N

N

Provenance-and machine learning-based
recommendation of parameter values in scientific
workflows

Daniel Junior Silva, Esther Pacitti, Aline Paes, Daniel de Oliveira

» To cite this version:

Daniel Junior Silva, Esther Pacitti, Aline Paes, Daniel de Oliveira. Provenance-and machine learning-
based recommendation of parameter values in scientific workflows. PeerJ Computer Science, 2021, 7,
pp.e606. 10.7717/peerj-cs.606 . hal-03418836

HAL Id: hal-03418836
https://hal.science/hal-03418836

Submitted on 8 Nov 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://hal.science/hal-03418836
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Peer.

Submitted 11 November 2020
Accepted 31 May 2021
Published 5 July 2021

Corresponding author
Daniel Silva Junior,
danieljunior@id.uff.br

Academic editor
Claudio Ardagna

Additional Information and
Declarations can be found on
page 41

DOI 10.7717/peerj-cs.606

© Copyright
2021 Silva Junior et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Provenance-and machine learning-based
recommendation of parameter values in
scientific workflows

Daniel Silva Junior®, Esther Pacitti*, Aline Paes' and Daniel de Oliveira'

! Institute of Computing, Universidade Federal Fluminense, Niteroi, R], Brazil
2 Inria, CNRS, LIRMM, University of Montpellier, Montpellier, France

ABSTRACT

Scientific Workflows (SWfs) have revolutionized how scientists in various domains
of science conduct their experiments. The management of SWfs is performed by
complex tools that provide support for workflow composition, monitoring,
execution, capturing, and storage of the data generated during execution. In some
cases, they also provide components to ease the visualization and analysis of the
generated data. During the workflow’s composition phase, programs must be selected
to perform the activities defined in the workflow specification. These programs often
require additional parameters that serve to adjust the program’s behavior according
to the experiment’s goals. Consequently, workflows commonly have many
parameters to be manually configured, encompassing even more than one hundred
in many cases. Wrongly parameters’ values choosing can lead to crash workflows
executions or provide undesired results. As the execution of data- and compute-
intensive workflows is commonly performed in a high-performance computing
environment e.g., (a cluster, a supercomputer, or a public cloud), an unsuccessful
execution configures a waste of time and resources. In this article, we present
FReeP—Feature Recommender from Preferences, a parameter value recommendation
method that is designed to suggest values for workflow parameters, taking into
account past user preferences. FReeP is based on Machine Learning techniques,
particularly in Preference Learning. FReeP is composed of three algorithms, where
two of them aim at recommending the value for one parameter at a time, and the
third makes recommendations for n parameters at once. The experimental results
obtained with provenance data from two broadly used workflows showed FReeP
usefulness in the recommendation of values for one parameter. Furthermore, the
results indicate the potential of FReeP to recommend values for n parameters in
scientific workflows.

Subjects Data Mining and Machine Learning, Data Science, Databases
Keywords Scientific workflows, Recommender systems, Machine Learning, Preference Learning

INTRODUCTION

Scientific experiments are the basis for evolution in several areas of human knowledge
(De Oliveira, Liu & Pacitti, 2019; Mattoso et al., 2010; Hey & Trefethen, 2020; Hey,
Gannon & Pinkelman, 2012). Based on observations of open problems in their research
areas, scientists formulate hypotheses to explain and solve those problems (Gongalves &
Porto, 2015). Such hypothesis may be confirmed or refuted, and also can lead to new

How to cite this article Silva Junior D, Pacitti E, Paes A, de Oliveira D. 2021. Provenance-and machine learning-based recommendation of
parameter values in scientific workflows. Peer] Comput. Sci. 7:¢606 DOI 10.7717/peerj-cs.606

http://dx.doi.org/10.7717/peerj-cs.606
mailto:danieljunior@�id.�uff.�br
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.606
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

PeerJ Computer Science

hypotheses. For a long time, scientific experiments were manually conducted by scientists,
including instrumentation, configuration and management of the environment,
annotation and analysis of results. Despite the advances obtained with this approach, time
and resources were wasted since a small misconfiguration of the parameters of the
experiment could compromise the whole experiment. The analysis of errors in the results
was also far from trivial (De Oliveira, Liu ¢ Pacitti, 2019).

The evolution in computer science field allowed for the development of technologies
that provided useful support for scientists in their experiments. One of these technologies
is Scientific Workflows (De Oliveira, Liu & Pacitti, 2019; Deelman et al., 2005). A scientific
workflow (named workflow henceforth) is an abstraction that represents each step of the
experiment expressed as an activity, which has input data and relationships (i.e., data
dependencies) with other activities, according to the stages of the experiment (Zhao & Ioan
Raicu, 2008).

Several workflows commonly require the execution of multiple data-intensive
operations as loading, transformation, and aggregation (Mattoso et al., 2010). Multiple
computational paradigms can be used for the design and execution of workflows, e.g., shell
and Python scripts (Marozzo, Talia & Trunfio, 2013), Big Data frameworks (e.g., Hadoop
and Spark) (Guedes et al., 2020b), but they are usually managed by complex engines
named Workflow Management Systems (WfMS). A key feature that a WMS must address
is the efficient and automatic management of parallel processing activities in High
Performance Computing (HPC) environments (Ogasawara et al., 2011). Besides managing
the execution of the workflow in HPC environments, WfMSs are also responsible for
capturing, structuring and recording metadata associated to all the data generated during
the execution: input data, intermediate data, and the final results. These metadata is
well-known as provenance (Freire et al., 2008). Based on provenance data, it is possible to
analyze the results obtained and to foster the reproducibility of the experiment, which is
essential to prove the veracity of a produced result.

In this article, the concept of an experiment is seen as encompassing the concept of a
workflow, and not as a synonym. A workflow may be seen as a controlled action of the
experiment. Hence, the workflow is defined as one of the trials conducted in the context of
an experiment. In each trial, the scientist needs to define the parameter values for each
activity of the workflow. It is not unusual that a simple workflow has more than 100
parameters to set. Setting up these parameters may be simple for an expert, but not so
simple for non-expert users. Although W{MSs represent a step forward by providing the
necessary infrastructure to manage workflow executions, they provide a little help (or even
no help at all) on defining parameter values for a specific workflow execution. A good
parameters values tune in a workflow execution is crucial not only for the quality of the
results but also influences if a workflow will execute or not (avoiding unnecessary
execution crashes). A poor choice of parameters values can cause failures, which leads to a
waste of execution time. Failures caused by poor choices of parameter values are even more
severe when workflows are executing in HPC environments that follow a pay-as-you-go
model, e.g., clouds, since they can increase the overall financial cost.

Silva Junior et al. (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.606 2/46

http://dx.doi.org/10.7717/peerj-cs.606
https://peerj.com/computer-science/

PeerJ Computer Science

This way, if the WIMS could “learn” from previous successfully executions of the
workflow and recommend parameter values for scientists, some failures could be avoided.
This recommendation is especially useful for non-expert users. Let us take as an example a
scenario where an expert user has modeled a workflow and executed several trials of
the same workflow varying the parameter values. If a non-expert scientist wants to execute
the same workflow with a new set of parameter values and input data, but does not
know how to set the values of some of the parameters, one can benefit from parameter
values used on previous executions of the same (or similar) workflow. The advantage of the
WIMS is provenance data already contains the parameter values used on previous
(successful) executions and can be a rich resource to be used for recommendation. Thus,
this article hypothesis is that by adopting an approach to recommend the parameters
values of workflows in a WfMS, we can increase the probability that the execution of
workflow will be completed. As a consequence, the financial cost associated with execution
failures is reduced.

In this article, we propose a method named FReeP—Feature Recommender From
Preferences, which aims at recommending values for parameters of workflow activities.
The proposed approach is able to recommend parameter values in two ways: (i) a single
parameter value at a time, and (ii) multiple parameter values at once. The proposed
approach relies on user preferences, defined for a subset of workflow parameters, together
with the provenance of the workflow. It is essential to highlight that user preferences
are fundamental to explore experiment variations in a scientific scenario. Furthermore,
for our approach, user preferences help prune search space and consider user restrictions,
making personalized recommendations. The idea of combining user preferences and
provenance is novel and allows for producing a personalized recommendation for
scientists. FReeP is based on Machine Learning algorithms (Mitchell, 2015), particularly,
Preference Learning (Fiirnkranz ¢» Hiillermeier, 2011), and Recommender Systems
(Ricci, Rokach ¢ Shapira, 2011). We evaluated FReeP using real workflow traces
(considered as benchmarks): Montage (Hoffa et al., 2008) from astronomy domain and
SciPhy (Ocaria et al., 2011) from bioinformatics domain. Results indicate the potential of
the proposed approach. This article is an extension of the conference paper “FReeP:
towards parameter recommendation in scientific workflows using preference learning”
(Silva Junior et al., 2018) published in the Proceedings of the 2018 Brazilian Symposium on
Databases (SBBD). This extended version provides new empirical shreds of evidence
regarding several workflow case studies as well as a broader discussion on related work
and experiments.

This article is organized in five sections besides this introduction. “Background” section
details the theoretical concepts used in the proposal development. “FReeP—Feature
Recommender from Preferences” section presents the algorithm developed for the
problem of parameters value recommendation using user preferences. “Experimental
Evaluation” section shows the results of the experimental evaluation of the approach in
three different scenarios. Then, “Related Work” section presents a literature review with
papers that have addressed solutions to problems related to the recommendation applied

Silva Junior et al. (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.606 3/46

http://dx.doi.org/10.7717/peerj-cs.606
https://peerj.com/computer-science/

PeerJ Computer Science

to workflows and the Machine Learning model hyperparameter recommendation. Lastly,
“Conclusion” section brings conclusions about this article and points out future work.

BACKGROUND

This section presents key concepts for understanding the approach presented in this article
to recommend values for parameters in workflows based on users’ preferences and
previous executions. Initially, it is explained about scientific experiments. Following, the
concepts related to Recommender Systems are presented. Next, the concept of Preference
Learning is presented. This section also brings a Borda Count overview, a non-common
voting schema that is used to decide which values to suggest to the user.

Scientific experiment

A scientific experiment arises from the observation of some phenomena and questions
raised from the observation. The next step is the hypotheses formulation aiming at
developing possible answers to those questions. Then, it is necessary to test the hypothesis
to verify if an output produced is a possible solution. The whole process includes many
iterations of refinement, consisting, for example, of testing the hypothesis under distinct
conditions, until it is possible to have enough elements to support it.

The scientific experiment life-cycle proposed by Mattoso et al. (2010) is divided into
three major phases: composition, execution and analysis. The composition phase is where
the experiment is designed and structured. Execution is the phase where all the necessary
instrumentation for the accomplishment of the experiment must be finished.
Instrumentation means the definition of input data, parameters to be used at each stage of
the experiment, and monitoring mechanisms. Finally, the analysis phase is when the data
generated by the composition and execution phases are studied to understand the obtained
results. The approach presented in this article focus on the Execution phase.

Scientific workflows
Scientific workflows have become a de facto standard for modeling in silico experiments
(Zhou et al., 2018). A Workflow is an abstraction that represents the steps of an experiment
and the dataflow through each of these steps. A workflow is formally defined as a
directed acyclic graph W(A,Dep). The nodes A = {ay, g, ..., a,} are the activities and the
edges Dep represent the data dependencies among activities in A. Thus, given a; :amp:
mid; (1 < i < n), the set P = {py, ps, ..., pm} represents the possible input parameters for
activity a; that defines the behavior of a;. Therefore, a workflow can be represented as a
graph where the vertices act as experiment steps and the edges are the relations, or the
dataflow between the steps.

A workflow can also be categorized according to the level of abstraction into conceptual
or concrete. A conceptual workflow represents the highest level of abstraction, where
the experiment is defined in terms of steps and dataflow between them. This definition
does not explain how each step of the experiment will execute. The concrete workflow is an
abstraction where the activities are represented by the computer programs that will
execute them. The execution of an activity of the workflow is called an activation

Silva Junior et al. (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.606 4/46

http://dx.doi.org/10.7717/peerj-cs.606
https://peerj.com/computer-science/

PeerJ Computer Science

(De Oliveira et al., 2010b), and each activation invokes a program that has its parameters
defined. However, managing this execution, which involves setting the correct parameter
values for each program, capturing the intermediate data and execution results,
becomes a challenge. It was with this in mind, and with the help of the composition of the
experiment in the workflow format, that Workflow Management Systems (WfMS),

such as Kepler (Altintas et al., 2006), Pegasus (Deelman et al., 2005) and SciCumulus
(De Oliveira et al., 2010b) emerged.

In special, SciCumulus is a key component of the proposed approach since it provides a
framework for parallel workflows to benefit from FReeP. Also, data used in the
experiments presented in this article are retrieved from previous executions of several
workflows in SciCumulus. It is worth noticing that other WfMSs such as Pegasus and
Kepler could also benefit from FReeP as long as they provide necessary provenance data
for recommendation. SciCumulus architecture is modularized to foster maintainability
and ease the development of new features. SciCumulus is open-source and can be obtained
at https://github.com/UFFeScience/SciCumulus/. The system is developed using MPI
library (a de facto standard library specification for message-passing), so SciCumulus is a
distributed application, i.e., each SciCumulus module has multiple instances created
on the machines of the distributed environment (which are different processes and each
process has multiple threads) that communicate, triggering functions for sending and
receiving messages between these processes. According to Guerine et al. (2019),
SciCumulus has four main modules: (i) SCSetup, (ii) SCStarter, (iii) SCCore, and (iv) SCQP
(SciCumulus Query Processor). The first step towards executing a workflow in SciCumulus
is to define the workflow specification and the parameters values to be consumed.

This is performed using the SCSetup module. The user has to inform the structure of the
workflow, which programs are associated to which activities, etc. When the metadata
related to the experiment is loaded into the SciCumulus database, the user can start
executing the workflow. Since SciCumulus was developed focusing on supporting the
execution of workflows in clouds, instantiating the environment was a top priority. The
SCSetup module queries the provenance database to retrieve prospective provenance
and creates the virtual machines (in the cloud) or reserve machines (in a cluster). The
SCStarter copies and invokes an instance of SCCore in each machine of the environment,
and since SCCore is a MPI-based application it runs in all machines simultaneously
and follows a Master/Worker architecture (similar to Hadoop and Spark). The SCCore-
Master (SCCore,) schedules the activations for several workers and each worker has a
specific ID (SCCore;, SCCore,, etc.). When a worker is idle, it sends a message for the
SCCoreq (Master) and request more activations to execute. The SCCore, defines at
runtime the best activation to send following a specific cost model. The SCQP component
allows for users to submit queries to the provenance database for runtime or post-mortem
analysis. For more information about SciCumulus please refer to (De Oliveira et al.,
2012; De Oliveira et al., 2010a; Guerine et al., 2019; Silva et al., 2020; Guedes et al., 2020a;
De Oliveira et al., 2013).

Silva Junior et al. (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.606 5/46

https://github.com/UFFeScience/SciCumulus/
http://dx.doi.org/10.7717/peerj-cs.606
https://peerj.com/computer-science/

PeerJ Computer Science

Provenance
An workflow activation has input data, and generates intermediate and output data. WfMS
has to collect all metadata associated to the execution in order to foster reproducibility.
This metadata is called provenance (Freire et al., 2008). According to Goble (2002), the
provenance must verify data quality, path audit, assignment verification, and information
querying. Data quality check is also related to verifying the reliability of workflow
generated data. Path audit is the ability to follow the steps taken at each stage of the
experiment that generated a given result. The assignment verification is linked to the
ability to know who is responsible for the data generated. Lastly, an information query is
essential to analyze the data generated by the experiment’s execution. Especially for
workflows, provenance can be classified as prospective (p-prov) and retrospective (r-prov)
(Freire et al., 2008). p-prov represents the specification of the workflow that will be
executed. It corresponds to the steps to be followed to achieve a result. r-prov is given by
executed activities and information about the environment used to produce a data product,
consisting of a structured and detailed history of the execution of the workflow.
Provenance is fundamental for the scientific experiment analysis phase. It allows for
verifying what caused an activation to fail or generated an unexpected result, or in the
case of success, what were the steps and parameters used until the result. Another
advantage of provenance is the reproducibility of an experiment, which is essential for the
validation of the results obtained by third parties. Considering the provenance benefits
in scientific experiments, it was necessary to define a model of representation of
provenance (Bose, Foster ¢ Moreau, 2006). The standard W3C model is PROV (Gil et al.,
2013). PROV is a generic data model and is based on three basic components and their
links, being the components: Entity, Agent and Activity. The provenance and provenance
data model are essential concepts because FReeP operation relies on provenance to
recommend parameter values. Also, to extract provenance data to use in FReeP it is
necessary to understand the provenance data model used.

Recommender systems

FReeP is a personalized Recommender system (RS) (Resnick ¢ Varian, 1997) aiming at
suggesting the most relevant parameters to the user to perform a task, based on their
preferences.There are three essential elements for the development of a recommender
system: Users, Items, and Transactions. The Users are the target audience of the
recommender system with their characteristics and goals. Items are the recommendation
objects and Transactions are records that hold a tuple (user, interaction), where the
interaction encompasses the actions that the user performed when using the recommender
system. These interactions are generally user feedbacks, which may be interpreted as their
preferences.

A recommender task can be defined as: given the elements Itemns, Users and
Transactions, find the most useful items for each user. According to Adomavicius ¢
Tuzhilin (2005), a recommender system must satisfy the equation
Vu € U, i, = argmax;c(F(u, i), where U represents the users, I represents the items and F
is a utility function that calculates the utility of an item i in I for a u in U user. In case the

Silva Junior et al. (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.606 6/46

http://dx.doi.org/10.7717/peerj-cs.606
https://peerj.com/computer-science/

PeerJ Computer Science

)
Recommender
Systems
Y Y
S —
Coll.abo'ratlve Content-Based
Filtering

| —

Neighborhood
Based

Model Based

Figure 1 Related types of recommender systems taxonomy.
Full-size K&l DOT: 10.7717/peerj-cs.606/fig-1

uoneUIqUO))
Imyes,|

PIYSIOM
Suryonms
[PAYT-BIRIN

>
=
LS}
=4
]
=1
=
o8
=8
=]
=1

tuple (u, i) is not defined in the entire search space, the recommender system can
extrapolate the F function.

The utility function varies according to the approach followed by the recommender
system. Thus, recommender systems are categorized according to the different strategies
used to define the utility function. The most common approaches to recommender
systems are: Content Based, Collaborative Filtering and Hybrids. Figure 1 provides a
taxonomy related types of recommender systems for this work.

In Collaborative Filtering Recommender Systems, a recommendation is based on other
users’ experience with items in the system domain. The idea is related to the human
behavior of, at times, giving credit to another person’s opinion about what should be done
in a given situation. The Neighborhood Based subtype strictly follows the principle that
users with similar profiles have similar preferences. The Model-Based subtype generates a
hypothesis from the data and use it to make recommendations instantly. Although
widely adopted, Collaborative Filtering only uses collective information, limiting novel
discoveries in scientific experiment procedures.

Content-based Recommender Systems make recommendations similar to items that the
user has already expressed a positive rating in the past. To determine the similarity degree
between items, this approach is highly dependent on extracting their characteristics.
However, each scenario needs the right item representation to give satisfactory results.
In scientific experiments, it can be challenging to find an optimal item representation.

Finally, Hybrid Recommender Systems arise out of an attempt to minimize the
weaknesses that traditional recommendation techniques have when used individually.
Also, it is expected that a hybrid strategy can aggregate the strengths of the techniques used
together. There are several methods of combining recommendation techniques in creating
a hybrid recommender system, including: Weighting approaches that provides a score
for each recommendation item, Switching, which allows for selecting different types of
recommending strategies, Mixing, to make more than one recommentation at a time,
Feature Combination, to put together both Content-Based and Collaborative Filtering

Silva Junior et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.606 7/46

http://dx.doi.org/10.7717/peerj-cs.606/fig-1
http://dx.doi.org/10.7717/peerj-cs.606
https://peerj.com/computer-science/

PeerJ Computer Science

strategies, Cascade, that first filters the candidate items for the recommendation, followed
by refining these candidates, looking for the best alternatives, Feature Augmentationand
Meta-Level, which chain a series of recommendations one after another (Burke, 2002).

FReeP is as a Cascade Hybrid Recommender System because the content of user
preferences is used to prune the search space followed by a collaborative strategy to give the
final recommendations.

Preference learning

User preferences play a crucial role in recommender systems (Viappiani ¢» Boutilier, 2009).
From an Artificial Intelligence perspective, a preference is a problem restriction that allows
for some degree of relaxation. Fiirnkranz ¢ Hiillermeier (2011) refers to Learning
Preferences as “inducing preference models from empirical data”. In several scenarios, the
empirical data is implicitly defined, for example, when the user’s preference is expressed by
clicking on the most interesting products, instead of effectively buying one of them or
stating that one is preferable over another.

A Preference Learning task consists of learning a predictive function that, given a set of
items where preferences are already known, predicts preferences for a new set of items. The
most common way of representing preferences is through binary relationships. For
example, a tuple (x; > x;) > would mean a preference for the value i over j for the attribute x.

The main task within Preference Learning area is Learning to Rank as commonly it
is necessary to have an ordering of the preferences. The task is divided into three
categories: Label Ranking (Vembu ¢ Girtner, 2011), Instance Ranking (Bergeron et al.,
2008) and Object Ranking (Nie et al., 2005). In Label ranking a ranker makes an ordering of
the set of classes of a problem for each instance of the problem. In cases where the
classes of a problem are naturally ordered, the instance ranking task is more suitable, as it
orders the instances of a problem according to their classes. The instances belonging to the
“highest” classes precede the instances that belong to the “lower” classes. In object
ranking an instance is not related to a class. This task’s objective is, given a subset of items
referring to the total set of items, to produce a ranking of the objects in that subset—for
example, the ranking of web pages by a search engine.

Pairwise Label Ranking (Fiirnkranz ¢» Hiillermeier, 2003; Hiillermeier et al., 2008) (PLR)
relates each instance with a preference type a > b, representing that a is preferable to b.
Then, a binary classification task is assembled where each example a, b is annotated with a
is a is preferable over b and 0, otherwise. Then, a classifier M a, b is trained over such
dataset to learn how to make the preference predictions which returns 1 as a prediction
that a is preferable to b and 0 otherwise. Instead of using a single classifier that makes
predictions between m classes, given a set L of m classes, there will be m(m — 1)/2 binary
classifiers, where a classifier M i, j only predicts between classes i, j in L. Then, the strategy
defined by PLR uses the prediction of each classifier as a vote and uses a voting system
that defines an ordered list of preferences. Next, we give more details about how FReeP
tackles the voting problem.

Silva Junior et al. (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.606 8/46

http://dx.doi.org/10.7717/peerj-cs.606
https://peerj.com/computer-science/

PeerJ Computer Science

Voter 1

Candidate 1: A
Candidate 2: C
Candidate 3: D
Candidate 4: B

Voter 2

Candidate 1: C
Candidate 2: B
Candidate 3: D
Candidate 4: A

Voter 3

Candidate 1: D
Candidate 2: C
Candidate 3: B
Candidate 4: A

Voter 4

Candidate 1: B
Candidate 2: D
Candidate 3: C
Candidate 4: A

Voter 5

Candidate 1: C
Candidate 2: D
Candidate 3: B
Candidate 4: A

Figure 2 Votes example that each candidate received in voters preference order.
Full-size K&l DOT: 10.7717/peerj-cs.606/fig-2

Borda count

Voting Theory (Taylor & Pacelli, 2008) is an area of Mathematics aimed at the study of
voting systems. In an election between two elements, it is fair to follow the majority
criterion, that is, the winning candidate is the one that has obtained more than half of the
votes. However, elections involving more than two candidates require a more robust
system. Preferential Voting (Karvonen, 2004) and Borda Count (Emerson, 2013) are two
voting schemas concerning the scenarios where there are more than two candidates. In
Preferential Voting, voters elicit a list of the most preferred to the least preferred candidate.
The elected candidate is the one most often chosen as the most preferred by voters.

Borda Count is a voting system in which voters draw up a list of candidates arranged
according to their preference. Then, each position in the user’s preference list gets a
score. In a list of n candidates, the candidate in the i-th position on the list receives the
score n — i. To determine the winner, the final score is the sum of each candidate’s scores
for each voter, and the candidate with the highest score is the elected one.

Figure 2 depicts an example of Borda Count. There are four candidates: A, B, C and D,
and five vote ballots. The lines in each ballot represent the preference positions occupied
by each candidate. As there are four candidates, the candidate preferred by a voter
receives three points. The score for the candidate D is computed as follows: 1 voter elected
the candidate D as the preferred candidate, then 1 * 3 = 3 points; 2 voters elected the
candidate D as the second most preferred candidate, then 2 * 2 = 4 points; 2 voters elected
the candidate D as the third most preferred candidate, then 2 * 1 = 2 points; 0 voters elected
the candidate D as the least preferred, then 0 * 0 = 0 points. Finally, candidate D total
score=3+4+2+0=09.

Voting algorithms are used together with recommender systems to choose which items
the users have liked best to make a good recommendation. Rani, Shokeen ¢» Mullick (2017)
proposed a recommendation algorithm based on clustering and a voting schema that
after clustering and selecting the target user’s cluster, uses the Borda Count to select the
most popular items in the cluster to be recommended. Similarly, Lestari, Adji ¢
Permanasari (2018) compares Borda Count and the Copeland Score Al-Sharrah (2010) in a
recommendation system based on Collaborative Filtering. Still using the Borda Count,
Tang ¢ Tong (2016) proposes the BordaRank. The method consists of using the Borda
Count method directly in the sparse matrix of evaluations, without predictions, to make a
recommendation.

Silva Junior et al. (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.606 9/46

http://dx.doi.org/10.7717/peerj-cs.606/fig-2
http://dx.doi.org/10.7717/peerj-cs.606
https://peerj.com/computer-science/

PeerJ Computer Science

param?
param| 2
(v (™)
3
param3

Figure 3 A synthetic workflow: circles represent activities, arrows between the circles represent the
link between activities (data dependencies), and the labels for each circle represent the configuration
parameters for each activity. Full-size K&] DOT: 10.7717/peerj-cs.606/fig-3

FREEP—FEATURE RECOMMENDER FROM PREFERENCES

Figure 3 depicts a synthetic workflow, where one can see four activities represented by
colored circles where activities 1, 2, and 3 have one parameter each. To execute the
workflow, it is required to define values for parameters 1, 2, and 3. Given a scenario where
a user has not defined values for all parameters, FReeP targets at helping the user to
define values for the missing parameters. For this, FReeP divides the problem into two
sub-tasks: (1) recommendation for only one parameter at a time; (2) recommendation for
n parameters at once. The second task is more challenging than the first as parameters of
different activities may present some data dependencies.

Taking into account user preferences, FReeP suggests parameter values that maximize a
probability to make the workflow execute flawlessly until its end. FReeP receives a user
preferences set to yield the personalized recommendations. The recommendations are
the output of a model induced by a Machine Learning technique. FReeP is a hybrid
recommendation technique as it incorporates aspects of both Collaborative Filtering and
Content-Based concepts.

The way FReeP tackles the recommendation task is presented in three versions. In the
first two versions, the algorithm aims at recommending a value for only one parameter at a
time. While the naive version assumes that all parameters have a discrete domain, the
enhanced second version is an extension of the first one that is able to deal with cases
where a parameter has a continuous domain. The third version targets at recommending
values for n > 1 parameters at a time.

Next, we start by presenting the naive version of the method that makes the
recommendation for a single parameter at a time. Then, we follow to the improved version
with enhancements that improve the performance and allows for working with parameters
in the continuous domain. Finally, a generic version of the algorithm is presented,
aiming at making the recommendation of values for multiple parameters at a time.

Discrete domain parameter value recommendation

Given a provenance database D, a parameter y € Y, where Y is the workflow parameters set,
and a preferences or restrictions set P defined by the user, where p; € P (y;, valy), FReeP one
parameter approach aims at solving the problem of recommending a r value for y, so

Silva Junior et al. (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.606 10/46

http://dx.doi.org/10.7717/peerj-cs.606/fig-3
http://dx.doi.org/10.7717/peerj-cs.606
https://peerj.com/computer-science/

PeerJ Computer Science

FReeP

—_
S
S—

Partition's
Rule
Generator

Hypotheses icti g
Horizontal yp Predictions Election

[

Partition
Rule /

—

— |l

Preferences |
P

Partition
Rule 2

Filter Vertical Filter Aggregation
]——)[Partition /]——)[Partition 1 }/’ Model 1 P —

]——)[Partition 2]——)[Partition 2' [~J_| J 4 /?
'l Votes
Model 2
. .
. = eee oo
. .

‘arget parameter
y

[

Partition
Rule n

]~7->[Partition n]——-)[Partition n’]___ J g —— Value 1 Value 3 Value 4 Value n
Model n

Figure 4 FReeP architecture overview.

Full-size K&l DOT: 10.7717/peerj-cs.606/fig-4

that the P preferences together with the r recommendation to y maximize the chances of
the workflow activation to run to the end.

Figure 4 presents an architecture overview of FReeP’s naive version. The algorithm
receives as input the provenance database, a target workflow and user preferences. User
preferences are also input as this article assumes that the user already has a subset of
parameters for which has already defined values to use. In this naive version, the user
preferences are only allowed in the form a = b, where a is a parameter, and b is a desired
value to a.

Based on the user’s preferences, it would be possible to query the provenance database
from which the experiment came from to retrieve records that could assist in the search
for other parameters values that had no preferences defined. However, FReeP is based
on a model generation that generalizes the provenance database, removing the user’s need
to perform this query yet providing results that the query would not be able to return.

To obtain a recommendation from FReeP’s naive version, seven steps are required:
partitions generation, horizontal filter, vertical filter, hypothesis generation,
predictions, aggregation, and, finally election-based recommendation. Algorithm 1
shows the proposed algorithm to perform the parameter recommendation, considering the
preferences for a subset or all other workflow execution parameters.

The algorithm input data are: target parameter for which the algorithm should make the
recommendation, y; user preferences set, such as a list of key-values, where the key is a
workflow parameter and value is the user’s preference for that parameter, P; provenance
database, D.

The storage of provenance data for an experiment may vary from one WfMS to
another. For example, SciCumulus, which uses a provenance representation derived from
PROV, stores provenance in a relational database. Using SciCumulus example, it is
trivial for the user responsible for the experiment to elaborate a SQL query that returns
the provenance data related to the parameters used in each activity in a key-value
representation. The key-value representation can be easily stored in a csv format file, which
is the required format expected as provenance dataset in FReeP implementation. Thus,
converting provenance data to the csv format is up to the user. Still, regarding the
provenance data, the records present in the algorithm input data containing information

Silva Junior et al. (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.606 11/46

http://dx.doi.org/10.7717/peerj-cs.606/fig-4
http://dx.doi.org/10.7717/peerj-cs.606
https://peerj.com/computer-science/

PeerJ Computer Science

Algorithm 1 Naive FReeP-Discrete.

Require:

y: recommendation target parameter

P : {(param, val)|param is a workflow parameter, valis the preference value for param}

D: {{(param!,vall), ..., (param’ val), ...(param!", val*) }|I is the workflow parameters number, m is the provenance dataset length}

1: procedure FReeP(y, P, D)

partitions & partitions_generation(P, D)

votes < @

for each partition € partitions do

data < horizontal_filter(D, partition)

data < ' preprocessing(data)

model < hypothesis_generation(data’, y)

vote < recommend(model, y)

10: votes < votes U {vote}

2
3
4
5
6: data < vertical_filter(data, partition)
7
8
9

11: recommendation < elect_recommendation(votes)

12: return recommendation

Preferences partitions
Parameters in powerset
num_aligns == 10 Preferences [[num_aligns],
modell =="WAG' [num_aligns, modell] [modell],
[num_aligns, modell]]

Figure 5 Example of FReeP’s partitioning rules generation for Sciphy provenance dataset using
user’s preferences. Full-size K&] DOT: 10.7717/peerj-cs.606/fig-5

about the parameters must be related only to executions that were successfully concluded,
that is, there was no failure that resulted in the execution abortion. The inclusion of
components to query and transform provenance data and force successful executions
parameters selection would require implementations for each type of WfMS, which is out
of the scope of this article.

The initial step, partitions_generation, builds partitioning rules set based on the user’s
preferences. Initially, the preference set parameters P are used to generate a powerset. This
first step returns all generated powerset as a partitions ruleset. Figure 5 shows an example of
how this first step works, with some parameters from SciPhy workflow.

Then, FReeP initializes an iteration over the partitioning rules generated by the previous
step. Iteration begins selecting only the records that follow the user’s preferences contained
in the current ruleset, named in the algorithm as horizontal_filter. Figure 6 uses the
partitions presented in Fig. 5 to show how the horizontal_filter step works.

Silva Junior et al. (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.606 12/46

http://dx.doi.org/10.7717/peerj-cs.606/fig-5
http://dx.doi.org/10.7717/peerj-cs.606
https://peerj.com/computer-science/

PeerJ Computer Science

Provenance dataset

num_aligns|length| modell probl model2 prob2
10.0 854.0 \WAG+I+F| 4634.242459 | WAG+I+F | 4634.242459
11.0 339.0 |WAG+I+F| 2012.681247 | WAG+l |2052.864650
10.0 854.0 (WAG+I+F| 4634.242459 | WAG+I+F | 4634.242459

partitions

[modell],
[num_aligns,
modell]]

[[num_aligns], [—Tteration 1|

num_aligns|length| modell probl model2 prob2

~

Current Partition rule

[num_aligns]

Horizontal
Filter

Preferences Selection
num_aligns == 10.0

10.0 854.0 |WAG+I+F| 4634.242459 | WAG+I+F | 4634.242459

10.0 854.0 |WAG+I+F| 4634.242459 | WAG+I+F | 4634.242459

Figure 6 Example of FReeP’s horizontal filter using one partitioning rule for the Sciphy provenance dataset.

Full-size K&l DOT: 10.7717/peerj-cs.606/fig-6

Workflow Parameters
[num_aligns, length, model1,
probl, model2, prob2]

Preferences

| Parameters in

Provenance dataset after Horizontal Filter

num_aligns| length| modell probl model2 prob2

10.0 854.0 |WAG+I+F| 4634.242459 | WAG+I+F | 4634.242459

10.0 854.0 |WAGHI+F| 4634.242459 | WAG+I+F | 4634.242459

[length,prob1,model2,prob2]

probl model2 prob2

num_aligns == 10.0
modell == "WAG'

[num_aligns, modell]

ICurrent Partition Rule|
[num_aligns]

[num_aligns, length, X 854.0 | 4634.242459 | WAG+I+F | 4634.242459
prob1, model2, prob2]

854.0 | 4634.242459 | WAGHI+F | 4634.242459

[num_aligns]

Target Parameter
y = model2

Figure 7 FReeP’s vertical filter step.

Full-size K&l DOT: 10.7717/peerj-cs.606/fig-7

Subsequently, in the vertical_filter step, there is a parameter removal that aims at
keeping only the recommendation target parameter, the parameters present in the current
set of partitioning rules, and those that are neither the recommendation target parameter
nor are present in any of the original user preferences. The last parameters mentioned
remain because, in a next step, they can help to build a more consistent model. Thus, let
PW be all workflow parameters set; PP the workflow parameters for which preference
values have been defined; PA the parameters present in the partitioning rules of an
iteration over the partitioning rules and PV = (PW — PP) U(PP n PA) U {y} ; the output
from vertical_filter is the data from horizontal_filter for parameters in PV. Figure 7 uses
data from the examples in Figs. 5 and 6 to show how the vertical_filter step works.

The chain comprising the partitions generation and the horizontal and vertical filters is
crucial to minimize the Cold Start problem (Lika, Kolomvatsos ¢» Hadjiefthymiades, 2014).

Silva Junior et al. (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.606 13/46

http://dx.doi.org/10.7717/peerj-cs.606/fig-7
http://dx.doi.org/10.7717/peerj-cs.606/fig-6
http://dx.doi.org/10.7717/peerj-cs.606
https://peerj.com/computer-science/

PeerJ Computer Science

Cold Start is caused by the lack of ideal operating conditions for an algorithm, specifically
in the recommender systems. This problem occurs, for example, when there are few
users for the neighborhood definition with a similar user profile or lack of ratings for
enough items. FReeP can also be affected by Cold Start problem. If only all preferences
were used at one time for partitioning the provenance data, in some cases, it could be
observed that the resulting partition would be empty. This is because there could be an
absence of any of the user’s preferences in the provenance data. Therefore, generating
multiple partitions with subsets of preferences decreases the chance of obtaining only
empty partitions. However, in the worst case where none of the user’s preferences are
present in the workflow provenance, FReeP will not perform properly, thus failing to make
any recommendations.

After the partitions generation and horizontal and vertical filters are discovered, there is
a filtered data set that follows part of the user’s preferences. These provenance data that
will generate the Machine Learning model have numerical and categorical domain
parameters. However, traditional Machine Learning models generally work with
numerical data because the generation of these models, in most cases, involves many
numerical calculations. Therefore, it is necessary to codify these categorical parameters to a
numerical representation. The technique used here to encode categorical domain
parameters to numerical representation is One-Hot encoding (Coates ¢» Ng, 2011). This
technique consists of creating a new binary attribute, that is, the domain of this new
attribute is 0 or 1, for each different attribute value present in dataset.

The encoded provenance data allows building Machine Learning models to make
predictions for the target parameter under the step hypothesis_generation. The model
generated has the parameter y as class variable, and the other parameters present in
vertical_filter step output data are the attributes used to generalize the hypothesis. The
model can be a classifier, where the model’s prediction is a single recommendation value,
or a ranker, where its prediction is an ordered list of values, of the value most suitable
for the recommendation to the least suitable.

With a model created, we can use it to recommend the value for the target parameter. This
step is represented in FReeP as recommended, and the recommendation of parameter y is
made from the user’s preferences. It is important to emphasize that the model’s training
data may contain parameters that the user did not specify any preference. In this case, an
attribute of the instance submitted for the hypothesis does not have a defined value. To
clarify the problem, let PW be all workflow parameters set, PP the parameters of workflow
for which preference values have been defined; PA the parameters present in the partition
rules of an iteration over the partitioning rules; and PV = (PW — PP) U (PP n PA) U {y},
there may be parameters p € PV | p & PP, and for those parameters p there are no
values defined a priori. To handle this problem, the average values present in the
provenance data are used to fill in the numerical attributes’ values and the most frequent
values in the provenance date for the categorical attributes.

All predictions generated by recommend step, which is within the iteration over the
partitioning rules, are stored. The last algorithm step, elect_recommendation, uses all of
these predictions as votes to define which value should be recommended for the target

Silva Junior et al. (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.606 14/46

http://dx.doi.org/10.7717/peerj-cs.606
https://peerj.com/computer-science/

PeerJ Computer Science

parameter. When an algorithm instance is setup to return a classifier type model in
hypothesis_generation step, the most voted value is elected as the recommendation. On
the other hand, when an algorithm instance is setup to return a ranker type model in
hypothesis_generation step, the strategy is Borda Count. The use of the Borda Count
strategy seeks to take advantage of the list of lists form that the saved votes acquire when
using the ranker model. This list of lists format occurs because the ranker prediction is a
list, and since there are as many predictions as partitioning rules, the storage of these
predictions takes the list of lists format.

Discrete and continuous domain parameter value recommendation
The naive version of FReeP allowed evaluating the algorithm’s proposal. The proposal
showed relevant results after initial tests (presented in next section), so efforts were focused
on improving its performance and utility. In particular, the following problems have been
identified: (1) User has some restriction to set his/her parameters preferences; (2) The
categorical domain parameters when used as a class variable (parameters for
recommendation) are treated as well as they are present in the input data; (3) Machine
Learning models used can only learn when the class (parameter) variable has a discrete
domain; (4) All partitions generated by workflow parameters powerset present in user
preferences are used as partitioning rules for the algorithm.

Regarding problem 1, in Algorithm 1, the user was limited to define his preferences with
the equality operator. Depending on the user’s preferences, the equality operator is not
enough. With this in mind, the Enhanced FReeP allows for the user to have access to the
relational operators: ==,>,>=,<,<= and != to define his/her preferences. In addition, two
logical operators are also supported in setting preferences: | and &. Preferences with
combination of supported operators is also allowed, for example: (a > 10) | (at < 5).

However, by allowing users to define their preferences in this way we create a problem
when setting up the instances for recommendation step. As seen, PW represents all
workflow parameters set, PP are workflow parameters that preference values have been set;
PA the parameters present in the partitioning rules of an iteration over the partition rules; and
PV = (PW — PP) U(PP N PA) U {y}. Thus, there may be parameters p € PV | p & PP,
and for those parameters p, there are no values defined a priori. This enhanced version of the
proposal allows the user’s preferences to be expressed in a more relaxed way, demanding
to create the instances used in the step recommendation that include a range (or set of
values). To handle this isse, all possible instances from preference values combinations were
generated. In case the preference is related to a numerical domain parameter and is
defined in terms of values range, like a < 10.5, FReeP uses all values present in the source
provenance database that follows the preference restriction. It is important to note that for
both numerical and categorical parameters, the combination of possible values are those
present in the provenance database and that respect the user’s preferences. Then, predictions
are made for a set of instances using the model learned during the training phase.

Regarding problem 2, the provenance database, in general, present attributes with
numerical and categorical domains. It is FReeP responsibility to convert categorical values
into numerical representation due to restrictions related to the nature of the training

Silva Junior et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.606 15/46

http://dx.doi.org/10.7717/peerj-cs.606
https://peerj.com/computer-science/

PeerJ Computer Science

Algorithm 2 Enhanced FReeP.

Require:

y: recommendation target parameter

P : {(param, val)|param is a workflow parameter, valis the preference value for param}

D: {{(param!,vall), ..., (param’ val), ...(param!", val*) }|I is the workflow parameters number, m is the provenance dataset length}

1: procedure FReeP(y, P, D)

—_ =
= O

12:

14:

D' « classes_preprocessing(D)

partitions & optimized_partitions_generation(P, D')

votes < @

for each partitionpartition € partitions do

data < horizontal_filter(D', partition)

data < vertical_filter(data, partition)

model_type <model_select(data,)

data’ < preprocessing(data)

model < hypothesis_generation(data’, y, model_type)

vote < recommend(model, y)

votes < votes U {vote }

recommendation < elect_recommendation(votes)

return recommendation

algorithms of the Machine Learning models, e.g., Support Vector Machines (SVM)
(Wang, 2005).

This pre-processing step was included in Algorithm 2 as classes_preprocessing step.
The preprocessing consists in exchanging each distinct categorical value for a distinct
integer. Note that the encoding of the parameter used as a class variable in the model
generation is different from the encoding applied to the parameters used as attributes
represented by the step preprocessing.

Concerning problem 3, by using classifiers to handle a continuous domain class variable
degrades the performance results. Performance degradation happens because the
numerical class variables are considered as categorical. For continuous numerical domain
class variables, the Machine Learning models suggested are Regressors (Myers ¢ Myers,
1990). In this way, the Enhanced FReeP checks the parameter y domain, which is the
recommendation target parameter, represented as model_select step in Algorithm 2.

To analyze problem 4, it is important to note that after converting categorical attributes
One-Hot encoding in preprocessing step, the provenance database will have a considerable
increase in the number of attributes. Also, after categorical attributes encoding in
preprocessing step, the parameters extracted from the user’s preferences, are also encoded
for partitions_generation step. In Algorithm 1, the partitioning rules powerset is
calculated on all attributes derived from the original parameters after One-Hot encoding.
If FReeP uses the powerset generated from the parameters present in the user’s preferences

Silva Junior et al. (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.606 16/46

http://dx.doi.org/10.7717/peerj-cs.606
https://peerj.com/computer-science/

PeerJ Computer Science

set as partitioning rules (in the partitions_generation step), it can be very costly. Thus,
using the powerset makes the complexity of the algorithm becomes exponential according
to the parameters present in the user’s preferences set. Alternatives to select the best
partitioning rules and handle the exponential cost are represented in Algorithm 2 as
optimized_partitions_generation step. The two strategies proposed here are based on
Principal Components Analysis (PCA) (Garthwaite et al., 2002) and the Analysis of variance
(ANOVA) (Girden, 1992) statistical metric.

The strategy based on PCA consists of extracting x principal components from all
provenance database, pcap, and for each pt € partitions, pca}")t, which are pt partition
principal components. Then, the norms are calculated ||pcap — pcaz’;t||, and from that n
partitioning rules are selected that generated pcal’;t such that ||pcap — pca;t” resulted in the
lowest calculated values. Note that both x and # are defined parameters when executing
the algorithm. In summary, the PCA strategy will select the partitions where the main
components extracted are the closest to the principal components of the original
provenance dataset.

ANOVA strategy seeks the n partitioning rules that best represent D, selecting those that
generate partitions where the data variance is closest to D data variance. In short, original
data variance and data variance for each partition are calculated using the ANOVA
metric, then partitions with most similar variance to the original provenance data are
selected. Here, the n rules are defined in terms of the data percentage required to represent
the entire data set, and that parameter must also be defined in algorithm execution.
Using PCA or ANOVA partitioning strategies means that the partitioning rules used by
FReeP can be reduced, depending on the associated parameters that need to be defined.

Recommendation for n Parameters at a time

Algorithms 1 and 2 aim at producing single parameter recommendation at a time.
However, in a real usage scenario of scientific workflows, the WEMS will probably need to
recommend more than one parameter at a time. A naive alternative to handle this problem
is to execute Algorithm 2 for each of the target parameters, always adding the last
recommendation to the user’s preference set. This alternative assumes that the parameters
to be recommended are independent random variables. One way to implement this
strategy is by using a classifiers chain (Read et al., 2011).

Nevertheless, this naive approach neglects that the order in which the target parameters
are used during algorithm interactions can influence the produced recommendations.
The influence is due to parameter dependencies that can be found between two (or more)
workflow activities (e.g., two activities consume a parameter produced by a third activity
of the workflow). In Fig. 3, the circles represent the activities of workflow, so activities 2
and 3 are preceded by activity 1 (e.g., they consume the output of activity 1). Using
this example, we can see that it is possible that there is a dependency relationship between
the parameters param2 and param3 with the parameter param]l. In this case, the values
of param2 and param3 parameters can be influenced by parameter paraml value.

In order to deal with this problem, FReeP leverages the Classifiers Chains Set (Read
et al., 2011) concept. This technique allows for estimating the joint probability distribution

Silva Junior et al. (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.606 17/46

http://dx.doi.org/10.7717/peerj-cs.606
https://peerj.com/computer-science/

PeerJ Computer Science

.
Generic FReeP
> =
v}) »> P q Per Parameter Election
m\egance Extractor Generator g Recommendation
& o § aggregator
Parameter / [~ FReeP | g
Recommendation

. Preferences || —>
P

Parameter 2

Parameter m

q

q

Parameter / = val /
Parameter 2 = val 2

Sequence 2

:
.
.
.

Parameter m = val m

| N

Value 3 Value4 Value n

A
Y,
2

Sequence ¢

S =
§ Value 1
otes

FReeP ¢

Figure 8 Generic FReeP architecture overview.

Full-size 4] DOT: 10.7717/peerj-cs.606/fig-8

of random variables based on a Classifiers Chains Set. In this case, the random variables are
the parameters for which values are to be recommended, and the joint probability
distribution concerns the possible dependencies between these parameters. The Classifiers
Chains and Classifiers Chains Set are techniques from Multi-label Classification
(Tsoumakas ¢ Katakis, 2007) Machine Learning task.

Figure 8 depicts an architecture overview for the proposed algorithm named as Generic
FReeP that recommends n parameters simultaneously. The architecture presented in Fig. 8
shows that the solution developed to make n parameter recommendations at a time is
a packaging of FReeP algorithm to one parameter. This final approach is divided into five
steps: identification of parameters for the recommendation, generation of ordered
sequences of these parameters, iteration over each of the sequences generated with the
addition of each recommendation from FReeP to the user preferences set, separation of
recommendations by parameter and finally the choice of value recommendation for each
target parameters. The formalization can be seen in Algorithm 3.

The first step parameters_extractor extracts the workflow parameters that are not
present in the users’ preferences and will be the targets of the recommendations. Thus, all
other parameters that are not in the user’s preferences will have recommendation values.

Lines 4 and 5 of the algorithm comprise the initialization of the variable responsible
for storing the different recommendations for each parameter during the algorithm
execution. Then, the list of all parameters that will be recommended is used for generating
different ordering of these parameters, indicated by sequence_generators step. For
example, let w be a workflow with 4 p parameters and let u be an user with pr; and pr;
preferences for the p; and p; parameters respectively. The parameters to be recommended
are p, and py, in this case two possible orderings are: {p,, p4} and {p4, p.}. Note that
the number of sorts used in the algorithm are not all possible sorts, in fact N of the possible
sorts are selected at random.

Then, the algorithm initializes an iteration over each of the sorts generated by the step
sequence_generators. Another nested iteration over each parameter present in the current

Silva Junior et al. (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.606

18/46

http://dx.doi.org/10.7717/peerj-cs.606/fig-8
http://dx.doi.org/10.7717/peerj-cs.606
https://peerj.com/computer-science/

PeerJ Computer Science

Algorithm 3 Generic FReeP.
Require:

P : recommendation target parameter

D : {(param, val)|param is a workflow parameter, valis the preference value for param}

D: {{(param!, vall), ..., (param’ val.),

...(param]* ,vall*) }|l is the workflow parameters number, m is the provenance dataset length}

N :number of random sequences orders to be generated

1: procedure Generic FReeP(P, D, N)

: target_parameters < pammeters_extmctor(P, D)

: votes < 0

: for each param e target_parameters do

: ordered_sequences < sequence_generator(target_parameters, N)

: for each sequence € ordered_sequences do

2
3
4
5: votes < votes U {(param, []) }
6
7
8

: preferences_tmp < P

9: for each param € sequence do

10: recommendation < FReeP(param, preferences_tmp, D)

11: votes[param] <« votes[param] U recommendation

12: new_preference < generate_preference(param, recommendation)

13: preferences_tmp < preferences_tmp U new_preference

14: response < o
15: for each (param, values) € votes do
16: response[param] most_voted(values)

17: return response

order also begins. An intuitive explanation of the algorithm between lines 9 and 13 is that
each current sequence parameter is used together with the user’s preferences for its
recommendation. At the end of the recommendation of one of the ordering parameters,
the recommendation is incorporated into the preferences set used in the recommendation
of the next ordering parameter. In this iteration, the recommendations are grouped by
parameter to facilitate the election of the recommended value for each target parameter.

The step of iterating over the generated sequences, always adding the last
recommendation to the set of preferences, is the Classifiers Chains concept. To deal with
the dependency between the workflow parameters that can influence a parameter value
recommendation, the step that generates multiple sequences of parameters, combined with
the Classifiers Chains, is the Classifiers Chains Set concept.

Finally, to choose the recommendation for each target parameter, a vote is taken on
lines 15 and 16. The most_voted procedure makes the majority election that defines the
target parameter recommendation value. This section presented three algorithms that are
part of the FReep approach developed for the parameter recommendation problem in

Silva Junior et al. (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.606 19/46

http://dx.doi.org/10.7717/peerj-cs.606
https://peerj.com/computer-science/

PeerJ Computer Science

ListFITS

~—_

Projection

<::> Sequence alignment Select projections

v

<::> Alignment conversion Create incorrect mosaic

Calculate overlap
<i> Evolutionary model election
Extract differences

Calculate differences

<i> Tree generation <j>

(a) FitPlane

Create mosaic (b)

Figure 9 The abstract specification of (a) SciPhy and (b) Montage.
Full-size Kal DOI: 10.7717/peerj-cs.606/fig-9

workflows. The proposals covered two main scenarios for parameters value
recommendation (single and multiple parameter at a time).

EXPERIMENTAL EVALUATION

This section presents the experimental evaluation of all versions of FReeP. First, we present
the workflows used as case studies namely SciPhy (Ocafia et al., 2011) and Montage
(Jacob et al., 2009). Following we present the experimental and environment setups.
Finally, we discuss the results.

Case studies

In this article, we consider two workflows from bioinformatics and astronomy domains,
namely SciPhy (Ocaria et al., 2011) and Montage (Jacob et al., 2009), respectively. SciPhy is
a phylogenetic analysis workflow that generates phylogenetic trees (a tree-based
representation of the evolutionary relationships among organisms) from input DNA, RNA
and aminoacid sequences. SciPhy has four major activities as presented in Fig. 9A:

(i) sequence alignment, (ii) alignment conversion, (iii) evolutionary model election and
(iv) tree generation. SciPhy has been used in scientific gateways such as BiolnfoPortal
(Ocaria et al., 2020). SciPhy is a CPU-intensive workflow, bacause many of its activities
(especially the evolutionary model election) commonly execute for several hours
depending on the input data and the chosen execution environment.

Montage (Jacob et al., 2009) is a well-known astronomy workflow that assembles
astronomical images into mosaics by using FITS (Flexible Image Transport System) files.
Those files include a coordinate system and the image size, rotation, and WCS (World
Coordinate System) map projection. Figure 9B shows the montage activities: (i) ListFITS,

Silva Junior et al. (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.606 20/46

http://dx.doi.org/10.7717/peerj-cs.606/fig-9
http://dx.doi.org/10.7717/peerj-cs.606
https://peerj.com/computer-science/

PeerJ Computer Science

which extracts compressed FITS files, (ii) Projection, which maps the astronomical
positions into a Euclidean plane, (iii) SelectProjections, which joins the planes into a single
mosaic file, and (iv) CreateIncorrectedMosaic, which creates an overlapping mosaic as
an image. Programs (v) CalculateOverlap, (vi) ExtractDifferences, (vii) CalculateDifferences,
(viii) FitPlane, and (ix) CreateMosaic refine the image into the final mosaic. Montage is a
data-intensive workflow, since one single execution of Montage can produce several GBs
of data.

Experimental and environment setup

All FReeP algorithms presented in this article were implemented using the Python
programming language. FReeP implementation also benefits from Scikit-Learn (Pedregosa
et al., 2011) to learn and evaluate the Machine Learning models, numpy (Van der Walt,
Colbert & Varoquaux, 2011), a numerical data manipulation library; and pandas
(McKinney, 2011), which provides tabular data functionalities.

The machine specification where experiments were performed is a CPU Celeron (R)
Dual-Core T3300 @ 2.00 GHz x 2 processor, 4GB DDR2 RAM and 132 GB HDD. To
measure recommendations performance when the parameter is categorical, precision and
recall are used as metrics. Precision and recall are metrics widely used for the quantitative
assessment of recommender systems (Herlocker et al., 2004; Schein et al., 2002). Eq. (1)
defines precision and Eq. (2) defines recall, following the recommender vocabulary, where
TR is the correct recommendation set and R is all recommendations set. An intuitive
explanation to precision is that it represents the most appropriate recommendations
fraction. Still, recall represents the appropriate recommendation fraction that was made.

ITRNR||

precision = (1)
IR
ITRNR||
recall = ———— (2)
ITR]|
1< 5
MSE =~ T
S nz (RV —TV) (3)

i=1

When the parameter to be recommended is numerical, the performance of FReeP is
evaluated with Mean Square Error (MSE). The MSE formula is given by Eq. (3) where n is
the recommendations number, TV is the correct recommendation values set, and RV is the
recommended values set.

DATASET

The datasets used are provenance data extracted from real executions of the workflows
SciPhy (all executions) using SciCumulus Workflow Management System and Montage
(part of the executions with SciCumulus) and part of the execution data gathered at

the Workflow Generator site (https://confluence.pegasus.isi.edu/display/pegasus/
WorkflowGenerator). This site provides instances of real workflow for evaluation of
algorithms and systems on a range of workflow sizes. All data within these workflow traces

Silva Junior et al. (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.606 21/46

https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator
https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator
http://dx.doi.org/10.7717/peerj-cs.606
https://peerj.com/computer-science/

PeerJ Computer Science

! Data sources are available at http://irsa.
ipac.caltech.edu.

Table 1 Dataset characteristics.

Dataset Total records Total attributes Categorical attributes Numerical attributes
Sciphy 6 2 4
Montage 8 2 6

Table 2 SciPhy dataset statistics.

Parameter Minimum value Maximum value Standard deviation
num_aligns 9.00 11.00 0.21

length 85.00 1,039.00 169.90

probl 634.67 5,753.52 1,103.43

prob2 635.87 5,795.28 1,101.76

is gathered from real executions of scientific workflows on the grid and in the cloud
from the Pegasus’ team in ISI at the University of Southern California. The SciPhy
executions consumed from 200 up to 500 fasta files downloaded from RefSeq database.
The Montage executions consumed from 50 up to 100 FIT files obtained from the “Two
Micron All-Sky Survey”'. In the case of SciPhy, the executions were performed by 3
different users (one expert and 2 undergraduate students). In the case of Montage (the
executions in SciCumulus were performed by an undergraduate student and the ones
downloaded from the Workflow Generator site were performed by experts).

Table 1 summarizes the main characteristics of the datasets. The Total Records column
shows the number of past executions of each workflow. Each dataset record can be used as
an example for generating Machine Learning models during the algorithm’s execution. As
seen, the SciPhy dataset is relatively small compared to Montage. The column Total
Attributes shows how many activity parameters are considered in each workflow
execution. Both workflows have the same number of categorical domain parameters, as
presented in the column Categorical Attributes. Montage has more numeric domain
parameters than SciPhy, as shown in the Numerical Attributes column.

Statistics on the SciPhy numerical attributes are shown in Table 2. This table presents
the minimum and maximum values of each attribute, in addition to the standard
deviation. The attribute probI (probability of a given evolutive relationship is valid) has the
highest standard deviation, and its range of values is the largest among all attributes. The
prob2 attribute (probability of a given evolutive relationship is valid) has both a range of
values and the standard deviation similar to probl. The standard deviation of the values of
num_aligns (total number of alignments in a given data file) is very small, while the
attribute length (maximum sequence length in a specific data file) has a high standard
deviation, considering its values range.

The Montage numerical attributes, shown in Table 3, in most of the cases, have smaller
standard deviation than the SciPhy. On average, Montage attributes also have a smaller
values range than SciPhy dataset attributes. Also, in Montage dataset, the crota2 attribute (a
float value that represents an image rotation on sky) has the largest values range and the

Silva Junior et al. (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.606 22/46

http://irsa.ipac.caltech.edu
http://irsa.ipac.caltech.edu
http://dx.doi.org/10.7717/peerj-cs.606
https://peerj.com/computer-science/

PeerJ Computer Science

Table 3 Montage dataset statistics.

Parameter Minimum value Maximum value Standard deviation
cntr 0.00 134.00 35.34
ra 83.12 323.90 91.13
dec -27.17 28.85 17.90
crvall 83.12 323.90 91.13
crval2 -27.17 28.85 17.90
crota2 0.00 360.00 178.64
num_aligns - 1.00
f]ztl: v prob2
cra_05h_34m_00.85s 0.8 modell_BLOSUM62+G
cra_05h_35m_02.31s [~ U modell_BLOSUM62+I+F
cra_on dom 23.51s modell_CPREV+1+G - 075
crazign:g;mz%.gés modell_Dayhoff+G
cra_l5h_17m_56.98s modell JTT+G+F
cra_16h 22m_ 23,33 0.4 model1_REREV-+F
cra_l6h~25m_36.36s modell_RtREV+| 0.50
cra_ﬁﬂ_g%m_gg.ggs modell_VT+G
cra m S]
cra_21h~35m_06.69s modell_WAG+F
cdec_+01d_41m_50.4s 0.0 modell_WAG+|
cdec_+02d_01m_19.3s : modell_WAG++G+F 0.25
corc 102 om 3Tt
cdec_+21d_58m_46.4s model2_CPREV+G
cdec_+22d"31m_01.2s model2_DCMut+G
cdec_+28d_47m_02.0s model2_JTT+I
cdeC -00d"15m"30.25 model2_RtREV+G+F
cdec - m_31.0s
cdec”-01d_04m_01.2s model2_VT+G
cdec_-26d_04m_59.9s -0.8 model2_WAG+G+F -0.25
cdec”-26d_25m_13.8s model2_WAG+1+G
cdec_-26d_57m_08.2s &= _ _ . .
R e R e g Rt g
BRSO R0 AR RS AN RN RS AR SR8LERELELS ZEEL8070300230000304035837080730%
GENNONNINTNNN VDD 65 N 03 i 6 F BN F i G 33 3 BOROE T iE tiUa I oIQIURZEIETS W0
SOHMMANBANNNNGNINNNMMT OGO NmmM S DS Mm e 8Z5Fm5oEF¥EEF¥EZQaF23E 9ok B0
gmmonNONNWnmMO-mm I _1 T _T_1 T8 _E 8 _E) S20NnasS < o) “(ZODNuﬁD: TaeEiL=
O Nl Y e EEEEEEEEEEEEEEEEE 2 m"'Oxon.U;‘:t MG S22 Q08 Y (FJBEZ TS
EEEEEEEEEEEEEEORRMADBNTANNTOO AN ORA=0ad87 0oz E IMS95n8TAT 0% g i
MIORATINONTONMININAMNTINATHANT = ONNT N “@85 A% e5E 8805535023982 INnENT
MmN ANNNNMm™_ L 30 R0 +<8 50 0BT Y PRBEZNTENT B
T I I 1 1 1 111 | Moo 000V0V0TVTOTTTT U-—<¢o‘”ﬁ‘°n°&.—<'ggﬁo—r~aoo oS o Us DO
CCCCCLCCCCCCeCAaAdNNAANNNOROOA—=OO0 0S99 JLEGESS OEQFAE EQE ©Y o£
m\ﬂlﬂmmmh’)lﬂ\o‘o@HHﬂOOOONNNNNNNQQOONNN Emumc ° [13 'co)m ° o £
COOHMHMAAAARNNNT FFF+++++++ ' Qo®eoe E ° 3= o EE
L e o e T T B T B R B TT T S e T e e) Qe EE o ESA 3
S N A A R R E°g E Es
DOUOUUUUOUUUUU G55 50T0TTTUTTO0000 00 T o
(PR VEVEVEVEVEVEVEVEVEY] (E> g

Figure 10 Datasets attributes correlation matrices.

Full-size K&l DOT: 10.7717/peerj-cs.606/fig-10

largest standard deviation. The dec (an optional float value that represents Dec for region
statistics) and crval2 (a float value that represents Axis 2 sky reference value in Montage
workflow) attributes have close statistics and are the attributes with the smallest data range
and the smallest Montage data standard deviation.

In Fig. 10, it is possible to check the correlation between the different attributes in the
datasets. It is notable in both Figs. 10A and 10B that the attributes (i.e., workflow
parameters) present a weak correlation. All those statistics are relevant to understand the
results obtained by the experiments performed from each version of FReeP algorithm.

Discrete domain recommendation evaluation
This experiment was modeled to evaluate FReeP’s algorithm key concepts using the naive
version presented in Algorithm 1, that was developed to recommend one discrete domain

Silva Junior et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.606

23/46

http://dx.doi.org/10.7717/peerj-cs.606/fig-10
http://dx.doi.org/10.7717/peerj-cs.606
https://peerj.com/computer-science/

PeerJ Computer Science

parameter at a time. This experiment aims at evaluating and comparing the performance
of FReeP when its hypothesis_generation step instantiates either a single classifier or a
ranker. The ranker tested as a model was implemented using the Pairwise Label Ranking
technique. K Nearest Neighbors (Keller, Gray ¢ Givens, 1985) classifier is used as the
classifier of this ranker implementation. The k parameter of K Nearest Neighbors classifier
was set as 3, 5, 7 for both the ranker and classifier. The choice of k € {3,5,7} is because small
datasets are used, and thus k values greater than 7 do not return any neighbors in the
experiments.

Experiment 1. Algorithm 1 evaluation script

1. The algorithm is instantiated with the classifier or ranker and a recommendation target
workflow parameter.

2. The provenance database is divided into k parts to follow a K-Fold Cross Validation
procedure (Kohavi, 1995). At each step, the procedure takes k — 1 parts to train the
model and the 1 remaining part to make the predictions. In this experiment, k = 5.

3. Each workflow parameter is used as recommendation target parameter.
4. Each provenance record in test data is used to retrieve target parameter real value.

5. Parameters that are not the recommendation target are used as preferences, with values
from current test record.

6. Then, algorithm performs recommendation and both the result and the value present in
the test record for the recommendation target parameter are stored.

7. Precision and recall values are calculated based on all K-Fold Cross Validation iterations.

Results

Experiment 1 results are presented and analyzed based on the values of precision and recall,
in addition to the execution time. Figure 11 shows that Algorithm 1 execution with
Sciphy provenance database, using both the classifier and the ranker. Only KNN classifier
with k = 3 gives a precision greater than 50%. Also, a high standard deviation is noticed.
Even with unsatisfactory performance, Fig. 12 shows that KNN classifier presented
better recall results than those for precision, both in absolute values terms and standard
deviation, which had a slight decrease. In contrast, the ranker recall was even worse with
the precision results and still present a very high standard deviation.

Figure 13 shows the execution time, in seconds, to obtain the experiment’s
recommendations for SciPhy. The execution time of ranker is much more significant when
compared to the time spent by the classifier. This behavior can be explained by the fact that
the technique used to generate the ranker creates multiple binary classifiers. Another
point to note is that the execution time standard deviation from ranker is also very high. It
is important to note that when FReeP uses KNN, it is memory-based, since each
recommendation needs to be loaded into main memory.

Analyzing Fig. 14 (Montage) one can conclude that with the use of k = 3 for the classifier
and for the ranker produces relevant results. The precision for this case reached 80%, and

Silva Junior et al. (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.606 24/46

http://dx.doi.org/10.7717/peerj-cs.606
https://peerj.com/computer-science/

PeerJ Computer Science

0.7 -

0.6-

J9PUDWILIOIDYDINICD NN

13A0W

PRECISION

Japuawiwodayainieadpjuey e

Figure 11 Precision results with SciPhy data. Full-size K&l DOT: 10.7717/peerj-cs.606/fig-11

MODEL
mmm KNNFeatureRecommender
mm RankFeatureRecommender

0.7 -

0.6 -

0.5-

0.3-

0.2-

0.1-

0.0
3 5 7
K
Figure 12 Recall results with SciPhy data. Full-size K&l DOT: 10.7717/peerj-cs.606/fig-12

Silva Junior et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.606 0 [25/46

http://dx.doi.org/10.7717/peerj-cs.606/fig-11
http://dx.doi.org/10.7717/peerj-cs.606/fig-12
http://dx.doi.org/10.7717/peerj-cs.606
https://peerj.com/computer-science/

PeerJ Computer Science

MODEL
B KNNFeatureRecommender
mm RankFeatureRecommender

10000 -

8000 -

6000 -

TIME

4000 -

2000 -

Figure 13 Experiment recommendation execution time with SciPhy data.
Full-size k&l DOT: 10.7717/peerj-cs.606/fig-13

0.8- MODEL
B KNNFeatureRecommender

W RankFeatureRecommender

0.6 -
=
S
[l
O
w
£oa4-
0.2-
0.0
3 5 7
K
Figure 14 Precision results with Montage data. Full-size k&l DOI: 10.7717/peerj-cs.606/fig-14

Silva Junior et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.606 I 0 [26/46

http://dx.doi.org/10.7717/peerj-cs.606/fig-13
http://dx.doi.org/10.7717/peerj-cs.606/fig-14
http://dx.doi.org/10.7717/peerj-cs.606
https://peerj.com/computer-science/

PeerJ Computer Science

0.8- MODEL

B KNNFeatureRecommender
mm RankFeatureRecommender
0.7 -

0.6 -

0.3-

0.2-

0.1-

0.0

3 5 7
K

Figure 15 Recall results with Montage data. Full-size K&l DOT: 10.7717/peerj-cs.606/fig-15

the standard deviation was considerably smaller compared to the precision results with
Sciphy dataset in Fig. 11. For k € {5,7}, the same results behavior was observed,
considerably below those expected.

Considering the precision, Fig. 15 shows that the results for k = 3 were the best for both
the classifier and for ranker, although for this case they did not reach 80% (although it is
close). It can be noted that the standard deviation was smaller when compared to the
standard deviations found for precision. One interesting point about the execution time of
the experiment with Montage presented in Fig. 16 is that for k € {3,7} the ranker spent less
time than the classifier. This behavior can be explained because the ranker, despite being
generated by a process where several classifiers are built, relies on binary classifiers. When
used alone, the classifier needs to handle all class variables values, in this case, parameter
recommendation values, at once. However, it is also important to note that the standard
deviation for ranker is much higher than for the classifier.

In general, it was possible to notice that the use of ranker did not bring encouraging
results. In all cases, ranker precision and recall were lower than those presented by the
classifier. Besides, the standard deviation of ranker in the execution time spent results was
also very high. Another point to be noted is that the best precision and recall results were
obtained with the data from Montage workflow. These results may be linked to the fact that
the Montage dataset has more records than the Sciphy dataset.

Discrete and continuous domain recommendation evaluation
Experiment 1 was modified to evaluate the Algorithm 2 performance, yielding Experiment
2. Algorithm 2 was executed with variations in the choice of classifiers and regressors,
partitions strategies, and records percentage from provenance database. All values per
algorithm parameter are presented in Table 4.

Silva Junior et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.606 I 0 [27/46

http://dx.doi.org/10.7717/peerj-cs.606/fig-15
http://dx.doi.org/10.7717/peerj-cs.606
https://peerj.com/computer-science/

PeerJ Computer Science

3500 - MODEL
M KNNFeatureRecommender
[RankFeatureRecommender

3000 -

2500 -

2000 -
w
P
'_
1500 -
1000 -
500 -
0
3 5 7
K
Figure 16 Experiment recommendation execution time with Montage data.
Full-size K&] DOT: 10.7717/peerj-cs.606/fig-16
Table 4 Algorithm 2 values per parameter used in Experiment 2.
Classifiers Regressors Partition strategy Percentage
KNN Linear Regression PCA 30
SVM KNR ANOVA 50
Multi-Layer Perceptron SVR 70

Multi-Layer Perceptron

Experiment 2. Algorithm 2 evaluation script

1. Algorithm 2 is instantiated with a classifier or regressor, a partitioning strategy, percentage
data to be returned by partitioning strategy, and a target workflow parameter.

2. Provenance database is divided using K-Fold Cross Validation, k = 5

3. Each provenance record on test data is used to retrieve the target parameter’s real value.

4. A random number x between 2 and parameters number present in provenance database
is chosen to simulated preference number used in recommending target parameter.

5. x parameters are chosen from the remaining test record to be used as preferences.

6. Algorithm performs recommendation, and both result and test record value for the
target parameter are stored.

7. Precision and recall, or MSE values are calculated based on all K-Fold Cross Validation

iterations.

Silva Junior et al. (2021), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.606 I 0 [28/46

http://dx.doi.org/10.7717/peerj-cs.606/fig-16
http://dx.doi.org/10.7717/peerj-cs.606
https://peerj.com/computer-science/

PeerJ Computer Science

1.0-

0.8 -

0.6 -

z CLASSIFIER
& = KNN3
Q mmm KNN 5
g mmm KNN 7
. SVM

0.4- BN Multi Layer Perceptron

0.2-

0.0

PCA-30 PCA-50 PCA-70 ANOVA-30 ANOVA-50 ANOVA-70
PARTITIONER

Figure 17 Precision results with Sciphy data. Full-size k&l DOT: 10.7717/peerj-cs.606/fig-17

Results

Experiment 2 results are presented using precision, recall, and execution time for
categorical domain parameters recommendations, while numerical domain parameters
recommendations are evaluated using MSE and the execution time. Based on the results
obtained in Experiment 1, only classifiers were used as Machine Learning models in
Experiment 2, i.e., we do not consider rankers.

The first observation when analyzing the precision data in Fig. 17 is that ANOVA
partitioning strategy obtained better results than PCA. ANOVA partitioning strategy
precision in absolute values is generally more significant, and variation in precision for each
attribute considered for recommendation is lower than PCA strategy. The classifiers have
very similar performance for all percentages of partitions in the ANOVA strategy. On
the other hand, the variation in the percentages of elements per partition also reflects a
more significant variation in results between the different classifiers. The Multi Layer
Perceptron (MLP) classifier, which was trained using the Stochastic Descending Gradient
(Bottou, 2010) with a single hidden layer, presents the worst results except in the setup that
it follows the PCA partitioning strategy with a percentage of 70% elements in the
partitioning. The MLP model performance degradation may be related to the fact that the
numerical attributes are not normalized before algorithm execution.

Recall results, in Fig. 18 were very similar to precision results in absolute values.

A difference is the smallest variation, in general, of recall results for each attribute used in
the recommendation experiment. The Multi Layer Perceptron classifier presented a
behavior similar to the precision results, with a degradation in the setup that includes
ANOVA partitioning with 70% of the elements in the partitioning.

Silva Junior et al. (2021), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.606 00 [29/46

http://dx.doi.org/10.7717/peerj-cs.606/fig-17
http://dx.doi.org/10.7717/peerj-cs.606
https://peerj.com/computer-science/

PeerJ Computer Science

CLASSIFIER
KNN 3
KNN 5
KNN 7
SVM
Multi Layer Perceptron

RECALL

PCA-30 PCA-50 PCA-70 ANOVA-30 ANOVA-50 ANOVA-70
PARTITIONER

Figure 18 Recall results with Sciphy data. Full-size k&l DOT: 10.7717/peerj-cs.606/fig-18

CLASSIFIER
KNN 3
KNN 5
KNN 7
SVM
Multi Layer Perceptron

TIME

PCA-30 PCA-50 PCA-70 ANOVA-30 ANOVA-50 ANOVA-70
PARTITIONER

Figure 19 Experiment recommendation execution time with Sciphy data.
Full-size kal DOT: 10.7717/peerj-cs.606/fig-19

Figure 19 shows the average execution time in seconds during the experiment with
categorical domain parameters in each setup used. Execution time of ANOVA partitioning
strategy was, on average, half the time used with the PCA partitioning strategy. The

Silva Junior et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.606 I [30/46

http://dx.doi.org/10.7717/peerj-cs.606/fig-18
http://dx.doi.org/10.7717/peerj-cs.606/fig-19
http://dx.doi.org/10.7717/peerj-cs.606
https://peerj.com/computer-science/

PeerJ Computer Science

lel7 500 -
REGRESSOR REGRESSOR
B Linear Regression BN Linear Regression
B KNR 3 mw KNR 3
4- m KNR 5 Em KNR S
mm KNR 7 400 - s KNR 7
. SVR s SVR
BN Multi Layer Perceptron mmm Multi Layer Perceptron

300 -
u s
g =
2 -
200 -
1= * | 100 -
0 T T T T T T 0
PCA-30 PCA-50 PCA-70 ANOVA-30 ANOVA-50 ANOVA-70 PCA-30 PCA-50 PCA-70 ANOVA-30 ANOVA-50 ANOVA-70
PARTITIONER PARTITIONER
Figure 20 MSE results and recommendation execution time with Sciphy data. Full-size K&l DOT: 10.7717/peerj-cs.606/fig-20

execution time using different classifiers for each attribute is also much smaller and stable
for ANOVA strategy than for PCA, regardless of element partition percentage.

Analyzing precision, recall, and execution time spent data jointly, ANOVA partitioning
strategy showed the best recommendation performance for the categorical domain
parameters of the Sciphy provenance database. Going further, the element partition
percentage generated by the strategy has no significant impact on the results. Another
interesting point is that a simpler classifier like KNN presented results very similar to those
obtained by a more complex classifier like SVM.

Figure 20A brings the data from results obtained for the numerical domain parameter
Sciphy provenance database. The data shows zero MSE in all cases, except for the use
of Multi Layer Perceptron in the regression. This result can be explained by the small
database and the few different values for each numerical domain parameter. Small values
difference per parameter suggests that the regressors have no work to generate a result
equal to what is already present in the database.

Looking at Fig. 20B, one can notice that, similar to the categorical domain parameters
results, the execution time of ANOVA partitioning strategy is much less than the time
used by the PCA strategy. Another similar point with categorical domain parameter results
is the smaller and more stable ANOVA strategy results variation.

From all results obtained in the Experiment 2 using Sciphy provenance database, it can
be noticed that the ANOVA partitioning strategy had the best performance. Further

Silva Junior et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.606 . [31/46

http://dx.doi.org/10.7717/peerj-cs.606/fig-20
http://dx.doi.org/10.7717/peerj-cs.606
https://peerj.com/computer-science/

PeerJ Computer Science

CLASSIFIER
KNN 3
KNN 5
KNN 7
SVM
Multi Layer Perceptron

PRECISION
il

PCA-30 PCA-50 PCA-70 ANOVA-30 ANOVA-50 ANOVA-70
PARTITIONER

Figure 21 Precision results with Montage data. Full-size k&l DOT: 10.7717/peerj-cs.606/fig-21

precision, recall, and MSE results, for the Algorithm 2 setup with ANOVA partitioning
strategy also proved to be the one that performed the recommendations in the shortest
time, generally in half the time that the PCA partitioning strategy. Note that the
recommendation time can be treated as training time since the proposed algorithm has a
memory-based approach. Finally, the choice of the generated partition size and the
classifier or regressor used have no significant impact on the final result unless the classifier
or regressor is based on Multi Layer Perceptron with the same parametrization used in
this article.

Analyzing Fig. 21, precision results obtained with categorical domain parameters from
Montage workflow provenance database is observed that in almost all the experiment
setup variations evaluated, maximum performance is reached. As seen in Table 1, the
Montage workflow provenance database used in the experiments has only two categorical
domain parameters. The small variation in possible values in the database is an
explanation for the precision results. The recall results in Fig. 22 are similar to the
precision ones.

Concerning the results about the experiment time with categorical domain parameters
from the Montage provenance database, presented in Fig. 23, one can see that the KNN
classifier, k = 3, with PCA partitioning strategy was the most time-consuming. On the
other hand, with the same PCA partitioning strategy, the Multi Layer Perceptron classifier
used less time, but with a wide variation in recommendation times for different
parameters. The ANOVA partitioning strategy continued to be a partitioning strategy that
delivers the fattest recommendations. Still analyzing ANOVA partitioning strategy results,

Silva Junior et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.606 I [32/46

http://dx.doi.org/10.7717/peerj-cs.606/fig-21
http://dx.doi.org/10.7717/peerj-cs.606
https://peerj.com/computer-science/

PeerJ Computer Science

CLASSIFIER
KNN 3
KNN 5
KNN 7
SVM
Multi Layer Perceptron

RECALL

PCA-30 PCA-50 PCA-70 ANOVA-30 ANOVA-50 ANOVA-70
PARTITIONER

Figure 22 Recall results with Montage data. Full-size k&l DOT: 10.7717/peerj-cs.606/fig-22

16000 -

CLASSIFIER
KNN 3
KNN 5
KNN 7
SVM
Multi Layer Perceptron

TIME

PCA-30 PCA-50 PCA-70 ANOVA-30 ANOVA-50 ANOVA-70
PARTITIONER

Figure 23 Experiment recommendation execution time with Montage data.
Full-size K&l DOT: 10.7717/peerj-cs.606/fig-23

Silva Junior et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.606 I 133/46

http://dx.doi.org/10.7717/peerj-cs.606/fig-22
http://dx.doi.org/10.7717/peerj-cs.606/fig-23
http://dx.doi.org/10.7717/peerj-cs.606
https://peerj.com/computer-science/

PeerJ Computer Science

25000 -

20000 -

15000 -

25000 -

REGRESSOR
W Linear Regression REGRESSOR
. KNR 3 B Linear Regression
. KNR 5 B KNR 3
mm KNR 7 mmwm KNR 5
= SVR 20000+ = KNR 7
B Multi Layer Perceptron N SVR

B Multi Layer Perceptron

15000 -

w w
(%) =
= =

10000 -

10000 -
5000 - 5000 -
0
PCA-30 PCA-50 PCA-70 ANOVA-30 ANOVA-50 ANOVA-70 PCA-30 PCA-50 PCA-70 ANOVA-30 ANOVA-50 ANOVA-70
PARTITIONER PARTITIONER
B
Figure 24 MSE results and recommendation execution time with Montage data. Full-size Ka] DOT: 10.7717/peerj-cs.606/fig-24

it is possible to see that the KNN classifier, with k € {5,7}, was the fastest in recommending
Montage workflow categorical domain parameters.

Making a general analysis of results in Figs. 21, 22 and 23, the setup that uses ANOVA
partitioning strategy with the KNN classifier, k = 7 it’s the best. This setup was the one that
obtained the best results for precision, recall, and execution time spent simultaneously.
MSE results for Montage numerical domain parameters presented in Fig. 24A show that, in
general, the MSE was very close to zero for all cases, except in algorithm setup using PCA
partitioning strategy with 30% elements in the generated partition and the regressor
implemented by Multi Layer Perceptron. The MSE and its variation were very close to zero.

Regarding the execution time of Experiment 2 for numerical domain parameters
recommendations for Montage data, Fig. 24B indicates the same behavior shown by results
with SciPhy provenance database. Using ANOVA partitioning strategy and KNR regressors
with k € {5,7} as setup for Algorithm 2 produced the fastest reccommendations.

The experiment execution time of Montage provenance database was much greater than
the time used with the data from the workflow Sciphy. The explanation is the difference in
the database size. Another observation is that the ANOVA partitioning strategy produces
the fastest reccommendations. Another point is that the percentage of the elements in
partitioning generated by each partitioning strategy has no impact on the algorithm
performance. Finally, it was possible to notice that the more robust classifiers and regressors
had their performance exceeded by simpler models in some cases for the data used.

Generic FReeP recommendation evaluation
A third experiment was modeled to evaluate Algorithm 3 performance. As in Experiment
2, different variations, following Table 4 values, were used in algorithm execution.

Silva Junior et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.606 I [34/46

http://dx.doi.org/10.7717/peerj-cs.606/fig-24
http://dx.doi.org/10.7717/peerj-cs.606
https://peerj.com/computer-science/

PeerJ Computer Science

Table 5 Experiment 3 results with Sciphy dataset.

Classifier Regressor Partitioning strategy MSE Precision Recall Failures
KNN 5 KNR 5 ANOVA 50 0.0 1.0 1.0 6
KNN 5 KNR 7 ANOVA 50 0.0 1.0 1.0 6
KNN 5 SVR ANOVA 50 1.1075 1.0 1.0 6
KNN 7 KNR 5 ANOVA 50 4,279.2240 1.0 1.0 5
KNN 7 KNR 7 ANOVA 50 0.0 1.0 1.0 5
KNN 7 SVR ANOVA 50 0.444 1.0 1.0 5
SVM KNR 5 ANOVA 50 1,148.1876 0.75 0.75 6
SVM KNR 7 ANOVA 50 0.0 1.0 1.0 7
SVM SVR ANOVA 50 0.0 1.0 1.0 7

Precision, recall, and MSE are also the metrics used to evaluate the recommendations made
by each algorithm instance.

Experiment 3. Algorithm 3 evaluation script

1. n Records from the provenance database were chosen as random examples.

2. m > 2 random parameters were chosen for each example record as preferences, and their
values are the same as those present in the example record.

3. Algorithm 3 was instantiated with a classifier or a regressor, a partitioning strategy, the
partitions percentage to be returned by the partitioning strategy, and the selected m
preferences.

4. Each returned recommendation is separated into numeric and categorical and is stored.

5. Precision and recall values were calculated for categorical recommendations and Mean
Square Error (MSE) for numerical recommendations.

Results

Results showed here were obtained by fixing parameter n = 10 in Experiment 3, and using
only SciPhy provenance database. Based on Experiment 2 results, it was decided to use the
ANOVA partitioning strategy with 50% recovering elements from the provenance
database. This choice is because the ANOVA partitioning strategy was the one that
obtained the best results in previous experiment. As the percentage of data recovered by
the strategy was not an impacting factor in the results, an intermediate percentage used in
the previous experiment is selected. In addition, only KNN, with k € {5,7}, and SVM were
kept as classifiers, whereas only KNR, with k € {5,7}, and SVR was chosen as regressors.
These choices are supported by, in general, are the ones that present the best precision,
recall, and MSE results in Experiment 2.

Table 5 presents the results obtained with the Algorithm 3 instance variations. Each row
in the table represents an Algorithm 3 instance setup. The column that draws the most
attention is the Failures. What happens is that, for some cases, the algorithm was not able
to carry out the recommendation together and therefore did not return any

Silva Junior et al. (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.606 35/46

http://dx.doi.org/10.7717/peerj-cs.606
https://peerj.com/computer-science/

PeerJ Computer Science

recommendations. It is important to remember that each algorithm setup was tested on a
set with 10 records extracted randomly from the database. The random record selection
process can select records in which parameter values can be present only in the selected
record. For this experiment, the selected examples are removed from the dataset, and
therefore there is no other record that allows the correct execution of the algorithm.
Analyzing Table 5 results, focusing on the column Failures and taking into account that
10 records were chosen for each setup, it is possible to verify that in most cases, the
algorithm was not able to make recommendations. However, considering only the
recommendations made, it can be seen that the algorithm had satisfactory results for the
precision and recall metrics. The values presented for the MSE metric were mostly
satisfactory, differing only in the configurations of lines 4 and 7, both using the regressor
KNR with k = 5. Another point to note is that the algorithm had more problems to make
recommendations when the SVM classifier was used. Furthermore, it is possible to
note that algorithm setups with more sophisticated Machine Learning models such as
SVM and SVR do not add performance to the algorithm, specifically for Sciphy provenance
dataset used.

RELATED WORK

Previous literature works had already relied on recommender systems to support scientific
workflows. Moreover, hyperparameter tuning methods also have similar goals as
paramater recommendation. Hyperparameters are variables that cannot be estimated
directly from data, and, as a result, it is the user’s task to explore and define those values.
Hyperparameter Optimization (HPO) is a research area that emerged to assist users in
adjusting the hyperparameters of Machine Learning models in a non-ad-hoc manner
(Yang & Shami, 2020). The well-defined processes resulting from research in the area may
speed up the experimentation process and allow for reproducibility and fair comparison
between models. Among the different methods of HPO, we can mention Decision Theory,
Bayesian Optimization, Multi-fidelity Optimization, and Metaheuristic Algorithms.

Among the Decision Theory methods, the most used are Grid Search (Bergstra et al.,
2011) and Random Search (Bergstra ¢ Bengio, 2012). For both strategies, the user defines a
list of values to be experimented for each hyperparameter. In Grid Search, the search for
optimum values is given by experimenting the predefined values for the entire cartesian
product. Random Search selects a sample for the hyperparameters to improve the
execution time of the whole process. While the exponential search space of Grid Search
may be impossible to complain, in Random Search there is the possibility that an optimal
combination will not be explored. Also, the common problem between both approaches is
that the dependencies between the hyperparameters are not taken into account. FReeP
considers the possible dependencies between parameters by following the concept of
classifier chains.

The Bayesian Optimization (Eggensperger et al., 2013) method optimizes the search
space exploration using information from the previously tested hyperparameters to prune
the non-promising combinations test. Despite using a surrogate model, the Bayesian
optimization method still requires that the target model evaluation direct the search for the

Silva Junior et al. (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.606 36/46

http://dx.doi.org/10.7717/peerj-cs.606
https://peerj.com/computer-science/

PeerJ Computer Science

optimal hyperparameters. In a scenario of scientific workflows, it is very costly from
the economical and runtime perspective to run an experiment, even more so to only
evaluate a combination of parameter values. FReeP does not require any new workflow
execution to recommend which values to use as it uses only data from past executions.

Multi-fidelity Algorithms (Zhang et al., 2016) also have the premise of balancing the
time spent to search for hyperparameters. This kind of algorithm is based on successively
evaluating hyperparameters in a subset search space. Those strategies follow similar
motivations as the partitions generation of FReeP. However, in a scenario of scientific
workflows, the Multi-fidelity algorithms still require workflow execution to evaluate
combination quality.

The Metaheuristics Algorithms (Gogna ¢ Tayal, 2013), based on the evolution of
populations, use different forms of combinations of pre-existing populations in the hope of
generating better populations at each generation. For hyperparameters tuning,
hyperparameters with missing values are the population. Still, FReeP does not require any
new execution of the workflow a priori to evaluate a recommendation given by the
algorithm.

In general, the works that seek to assist scientists with some type of recommendation
involving scientific workflow are focused on the composition phase. Zhou et al. (2018) uses
a graph-based clustering technique to recommend workflows that can be reused in the
composition of a developing workflow. De Oliveira et al. (2008) uses workflow provenance
to extract connection patterns between components in order to make recommendations of
new components for a workflow in composition. For each new component used in the
composition of workflow, new components are recommended. Halioui, Valtchev ¢ Diallo
(2016), uses Natural Language Processing combined with specific ontologies in the field of
Bioinformatics to extract concrete workflows from works in the literature. After the
reconstruction of concrete workflows, tool combinations patterns, its parameters, and
input data used in these workflows are extracted. All this data extracted can be used as
assistance for composing new ones workflows that solve problems related to the mined
workflows.

Yet concerned with assistance during the workflow composition phase, Mohan,
Ebrahimi ¢ Lu (2015) proposes the use of Folksonomy (Gruber, 2007) to enrich the data
used for the recommendation of others workflows similar to a workflow under
development. A design workflow tool was developed that allows free specification tags to
be used in each component, making it possible to use not only the recommendation
strategy through the workflow syntax, but also component semantics. Soomro, Munir &
McClatchey (2015) uses domain ontologies as a knowledge base to incorporate semantics
into the recommendation process. A hybrid recommender system was developed using
ontologies to improve the already known recommendation strategy based on the
extraction of standards from other workflows. Zeng, He ¢ Van der Aalst (2011) uses data
and control dependencies between activities, stored in the workflow provenance to build a
causality table and another weights table. Subsequently, a Petri network (Zhou ¢
Venkatesh, 1999) is used to recommend other components for the composition of
workflow.

Silva Junior et al. (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.606 37/46

http://dx.doi.org/10.7717/peerj-cs.606
https://peerj.com/computer-science/

PeerJ Computer Science

Table 6 Comparison between FReeP and related work.

Approach Domain Search Considers Requires Life-cycle phase
space dependencies execution

Bergstra et al. (2011) General All No Yes Execution
Bergstra & Bengio (2012) General Pruned No Yes Execution
Eggensperger et al. (2013) General Pruned No Yes Execution
Zhang et al. (2016) General Pruned No Yes Execution
Gogna & Tayal (2013) General Pruned No Yes Execution
Zhou et al. (2018) Workflow N/A No No Composition
De Oliveira et al. (2008) Workflow N/A No No Composition
Mohan, Ebrahimi ¢ Lu (2015) Workflow N/A No No Composition
Soomro, Munir ¢ McClatchey Workflow N/A No No Composition

(2015)
Zeng, He & Van der Aalst Workflow N/A Yes No Composition

(2011)
Zhou ¢ Venkatesh (1999) Workflow N/A Yes No Composition
Wickramarachchi et al. (2018) Workflow N/A N/A N/A Composition/Execution
Mallawaarachchi et al. (2018) Workflow N/A N/A N/A Composition/Execution
Kanchana et al. (2016) Workflow N/A N/A No Analysis
Kanchana et al. (2017) Workflow N/A N/A No Analysis
FReeP Workflow Pruned Yes No Composition/Execution

In the context of helping less experienced users in the use of scientific workflows,
Wickramarachchi et al. (2018) and Mallawaarachchi et al. (2018) show experiments that
prove that SWEMS BioWorkflow (Welivita et al., 2018) use is effective in increasing student
engagement and learning in Bioinformatics.

Some works propose recommendation approaches that assist less experienced users
in analysis of unknown domains, as is the case of Kanchana et al. (2016) and Kanchana
et al. (2017), where a chart recommendation system was developed and evolved based on
the use of metadata from any domain data. The system uses Machine Learning and
Rule-based components that are refined with user feedback on the usefulness of the
recommended charts.

Most of the approaches that uses recommender system methods to support the scientific
process are closely linked to the experiment’s composition phase. The execution phase,
where there is a need to adjust parameters, still lacks alternatives. Table 6 compares related
work with FReeP approach. In Table 6 we show the name of the approach (column
Approach), if it is focused on a specific domain or if its generic (column Domain), if it
prunes the search space or considers the entire search space (column Search Space), if the
approach considers dependencies among parameters (column Considers Dependencies), if
it requires a new execution of the workflow or the application (column Requires
Execution), and in which phase of the experiment life-cycle the approach is executed
(column Life-cycle Phase). If there is no information about the analyzed characteristics in
the paper we set as N/A (Not Available) in Table 6. This work proposes a hybrid

Silva Junior et al. (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.606 38/46

http://dx.doi.org/10.7717/peerj-cs.606
https://peerj.com/computer-science/

PeerJ Computer Science

recommendation algorithm capable of making value recommendations for one or multiple
parameters of a scientific workflow, taking into account the user’s preferences.

FINAL REMARKS

The precision and recall results obtained from the experiments suggest that FReeP is useful
in recommending missing parameter values, decreasing the probability that failures will
abort scientific experiments performed in High-Performance Computing environments.
These results show a high-reliability degree, especially in the recommendation for one
workflow parameter due to the number of experimental iterations performed to obtain the
evaluations. The low availability of data for the experiments of the recommendation for n
parameters impacts the reliability of the results obtained in this scenario. However, the
results presented for the n parameters recommendation show that the approach is
promising.

FReeP has a number of characteristics pointing out its contribution in saving runtime
and financial resources when executing scientific experiments. First, FReeP can be executed
on standard hardware, such as that used in the experiments presented in this article,
without the need for an HPC environment. Besides, FReeP does not require any further
execution of the scientific workflow to assess the recommendation’s quality as it uses
provenance data. This characteristic of not requiring an instance of the scientific
experiment to be performed is the huge difference and advantage compared with
Hyperparameter Optimization strategies widely used in the Machine Learning models
tuning.

In FReeP, all training data are collected and each tuple represents a different execution
of the workflow. This data gathering process can nevertheless be time-consuming.
However, one aspect that is expected is that the recommendation process will be
performed once and a series of executions of the same workflow is repeated a significant
number of (varying the known parameter). In addition, in many research groups there is
already a database containing the provenance (Freire et al., 2008) that can be used to
recommend parameter values for non-expert users, i.e., the scientists will not need to
effectively execute the workflow to train the model since provenance data is already
available. Public provenance repositories such as ProvStore (https://openprovenance.org/
store/) (Huynh & Moreau, 2015) can be used as input for FReeP. For example, ProvStore
contains 1,136 documents (each one associated with a workflow execution) of several
different real workflows uploaded by research groups around the world.

From the perspective of runtime, when using the ANOVA partitioning strategy, in the
experimental evaluation with the provenance data from the Sciphy workflow, the average
time spent on the recommendations is about only 4 minutes. In comparison, the
average time of execution of the workflow Sciphy extracted from the provenance data used
is about 17 h and 32 min. Still taking into account the use of the ANOVA partitioning
strategy, in the experimental evaluation with the Montage workflow provenance data, the
average time spent on the recommendation is about I h and 30 min. In contrast, the
average execution time of a workflow experiment Montage extracted from the provenance
data used was about 2 h and 3 min.

Silva Junior et al. (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.606 39/46

https://openprovenance.org/store/
https://openprovenance.org/store/
http://dx.doi.org/10.7717/peerj-cs.606
https://peerj.com/computer-science/

PeerJ Computer Science

Although it is more evident the lower relation between the experiment’s execution time
and the recommendation time when analyzing the data from the Sciphy workflow, it is
essential to emphasize that more robust hardware is not necessary to execute the
recommendation process. Yet, future improvements in FReeP includes employing
parallelism techniques to further decrease the recommendation time.

CONCLUSION

The scientific process involves observing phenomena from different areas, formulating
hypotheses, testing, and refining them. Arguably, this is an arduous job for the scientist in
charge of the process. With the advances in computational resources, there is a growing
concern about helping scientists in scientific experimentation. A significant step towards a
more robust aid was the adoption of scientific workflows as a model for representing
scientific experiments and Scientific Workflow Management Systems to support the
management of experiment executions.

Computational execution of the experiments represented as scientific workflows relies
on the use of computer programs that play the role of each stage of the experiment. In
addition to input data, these programs often need additional configuration parameters to
be adjusted to simulate the experiment’s conditions. The scientist responsible for the
experiment ends up developing an intuition about the sets of parameters that lead to
satisfactory results. However, another scientist who runs the same experiment will not
have the same experience, which may lead him/her to define a set of parameters that will
not result in a successful experiment.

Several proposals in the literature have aimed at supporting the composition phase of
the experiments, but recommending parameter values for the experiment execution
phase is still an open field. This article presented FReeP: Feature Recommender From
Preferences, an algorithm for recommending values for parameters in scientific workflows
considering the user’s preferences. The goal was to allow a new user to express their
preferences of values for a subset of workflow parameters and recommend values for
the parameters that had no preference defined. FReeP has three versions, all of them
relying on Machine Learning techniques. Two approaches focused on the value
recommendation for one parameter at a time. The third instance addresses recommending
values for all the other parameters of a workflow for which a user preference was not
defined.

The proposed algorithm proved to be useful for recommending one parameter,
indicating a path for the recommendation of n parameters. Nevertheless, there are
some limitations. FReeP, as a memory-based algorithm, faces scalability issues as its
implementation can consume a lot of computational resources. Yet, the recommendations
of FReeP are limited to the existence of examples on the provenance dataset. This means
that the algorithm cannot make any “default” recommendations if there are no
examples for the algorithm’s execution or recommend values that are not present in the
provenance dataset. Also, the recommendation algorithm may have a longer processing
time than the experiment itself. Another point is that all the instances have the same
weight during the recommendation process. The algorithm does not consider the user’s

Silva Junior et al. (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.606 40/46

http://dx.doi.org/10.7717/peerj-cs.606
https://peerj.com/computer-science/

PeerJ Computer Science

expertise that performed the previous execution to adjust an example’s weight. Still, the
algorithm considers only the set of parameters of the workflow; however, a set of
parameters may be more or less relevant according to the input data. Additionally, the
recommendation algorithm may end up recommending a set of values present in the
provenance base that causes a workflow execution failure.

Based on those limitations, there are some proposals for future work. First proposal is
parallelizing the processing of the generated partitions, which should decrease the time
spent on the recommendation. In addition, evaluating FReeP on data from other domains
and evaluating the tradeoff between the recommendation time and the algorithm
execution time. Also, associating weights with examples from the provenance dataset
according to the user’s profile. Lastly, using instances from the provenance dataset that
failed to execute the workflow as a constraint to improve the recommendations’ results.

ACKNOWLEDGEMENTS

The authors would like to thank Kary Ocafia for her explanations of the parameters of
SciPhy workflow.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work was supported by the Brazilian research agencies CNPq, FAPER], and CAPES
(Finance Code 001). The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
CNPq, FAPER] and CAPES: Finance Code 001.

Competing Interests
Daniel de Oliveira is an Academic Editor for Peer]

Author Contributions

e Daniel Silva Junior conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.

e Esther Pacitti conceived and designed the experiments, authored or reviewed drafts of
the paper, and approved the final draft.

o Aline Paes conceived and designed the experiments, analyzed the data, authored or
reviewed drafts of the paper, and approved the final draft.

e Daniel de Oliveira conceived and designed the experiments, analyzed the data, authored
or reviewed drafts of the paper, and approved the final draft.

Silva Junior et al. (2021), Peerd Comput. Sci., DOl 10.7717/peerj-cs.606 41/46

http://dx.doi.org/10.7717/peerj-cs.606
https://peerj.com/computer-science/

PeerJ Computer Science

Data Availability

The following information was supplied regarding data availability:
All the code and data are available at https://github.com/MeLL-UFF/FReeP.
The CSV files are available in the Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.606#supplemental-information.

REFERENCES

Adomavicius G, Tuzhilin A. 2005. Toward the next generation of recommender systems: a survey
of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data
Engineering 17(6):734-749 DOI 10.1109/TKDE.2005.99.

Al-Sharrah G. 2010. Ranking using the copeland score: a comparison with the hasse diagram.
Journal of Chemical Information and Modeling 50(5):785-791 DOI 10.1021/ci100064q.

Altintas I, Ludaescher B, Klasky S, Vouk MA. 2006. Introduction to scientific workflow
management and the kepler system. In: SC’06: Proceedings of the 2006 ACM/IEEE Conference on
Supercomputing. Piscataway: IEEE, 205.

Bergeron C, Zaretzki J, Breneman C, Bennett KP. 2008. Multiple instance ranking. In:
Proceedings of the 25th International Conference on Machine Learning. 48-55.

Bergstra JS, Bardenet R, Bengio Y, Kégl B. 2011. Algorithms for hyper-parameter optimization.
In: Advances in Neural Information Processing Systems. 2546-2554.

Bergstra J, Bengio Y. 2012. Random search for hyper-parameter optimization. Journal of Machine
Learning Research 13(2):281-305.

Bose R, Foster I, Moreau L. 2006. Report on the international provenance and annotation
workshop: (ipaw’06) 3-5 May 2006, Chicago. ACM SIGMOD Record 35(3):51-53
DOI 10.1145/1168092.1168102.

Bottou L. 2010. Large-scale machine learning with stochastic gradient descent. In: Proceedings of
COMPSTAT’2010. Springer, 177-186.

Burke R. 2002. Hybrid recommender systems: survey and experiments. User Modeling and User-
Adapted Interaction 12(4):331-370 DOI 10.1023/A:1021240730564.

Coates A, Ng AY. 2011. The importance of encoding versus training with sparse coding and vector
quantization. In: Proceedings of the 28th International Conference on Machine Learning (ICML-
11). 921-928.

De Oliveira D, Ogasawara E, Baido F, Mattoso M. 2010a. Scicumulus: a lightweight cloud
middleware to explore many task computing paradigm in scientific workflows. In: 3rd
International Conference on Cloud Computing. 378-385.

De Oliveira DCM, Liu J, Pacitti E. 2019. Data-intensive workflow management: for clouds and
data-intensive and scalable computing environments. In: Synthesis Lectures on Data
Management. San Rafael: Morgan & Claypool Publishers.

De Oliveira FT, Murta L, Werner C, Mattoso M. 2008. Using provenance to improve workflow
design. In: International Provenance and Annotation Workshop. Springer, 136-143.

De Oliveira D, Ocaiia KACS, Baiao FA, Mattoso M. 2012. A provenance-based adaptive
scheduling heuristic for parallel scientific workflows in clouds. Journal of Grid Computing
10(3):521-552 DOI 10.1007/s10723-012-9227-2.

Silva Junior et al. (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.606 42/46

https://github.com/MeLL-UFF/FReeP
http://dx.doi.org/10.7717/peerj-cs.606#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.606#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.606#supplemental-information
http://dx.doi.org/10.1109/TKDE.2005.99
http://dx.doi.org/10.1021/ci100064q
http://dx.doi.org/10.1145/1168092.1168102
http://dx.doi.org/10.1023/A:1021240730564
http://dx.doi.org/10.1007/s10723-012-9227-2
http://dx.doi.org/10.7717/peerj-cs.606
https://peerj.com/computer-science/

PeerJ Computer Science

De Oliveira D, Ocaiia KACS, Ogasawara E, Dias J, Gongalves J, Baido F, Mattoso M. 2013.
Performance evaluation of parallel strategies in public clouds: a study with phylogenomic
workflows. Future Generation Computer Systems 29(7):1816-1825
DOI 10.1016/j.future.2012.12.019.

De Oliveira D, Ogasawara E, Baido F, Mattoso M. 2010b. Scicumulus: a lightweight cloud
middleware to explore many task computing paradigm in scientific workflows. In: 2010 IEEE 3rd
International Conference on Cloud Computing. Piscataway: IEEE, 378-385.

Deelman E, Singh G, Su M-H, Blythe J, Gil Y, Kesselman C, Mehta G, Vahi K, Berriman G,
Good J, Laity A, Katz DS. 2005. Pegasus: a framework for mapping complex scientific
workflows onto distributed systems. Scientific Programming 13(3):219-237
DOI 10.1155/2005/128026.

Eggensperger K, Feurer M, Hutter F, Bergstra J, Snoek J, Hoos H, Leyton-Brown K. 2013.
Towards an empirical foundation for assessing bayesian optimization of hyperparameters. In:
NIPS Workshop on Bayesian Optimization in Theory and Practice. 10:3.

Emerson P. 2013. The original Borda count and partial voting. Social Choice and Welfare
40(2):353-358 DOI 10.1007/s00355-011-0603-9.

Freire J, Koop D, Santos E, Silva CT. 2008. Provenance for computational tasks: a survey.
Computing in Science & Engineering 10(3):11-21 DOI 10.1109/MCSE.2008.79.

Fiirnkranz], Hiillermeier E. 2003. Pairwise preference learning and ranking. In: European
Conference on Machine Learning. Springer, 145-156.

Fiirnkranz J, Hiillermeier E. 2011. Preference learning. In: Sammut C, Webb GI, eds. Encyclopedia
of Machine Learning. Boston: Springer, 789-795.

Garthwaite PH, Jolliffe IT, Jolliffe I, Jones B. 2002. Statistical inference. Oxford: Oxford
University Press on Demand.

Gil Y, Miles S, Belhajjame K, Deus H, Garijo D, Klyne G, Missier P, Soiland-Reyes S, Zednik S.
2013. Prov model primer: W3C working group note. 30. Available at https://global.oup.com/
academic/product/statistical-inference-9780198572268?cc=brerlang=ené.

Girden ER. 1992. ANOVA: repeated measures—number 84. New York: Sage.

Goble C. 2002. Position statement: musings on provenance, workflow and (semantic web)
annotations for bioinformatics. In: Workshop on Data Derivation and Provenance, Chicago3:.

Gogna A, Tayal A. 2013. Metaheuristics: review and application. Journal of Experimental &
Theoretical Artificial Intelligence 25(4):503-526 DOI 10.1080/0952813X.2013.782347.

Gongalves B, Porto F. 2015. Managing scientific hypotheses as data with support for predictive
analytics. Computing in Science & Engineering 17(5):35-43.

Gruber T. 2007. Ontology of folksonomy: a mash-up of apples and oranges. International Journal
on Semantic Web and Information Systems 3(1):1-11 DOI 10.4018/jswis.2007010101.

Guedes T, Jesus LA, Ocaiia KACS, Drummond LMA, De Oliveira D. 2020a. Provenance-based
fault tolerance technique recommendation for cloud-based scientific workflows: a practical
approach. Cluster Computing 23(1):123-148 DOI 10.1007/s10586-019-02920-6.

Guedes T, Martins LB, Falci MLF, Silva V, Ocaiia KACS, Mattoso M, Bedo M, De Oliveira D.
2020b. Capturing and analyzing provenance from spark-based scientific workflows with
SAMDbA-RaP. Future Generation Computer Systems 112(1):658-669
DOI 10.1016/j.future.2020.05.031.

Guerine M, Stockinger MB, Rosseti I, Simonetti LG, Ocaia KACS, Plastino A, De Oliveira D.
2019. A provenance-based heuristic for preserving results confidentiality in cloud-based

Silva Junior et al. (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.606 43/46

http://dx.doi.org/10.1016/j.future.2012.12.019
http://dx.doi.org/10.1155/2005/128026
http://dx.doi.org/10.1007/s00355-011-0603-9
http://dx.doi.org/10.1109/MCSE.2008.79
https://global.oup.com/academic/product/statistical-inference-9780198572268?cc=br&lang=en&
https://global.oup.com/academic/product/statistical-inference-9780198572268?cc=br&lang=en&
http://dx.doi.org/10.1080/0952813X.2013.782347
http://dx.doi.org/10.4018/jswis.2007010101
http://dx.doi.org/10.1007/s10586-019-02920-6
http://dx.doi.org/10.1016/j.future.2020.05.031
http://dx.doi.org/10.7717/peerj-cs.606
https://peerj.com/computer-science/

PeerJ Computer Science

scientific workflows. Future Generation Computer Systems 97(1):697-713
DOI 10.1016/j.future.2019.01.051.

Halioui A, Valtchev P, Diallo AB. 2016. Towards an ontology-based recommender system for
relevant bioinformatics workflows. bioRxiv 82776 DOI 10.1101/082776.

Herlocker JL, Konstan JA, Terveen LG, Riedl JT. 2004. Evaluating collaborative filtering
recommender systems. ACM Transactions on Information Systems 22(1):5-53
DOI 10.1145/963770.963772.

Hey T, Gannon D, Pinkelman J. 2012. The future of data-intensive science. Computer 45(5):81-82
DOI 10.1109/MC.2012.181.

Hey T, Trefethen AE. 2020. The fourth paradigm 10 years on. Informatik Spektrum 42(6):441-447
DOI 10.1007/s00287-019-01215-9.

Hoffa C, Mehta G, Freeman T, Deelman E, Keahey K, Berriman B, Good J. 2008. On the use of
cloud computing for scientific workflows. In: 2008 IEEE Fourth International Conference on
eScience. Piscataway: IEEE, 640-645.

Huynh TD, Moreau L. 2015. Provstore: a public provenance repository. In: Ludascher B, Plale B,
eds. Provenance and Annotation of Data and Processes. Cham: Springer International
Publishing, 275-277.

Hiillermeier E, Fiirnkranz J, Cheng W, Brinker K. 2008. Label ranking by learning pairwise
preferences. Artificial Intelligence 172(16-17):1897-1916 DOI 10.1016/j.artint.2008.08.002.
Jacob JC, Katz DS, Berriman GB, Good JC, Laity A, Deelman E, Kesselman C, Singh G, Su M-H,
Prince T, Williams R. 2009. Montage: a grid portal and software toolkit for science-grade
astronomical image mosaicking. International Journal of Computational Science and

Engineering 4(2):73-87 DOI 10.1504/IJCSE.2009.026999.

Kanchana W, Madushanka G, Maduranga H, Udayanga M, Meedeniya D, Perera G. 2016.
Context aware recommendation for data visualization. In: Proceedings of the 2nd International
Conference on Communication and Information Processing. 22-26.

Kanchana W, Madushanka G, Maduranga H, Udayanga M, Meedeniya D, Perera I. 2017. Semi-
automated recommendation platform for data visualization: Roopana. In: 2017 Moratuwa
Engineering Research Conference (MERCon). Piscataway: IEEE, 117-122.

Karvonen L. 2004. Preferential voting: incidence and effects. International Political Science Review
25(2):203-226 DOI 10.1177/0192512104041283.

Keller JM, Gray MR, Givens JA. 1985. A fuzzy k-nearest neighbor algorithm. IEEE Transactions
on Systems, Man, and Cybernetics 4(4):580-585 DOI 10.1109/TSMC.1985.6313426.

Kohavi R. 1995. A study of cross-validation and bootstrap for accuracy estimation and model
selection. In: Proceedings of the 14th international joint conference on Artificial intelligence -
Volume 2 (IJCAT 95). Burlington: Morgan Kaufmann Publishers Inc., 1137-1143.

Lestari S, Adji TB, Permanasari AE. 2018. Performance comparison of rank aggregation using
borda and copeland in recommender system. In: 2018 International Workshop on Big Data and
Information Security (IWBIS). Piscataway: IEEE, 69-74.

Lika B, Kolomvatsos K, Hadjiefthymiades S. 2014. Facing the cold start problem in recommender
systems. Expert Systems with Applications 41(4):2065-2073 DOI 10.1016/j.eswa.2013.09.005.

Mallawaarachchi V, Wickaramarachchi A, Weliwita A, Perera I, Meedeniya D. 2018.
Experiential learning in bioinformatics—learner support for complex workflow modelling and

analysis. International Journal of Emerging Technologies in Learning 13(12):19
DOI 10.3991/ijet.v13i12.8608.

Silva Junior et al. (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.606 44/46

http://dx.doi.org/10.1016/j.future.2019.01.051
http://dx.doi.org/10.1101/082776
http://dx.doi.org/10.1145/963770.963772
http://dx.doi.org/10.1109/MC.2012.181
http://dx.doi.org/10.1007/s00287-019-01215-9
http://dx.doi.org/10.1016/j.artint.2008.08.002
http://dx.doi.org/10.1504/IJCSE.2009.026999
http://dx.doi.org/10.1177/0192512104041283
http://dx.doi.org/10.1109/TSMC.1985.6313426
http://dx.doi.org/10.1016/j.eswa.2013.09.005
http://dx.doi.org/10.3991/ijet.v13i12.8608
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.606

PeerJ Computer Science

Marozzo F, Talia D, Trunfio P. 2013. Scalable script-based data analysis workflows on clouds. In:
WORKS. 124-133.

Mattoso M, Werner C, Travassos GH, Braganholo V, Murta L, Ogasawara E, De Oliveira D, Da
Cruz SMS, Martinho W. 2010. Towards supporting the life cycle of large-scale scientific
experiments. International Journal of Business Process Integration and Management 5(1):79-92
DOI 10.1504/1JBPIM.2010.033176.

McKinney W. 2011. Pandas: a foundational python library for data analysis and statistics. In:
Python for High Performance and Scientific Computing. 1-9.

Mitchell TM. 2015. Machine learning. Pennsylvania: McGraw-Hill Science/Engineering/Math.

Mohan A, Ebrahimi M, Lu S. 2015. A folksonomy-based social recommendation system for
scientific workflow reuse. In: 2015 IEEE International Conference on Services Computing.
Piscataway: IEEE, 704-711.

Myers RH, Myers RH. 1990. Classical and modern regression with applications. Vol. 2. Belmont,
CA: Duxbury Press.

Nie Z, Zhang Y, Wen J-R, Ma W-Y. 2005. Object-level ranking: bringing order to web objects. In:
Proceedings of the 14th International Conference on World Wide Web. 567-574.

Ocaina KA, De Oliveira D, Ogasawara E, Davila AM, Lima AA, Mattoso M. 2011. Sciphy: a
cloud-based workflow for phylogenetic analysis of drug targets in protozoan genomes. In:
Brazilian Symposium on Bioinformatics. Berlin: Springer, 66-70.

Ocaiia KACS, Galheigo M, Osthoff C, Gadelha LMR Jr, Porto F, Gomes ATA, De Oliveira D,
Vasconcelos AT. 2020. Bioinfoportal: a scientific gateway for integrating bioinformatics
applications on the brazilian national high-performance computing network. Future Generation
Computer Systems 107(1):192-214 DOI 10.1016/j.future.2020.01.030.

Ogasawara E, De Oliveira D, Valduriez P, Dias], Porto F, Mattoso M. 2011. An algebraic
approach for data-centric scientific workflows. Proceedings of the VLDB Endowment
4(11):1328-1339 DOI 10.14778/3402755.3402766.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M,
Prettenhofer P, Weiss R, Dubourg V. 2011. Scikit-learn: machine learning in python. Journal
of Machine Learning Research 12:2825-2830.

Rani P, Shokeen J, Mullick D. 2017. Recommendations using modified k-means clustering and
voting theory. International Journal of Computer Science and Mobile Computing 6(6):143-148.

Read J, Pfahringer B, Holmes G, Frank E. 2011. Classifier chains for multi-label classification.
Machine Learning 85(3):333-359 DOI 10.1007/s10994-011-5256-5.

Resnick P, Varian HR. 1997. Recommender systems. Communications of the ACM 40(3):56-59
DOI 10.1145/245108.245121.

Ricci F, Rokach L, Shapira B. 2011. Introduction to recommender systems handbook. In: Ricci F,
Rokach L, Shapira B, Kantor P, eds. Recommender Systems Handbook. Boston: Springer, 1-35.

Schein Al, Popescul A, Ungar LH, Pennock DM. 2002. Methods and metrics for cold-start
recommendations. In: Proceedings of the 25th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval. New York: ACM, 253-260.

Silva Junior D, Paes A, Pacitti E, De Oliveira D. 2018. Freep: towards parameter recommendation
in scientific workflows using preference learning. In: XXXIII Brazilian Symposium on Databases.
Brazil: Rio de Janeiro, 211-216.

Silva V, Neves L, Souza R, Coutinho ALGA, De Oliveira D, Mattoso M. 2020. Adding domain
data to code profiling tools to debug workflow parallel execution. Future Generation Computer
Systems 110(12):422-439 DOI 10.1016/j.future.2018.05.078.

Silva Junior et al. (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.606 45/46

http://dx.doi.org/10.1504/IJBPIM.2010.033176
http://dx.doi.org/10.1016/j.future.2020.01.030
http://dx.doi.org/10.14778/3402755.3402766
http://dx.doi.org/10.1007/s10994-011-5256-5
http://dx.doi.org/10.1145/245108.245121
http://dx.doi.org/10.1016/j.future.2018.05.078
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.606

PeerJ Computer Science

Soomro K, Munir K, McClatchey R. 2015. Incorporating semantics in pattern-based scientific
workflow recommender systems: improving the accuracy of recommendations. In: 2015 Science
and Information Conference (SAI). Piscataway: IEEE, 565-571.

Tang Y, Tong Q. 2016. Bordarank: a ranking aggregation based approach to collaborative filtering.
In: 2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS).
Piscataway: IEEE, 1-6.

Taylor AD, Pacelli AM. 2008. Mathematics and politics: strategy, voting, power, and proof. Berlin:
Springer Science & Business Media.

Tsoumakas G, Katakis I. 2007. Multi-label classification: an overview. International Journal of
Data Warehousing and Mining 3(3):1-13 DOI 10.4018/jdwm.2007070101.

Van der Walt S, Colbert SC, Varoquaux G. 2011. The numpy array: a structure for efficient
numerical computation. Computing in Science & Engineering 13(2):22-30
DOI 10.1109/MCSE.2011.37.

Vembu S, Gértner T. 2011. Label ranking algorithms: a survey. Berlin Heidelberg, Berlin,
Heidelberg: Springer, 45-64.

Viappiani P, Boutilier C. 2009. Regret-based optimal recommendation sets in conversational
recommender systems. In: Proceedings of the third ACM Conference on Recommender Systems.
ACM, 101-108.

Wang L. 2005. Support vector machines: theory and applications. Vol. 177. Berlin: Springer Science
& Business Media.

Welivita A, Perera I, Meedeniya D, Wickramarachchi A, Mallawaarachchi V. 2018. Managing
complex workflows in bioinformatics: an interactive toolkit with gpu acceleration. IEEE
Transactions on Nanobioscience 17(3):199-208 DOI 10.1109/TNB.2018.2837122.

Wickramarachchi A, Mallawaarachchi V, Meedeniya D, Perera I, Welivita A. 2018. Enhanced
student learning in proteomics-an interactive tool support for teaching workflows. In: 2018 IEEE
International Conference on Teaching, Assessment, and Learning for Engineering (TALE).
Piscataway: IEEE, 228-235.

Yang L, Shami A. 2020. On hyperparameter optimization of machine learning algorithms: theory
and practice. Neurocomputing 415(1):295-316 DOI 10.1016/j.neucom.2020.07.061.

Zeng R, He X, Van der Aalst WM. 2011. A method to mine workflows from provenance for
assisting scientific workflow composition. In: 2011 IEEE World Congress on Services. Piscataway:
IEEE, 169-175.

Zhang S, Xu J, Huang E, Chen C-H. 2016. A new optimal sampling rule for multi-fidelity
optimization via ordinal transformation. In: 2016 IEEE International Conference on Automation
Science and Engineering (CASE). Piscataway: IEEE, 670-674.

Zhao Y, Ioan Raicu IF. 2008. Scientific workflow systems for 21st century, new bottle or new wine?
In: EEE Congress on Services. 1.

Zhou Z, Cheng Z, Zhang L-J, Gaaloul W, Ning K. 2018. Scientific workflow clustering and
recommendation leveraging layer hierarchical analysis. IEEE Transactions on Services
Computing 11(1):169-183 DOI 10.1109/TSC.2016.2542805.

Zhou M, Venkatesh K. 1999. Modeling, simulation, and control of flexible manufacturing systems: a
Petri net approach. Vol. 6. Singapore: World Scientific.

Silva Junior et al. (2021), Peerd Comput. Sci., DOI 10.7717/peerj-cs.606 46/46

http://dx.doi.org/10.4018/jdwm.2007070101
http://dx.doi.org/10.1109/MCSE.2011.37
http://dx.doi.org/10.1109/TNB.2018.2837122
http://dx.doi.org/10.1016/j.neucom.2020.07.061
http://dx.doi.org/10.1109/TSC.2016.2542805
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.606

	Provenance-and machine learning-based recommendation of parameter values in scientific workflows
	Introduction
	Background
	FReeP—Feature Recommender from Preferences
	Experimental evaluation
	Dataset
	Related work
	Final remarks
	Conclusion
	flink9
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

