(s) who first 244 

described the condition, one major sign or symptom, or the biochemical/genetic underlying 245 

defect. However, the growing comprehension of the pathophysiological or molecular 246 

mechanisms that regulate diseases, as well as the identification of new phenotypes, may 247 

require revision of the initial name by experts, in order to improve its usefulness in clinical 248 

practice.  249 
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Proper nomenclature, in fact, is an essential prerequisite for clear and effective 250 

communication about a particular condition. Ideally, it should unequivocally evoke 251 

disorders sharing the same pathogenesis and treatment, eventually helping clinicians to 252 

provide an accurate diagnosis and management. 253 

 254 

What hemochromatosis is (and what it is not) 255 

Nomenclature and case definition of HC have long been recognized as a potential source 256 

of confusion73, especially when dealing with the report of genetic tests 14. Among experts, 257 

there was a common feeling that the HC classification needs to be revised in view of the 258 

increasing awareness and knowledge of IO disorders. To this end, the BIOIRON Society 259 

promoted a two-step process. The starting point was the preparation of a survey that was 260 

sent to working group participants, including both expert clinicians and basic scientists 261 

actively involved in the iron metabolism field, and consisting of nearly all who discovered 262 

the hemochromatosis genes and hepcidin. The survey questions and the summary of 263 

responses are available in the Supplementary Materials (S1). This was followed by a 264 

critical collegial discussion during a specific session of the most recent Biennial Meeting of 265 

the BIOIRON Society in Heidelberg. The recommendations reported here are the result of 266 

such discussion, where the panelists eventually agreed on the novel classification. As an 267 

integral part of the process, the panelists agreed on a robust definition of HC, based on 268 

clinical presentation and widely available tools, as a prerequisite for genetic testing. The 269 

main clinical, biochemical and imaging studies for the suspicion of HC are reported in 270 

Table 1. Rigorously speaking, the term “hemochromatosis” should be reserved for a 271 

unique genetic clinical-pathological condition characterized by increased TSAT, IO in the 272 

liver (but not in the spleen), prevalent involvement of peri-portal hepatocytes with iron-273 

spared Kupffer cells, and signs and/or symptoms associated with IO. The panelists also 274 

emphasized that the term “hemochromatosis” itself implies an IO of genetic origin, which is 275 

why they would recommend avoiding the unnecessary use of qualifiers such as 276 

"hereditary", "genetic" or "primary". Indeed, genetic defects in the hepcidin/ferroportin 277 

regulatory axis (caused by variants in hepcidin regulators, the hepcidin gene itself, or in 278 

ferroportin) are responsible for inadequate production or activity of hepcidin, or lack of 279 

hepcidin responsiveness of ferroportin. Finally, the panelists agreed that the definition of 280 

HC should also include the absence of hematological signs of a primary/predominant red 281 

blood cell disorder, such as anemia or reticulocytosis (see Table 1 for some exceptions to 282 

this rule). This is needed to distinguish HC from other iron overload conditions, often 283 
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referred to as “iron-loading anemias”,74,75 which are similarly characterized by increased 284 

TSAT and are nearly always genetically determined. In these conditions, the hepcidin 285 

suppression is caused by factors released by erythropoietin-stimulated erythroblasts (e.g. 286 

erythroferrone or ERFE),76 as a consequence of ineffective erythropoiesis or compensated 287 

chronic hemolysis, and not by variants in genes affecting the hepcidin-ferroportin axis. The 288 

prototype of this group is non-transfusion dependent thalassemia (NTDT).77 IO also occurs 289 

in transfusion dependent inherited anemias, but in this case, it is mainly due to 290 

transfusions per se, and hepcidin levels tend to be increased,78 especially immediately 291 

after the transfusion because of suppression of erythropoiesis.79 Figure 3 illustrates the 292 

main mechanisms underlying the development of IO in hemochromatosis and iron loading 293 

anemias. As mentioned above, the majority of iron loading anemias are inherited (for 294 

recent comprehensive reviews, see36,80-82), including forms caused by variants in the 295 

hemoglobin genes, in genes coding for red blood cell enzymes or membrane structures, 296 

as well as congenital sideroblastic81 or dyserythropoietic82 anemias. Sometimes, variants 297 

in genes directly regulating iron transport and utilization (such as DMT1, transferrin, 298 

ceruloplasmin, and others) may be implicated as well.80 Finally, IO due to hepcidin 299 

inhibition can also occur independently of transfusions in some forms of myelodysplastic 300 

syndromes83, especially those characterized by ringed sideroblasts and increased 301 

ineffective erythropoiesis associated with acquired somatic mutations in SF3B184. In any 302 

case, all these conditions should never be regarded as hemochromatosis because of the 303 

distinct pathogenesis and treatment (e.g., phlebotomies are often not feasible). 304 

 305 

The former classifications: strengths and shortcomings  306 

The HC classifications reported by authoritative textbooks and recent reviews and 307 

guidelines are based on a schema (Table 3), in which numbers and letters reflect the 308 

chronology of first descriptions of genotype-phenotype correlations.51,71,85,86 Four types are 309 

included, with type 2 and type 4 further subdivided into subtypes A and B. They have the 310 

advantage of being very informative from a molecular point of view, and officially endorsed 311 

by OMIM (the Online Mendelian Inheritance of Man database), but also present several 312 

caveats and inconsistencies. The main limitations of the current classifications are listed 313 

below.  314 

a. Poor applicability in clinical practice (Limitations due to costs and lack of 315 

widespread expertise).  316 
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 Apart from the genetic test looking for the common HFE variants, the identification of 317 

the molecular defect causing rarer forms of HC is currently offered by few laboratories, 318 

heterogeneously distributed and scattered worldwide. This requires that patients should 319 

travel, or DNA should be sent to referral centers, with inevitable discomforts, delays and 320 

costs. Moreover, although the second-level genetic test (mainly based on NGS approach) 321 

has recently improved, with gradually decreasing costs, it demands advanced experience 322 

for a rigorous interpretation, which can take several weeks.14,87-89 Moreover, some cases 323 

of HC still remain molecularly undiagnosed even after NGS, suggesting the possibility of 324 

unknown gene(s) yet to be discovered.89-91 For this reason, the cooperation between 325 

geneticists, bioinformaticians, and clinicians is necessary to resolve the most difficult 326 

cases. EuroBloodNet, the network connecting experts on rare hematological diseases, is 327 

making great efforts in this direction (for details, see www.eurobloodnet.eu).  328 

b. Numerical subtypes do not capture the complex molecular pathogenesis of 329 

HC.  330 

Recent applications of NGS have highlighted that some patients with a provisional 331 

diagnosis of non-HFE HC cannot be ascribed to any of the numerical subtypes listed in the 332 

previous classification (Table 3). Essentially there are two reasons:  333 

1) Some show a “digenic” inheritance, deriving from the combination of pathogenic 334 

variants in two different genes involved in iron metabolism (e.g., single p.Cys282Tyr + 335 

heterozygous variants in HJV, HAMP or TFR2).90,92-95 Although there are still only few 336 

cases reported, digenic inheritance must also be considered in cases whose HFE 337 

genotype per se does not fully explain the clinical picture, for example in patients with 338 

p.Cys282Tyr homozygosity and very early/severe IO.   339 

2) Others do not display variants in any of the five classical hemochromatosis genes 340 

(i.e., HFE, HAMP, HJV, TFR2, and SLC40A1). Recently, some small case-series96-98 have 341 

reported moderate late-onset IO in patients carrying variants in the BMP6 gene, encoding 342 

one of the major activators of hepcidin expression in response to iron99. The role of such 343 

variants is still controversial, as they have been detected mostly in patients with a 344 

substantial burden of acquired cofactors.100 Nonetheless, they broaden the spectrum of 345 

genetic defects potentially responsible for HC. 346 

c. Former Type 4A HC 347 

Former Type 4A HC actually represents an IO syndrome characterized by distinctive 348 

clinical, biochemical, and pathological features, which do not fit the definition of HC.101,102 349 

They include normal to low TSAT, iron retention in spleen and hepatic macrophages, and, 350 
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sometimes, poor tolerance to standard phlebotomies. The underlying molecular defect is 351 

the presence of loss-of-function (LOF) variants in the SLC40A1 gene, that reduce 352 

expression or iron export capability of ferroportin at the cell surface. Therefore, iron is 353 

trapped inside iron-recycling macrophages (primarily in the spleen), resulting in a reduction 354 

of circulating iron, and a tendency to iron-restricted erythropoiesis. The corresponding 355 

clinical features are normal-to-low TSAT and, sometimes, the development of mild anemia 356 

after phlebotomies. Both these elements are clearly at variance with the case definition of 357 

HC according to Table 1. Another peculiarity is represented by autosomal dominant 358 

inheritance. Taking into consideration all these aspects, many authors have suggested 359 

adopting a specific terminology for this condition, such as Ferroportin disease (FD).14,102 In 360 

spite of very high ferritin levels which may be evident even in young-adult subjects, FD 361 

phenotype is generally milder than in HFE-related HC, possibly because of the lower 362 

toxicity of iron accumulation in macrophages as compared to hepatocytes.103.102,103 363 

On the other hand, very rare gain-of-function (GOF) variants in the SLC40A1 gene lead 364 

to ferroportin resistance to hepcidin, and cause IO conditions phenotypically and 365 

biochemically indistinguishable from hepcidin-deficient HC (former Type 4B HC).104 366 

Variants that interfere with hepcidin binding to ferroportin and also impair ferroportin 367 

stability or ability to export iron are also possible, potentially leading to a mixed or 368 

intermediate phenotype variably influenced by age or environmental factors. 369 

d. Former Type 2 molecular subtypes are not always Juvenile forms and vice 370 

versa 371 

As mentioned  before, the term juvenile hemochromatosis classically designates an 372 

early-onset (within the second or third decades of life), fully-expressed HC phenotype 373 

showing similar penetrance in both genders and a tendency to present with cardiac and 374 

endocrine dysfunctions.27,105 This phenotype is generally due to variants in HJV and 375 

HAMP genes causing much more severe iron hyperabsorption than the HFE mutations.  376 

However, recent studies have highlighted some age-overlap at diagnosis between the 377 

various molecular subtypes of HC.72 Therefore, the term juvenile HC can be ambiguous if 378 

invariably attributed to variants in the HAMP and HJV genes, because in some of these 379 

patients the disease is diagnosed in adulthood. Similarly, the term can be misleading in 380 

HC patients with defects in genes other than HJV or HAMP, but with early-onset severe 381 

phenotypes. 382 

 383 
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As a result of the two-step process described previously, the panelists propose a new 385 

classification of HC  (shown in Table 4), addressing both clinical issues (thereby 386 

addressing the needs of general clinicians and subspecialists ) and molecular precision. 387 

The emphasis on clinical features obviates the current challenges represented by second-388 

level genetic testing for detecting rare variants in the HFE and non-HFE genes, which 389 

could lead to delayed diagnosis and treatment. When criteria listed on Table 1 are fulfilled, 390 

the diagnosis of HFE-related HC can be made in the presence of p.Cys282Tyr 391 

homozygosity. If an appropriately investigated patient has an unequivocal HC phenotype 392 

without cofactors but is not a p.Cys282Tyr homozygote (and this includes compound 393 

p.Cys282Tyr and p.His63Asp heterozygosity or p.His63Asp homozygosity), a provisional 394 

diagnosis of "molecularly undefined" HC can be  made, and phlebotomies started. In this 395 

case, quantification of the total amount of iron removed by phlebotomies will serve as an 396 

additional marker of IO. The panelists agree that, whenever possible, an accurate 397 

molecular characterization remains important in these patients, especially for cascade 398 

screening of asymptomatic siblings, or other first-degree relatives. To this end, patients 399 

should be referred (or DNA should be sent) to a specialized center. Indeed, second-level 400 

genetic tests have limitations that include costs, time-delay, and poor availability in certain 401 

regions, and require a high level of expertise for interpretation. Based on NGS results, 402 

some cases could be reclassified into HFE-related, digenic or non-HFE HC (as shown in 403 

Figure 2). 404 

Based on all the above considerations, we suggest adopting a new, more workable 405 

classification of HC (shown in Table 4) capable of capturing the growing genetic 406 

complexity of HC highlighted by NGS. In fact, the type-numerical classification does not 407 

allow assignation of any subtypes to patients with complex genotypes deriving from 408 

variants in two genes (“digenic” HC), nor to those who remain undefined after sequencing 409 

of known HC genes.  410 

Finally, the panelists agreed to abandon the current terminology of Type 4A and 4B HC, 411 

related to LOF and GOF variants in the ferroportin gene, respectively. While Type B is in 412 

all respects a form of HC (and it should be referred to as ferroportin-related HC), Type 4A 413 

has the unique characteristics we described previously. Thus, it should be definitively 414 

renamed as "Ferroportin Disease" and included in inherited rare disorders of iron 415 

metabolism other than HC. It is important to recall that ferroportin mutations are 416 

characterized by an autosomal dominant inheritance pattern, with important implications 417 

for genetic testing of family members.     418 
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In summary, the novel classification proposed here is based on a pathophysiological 419 

cornerstone (hepcidin deficiency) and a distinct clinical/biochemical phenotype. It 420 

recognizes the difficulties of a complete molecular characterization and has the potential of 421 

being easily shareable between practicing physicians and referral centers. Avoiding any 422 

ambiguity is essential for clear and effective communication, that will facilitate proper 423 

diagnosis and treatment of HC. 424 
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Table 1. Main clinical, biochemical and imaging elements for the suspicion of Hemochromatosis 776 

 777 

Leading 

+ TSAT >45% (mainstay) 

+ S-Ferritin >200 µg/L (females) or >300 µg/L (males) 

+ imaging evidence of liver IO (MRI* and/or biopsy**)  

+ Iron deposits in hepatocytes (if biopsy is performed) 

+ Absence of “predominant” acquired risk factors for hepcidin deficiency (e.g., alcohol abuse or end-stage 

liver disease) and iatrogenic iron overload (e.g. regular transfusions) 

+ Absence of hematological signs of a primary red blood cell disorder, such as anemia*** (i.e. Hb>120 g/L 

in females, >130 g/L in males) and/or reticulocytosis  

Not always present 

 Signs and/or symptoms associated with IO: 

- skin pigmentation, asthenia 

- persistent increase of aminotransferases, hepatomegaly, cirrhosis, hepatocellular carcinoma 

- joint pain, arthritis, chondrocalcinosis, reduced bone mineral density 

- diabetes mellitus, hypopituitarism, hypoparathyroidism, hypogonadotropic hypogonadism 

- cardiomyopathy, heart failure, cardiac arrhythmias  

TSAT = transferrin saturation; IO = iron overload; MRI = Magnetic Resonance Imaging.  778 

*Liver Iron Content (LIC) quantification by MRI can be obtained using different protocols, which vary 779 

depending on local expertise and equipment. With these limitations, any LIC value higher than the upper 780 

normal limit (generally set at 36-40 µmol/g dry weight) should lead to consideration of phlebotomies in HC 781 

patients. Similarly, LIC >100-120 µmol/g and >240-300 µmol/g are generally considered as overt and severe 782 

IO, respectively (see text and ref.55,56).  783 

**Liver biopsy should be considered in patients with ferritin >1,000 µg/L or signs of liver damage. 784 

***Exceptions may occur, e.g. in HC patients with diagnosis delayed after the appearance of liver cirrhosis, in 785 

whom anemia may be observed because of hypersplenism or gastrointestinal bleeding, or subjects with 786 

beta-thalassemia trait, whose coexistence is not rare in Mediterranean countries.    787 
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Table 2. Combined pathogenic allele frequency for HC genes in the 1000 Genomes Project (1000G), 797 

Exome Sequencing Project (ESP), and Exome Aggregation Consortium (ExAc) datasets (modified by 798 

Wallace et al.)19 799 

 800 

Gene 1000G ESP6500 ExAc Geographical distribution 

HFE 

(p.Cys282Tyr) 

0.013 0.048 0.0324 Highest prevalence in Northern Europe 

HFE (non- 

p.Cys282Tyr) 

0.001 0.0002 0.000307  

HJV  0.00074 0.000316 Highest prevalence in Southern Asia 

TFR2 0.0004 0.0003 0.000102 Most frequent among non-Finnish European 

populations  

HAMP 0.0002  0.0000165 Several populations 

 

SLC40A1 0.0008 0.0009 0.00034 Several populations (highest prevalence 

among Africans) 
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 825 
 826 
 827 
Table 3. Former classification of HC 828 
 829 

Classification Gene involved and 

location 

Inheritance TSAT Other clinical features 

Type 1 HFE; chr.6 AR Increased Adult-onset; more severe in 

males; highly variable clinical 

expression, with predominant 

liver damage and arthritis 

Type 2A HJV (hemojuvelin); 

chr.1 

AR Increased Earlier onset (e.g.<30 years old); 

similar severity in both sexes; 

prevalent cardiac and endocrine 

involvement 

Type 2B HAMP (hepcidin); 

chr.19 

AR Increased Earlier onset (e.g.<30 years old); 

similar severity in both sexes; 

prevalent cardiac and endocrine 

involvement 

Type 3 TFR2 (transferrin 

receptor 2); chr.7 

AR Increased Very rare (look for parental 

consanguinity); clinically similar 

to Type 1, with an earlier onset 

Type 4A SLC40A1 

(ferroportin); chr.2 

AD Low-

normal 

Adult-onset; IO in the spleen; 

mild anemia; possible low 

tolerance to venesection 

Type 4B SLC40A1 

(ferroportin); chr.2 

AD Increased Very rare; in general, clinically 

similar to Type 1, but more 

severe/early onset forms are 

reported 
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Table 4. New classification of HC proposed by the working group 842 

 843 

Novel 

classification 

Molecular pattern Note 

HFE-related p.Cys282Tyr homozygosity or compound 

heterozygosity of p.Cys282Tyr with other rare 

HFE pathogenic variants106-109 or HFE 

deletion110 

 

Low penetrance; consider presence 

of host-related or environmental 

cofactors for IO 

In subjects with other HFE genotypes 

(e.g. p.Cys282Tyr/His63Asp 

compound heterozygosity or 

p.His63Asp homozygosity) consider 

second-line genetic testing for rarer 

variants. 

Non HFE-related Rare pathogenic variants in “non-HFE” 

genes:  

- HJV-related  

- HAMP-related  

- TFR2-related 

- SLC40A1 (GOF)-related 

 

Potentially, mutations in any 

hepcidin-regulatory gene may be 

causative (the effects of novel 

mutations should be confirmed 

through functional and 

epidemiological studies).  

Molecular subtypes characterization 

only at specialized centers, but the 

diagnosis of non-HFE related HC is 

sufficient to start phlebotomies at 

non-specialized centers*. 

Digenic** Double heterozygosity and/or double 

homozygosity/heterozygosity for mutations in 

two different genes involved in iron 

metabolism (HFE and/or non-HFE) 

More commonly, p.Cys282Tyr 

mutation in HFE gene might coexist 

with mutation in other genes; rarely, 

both mutations involve non-HFE 

genes 

Molecularly 

undefined 

Molecular characterization (still) not available 

after sequencing of known genes (provisional 

diagnosis) 

 

Patients should be referred (or DNA 

should be sent) to specialized 

centers 

*Providing that iron overload is confirmed by MRI. If this is not accessible, close monitoring of Hb level is 844 

needed to avoid the occurrence of anemia. 845 

** Caution is needed to interpret as digenic inheritance results from NGS outputs reporting several variants 846 

in gene panels. Whenever possible, strict criteria for defining pathogenic variants should be adopted, and 847 

corroborated by family segregation and/or functional studies.    848 
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Figure 1. Hepcidin regulation by iron. Increase in transferrin saturation induces 850 

hepcidin transcription via the BMP/SMAD signaling pathway. Diferric transferrin binds to 851 

TfR2, while BMP6 and BMP2 secreted by liver sinusoidal endothelial cells (LSECs) bind to 852 

BMP receptors on hepatocytes. These events trigger phosphorylation of regulatory 853 

SMAD1/5/8, recruitment of SMAD4, and translocation of the SMAD complex to the nucleus 854 

for activating hepcidin transcription upon binding to BMP/SMAD responsive element in 855 

the HAMP promoter. BMPs can be trapped by ERFE, leading to hepcidin inhibition in iron 856 

loading anemias. Efficient iron signaling requires the BMP co-receptor HJV and the protein 857 

HFE, and is negatively regulated by the transmembrane serine protease matriptase-2 858 

(TMPRSS6). The complex molecular pathogenesis of HC reflects the numerous proteins 859 

involved in regulation of the hepcidin-ferroportin axis.  860 

 861 

Figure 2. Proposal of an algorithm for the diagnosis of HC, from clinical/biochemical 862 

and imaging studies to molecular confirmation. Important note: in Caucasians, HFE 863 

genotyping is indicated with the specific purpose of detecting p.Cys282YTyr homozygosity 864 

and, if confirmed, to recommend appropriate preventive treatment by phlebotomies. Asian, 865 

African, and native American subjects with defined HC phenotype could be directly 866 

referred to second-level genetic test. In populations with a frequent component of northern 867 

European ancestry, such as African-Americans and Hispanics, there may be still a role for 868 

HFE genetic testing.  869 

 870 

Figure 3. Iron homeostasis in normal conditions (A) and mechanisms leading to iron 871 

accumulation in HC (B) and in iron-loading anemias (C: non-transfusion dependent; 872 

D: transfusion-dependent). In HC, iron hyperabsorption through the portal vein leads to 873 

iron accumulation in liver parenchymal cells, initially with a typical portal-central gradient 874 

(see histology) and sparing of macrophages (Kupffer cells). In non-transfusion dependent 875 

anemias with ineffective erythropoiesis hepcidin insufficiency is also central to the 876 

pathogenesis of IO, but it is due to suppression by soluble factors (e.g. ERFE) produced by 877 

ineffective/expanded erythroblasts, rather than to a genetic defect in pathways regulating 878 

hepcidin synthesis. In transfusion dependent anemias, regular red blood cells (RBCs) 879 

transfusions represent the major contributing factor to IO; in these conditions, hepcidin is 880 

relatively upregulated by iron, but fluctuates in response to intermittent erythropoiesis 881 

suppression by transfusions.  882 
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